
Phase diagram of hard snowman-shaped particles
Matthew Dennison, Kristina Milinković, and Marjolein Dijkstra 
 
Citation: J. Chem. Phys. 137, 044507 (2012); doi: 10.1063/1.4737621 
View online: http://dx.doi.org/10.1063/1.4737621 
View Table of Contents: http://jcp.aip.org/resource/1/JCPSA6/v137/i4 
Published by the American Institute of Physics. 
 
Additional information on J. Chem. Phys.
Journal Homepage: http://jcp.aip.org/ 
Journal Information: http://jcp.aip.org/about/about_the_journal 
Top downloads: http://jcp.aip.org/features/most_downloaded 
Information for Authors: http://jcp.aip.org/authors 

http://jcp.aip.org/?ver=pdfcov
http://aipadvances.aip.org/resource/1/aaidbi/v2/i1?&section=special-topic-physics-of-cancer&page=1
http://jcp.aip.org/search?sortby=newestdate&q=&searchzone=2&searchtype=searchin&faceted=faceted&key=AIP_ALL&possible1=Matthew Dennison&possible1zone=author&alias=&displayid=AIP&ver=pdfcov
http://jcp.aip.org/search?sortby=newestdate&q=&searchzone=2&searchtype=searchin&faceted=faceted&key=AIP_ALL&possible1=Kristina Milinkovi&possible1zone=author&alias=&displayid=AIP&ver=pdfcov
http://jcp.aip.org/search?sortby=newestdate&q=&searchzone=2&searchtype=searchin&faceted=faceted&key=AIP_ALL&possible1=Marjolein Dijkstra&possible1zone=author&alias=&displayid=AIP&ver=pdfcov
http://jcp.aip.org/?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.4737621?ver=pdfcov
http://jcp.aip.org/resource/1/JCPSA6/v137/i4?ver=pdfcov
http://www.aip.org/?ver=pdfcov
http://jcp.aip.org/?ver=pdfcov
http://jcp.aip.org/about/about_the_journal?ver=pdfcov
http://jcp.aip.org/features/most_downloaded?ver=pdfcov
http://jcp.aip.org/authors?ver=pdfcov


THE JOURNAL OF CHEMICAL PHYSICS 137, 044507 (2012)

Phase diagram of hard snowman-shaped particles
Matthew Dennison,a) Kristina Milinković, and Marjolein Dijkstra
Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 5,
3584 CC Utrecht, The Netherlands

(Received 5 April 2012; accepted 21 June 2012; published online 27 July 2012)

We present the phase diagram of hard snowman-shaped particles calculated using Monte Carlo sim-
ulations and free energy calculations. The snowman particles consist of two hard spheres rigidly
attached at their surfaces. We find a rich phase behavior with isotropic, plastic crystal, and aperiodic
crystal phases. The crystalline phases found to be stable for a given sphere diameter ratio correspond
mostly to the close packed structures predicted for equimolar binary hard-sphere mixtures of the
same diameter ratio. However, our results also show several crystal-crystal phase transitions, with
structures with a higher degree of degeneracy found to be stable at lower densities, while those with
the best packing are found to be stable at higher densities. © 2012 American Institute of Physics.
[http://dx.doi.org/10.1063/1.4737621]

I. INTRODUCTION

The potential for building colloidal structures with use-
ful optical, mechanical and/or functional properties has lead
to the development of new routes for synthesizing anisotropic
colloids.1 Recent work has shown the prospect of controlling
the size, shape and surface properties of colloidal particles,2, 3

resulting in a huge number of possible building blocks. Un-
derstanding how the microscopic properties of these particles
affect the macroscopic behavior of a system is therefore very
important.

One such anisotropic colloidal particle with a simple
asymmetric shape is the snowman particle, which consists
of two spheres of different diameters joined together. Parti-
cles with this specific geometry can also be referred to as
hetero-atomic dimers or asymmetric dumbbells. It is possi-
ble to synthesize snowman particles with a range of different
diameter ratios of the two spheres and also different sphere
separations,4–9 providing a large phase space even for purely
repulsive interactions. These particles have the potential to
mimic diatomic molecules and form a wide range of crys-
talline structures and it would clearly be desirable to un-
derstand their phase behavior. However, understanding the
packing of colloidal particles with purely hard-body interac-
tions has been a persistent challenge. Even for hard spheres,
which are the simplest three-dimensional reference system
and which have been studied since the early days of com-
puter simulations,10, 11 the issue of the relative stability of
the face-centered-cubic (FCC) and hexagonal-close-packed
(HCP) crystalline structures was a longstanding one.12–14 Par-
ticle anisotropy only adds to this complexity.

Perhaps the simplest model anisotropic particle is the
hard dumbbell (or dimer), which can be seen as a special
case of a snowman particle formed from hard spheres of
equal diameter. Such systems have been extensively studied
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De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands.

in both two and three dimensions using theoretical15–17 and
simulation18–22 approaches. The phase diagram of these par-
ticles is already surprisingly rich,22 with a variety of crys-
talline structures found to be stable. For the case of tangen-
tial spheres the system forms a stable crystalline phase where
the constituent spheres sit on an FCC lattice and are ran-
domly connected to form dimers. This so-called aperiodic
FCC structure19–22 offers an interesting parallel to the FCC
structure of hard spheres. The similar nature of the crystalline
phases of tangential dumbbell and hard-sphere systems sug-
gests the intriguing prospect that other tangential dimer sys-
tems, such as snowman-shaped particles, can form binary
hard-sphere crystalline phases, where the two spheres of the
dimer would sit on the corresponding lattice sites of the binary
crystal. Therefore, as well as being interesting anisotropic par-
ticles in their own right, snowman particles can also be viewed
as a system of paired up spheres.

Binary hard-sphere mixtures are often used as a colloidal
model of atomic systems.23–25 Several attempts have been
made to determine the closest packed crystalline structures
of binary hard sphere mixtures using theoretical26 and simu-
lation methods.27–30 In particular, Ref. 29 found NaCl, CrB,
αIrV and γ CuTi structures to be close packed for various di-
ameter ratios, and being able to form this rich variety of col-
loidal crystals would be desirable. However, studies of the
phase behavior show that these crystal structures are often
metastable with respect to other crystal structures or phase
separated FCC structures.31 Fabrication of the best packed
structures could be aided by using snowman-shaped particles,
as phase separation would no longer be an issue since each
large sphere is already tangential to a smaller sphere. Stucke
and Crespi32 attempted to predict the best packed structures
for snowman-shaped particles and found some of those later
predicted for binary hard spheres. While knowledge of the
best packed structures can give an indication to the phase be-
havior of a system at highest densities, it does not give any in-
formation on the phase behavior at lower densities nor about
the phase boundaries.
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A recent study using molecular dynamics simulations
of snowman-shaped particles with various soft potentials33

showed that a NaCl crystal could spontaneously form un-
der compression for diameter ratios below ∼0.41 as one ap-
proaches the hard-particle limit. Similarly, for large diam-
eter ratios (� 0.95) FCC-like structures can form.16, 17 For
intermediate diameter ratios, however, no crystalline struc-
tures spontaneously formed, possibly due to the poten-
tial crystal structures in this region being kinetically
inaccessible.33 In this paper, we use computer simulations to
map out the phase diagram by evaluating the free energies of
candidate crystalline structures which correspond to the close
packed structures of binary hard-sphere mixtures. We take the
structures found in Ref. 29 to be our candidate crystals, and
we place the large and small spheres making up the snowman
particles on the lattice sites. As the spheres are tangential there
is no difference in the close packed structures of the snowmen
and the binary crystals.27 Therefore, we define all crystalline
structures based on the positions of the constituent spheres of
the snowmen.

II. METHOD

A. Simulation details

We perform Monte Carlo (MC) simulations on systems
of hard snowman-shaped particles. These particles consist of
two hard spheres rigidly bonded at their surfaces (see Fig. 1).
We define the shape of these particles by the ratio of the con-
stituent sphere diameters d = DS/DL, where DS is the diame-
ter of the smaller sphere and DL is the diameter of the larger
sphere. In the limiting case of d = 0 the snowmen reduce to
hard spheres and for d = 1 they reduce to hard-sphere dimers.
We study systems from d = 0 to d = 1 in steps of 0.1, except
in the regions of 0.2 < d < 0.5 and 0.9 < d < 1 where a higher
resolution is required to clarify the phase behavior.

To obtain the equations of state (EOS) for a given diame-
ter ratio d, we perform constant pressure Monte Carlo (NPT)
simulations on a system of N ∼ 500 snowmen, at tempera-
ture T and pressure P. We note that only the ratio P/T is rel-
evant in hard-body systems. For all systems studied we per-
form both compression runs, where we start from an initial
isotropic fluid configuration at low pressure and then increase
P in small steps, and expansion runs, where we employ one of
the candidate crystal structures and decrease the pressure until
the crystal melts. We consider the densely packed structures
which were predicted for the binary hard-sphere systems in
Ref. 29 for the corresponding d values as the candidate crystal
structures. We list these in Table I. For each state point (i.e., at
each pressure P) we divide the simulation runs into two parts:
an equilibration part of ∼2 × 106 MC cycles, followed by a
production part of ∼4 × 106 MC cycles from which we ob-

FIG. 1. Snowman particles with d = DS/DL = 0 to d = 1, in intervals of 0.2.

TABLE I. Candidate crystal structures for snowman particles of diameter
ratio d = DS/DL ranging from 0.1 to 0.98, listed from best packed at high
pressure to less well packed.

d = DS/DL Candidate structures

0.1 NaCl CrB
0.2 NaCl CrB
0.25 NaCl CrB
0.3 NaCl CrB
0.35 NaCl CrB
0.38 NaCl CrB
0.4 NaCl CrB
0.42 NaCl CrB
0.48 CrB NaCl
0.5 CrB NaCl γ CuTi αIrV
0.6 CrB NaCl αIrV γ CuTi
0.7 CrB αIrV CsCl γ CuTi
0.8 γ CuTi αIrV CsCl CrB
0.9 αIrV γ CuTi CsCl CrB
0.95 αIrV FCC*
0.97 αIrV FCC*
0.98 αIrV FCC*

tain the density ρ of the system at pressure P and hence the
EOS.

B. Crystal structures

For a large range of d values compression of isotropic
phases does not result in the spontaneous formation of crys-
talline structures. Therefore, in order to obtain the crystalline
branches of the EOS we must generate all candidate crystals
at high pressure and then expand them until they melt. As the
snowmen consist of tangential spheres, we choose to classify
their crystalline structures as the structures of the correspond-
ing binary hard-sphere crystals (i.e., the constituent spheres,
instead of the centers of mass of the snowmen, are positioned
on a crystal lattice). However, in addition to the positions
of the constituent spheres, a crystal of snowman particles is
also defined by the orientational ordering of the particles,
and this gives rise to three types of orientational organization.
These are: (i) periodic crystals (PC), in which the constituent
spheres have positional order and the snowmen have peri-
odic orientational ordering; (ii) aperiodic crystals (APC), in
which the constituent spheres have positional order but there
is no repeating orientational ordering of the snowmen, and as
such the snowmen centers of mass are positionally aperiodic;
(iii) rotator (plastic) crystals (RC), in which the snowmen cen-
ter of mass positions are on average located on a lattice, but
the particles can still rotate (although free rotation is hin-
dered by the surrounding particles). We note that, particu-
larly at high densities, the instantaneous position of a particle
can be correlated to its orientation.34 For large d values, we
also find one additional type of structure in which the con-
stituent spheres lie on a slightly distorted FCC lattice, with
the large and small spheres positioned on random sites. As
such, this structure has no repeating positional ordering of
the constituent spheres, nor repeating orientational or posi-
tional ordering of the snowman particles. These structures are
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similar to the 2D aperiodic structures studied in Ref. 35, and
also to the aperiodic FCC-like structure found in Ref. 22 to be
stable for d = 1 (tangential dumbbells), and we refer to them
as FCC* from hereon in.

For both PCs and RCs, there is only one possible config-
uration, and to obtain the EOS for a given d only a single set
of expansion runs has to be performed. There is, however, a
large number of configurations (yet finite for a given number
of particles) that we characterize as APCs of a given crystal
structure, as there are multiple combinations of snowman ori-
entations with the same corresponding binary crystal struc-
ture. The number of possible configurations defines the de-
generacy of an APC. For snowman-shaped particles the APC
and PC of each crystalline structure are indistinguishable in
terms of packing due to the non-penetrating nature of the two
constituent spheres. As such, we would expect the PC and
different APC configurations of a candidate crystal to have
identical EOS, and hence that the periodic crystal structures
can be considered as a special case of the APC configura-
tions. We check this by generating and expanding a PC and
3 APC configurations for each candidate crystal. For FCC*
structures, there are again multiple configurations, and in this
case due to the random positioning of the large and small con-
stituent spheres on the lattice sites, we would expect different
configurations to have slightly different EOS, particularly at
high densities where packing considerations become impor-
tant. Because of this, we also generate and expand multiple
FCC* configurations for the relevant d values.

We generate the crystal structures using the following
method. Firstly, we generate a binary hard-sphere structure
of NL = NS ∼ 64 particles for each of the candidate struc-
tures. We then allow these to equilibrate at high pressure, and
based on the configuration obtained we produce a larger sys-
tem of typically NL = NS ∼ 500 spheres. The exact number
varies slightly depending on the crystal structure. Next we
connect neighboring spheres of different species to form a pe-
riodic crystal structure of snowman-shaped particles. Finally,
we use bond-switch moves22 to produce APC crystals. For
FCC* structures we use the same method, but we start from
a crystal with DL = DS from which we form an APC crystal.
We then reduce the diameter of one of the constituent spheres
(chosen randomly) to give the required d value. This system
is finally allowed to equilibrate at high pressure.

Rotator phases form spontaneously during the expansion
runs, and in the case of low d, during the compression runs.
As such, we do not need to generate these configurations.

C. Free energy calculations

We determine which crystals are stable and map out the
phase diagram using free energy calculations. In order to cal-
culate the Helmholtz free energy F of the isotropic phases we
initially use the Widom insertion method36 to calculate the
chemical potential μ, which is then related to the free energy
by

F

N
= μ − P

ρ
. (1)

To calculate the free energies of the candidate crystal
structures we use the thermodynamic integration method to
integrate from a reference state. For each crystal of interest
the reference state is a non-interacting Einstein crystal with
the corresponding structure, for which the free energy can
be calculated analytically.37 The method we use is similar to
that in Ref. 22, which considered hard dumbbells, with some
adaptations required to describe snowman-shaped particles.

We begin by considering rotator crystals, which have no
fixed orientation but do have positional ordering of the aver-
age snowmen centers of mass. We wish to be able to follow a
path through phase space that connects an RC to the reference
Einstein crystal. To do so, we start by tethering the snowmen
with harmonic springs to their corresponding lattice sites in
the reference crystal. The coupling potential energy function
is given by

βUk(rN, uN, k) = k

N∑
i=1

(ri − ri,0)2

σ 2
, (2)

where k is the spring constant, ri − ri, 0 is the distance of
particle i at position ri from its corresponding lattice site at
ri, 0 and ui is the orientation of the snowman particle. We
take σ = DL to be the unit of length in our system. To ob-
tain the lattice site positions ri, 0 of the reference crystal we
calculate the average center of mass position of each parti-
cle in an equilibrated crystal configuration using constant vol-
ume (NV T ) simulations at a point of interest. For k = 0 the
particles are completely untethered, and such a system cor-
responds to the structure under consideration (i.e. the rotator
crystal). The spring constant k is then increased gradually to a
value kmax, at which the particles are completely fixed to their
lattice sites. We find that a value kmax ∼ 16 000 is sufficient to
fix the particles.

While the particles are now fixed positionally, they can
still rotate about their center of mass and hence particle in-
teractions are still possible. To ensure that the particles do
not interact as they rotate, we replace the hard-core interac-
tion of the snowmen with a pair potential that allows the soft-
ness of the interaction to be tuned. We use the following soft
potential:

βUγ (rN, uN, γ ) =

⎧⎪⎨
⎪⎩

γ
∑
i<j

2∑
a,b=1

(
1 − A

r′2

σ 2

)
, r ′ ≤ σab

0, r ′ > σab

,

(3)

where r′ = ria − rjb is the separation of sphere a = 1, 2 of
particle i from sphere b = 1, 2 of particle j, σ ab is the inter-
action diameter (σ 11 = D1, σ 22 = D2, and σ 12 = σ 21 = (D1

+ D2)/2), and γ and A are adjustable parameters. We set A
= 0.9 throughout,22 and vary γ from 0 to γmax. In the limit of
γ → ∞, the potential reduces the system to hard snowmen
once more, and we find that a value of γ � 150 is sufficient
to achieve this behavior. As such, we begin from a maximum
value of γmax = 200, and then slowly reduce γ until γ → 0,
where the constituent spheres become non-interacting.

We now have the following integration path from the
rotator phase to the reference crystal: at γmax, where the
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particles behave as hard snowmen, we turn on the spring po-
tential Uk(rN, uN, k) by increasing k from 0 to kmax to fix the
particles to their lattice sites. At kmax we decrease γ to 0 so
that the particles cease to interact, and the system reduces to
a non-interacting Einstein crystal. The Helmholtz free energy
F of a system of N particles at volume V and temperature T is
then calculated by integrating over this path, and is given by

βF = βFE −
∫ kmax

0
dk

〈
∂βUk

∂k

〉
γmax

+
∫ γmax

0
dγ

〈
∂βUγ

∂γ

〉
kmax

= βFE −
∫ kmax

0
dk

〈
N∑

i=1

(ri − ri,0)2

σ 2

〉

+
∫ γmax

0
dγ

〈∑
i<j

2∑
a,b=1

(
1 − A

(ria − rjb)2

σ 2

)〉
,

(4)

where FE is the Helmholtz free energy of a non-interacting
Einstein crystal together with the center of mass correction.
In our case this is given by

βFE = − 3(N − 1)

2
ln

(
π

kmax

)
+ ln

(
ρσ 3

N3/2

)

+ N ln
(
	2

r

) + N ln

(
	3

t

σ 3

)
. (5)

	r is given by

	r =
√

βh2

8π2I
, (6)

where h is the Planck constant and I is the moment of inertia
of the particle. 	t is the de Broglie wavelength given by

	t =
√

βh2

2πm
, (7)

where m is the particle mass. We calculate the integrands in
Eq. (4) by performing NV T Monte Carlo simulations and us-
ing these together with Eq. (5) we calculate the free energy of
all rotator phases.

We now consider PC, APC, and FCC* structures as de-
fined in Sec. II B. In order to obtain the free energies we fol-
low the same procedure as outlined above for RCs. However,
we also add an additional term to the potential in Eq. (2),
which couples the particle orientations to the corresponding
orientations in the reference crystal. We use NV T simula-
tions to calculate the average positions ri, 0 and orientations
ui, 0 of each particle within the crystal. Eq. (2) then becomes

βUk(rN, uN, k) = k

N∑
i=1

(
(ri − ri,0)2

σ 2
+ 1 − cos θi

2

)
,

(8)
where θ i is the angle between the orientations of particle i
and the corresponding particle in the reference crystal, and is

given by cos−1(ui · ui, 0). Equation (4) is therefore modified
to become

βF = βFE −
∫ kmax

0
dk

〈
∂βUk

∂k

〉
γmax

+
∫ γmax

0
dγ

〈
∂βUγ

∂γ

〉
kmax

− ln �

= βFE −
∫ kmax

0
dk

〈
N∑

i=1

(
(ri − ri,0)2

σ 2
+ 1 − cos θi

2

)〉

+
∫ γmax

0
dγ

〈∑
i<j

2∑
a,b=1

(
1 − A

(ria − rjb)2

σ 2

)〉

− ln �, (9)

where we again integrate over both the spring and soft po-
tentials to relate the free energy of each crystal structure to
that of the corresponding reference crystal. Note that there is
now an additional term ln �, where � is the degeneracy of the
crystalline phase (i.e., the number of possible configurations
of a structure). We calculate the value of � using the series
expansion method given in Ref. 38, which has been shown to
be accurate for sufficiently large systems.22 The zeroth order
term �0 of this expansion, which reduces to the Bethe approx-
imation, depends solely on the number of smaller spheres that
touch each larger sphere, which we denote as q, and is given
by

�0 = qN

(
1 − 1

q

)N(q−1)

. (10)

The higher order terms vary even for structures with the same
q value, and we calculate these up to 8th order and show the
calculated values of ln � in Table II. Typically we find that
the difference between the values obtained from the high or-
der expansion and from the zeroth order term is of the order
of a few percent. For FCC* crystalline phases, � also takes
into account the positional degeneracy, which can be calcu-
lated by counting the number of possible particle configura-
tions and correcting for periodic boundary conditions. Finally,
the free energy of the non-interacting Einstein crystal FE with

TABLE II. Degeneracy term per particle ln �/N of candidate crystal struc-
tures for snowman particles. q gives the number of smaller spheres that touch
each large sphere.

Crystal structure q ln �/N

NaCl 6 0.8945
CrB 6 0.8933
CrB 7 1.0279
αIrV 6 0.8864
αIrV 8 1.1504
γ CuTi 5 0.7293
γ CuTi 4 0.5423
FCC* 12 2.2114
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the center of mass correction becomes

βFE = − 3(N − 1)

2
ln

(
π

kmax

)
+ ln

(
ρσ 3

N3/2

)

+ N ln
(
	2

r

) + N ln

(
	3

t

σ 3

)
− N ln(J (kmax)),

(11)

where the final term arises due to the orientational part of
Eq. (8), and is given by

J (k) =
∫ 1

−1
ek(x−1)/2dx = 2(1 − e−k)

k
. (12)

In order to account for finite size effects, for all crys-
talline phases we perform free energy calculations for various
N values, and extrapolate the results to N → ∞.

Using the free energies and equation of state calculations,
we determine the coexistence regions by equating both the
pressure and chemical potential in phase i at density ρ i and in
phase j at density ρ j

P (ρi) = P (ρj )

μ(ρi) = μ(ρj ).
(13)

Finally, we use these to construct the phase diagram.

III. RESULTS

A. Crystal structures

We first comment on the candidate crystal structures we
constructed using the method described in Sec. II B. As start-
ing configurations we employ one of the dense packed crystal
structures as predicted for the equimolar binary hard-sphere
mixtures in Ref. 29. We refer the interested reader to the
supplementary information of Ref. 27 for data necessary to
construct the close packed structures. We then perform NPT
Monte Carlo simulations for the snowman particles at very
high pressures. Figure 2 shows example snapshots of each
of the candidate crystalline structures considered. We note
that, with the exception of the CsCl structure, all of the can-
didates considered are for some range of d values the best
packed structure. We also find that for some d values the gen-
erated candidate structures can reconfigure into other struc-
tures (such as CsCl structures forming αIrV structures, γ CuTi
structures forming CrB structures, etc.), which allows us to
discard some of the potential candidate structures in advance
of performing the free energy calculations. We do note, how-
ever, that we observe no transitions between the various APC
configurations of a candidate structure, or between the various
FCC* structures, during our simulation runs.

In most cases the highest packings that we find agree with
those given in Refs. 27 and 29. However, upon further com-
pression we find in several cases that systems with certain
structures can maximize their packing by regularly distorting
the initial lattice configurations. For d > 0.414, we find that
a system with the standard NaCl structure can significantly
increase its packing by separating alternating pairs of large
spheres that touch at close packing to fit better the smaller
spheres in between (see Fig. 3). Similarly, for 0.75 � d

FIG. 2. Examples of candidate crystal structures for snowman particles (see
text). Light blue spheres are larger spheres with diameter DL, red spheres are
smaller spheres with diameter DS. Top row, left: rotator crystal (RC) with
diameter ratio d = DS/DL = 0.2. Top row, right: NaCl with d = 0.4. Second
row: two planes of CrB with d = 0.5. Third row: two planes of γ CuTi with d
= 0.8. Bottom row, left: CsCl with d = 0.6. Bottom row, right: αIrV with d
= 0.8.

� 0.95, the αIrV structure changes from having the same
number of small spheres touching each large sphere at inter-
mediate pressures, to alternating numbers of contacts at high
pressures (i.e., half of the large spheres have 4 small sphere
neighbors and half have 8, see Fig. 3). When we expand these
modified structures, we find that they change continuously
into the initial, simpler, crystalline structures, at a density at
which the particles have sufficient free space that the distor-
tion is no longer necessary.

In Figure 4 we show the best packed densities for all the
candidate crystals considered. As noted previously, in some
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FIG. 3. Examples of modified candidate crystal structures for snowman par-
ticles (see text). Light blue spheres are larger spheres with diameter DL, red
spheres are smaller spheres with diameter DS. Left: NaCl with diameter ratio
d = 0.45. The dark blue region highlights the modified behavior where we
see that pairs of larger spheres alternate between touching and being sepa-
rated. Right: αIrV with d = 0.85, where dark blue spheres are larger spheres
with 4 neighbors and light blue spheres are larger spheres with 8 neighbors.

cases the candidate structures may have either formed modi-
fied structures or changed into other structures. However, we
find that the crystal structures only change into other crys-
tal structures for d values where the candidate crystal under
consideration is anyway not the best packed structure. We fi-
nally note that the number of contacts that each sphere has
with spheres of different diameter at highest packing deter-
mines the number of ways we can connect the spheres into
snowman particles, and hence also the degeneracy of the APC
structures.

B. Equations of state

We now examine the equations of state (EOS) calculated
from our simulation runs, beginning with the compressions of
the isotropic fluid phases. For systems with d � 0.3 we see
the spontaneous formation of rotator phases upon compres-
sion (see Fig. 5(a) for the EOS for d = 0.1), with the center of
mass of the particles located on average on an FCC lattice. In
the case of d � 0.2, further compression of the obtained RCs
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runs start from and in some cases the structures have rearranged from this to
form another structure.
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does not result in any further phase transitions. However, at
higher packings we observe that the large spheres, rather than
the particle centers of mass, are positioned on an FCC lattice,
while the smaller spheres can still move within the free space.
We note that in this case the gaps left by the larger spheres
are large enough to fit multiple smaller spheres. For 0.2 � d
� 0.3, where the gaps are no longer large enough, compres-
sion of the RCs results in the formation of an aperiodic struc-
ture resembling the NaCl crystal.

For d � 0.3 compression of the isotropic fluid phase does
not result in any phase transitions and therefore we must ex-
pand one of the generated candidate crystal structures. For
each crystal structure we have examined at least 3 different
aperiodic structures as well as the periodic structure. We find
that each of these have the same EOS, and as an example we
show this for the CrB crystal with d = 0.7 in Fig. 6(a). As
mentioned previously, this is to be expected since the con-
stituent spheres of the snowman particles are joined at their
surfaces and hence arranging the snowman orientations peri-
odically would not result in better overall packing. As before,
we conclude that the PCs for snowman particles can be con-
sidered as a special case of the corresponding APC crystalline
structures.
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For systems upto d ∼ 0.48 we find that upon expansion
the candidate crystals transition into RC phases, where once
again the particle centers of mass are on average positioned
on an FCC lattice. Once formed, we recompress the RCs, and
we find that for 0.2 � d � 0.48 this does not result in the
reformation of the candidate structure, but instead results in
the continuous change to a structure with fixed particle ori-
entations, resembling the NaCl crystal. As an illustration of
this behavior in Fig. 5(b) we show the EOS for d = 0.4. Fur-
ther expansion of all RCs results in a transition to an isotropic
phase.

For d � 0.48 we observe direct APC-isotropic phase tran-
sitions upon expansion of the crystal phases. For d � 0.97 we
find that the EOS of αIrV (which is the crystal structure with
highest packing in this d range) and the FCC* crystals are the
same at low pressure (see Fig. 6(b)), while they differ signif-
icantly at higher pressures. This indicates that for these small
anisotropies in the sphere diameters, the spheres only become
distinguishable at high densities.

We finally note that in some cases we observe crystal-
crystal transformations, explained in Sec. III A. For the NaCl
structures (with d � 0.414), we see that the modified structure
described in the Sec. III A converts into the standard NaCl

structure upon expansion, with this transformation having no
obvious effect on the EOS. Upon recompression we observe
the same continuous change from the standard to the modified
structure. For the modified αIrV structure (found for 0.75 � d
� 0.95) the process is identical, with a reversible continuous
transformation from modified to standard structure observed.

C. Phase diagram

We now use the methods described in Sec. II C to cal-
culate the free energies of the isotropic fluid phases and the
candidate crystal structures. We determine the stable phases
at each d value and calculate the coexistence densities at all
phase transitions to construct the phase diagram of snowman-
shaped particles. The predicted phase diagram is shown in
Fig. 7. We note that, as stated previously, for all non-RC struc-
tures studied we find that the stable structures are all orienta-
tionally aperiodic. Indeed, we find that the free energies of the
PC structures are identical to that of the corresponding APC
structures except for the degeneracy term ln � (see Eq. (9)).
As such, from hereon all crystalline phases discussed are ape-
riodic unless stated otherwise.

We predict the existence of stable isotropic fluid and ro-
tator phases for d � 0.45, although the RCs formed during
the expansion of candidate crystals for a slightly larger range
of d values (d � 0.48). For comparison, in systems of hard
dumbbells (with diameter ratio d = 1) a rotator phase is sta-
ble for sphere separations of �0.38.22 A dumbbell particle
therefore has a slightly shorter length of the major axis at
the rotator phase triple point than a snowman particle does at
the corresponding rotator phase triple point, but has a larger
particle volume (∼1.4 times as large). We note that the RC
phase initially becomes slightly more stable with respect to
the isotropic phase as d goes from 0 to 0.1, before becoming
increasingly less stable at larger d values.

In the region where d � 0.2 we find no further phase
transitions (as discussed in Sec. III B). For 0.2 � d � 0.4
we predict that with increasing density the RC transitions into
an NaCl crystal structure. The range of d values where NaCl
phases are stable is roughly the same as the range of size ra-
tios for which NaCl phases were observed to form sponta-
neously in Ref. 33. We also see that as d increases the NaCl
phases become increasingly more stable with respect to the
RC phases. Clearly, as d increases the free energy gain asso-
ciated with freely rotating particles is diminished as particles
interact more strongly during rotations, and hence an orienta-
tionally ordered phase is favored.

The behavior in the region 0.4 � d � 0.5 is more com-
plex. At d = 0.42 we find both isotropic-RC and RC-NaCl
phase transitions, while at d = 0.48 we only find an isotropic-
CrB phase transition. This leads us to believe that there is a
point where the rotator and NaCl phases stop being stable and
are replaced by the CrB crystalline phase. By extrapolating
our data, we estimate that this point is located at d ∼ 0.46,
which is also close to the point where the CrB structure
begins to have better packing than the NaCl structure (at
d ∼ 0.47, see Fig. 4).

From d ∼ 0.47 to d ∼ 0.6 we find only isotropic-CrB co-
existence. At d = 0.7 we find that the αIrV phase becomes
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stable at intermediate densities while the CrB phase is still
stable at higher densities, i.e., the phase behavior changes
from an isotropic-CrB phase transition to isotropic-αIrV and
αIrV-CrB phase transitions. We expect there to be a point
where αIrV emerges as the stable phase at intermediate den-
sities, and by extrapolating our results we predict this to be at
d ∼ 0.68. The CrB phase, however, is the best packed struc-
ture for 0.47 � d � 0.72, and we thus expect to find an αIrV-
CrB phase transition for 0.68 � d � 0.72.

The stability of the αIrV phase in this region can be un-
derstood if we consider the effect of degeneracy on the free
energy. In Fig. 8 we show both the EOS and the free energy F
with the degeneracy term ln � added (see Eq. (9)), of both the
αIrV and CrB crystalline phases for the system with d = 0.7.
This allows us to compare the non-degeneracy related contri-
butions to the free energy. As can be seen, the EOS of both
systems lie on top of each other at intermediate densities, as
do the F + ln � lines (up to η ∼ 0.65). However, in the αIrV
phase there is a larger number of touching large-small spheres
(q = 8) than in the CrB phase (q = 6), which results in a larger
number of possible APC structures and therefore a larger ln �

term. This results in a lower total free energy, and with it the
stability of the αIrV phase. Clearly, the orientational degrees
of freedom of the snowman particles are responsible for sta-
bilizing the αIrV phase with respect to the CrB phase. This
presents an intriguing scenario where we can potentially sta-
bilize binary crystalline phases with respect to other, better
packed, phases by fusing the spheres to form snowman parti-
cles.

For d values larger than ∼0.72 the CrB phase is no longer
the best packed structure and we find the αIrV phase to be the
best packed structure up to d ∼ 0.78. For 0.78 � d � 0.81 we
see from Fig. 4 that γ CuTi has the best packing, and indeed,

at d = 0.8, based on our free energy calculations, we find this
to be the stable structure at high densities. However, at inter-
mediate densities we find that the αIrV phase is still stable,
and at lower densities we observe isotropic-αIrV coexistence.

For d � 0.81 we find that αIrV is again the best packed
structure and at high densities we find this phase to be sta-
ble all the way up to d = 1. At d = 0.9 we observe only
isotropic-αIrV coexistence, but for 0.9 � d � 1 we also ex-
pect a stable FCC* phase to emerge at intermediate densities.
To check this, we perform free energy calculations for snow-
man particles with d = 0.95, 0.97 and 0.98, finding isotropic-
FCC* coexistence at d = 0.97 and 0.98, but not at d = 0.95.
This closely matches the results of Ref. 33. We note that the
FCC* phase has a similar EOS at low densities to the αIrV
phase (Fig. 6(b)), but has the advantage of a higher degree
of degeneracy due to the positional aperiodicity of the con-
stituent spheres, as well as the orientational aperiodicity of
the composite particle. It is this higher degeneracy that stabi-
lizes the FCC* phase. As the density is increased, we see from
Fig. 6(b) that the αIrV phase becomes better packed than the
FCC* phase, and becomes stable. At d = 1, the two phases are
identical and are also identical to the aperiodic crystal phase
found for tangential hard dumbbells in Ref. 22.

Comparing the structures we have found to be stable for
snowman particles with those found for binary hard-sphere
mixtures,39–45 we note that only the NaCl crystal structure is
predicted to be stable for binary hard-sphere mixtures with
size ratios d = 0.3,45 d = 0.414, and 0.45,40 while the CrB,
αIrV and γ CuTi structures are never found to be stable. The
supplementary information of Ref. 44 lists all the binary crys-
tal structures which are predicted to be stable in the phase dia-
grams of binary hard-sphere mixtures obtained from full free
energy calculations for various size ratios.
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IV. CONCLUSIONS

Using Monte Carlo simulations and calculating free ener-
gies we have determined the phase diagram of hard snowman-
shaped particles. We find the phase behavior of these systems
to be extremely rich, with isotropic, rotator crystal, the orien-
tationally aperiodic snowman equivalents of the binary NaCl,
CrB, αIrV and γ CuTi crystal structures and the snowman-
specific FCC* phases.

At low diameter ratios d we find along with the isotropic
phase rotator phases. Increasing the diameter ratio suppresses
the rotator phase and orientational ordering becomes favored.
For intermediate d values we find the above mentioned crystal
phases, all of which are orientationally aperiodic. For large d
values (as d approaches 1) we find a region where FCC* is
stable. We note that all the stable crystalline phases found are
orientationally aperiodic as the specific ordering of particles
does not affect the packing but lowers the free energy due to
a higher degeneracy.

At very high densities we find that the best packed struc-
ture is always the stable phase, although in some cases the
snowman equivalents of the standard binary crystal structures
become modified in order to give better packing. However,

at intermediate densities we find that for some d values addi-
tional crystalline phases can be stabilized. In such cases we
observe that two crystal structures have similar equations of
state at intermediate densities, and that the one with the higher
degeneracy emerges as the stable phase.

In conclusion, we have shown that the phase diagram of
snowman shaped particles is very rich and offers the possi-
bility of forming crystalline phases analogous to and beyond
those predicted for binary hard-sphere mixtures. We hope
that our research inspires further experimental and theoreti-
cal study on these particles.
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