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Self-assembly and alignment of anisotropic colloidal particles are important processes that can be in-
fluenced by external electric fields. However, dielectric nanoparticles are generally hard to align this
way because of their small size and low polarizability. In this work, we employ the coupled dipole
method to show that the minimum size parameter for which a particle may be aligned using an ex-
ternal electric field depends on the dimension ratio that defines the exact shape of the particle. We
show, for rods, platelets, bowls, and dumbbells, that the optimal dimension ratio (the dimension ratio
for which the size parameter that first allows alignment is minimal) depends on a nontrivial com-
petition between particle bulkiness and anisotropy because more bulkiness implies more polarizable
substance and thus higher polarizability, while more anisotropy implies a larger (relative) difference
in polarizability. © 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3701615]

Self-assembly of nanoparticles is an interesting ther-
modynamic process in which particles spontaneously form
highly ordered structures with important technical applica-
tions in new materials and devices. In recent years, the tech-
nology of synthesizing anisotropic nanoparticles has made
tremendous progress,1, 2 and has resulted in the synthesis
and analysis of colloidal rods,3 bowls4–7 and dumbbells.8

Anisotropic particles are known to self-assemble into orien-
tationally (and possibly positionally) ordered structures un-
der the influence of their interparticle interactions.9–16 How-
ever, this process is often difficult to achieve in practice and
hampered by slow dynamics. Several techniques can be em-
ployed to assist the self-assembly process, such as alignment
of the particles by introducing a substrate to the system,17, 18

employing a fluid flow,19 or applying external magnetic20 or
electric21–24 fields. The reason an external electric field can
align an anisotropic particle is due to its anisotropic polariz-
ability, which causes the particle’s potential energy to vary
with its orientation in the field. Since the thermal Brown-
ian motion competes with the tendency to align, the poten-
tial energy difference has to be high enough in order to over-
come these fluctuations and substantially align the particle.
For nanoparticles, this is hard to achieve: because of their
small size, they are generally only slightly polarizable and
thus the difference in potential energy will, for accessible
electric fields, be low. In this work, we investigate the con-
ditions for alignment, and we show that the minimum size
to align a particle depends on the shape of the particle be-
cause of a nontrivial competition between particle bulkiness
and anisotropy.

The calculations in this work are based on the coupled
dipole method (CDM).25–32 In the CDM, we model a particle
as a cluster of N coupled point dipoles at fixed positions. Each
dipole pi (i = 1, . . . , N) can be polarized due to a local elec-
tric field E(i)

loc such that pi = α0E(i)
loc, where α0 is the (scalar)

polarizability of the dipole.33, 34 The dipoles are purely in-
duced, i.e., they are assumed to have no permanent moment.
The local field E(i)

loc at the site of dipole i consists of an ex-
ternally applied field E0 and the (nonretarded) field due to
the other N − 1 polarized dipoles. All many-body effects that
arise in this way are accounted for by the CDM without the
use of approximations.

Physically, the point dipoles could represent “chunks”
of polarizable matter in general, but here we think of indi-
vidual polarizable atoms or molecules, with α0 in the cubic
Angstrom regime. In this work, we only consider dipoles on a
cubic lattice with lattice spacing a. We can then approximate
the atomic polarizability by the Clausius-Mossotti relation

α0 ≈ 3a3εm

4π

εp/εm − 1

εp/εm + 2
,

where εp is the dielectric constant of the substance that the
atoms represent, and εm is the dielectric constant of the sol-
vent that the cluster is dispersed in. From this relation, as
well as from the theory of the CDM,32 it can be seen that
the dipole-dipole coupling is fully characterized by the di-
mensionless lattice spacing ã ≡ a/α

1/3
0 . For typical ratios of

εp/εm, ã is of order unity; in this work we only consider
ã � 1.7 to prevent the polarization catastrophe.31, 34

The 3 × 3 polarizability matrix αc of the whole cluster of
N particles is defined by

N∑
i=1

pi = αc · E0,

and can be calculated numerically by (large-)matrix manip-
ulation for a given cluster composed of up to N ≈ 105 ± 1

dipoles.27, 30, 32 One can show that αc is symmetric if all
dipoles have the same polarizability α0 and, as a consequence,
αc is diagonal in an appropriate Cartesian coordinate frame.
In this work, we will always choose the Cartesian axes such
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that αc is diagonal. Furthermore, the particles considered here
have at least a four-fold rotational symmetry around one axis,
here defined as their Cartesian z-axis, which results in αc

having the property that αxx = αyy. The anisotropy of the
cluster polarizability is therefore completely characterized by
αzz − αxx.

Within the theoretical framework of the CDM, the dipole
couplings are the sole cause of the anisotropy of the cluster
polarizability (where αzz �= αxx). This can be seen by noting
that one atom is considered to have an isotropic polarizability,
α0I, and, thus, a cluster of N of these atoms would, if atom-
atom interactions were ignored, have an isotropic polarizabil-
ity Nα0I. Hence, the magnitude of the polarization of the clus-
ter would be independent of the orientation of the external
electric field E0. In contrast, in the CDM, where many-body
effects are included in the calculation, the (diagonalized) clus-
ter polarizability in general does not have equal entries on the
diagonal and thus has an orientation-dependent polarizability.

An electric field E0 applied to a cluster with polarizabil-
ity αc will induce a polarization and thus lower the particle’s
electrostatic (potential) energy to32

VE = −1

2
E0 · αc · E0 = −� cos2 θ + constant, (1)

where θ represents the angle between the rotational symmetry
axis of the particle and E0, and where

� = 1

2
(αzz − αxx) E2

0 ≡ 1

2
�f Nα0E

2
0 , (2)

with

�f ≡ (αzz − αxx)

Nα0
.

We note that �f is the difference fzz − fxx of the diago-
nal elements of the so-called (3 × 3) enhancement factor
fc ≡ αc/Nα0, which is a measure for how much the inter-
actions between the point dipoles enhance or reduce the po-
larizability. Our numerical calculations32 suggest that �f is
essentially independent of N and, thus, depends only on the
particle’s shape and on ã but not on its overall size. This inde-
pendence is approximate, since for small values of N, effects
of the discretization employed by the CDM become apprecia-
ble. However, for the values of N that we employ, approxima-
tions for fc and �f are very accurate, which is illustrated by
the excellent agreement between values calculated using the
CDM32 and those calculated using continuum theory.35–39

The angular distribution function ψ(θ ) of a particle in so-
lution, subject to an electric field E0 and to Brownian motion
due to the molecular medium at temperature T, is proportional
to the Boltzmann factor,

ψ (θ ) = exp
(
β� cos2 θ

)
4π

∫ π/2
0 dθ sin θ exp

(
β� cos2 θ

) ,

where β = 1/kBT is the inverse of the thermal energy. We can
quantify the degree of orientational order of this particle by
introducing the nematic order parameter

S (β�) = 〈P2 (cos θ )〉 = 4π

∫ π/2

0
dθ sin θψ (θ ) P2 (cos θ ) ,
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FIG. 1. The angular distribution function ψ(θ ) (a), and the order parameter
S (b), of an anisotropic particle with orientational energy VE(θ ) = −�cos 2θ

in an external electric field E0. Here, θ is the angle between the particle’s
rotational symmetry axis and E0 and � is the energy difference of turning
the particle from its least to its most favorable orientation.

where P2 is the second Legendre polynomial and 〈.〉 denotes
the ensemble average. The distribution ψ(θ ) for several values
of �, and the order parameter S(β�), are plotted in Fig. 1.

From Fig. 1, it is clear that an externally applied electric
field will only align a particle substantially if � � kBT. The
number of atoms N* in the cluster for which � ≈ kBT is, via
Eq. (2), given by

N∗ = 2kBT

�f α0E
2
0

. (3)

For given ã, we can calculate N* numerically by using the
value of �f as calculated within the CDM for (relatively)
small clusters (with N ≈ 104). This is accurate since, as noted
before, �f is essentially independent of N.

The shape of an l × l × L cuboid is determined by its
shape parameter r ≡ l/L. For each r, we can calculate N*
[by making use of Eq. (3)] and, hence, the size parameter for
which the cuboid satisfies � = kBT. This “size parameter”
is, throughout this work, defined as the length of the parti-
cle when measured along the electric field if the particle is
perfectly lined up.40 For rods, this is given by aL* and for
platelets by al*, where L* and l* can be calculated from r and
N* by

L∗ =
(

N∗

r2

)1/3

, l∗ = (
N∗r

)1/3
, (4)

and a follows from a = ãα
1/3
0 .

From our numerical data we find that �f is largest for
very anisotropic particles.32 This implies, via Eq. (3), that N*
is smallest for very anisotropic particles. However, when con-
verting this N* to a length such as L* or l*, a competing mech-
anism arises from the fact that more anisotropy means less
bulkiness. For rods, we note that lowering r has two effects: on
the one hand, it lowers N* because more anisotropy enhances
�f; on the other hand, it increases L* via Eq. (4). Similarly,
for platelets, higher anisotropy is achieved through raising r,
while l* rises with increasing r (see Eq. (4)). In other words,
less atoms “fit” in a highly anisotropic particle for a given L*
(for rods) or l* (for platelets).
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FIG. 2. The length aL* (a) and the width al* (b) for which l × l × L cuboidal
rods and platelets, respectively, first become alignable by an electric field
E0 = 100Vmm−1, as a function of their shape (l/L and L/l, respectively),
for several different lattice constants ã = a/α

1/3
0 = 1.75, 2, 2.5 and 3. The

temperature is T = 293K, and the atomic polarizability is α0 = 5.25 Å3. The
dots denote the minima in the graphs.

In Fig. 2 we plot L* (for rods) and l* (for platelets)
as a function of the shape parameter r = l/L (for rods) and
r−1 = L/l (for platelets), for several values of the lattice con-
stant. The other parameters are the experimentally typical val-
ues of T = 293K, E0 = 100Vmm−1 and α0 = 5.25 Å3. For
rods, we find a minimum L* around l/L ≈ 0.62; this dimen-
sion ratio thus defines the optimum shape for alignment of
rods in an external electric field. For platelets, a minimum l* is
observed at L/l ≈ 0.38. The locations of these minima do not
depend strongly on the lattice constant. Additional numerical
calculations, not shown here, confirm that this (approximate)
independence also holds for ã > 3.0. As could be expected,41

however, a lower lattice constant does imply a lower L* or l*.
The same analysis can be applied to clusters of other

shapes. Here, we show results for bowl-shaped and dumbbell-
shaped particles. The bowl shape is achieved by revolving a
crescent around its symmetry axis.4 The construction of this
crescent shape is depicted and discussed in Fig. 3. Note that
bowls with d/σ = 0 are hemispherical shells and bowls with
d/σ = 0.5 are hemispheres. For d/σ > 0.5, instead of a bowl
in the conventional meaning, we get a hemisphere with a pro-
trusion on its flat side (the green area in Fig. 3). “Bowls” with
d/σ = 1 are spheres. The dumbbell shape is a simpler design:
we take two spheres of diameter σ at center-to-center distance
L from each other and take as the shape of the dumbbell the

FIG. 3. To get the bowl shape, we revolve a crescent around its symmetry
axis.4 This crescent is the result of the set-theoretic subtraction of a disk
with diameter σ ′ > σ from a disk with diameter σ . The relative position of
the two disks and the diameter σ ′ have to be chosen such that the center of the
small disk lies on the line connecting the two points where the edges of the
disks intersect, and such that in its middle, the thickness of the crescent is d.
In this work, we also allow d > σ /2, which we associate with the set-theoretic
intersection of the two disks (the green area with thickness d′).

region in which all points are either in one sphere or in the
other, or in both. Thus, L/σ = 0 corresponds to a sphere, L/σ
= 1 corresponds to two touching spheres and L/σ > 1 refers to
two separate spheres. Once the shape is determined we inter-
sect it with a simple cubic lattice grid with spacing a, resulting
in a cluster of atoms of approximately the appropriate shape.
Note that the size parameter, using the definition mentioned
earlier, is given by σ for bowls, and σ + L for dumbbells.

As in the case of rods and platelets, extrapolation
(Eq. (3)) has to be used to determine the atom number N*
for which � � kBT. Furthermore, since we no longer have a
straightforward relation to determine the size parameter (σ*
or σ* + L*) from a given N*, we use extrapolation of the
phenomenological dependence of N on σ (N ∝ σ 3) to esti-
mate σ*. For dumbbells, we subsequently add L* (which can
be calculated from L/σ and σ*) to gain the correct size pa-
rameter. The result is plotted in Fig. 4.

For bowls (Fig. 4(a)), we observe that the optimal shape
is located around d/σ ≈ 0.52, (corresponding to a slightly
protruded hemisphere). Note that for d/σ > 0.5, the bowl
shape construction used in this work no longer produces a
bowl in the traditional sense of the word. Hence, the opti-
mally alignable “traditional” bowl is as bulky as possible: a
hemisphere.

For dumbbells (Fig. 4(b)), the minima lie around L/σ
≈ 0.51. Thus, like in the case of rods, the optimum size ratio
for dumbbells lies in-between the maximally anisotropic and
bulky configuration (two touching spheres and one sphere, re-
spectively).

In conclusion, we showed that the dependence of the
minimum size of an alignable particle on the shape ratio of
the particle is nontrivial, as it is not in general true that for
alignment, the more anisotropic the particle the better, nor are
bulkier particles always better: for all the particle shapes stud-
ied here, the optimum shape lies in-between. We note here
that for lower values of ã (strong coupling), the graphs of
Figs. 2 and 4 are very flat, such that a broad range of dimen-
sion ratios can be considered near-optimal. Interestingly, the
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FIG. 4. The size parameter σ* (a) and σ* + L* (b) for which colloidal
bowls and dumbbells, respectively, first become alignable by an electric field
E0 = 100Vmm−1, as a function of their shape parameters d/σ and L/σ , re-
spectively. Here, d is the thickness of a bowl and L is the separation of the
two composing spheres of a dumbbell. The bowls and dumbbells are built
up of atoms on a simple cubic lattice with dimensionless lattice spacings
a/α

1/3
0 = 1.75, 2, 2.5, and 3. The temperature is T = 293K, and the atomic

polarizability is α0 = 5.25 Å3. The dots denote the minima in the graphs.

graphs are more strongly dependent on the shape when the
coupling is weak (high ã). With weak coupling, it is appar-
ently more important that the particle has exactly the right
shape.
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