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Abstract
With the aim of investigating the stability conditions of biaxial nematic liquid crystals, we
study the effect of adding a non-adsorbing ideal depletant on the phase behavior of colloidal
hard boardlike particles. We take into account the presence of the depletant by introducing an
effective depletion attraction between a pair of boardlike particles. At fixed depletant fugacity,
the stable liquid-crystal phase is determined through a mean-field theory with restricted
orientations. Interestingly, we predict that for slightly elongated boardlike particles a critical
depletant density exists, where the system undergoes a direct transition from an isotropic
liquid to a biaxial nematic phase. As a consequence, by tuning the depletant density, an easy
experimental control parameter, one can stabilize states of high biaxial nematic order even
when these states are unstable for pure systems of boardlike particles.

(Some figures may appear in colour only in the online journal)

1. Introduction

Onsager’s intuition that purely repulsive rods undergo
an entropy-driven transition from an isotropic (I) to an
orientationally ordered nematic (N) phase constitutes one
of the major milestones in our understanding of liquid
crystals [1]. The key ingredient of this phenomenon relies on
considering markedly non-spherical particles, which can be
modeled as cylindrically symmetric ‘rods’ and ‘plates’. In the
early 1970s Freiser pointed out that a richer phase behavior
is expected, if the assumption of cylindrical symmetry is
released [2]. Besides the usual prolate (N+) and oblate (N−)
uniaxial nematic phases, normally developed by uniaxial
rods and plates, respectively, a novel nematic phase with an
increased orientational order can appear in the phase diagram.
Such a liquid-crystal phase is characterized by alignment
along three directors and, consequently, by the presence of
two distinct optical axes, hence the name biaxial nematic
(NB) [3]. Further studies suggested that NB stability could
be interpreted as a balanced competition between rodlike
(favoring N+) and platelike (favoring N−) behavior [4–6].

In the more than 40 years since its first theoretical pre-
diction, extensive theoretical [6–17] and simulation [18–24]
work has been devoted to identify the conditions under which
a stable NB phase could be observed. The practical limitations
in this sense are testified to by the fact that, apart from the
micellar system studied by Yu and Saupe [25], no such state
has been observed for more than 30 years. A renewed interest
towards the topic has grown due to the first experimental
realization of thermotropic NB liquid crystals in systems of
bent-core molecules a few years ago [26, 27]. In lyotropics,
a remarkably stable NB phase was recently discovered in a
colloidal suspension of mineral boardlike particles [28].

Boardlike particles, that is, particles with the symmetry
of a brick, represent the simplest model in which an NB
phase has been predicted [3]. However, the emergence of
smectic layering is expected to prevent the realization of this
phase, unless the constituent particles are designed with a
precision far beyond the present-day ability [8, 28]. A higher
NB stability can be achieved by considering size-polydisperse
systems of boardlike particles, as demonstrated by a recent
experiment [28]. In fact, polydispersity seems to enhance
NB stability through two distinct phenomena: (i) a reduced
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smectic stability [12] and (ii) an N+–N− competition, which
manifests itself exclusively in systems of slightly elongated
(rodlike) boards [17]. The first phenomenon does not come
as a surprise [12], since it is well known that polydispersity
renders the establishment of long-distance positional ordering
unfavorable [29–31]. In contrast, the reason behind the second
phenomenon appears to be more obscure.

In this paper we investigate the effect of a non-adsorbing
depletant on the biaxial nematic stability of (monodisperse)
boardlike particles. Our understanding of depletion dates back
to the pioneering work by Asakura and Oosawa [32] and
Vrij [33], who showed that the addition of small co-solutes
(e.g. polymers, surfactants, micelles) to a colloidal suspension
gives rise to an effective attraction between colloidal particles.
Since then, the concepts related to depletion have been
widely applied to various scientific fields [34]: in biology by
interpreting phenomena like macromolecular crowding [35]
and protein crystallization [36]; in nanotechnology through,
for example, the development of self-assembly processes
as key–lock structures [37, 38]; in condensed matter
physics, furnishing answers to fundamental problems like
the condition for gas–liquid phase separation [39], the
kinetics of crystallization [40, 41] and the nature of
glassy states [42]. More recently, the liquid-crystal phase
behavior of non-spherical colloids, typically rods [43–48] and
plates [49–52], in the presence of a depletant has also been
addressed. As a general feature, the addition of a depletant
reduces the stability of liquid-crystal phases, leading to a
direct isotropic-crystal transition at high enough depletant
mole fraction. Moreover, when the size of the depletant
particles is large enough, one or more critical points appear in
the phase diagram, indicating a liquid–gas separation between
phases with the same spatial symmetries.

In contrast to the aforementioned work on rods and plates,
we focus here on the low depletant density limit, where the
stability of the nematic liquid-crystal phases developed by the
pure system of boardlike particles is preserved. In the same
spirit as the Asakura–Oosawa–Vrij model for spheres [32,
33], we consider the limit of low depletant density and neglect
depletant–depletant interactions. For the sake of convenience,
we model the depletants as cubic particles excluded from
the surface of the cuboids via a hard-core interaction. A
mean-field theory at second-virial order [1, 53] with restricted
orientations (Zwanzig model) [54] constitutes our theoretical
framework. The degrees of freedom of the depletant in the
partition function can be systematically integrated out, giving
rise to an effective potential between boardlike particles [55,
56], where only two-body interactions are considered. The
assumption of ideal depletant allows us to determine an
explicit expression for such a pairwise depletion potential.
We show that, by varying the depletant density, the system
develops an N+–N− competition remarkably similar to that
predicted for a polydisperse system of boardlike particles
in the absence of depletant [17]. If in [17] the origin
of this competition is not evident, here it appears to be
due to a balance between the hard-core repulsion between
boardlike particles, favoring N+ ordering, and the depletion
attraction, favoring N− ordering. As a consequence of this

Figure 1. The six independent orientations of a boardlike particle
within the restricted orientations (Zwanzig) model.

effect, the biaxial nematic phase appears to be stable over
a wide range of depletant density. We therefore suggest that
the concentration of a non-adsorbing depletant furnishes in
practical situations the simplest, though effective, way to
control the liquid-crystal phase behavior of boardlike particles
and to select states of high biaxial nematic stability.

This paper is organized as follows. We illustrate in
section 2 our theoretical framework and in section 3 the model
describing the boards–depletant mixture. Section 4 is devoted
to the results, whereas in section 5 we draw our conclusions.

2. Second-virial density functional theory with
restricted orientations

We consider a system of N boardlike particles with
dimensions l × w × t (l > w > t and particle volume v =
lwt) in a box of volume V at temperature T . Accounting
for the orientational degrees of freedom at the single-particle
level requires a numerically demanding description based
on three Euler angles. In order to circumvent this problem
while keeping the essential physics of the system, we turn to
the so-called Zwanzig model: the only allowed orientations
are those with the main particle axes aligned along the
axes of a fixed reference frame [54]. Within this model a
boardlike particle can take the six orientations depicted in
figure 1, and the orientation distribution function (ODF) is a
six-dimensional vector ψ with components ψi (i = 1, . . . , 6),
subject to the normalization condition

6∑
i=1

ψi = 1. (1)

Being interested in the low-density phase behavior of
the system, where the stable phases are expected to be
homogeneous in space, we can neglect spatial modulations
in the single-particle density. Under these conditions, the
intrinsic free energy F is [17]

βF[ψ]
N
= ln(η)+

6∑
i=1

ψi ln(ψi)+
βFexc[ψ]

N
, (2)

where β = (kBT)−1, kB is the Boltzmann constant and η =
Nv/V is the packing fraction. A closed expression for the
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excess free energy Fexc in terms of the ODF is not known
in general, but for short-range pairwise additive potentials
it is possible to write it as a virial series in η. Let uii′(r)
be the interaction potential between a pair of particles with
orientations i and i′, respectively, and a separation r between
their centers of mass. At second-virial order the excess free
energy is

βFexc[ψ]

N
=
η

2v

6∑
i,i′=1

Eii′ψiψi′ , (3)

where the second-virial coefficients Eii′/2 are given by

Eii′ = −

∫
V

dr fii′(r), (4)

with the Mayer function

fii′(r) = exp[−βuii′(r)] − 1. (5)

More refined approximations than equation (3) have been
recently developed in order to take into account higher-order
virial terms, which would give a quantitatively more reliable
description [16]. On the other hand, truncating the virial series
at second order allows for an appreciable simplification of the
mathematics and the numerics involved, while retaining the
essential physics.

Let us indicate with Xi the main axis (l, w or t) of a
particle with orientation i along the x axis of a fixed reference
frame, and similarly with Yi and Zi. Within the Zwanzig model
each of the six independent orientations of a particle can be
identified by (Xi,Yi,Zi), which is one of the six permutations
of the three elements l, w and t. With these definitions one can
write the interaction potential between two identical boardlike
particles, modeled as hard cuboids, as

βuii′(r) =


∞ if |x| < (Xi + Xi′)/2

and |y| < (Yi + Yi′)/2

and |z| < (Zi + Zi′)/2;

0 otherwise,

(6)

from which explicit expressions for Eii′ in terms of l, w and t
directly follow through equations (4) and (5).

At second-virial order the equilibrium ODF at fixed
packing fraction η is obtained by minimizing the free energy
of equations (2) and (3) with respect to ψ, subject to
the normalization condition equation (1). In practice, the
minimization problem is performed by numerically solving
the system of six nonlinear Euler–Lagrange equations:

ψi = C exp

[
−
η

v

6∑
i′=1

Eii′ψi′

]
, (7)

with the proportionality constant C determined by equa-
tion (1). The symmetry of the solution of equation (7) allows
us to identify the stable homogeneous phase. When ψi = 1/6
for every i = 1, . . . , 6, the phase is isotropic (I), whereas in
the opposite case, when all the ψi assume different values,
the ODF describes a biaxial nematic (NB) phase. When the
system is characterized by the presence of a single axis of

symmetry (uniaxial nematic phase), the coefficients ψi are
coupled two-by-two. Let us suppose this axis of symmetry to
be the vertical axis of figure 1. In this case, we distinguish
between a prolate uniaxial nematic phase (N+), when the
most likely configurations of figure 1 are (1) and (4), and
an oblate uniaxial nematic phase (N−), when the most likely
configurations are (3) and (6).

In the treatment described so far, we assume the system
to be homogeneous in space. In order to estimate the limit
of validity of this assumption, we adopt bifurcation theory
to calculate the minimum packing fraction η̄, beyond which
homogeneous phases are unstable with respect to smectic
states [58]. The mathematical details regarding the application
of bifurcation theory to the free energy of equations (2) and (3)
can be found in the supplemental material of [17], and we
report here only the final result. Let us indicate by Q(x)ii′ (qx)

the function

Q(x)ii′ (qx) =
η

v

√
ψiψi′

∫
V

dr fii′(r) exp(−iqxx), (8)

where ψ is the ODF of the equilibrium homogeneous phase
at packing fraction η, and analogously for Q(y)ii′ (qy) and

Q(z)ii′ (qz). The bifurcation packing fraction η̄x for smectic
fluctuations along the x axis is found as the minimum packing
fraction at which the 6 × 6 matrix with entries Q(x)ii′ (qx)

has an eigenvalue 1 for some q̄x. Therefore, the smectic
bifurcation packing fraction is η̄ = min(η̄x, η̄y, η̄z). As a final
remark, it is important to notice that the present bifurcation
analysis allows us only to predict when homogeneous phases
are unstable with respect to one-dimensional modulations
in the single-particle density. Therefore, nothing ensures
the corresponding stable inhomogeneous phase to be
characterized by one-dimensional (smectic), rather than two-
(columnar) or three-dimensional (crystal) positional ordering.

3. Effective depletion interaction

Our aim is to study the influence of a depletant on the phase
behavior of a system of boardlike particles. Hence, the system
described in section 2 is modified by the addition of a second
species of particles (the depletant), modeled as cubes with
dimensions d×d×d. The binary mixture of boardlike particles
and depletant is assumed to be in equilibrium with a reservoir
of depletant particles at fixed fugacity zD = exp(βµD)/3

3
D,

where µD is the chemical potential of the depletant and3D its
thermal wavelength. Following the pioneering approaches to
the topic [32, 33], we neglect interactions between depletants,
in which case the fugacity zD coincides with the density nD
in the reservoir. The ideal depletant assumption is justified
a posteriori by the low packing fractions nDd3 considered.
Modeling the depletant with cubic particles appears to be
rather unrealistic, especially if compared to typical polymeric
depletants, usually treated as spheres. However, we claim
that our choice contains the essential features of the physical
phenomenon, while considerably simplifying the mathematics
that follows. In section 4 we show that the peculiar phase
behavior of our system is due to the asphericity of the

3



J. Phys.: Condens. Matter 24 (2012) 284128 S Belli et al

depletion volume, which, in turns, is a consequence of the
asphericity of boardlike particles. Therefore, we do not expect
the specific shape of the depletion region (cuboidal for cubic
depletant, spherocuboidal for spherical depletant) to play a
major role in our results. Moreover, the relative difference
between cuboidal and spherocuboidal depletion volume for
the values of the particle dimensions considered here amounts
to a few per cent. The interactions in the mixture are given by
the cuboid–cuboid potential equation (6) between boardlike
particles, and by the cuboid–cube potential between boardlike
particles and depletant, given by

βvi(r) =


∞ if |x| < (Xi + d)/2

and |y| < (Yi + d)/2

and |z| < (Zi + d)/2;

0 otherwise,

(9)

which explicitly depends on the orientation i of the boardlike
particle.

At fixed fugacity zD the configurational entropy of the
depletant is maximized when the total depletion volume,
i.e. the region of space forbidden to the depletant due
to the presence of boardlike particles, is minimized. As
a consequence, an effective attraction between boardlike
particles appears. Such a depletion interaction can be
explicitly calculated by integrating out the depletant degrees
of freedom and must be expressed in general as a sum
of many-body interaction terms [55, 56]. For the sake
of simplicity, we include the effect of the depletant by
considering only the effective two-body interaction potential,
while neglecting higher-order terms. The effective pairwise
depletion potential wii′(r) between cuboids with orientations i
and i′, respectively, and center-to-center separation r is given
by [57]

βwii′(r) = −nD Vii′(r), (10)

with Vii′(r) the overlap volume of the depletion regions:

Vii′(r) =
0 if |x| > (2d + Xi + Xi′)/2

and |y| > (2d + Yi + Yi′)/2

and |z| > (2d + Zi + Zi′)/2;

λ
(x)
ii′ λ

(y)
ii′ λ

(z)
ii′ otherwise.

(11)

Here λ(x)ii′ is defined as

λ
(x)
ii′ (x) =
d +

Xi + Xi′

2
− |x| if |x| >

|Xi − Xi′ |

2

and |x| <

(
d +

Xi + Xi′

2

)
;

d +min(Xi,Xi′) if |x| <
|Xi − Xi′ |

2
,

(12)

and analogous definitions hold for λ(y)ii′ (y) and λ(z)ii′ (z).

Let us indicate with a tilde the properties obtained
by adding the effective two-body depletion potential wii′(r)
to the cuboid–cuboid potential uii′(r). The Mayer function
equation (5) becomes

f̃ii′(r) = exp[−βuii′(r)+ nD Vii′(r)] − 1. (13)

The phase behavior of this effective one-component system
can then be calculated by following the prescriptions of
section 2, with the function fii′(r) substituted by f̃ii′(r).
Unfortunately, the expression of Vii′(r) given in equation (11)
does not allow for an analytical calculation of the integrals Ẽii′

and Q̃(x)ii′ (qx) in equations (4) and (8). However, an analytical
expression can be obtained by truncating the Taylor series of
the Mayer function equation (13) in nD Vii′(r):

f̃ii′(r) = fii′(r)+
∞∑

m=1

nm
D

m!
(Vii′(r))

m exp[−βuii′(r)]. (14)

By inserting equation (14) into (4), one obtains for the
effective excluded-volume coefficients

Ẽii′ = Eii′ −

∞∑
m=1

nm
D

m!

∫
V

dr (Vii′(r))
m exp[−βuii′(r)], (15)

where the integrals of the rhs can now be solved analytically
for every m. Similar considerations hold for the functions
Q̃(x)ii′ (qx) of equation (8). We verified by comparison with
exact numerical calculations of the effective excluded-volume
coefficients that quantitative agreement can be obtained by
truncating the series of equation (15) at fifth order in nD for
all nD considered in this paper. For consistency, the Taylor
expansion in nD of the functions Q̃(x)ii′ (qx) is truncated at the
same order.

4. Results

The framework developed in section 3 allows us to determine
the effective excluded-volume coefficients Ẽii′ of a system of
cuboidal l × w × t particles due to the presence of a cubic
d × d × d depletant at fugacity zD (and density nD = zD).
The phase behavior of this effective one-component system
of boardlike particles is then analyzed by applying the theory
described in section 2.

It is readily understood from equation (15) that adding
the depletion attraction equation (10) to the cuboid–cuboid
pairwise potential uii′(r) gives rise to a monotonic decrease
of the coefficients Ẽii′ with nD. This effect is depicted in
figure 2, where we report the six independent values of the
matrix elements Ẽ1i, corresponding to the six two-particle
configurations (1, 1), (1, 2), (1, 3), (1, 4), (1, 5) and
(1, 6) (cf figure 1) as a function of the reservoir depletant
concentration nD. In order to allow for a comparison with
previous experimental [28] and theoretical [17] work on the
subject, the aspect ratios are chosen as l/t = 9.3 and w/t =
3.0, while for the cubic depletant we set d/t = 1.0. At nD = 0
the six excluded-volume matrix elements are positive definite,
but with increasing nD their value decreases until becoming
negative (see Ẽ11 in figure 1). Such a behavior is well
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Figure 2. Effective excluded-volume coefficients Ẽ1i (in units of
boardlike particle volume v = lwt) for the six independent
orientational configurations of a pair of boardlike particles in the
Zwanzig model as a function of the depletant number density nD.
Here the boardlike particles have dimensions l/t = 9.3, w/t = 3.0
and are in contact with a reservoir of ideal cubic depletants with
side d/t = 1.0 and number density nD.

known from the study of systems of spherically symmetric
particles with short-range attractive potentials, where one can
define a temperature at which the second-virial coefficient
changes its sign (‘Boyle temperature’). The change in sign
of the second-virial coefficient is related to a tendency of
the system to develop a gas–liquid phase separation. Also in
the present case, where the role of the (inverse) temperature
is played by the depletant density nD, this change in sign
can indicate a tendency towards a phase separation between
two homogeneous phases. On the other hand, when the
dimension of the depletant is sufficiently small, one expects
the gas–liquid phase separation to be metastable with respect
to a broad gas–solid coexistence [55, 56, 45, 47]. As we
ignore the stability of inhomogeneous phases like smectic,
columnar or crystal states, in the present work we limit our
investigations to values of nD small enough to guarantee a
positive value of all the effective excluded-volume matrix
elements, and to avoid strong tendency towards a broad phase
separation.

Although the monotonic decrease with nD is a feature
of all the six effective excluded-volume coefficients Ẽ1i, their
rate of change is not the same. Let us focus on the coefficients
corresponding to the two-particle configurations (1, 4) and
(1, 5). In the absence of depletant (nD = 0), Ẽ15 = E15 is
slightly bigger than Ẽ14 = E14, but its first derivative at nD > 0
is smaller. As a consequence, there exists a value of the
depletant density n∗D, such that Ẽ14 < Ẽ15 for nD < n∗D, and
Ẽ14 > Ẽ15 for nD > n∗D (see the inset of figure 2). This fact,
which we will show to have deep consequences for the phase
behavior of the system, is more clearly represented by the
red solid curve of figure 3, representing the ratio Ẽ14/Ẽ15
as a function of nD. In the same plot, we report the ratio
Ẽ14/Ẽ15 relative to boards–cubes mixtures with fixed ratio
w/t = 3.0 and d/t = 1.0, but different values of l/t (l/t = 8.7,
9.0 and 10.0). In the four cases we observe a monotonically

Figure 3. Ratio between the second-virial coefficients
corresponding to the two-particle configurations (1, 4) and (1, 5) of
figure 1 as a function of the depletant density nD for boardlike
particles with w/t = 3.0 and l/t = 8.7 (ν = l/w− w/t = −0.1),
l/t = 9.0 (ν = 0.0), l/t = 9.3 (ν = 0.1) and l/t = 10.0 (ν = 0.33).
The solid circles highlight the value of the depletant density n∗D,
defined by the condition Ẽ14 = Ẽ15.

increasing dependence of Ẽ14/Ẽ15 on nD, which implies that
the existence of n∗D, defined by the condition Ẽ14 = Ẽ15, is
determined by the value of E14/E15, which in turn depends
only on l, w and t. In other words, n∗D exists only if E14 ≤ E15,
with n∗D = 0 if E14 = E15. In contrast, if E14 > E15 one has
Ẽ14 > Ẽ15 independently of the depletant density nD.

Before addressing the physical consequences of the
existence of the density n∗D, it is worth seeing how the
relative value of the excluded-volume coefficients E14 and
E15 determines the phase behavior of boardlike particles in
the absence of depletant (i.e. nD = 0). It is well known
that monodisperse hard boardlike particles are expected to
undergo an IN transition, where the particles spontaneously
break the orientational symmetry by aligning along common
directions in space [5]. The nematic phase emerging from the
I can be (i) uniaxial prolate N+ with alignment of the long
axis l; (ii) uniaxial oblate N− with alignment of the short axis
t; and (iii) biaxial NB with alignment of the three axes of
the particle. Following Onsager [1], the origin of this phase
transition can be understood by considering that orientational
ordering determines an increase in excluded-volume entropy,
which compensates the decrease in orientational entropy.
Therefore at fixed orientational entropy, when E14 < E15 the
N+ phase will be thermodynamically favored over the N−, the
opposite being the case when E14 > E15 (cf figure 1). In the
intermediate situation, when E14 = E15, the system instead
undergoes a direct second-order INB transition. By explicitly
calculating E14 and E15 in terms of l, w and t, and defining a
shape parameter ν = l/w− w/t, one can show that

E14

E15


<1 ⇔ ν > 0,

=1 ⇔ ν = 0,

>1 ⇔ ν < 0.

(16)

This is consistent with Straley’s result that a system of
boardlike particles undergoes (i) a first-order IN+ transition

5
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Figure 4. Phase diagrams of boardlike particles with aspect ratios w/t = 3.0 and (a) l/t = 8.7 (ν = −0.1), (b) l/t = 9.0 (ν = 0.0),
(c) l/t = 9.3 (ν = 0.1) and (d) l/t = 10.0 (ν = 0.33) in contact with a reservoir of cubic depletant with side length d/t = 1.0 at number
density nD. The diagrams feature isotropic (I, green regions), prolate (N+, red regions) and oblate (N−, oblate regions) uniaxial and biaxial
(NB, yellow regions) nematic phases. The black circles highlight the Landau critical points, whereas the dotted lines indicate the limit of
stability of nematic phases with respect to smectic (Sm) fluctuations along the long (red dotted line) and short (blue dotted line) particle
axis, respectively.

if ν > 0; (ii) a first-order IN− transition if ν < 0 and (iii) a
second-order INB transition if ν = 0 [6].

The relation between the excluded-volume coefficients
and the character of the IN transition can be generalized to the
case of boardlike particles immersed in a depletant, provided
that the coefficients Eii′ are substituted with Ẽii′ . According
to this interpretation, one is led to identify the density n∗D,
defined by the condition Ẽ14 = Ẽ15, with a Landau critical
point at which the system undergoes a direct second-order
INB transition. Since the NB stability is generally due to a
balanced competition between rodlike and platelike behavior,
the critical depletant density n∗D is expected to divide the
phase diagram into two distinct regions, one where the stable
uniaxial nematic phase is prolate (N+, corresponding to
rodlike behavior), and the others where the stable uniaxial
nematic phase is oblate (N−, corresponding to platelike
behavior).

This picture is confirmed by the (η, nD) phase diagrams
of figure 4, describing the phase behavior of boardlike
particles with dimensions w/t = 3.0 and (a) l/t = 8.7 (ν =
−0.1), (b) l/t = 9.0 (ν = 0.0), (c) l/t = 9.3 (ν = 0.1) and
(d) l/t = 10.0 (ν = 0.33) immersed in a cubic depletant
with sides d/t = 1.0 and number density nD. As a general
feature, at packing η ≈ 0.2–0.3 the system undergoes a
phase transition from an I phase (green region) to N+ (red

regions), N− (blue regions) or NB (yellow regions) states.
The first-order character of the IN+ and IN− transitions is
not visible on the scale of figure 4. The dotted lines indicate
the limit of stability of the homogeneous phases with respect
to one-dimensional (smectic, Sm) fluctuations along the long
axis l (red dotted lines) or along the short axis t (blue dotted
lines). Therefore, the smectic bifurcation analysis confirms
that inhomogeneous phases (white regions) preempt nematic
states at sufficiently high packing fractions. In particular,
the higher the depletant density nD, the lower the stability
of homogeneous phases with respect to the inhomogeneous
one. This result is in agreement with previous studies on
the phase behavior of hard rods interacting via an attractive
depletion potential [45, 47]. In the latter case, in fact, the
coexistence regions between different phases increase with
the depletant density leading, at sufficiently high nD, to a wide
isotropic-crystal coexistence and a consequent disappearance
of the liquid-crystal phases. We expect similar phenomena at
depletant concentrations higher than those considered here,
but a description beyond the second-virial order would be
needed in this case.

As deduced by the analysis of figure 3, in the case of
‘platelike’ boards with ν < 0 (figure 4(a)) the absence of
a Landau critical point implies that the I phase undergoes
a transition towards an N− phase for every value of nD.
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If we instead consider a system of boardlike particles with
ν = 0 (figure 4(b)), it is well known that, in the absence of
depletant, a direct second-order INB transition is expected.
In our picture, this corresponds to the presence of a critical
depletant density at n∗D = 0, beyond which N− states appear
at intermediate packing between the I and the NB phase.
More interesting conclusions can be drawn when considering
‘rodlike’ boards with ν > 0, in which case the critical
depletant density n∗D assumes non-zero values (figures 4(c)
and (d)). If the pure system at nD = 0 is expected to develop an
IN+ transition, the attraction induced by the depletant reduces
the N+ stability until determining a direct INB transition
at nD = n∗D. Surprisingly, at even higher depletant densities
(nD > n∗D), the stable uniaxial nematic phase in between
I and NB has oblate ordering N−, in sharp contrast with
the behavior of the pure rodlike board system. Moreover,
the phase diagrams of figures 4(c) and (d) suggest that,
when dealing with boardlike particles with ν > 0, setting the
depletant density at values close to n∗D allows us to select
regions of the phase diagram with relatively high NB stability.
This is possible also when the regime of NB stability of the
pure boardlike particle system is small (figure 4(c)) or even
absent (figure 4(d)).

A relevant feature of the present analysis is that a critical
depletant density n∗D exists only for slightly elongated, or
rodlike, boards (ν > 0). In contrast, no Landau critical point
is predicted when ν < 0, in which case for every value of
nD the system develops a first-order IN− transition, typical
of platelike particles. This fact can be interpreted in the
following terms. At low enough depletant density (nD < n∗D)
the role of the depletant is weak and the isotropic–nematic
phase transition is driven by the gain in boardlike particles’
excluded-volume entropy, leading to N+ (N−) ordering if
ν > 0 (ν < 0). On the other hand, at high enough depletant
density (nD > n∗D) the thermodynamically more favored states
are those maximizing the depletant entropy, i.e. states where
the overall depletion volume is minimized. It appears clear
that, at fixed boardlike particles’ orientational entropy and
independently of the sign of ν, N− rather than N+ ordering
tends to maximize the overlap between the depletion regions
of single boards. Therefore, when ν > 0 the Landau critical
point at n∗D appears as a result of a competition between the
excluded-volume entropy of boardlike particles and depletant.
Instead, when ν < 0 this competition does not happen since
both entropies are maximized by N− states and thus no critical
depletant density exists.

One could wonder how the phase behavior of our system
changes by varying its relevant parameters, that is, the
dimensions of the boardlike particles l, w and t and the size
of the depletant d. The phase diagrams of figure 4 highlight
the monotonic increasing dependence of n∗D on ν, when the
dimensions of the depletant d/t and the aspect ratios of
one of the two boards (here w/t) are fixed. By numerically
solving the equation Ẽ14 = Ẽ15, we investigate also the role
of the depletant dimension on the critical depletant density.
In figure 5 we report the critical depletant density n∗D as a
function of the depletant side d/t for three boardlike particle
dimensions with different aspect ratios l/t and w/t, but the

Figure 5. Critical depletant density n∗D as a function of the side d of
the cubic depletant for different boardlike particles with same shape
parameter ν = 0.1: l/t = 9.3 and w/t = 3.0 (solid red line);
l/t = 16.4 and w/t = 4.0 (solid green line); and l/t = 25.5 and
w/t = 5.0 (solid blue line). The dashed lines represent the
approximate analytical dependence given by equation (17). The
inset illustrates the same data in terms of the critical depletant
packing fraction n∗Dd3.

same shape parameter ν = l/w−w/t = 0.1. As a general trend,
by increasing the size of the depletant, the critical depletant
number density n∗D decreases, in accordance with the intuitive
notion that the smaller the depletant, the more one needs to
establish enough depletion attraction. Moreover, at fixed ν the
critical depletion density decreases most for the more extreme
aspect ratios of the particles. In other words, the bigger the
aspect ratios l/t and w/t at fixed ν, the smaller the amount
of depletant needed to reach n∗D. If instead of the number
density one considers the critical depletant packing fraction
n∗Dd3, one sees that this quantity is an increasing function of d
(inset of figure 5). Therefore, one expects the ideal depletant
approximation (see section 3) to be increasingly reliable in the
limit of small depletant.

In practical situations, one could be interested in
estimating the critical depletant density n∗D, which is defined
as the solution of the nonlinear equation Ẽ14 = Ẽ15 and which
has then to be calculated numerically. If n∗D is sufficiently
small, one can obtain an approximate expression for this
quantity by linearizing both sides of equation Ẽ14 = Ẽ15 in
nD. The approximate critical depletant density is given by the
following expression:

n∗D =
2[t(l+ w)2 − l(w+ t)2](l− t)−1

2(lt − w2)d3 + w(lw+ tw− 2lt)d2 , (17)

and it can be compared (dotted lines of figure 5) with the
numerical calculation (solid lines), showing good overall
agreement, which improves the larger the depletant side d/t.

5. Conclusions

In the present paper we investigate for the first time the
effect of a short-range depletion-induced attraction on the
liquid-crystal phase behavior of boardlike particles. To this
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aim, we make use of classical density functional theory
truncated at second-virial order, and adopt the Zwanzig model
for the description of the orientational degrees of freedom.
In close analogy with the Asakura–Oosawa–Vrij model for
mixtures of spheres, by neglecting interactions between the
cubic depletant particles we can explicitly calculate the
effective two-body attractive depletion potential between
boardlike particles.

We predict that, in systems of slightly elongated boardlike
particles (ν > 0), there exists a critical depletant density
at which the uniaxial nematic phase is substituted by a
direct second-order transition from the isotropic to a biaxial
nematic phase. At higher depletant concentrations, a large
region of oblate uniaxial nematic ordering develops, rendering
the system of attractive rodlike boards behaving like a
system of hardly repulsive platelike boards. The origin of
this phenomenon is due to two competing mechanisms: the
maximization of the boardlike particle entropy, favoring N+
ordering, and the maximization of the depletant entropy,
favoring N− ordering.

The phase behavior described in this work shares many
similarities with our findings in [17], where we showed that
size polydispersity in a system of hard boardlike particles
with the same shape and different volume induces the
appearance of a Landau tetracritical point at a specific system
composition. This fact is related to a competition between
prolate and oblate ordering, which in turn is realized only
when the boardlike particles are slightly elongated. In the
light of our present findings, we suggest that this N+–N−
competition and the corresponding emergence of a Landau
tetracritical point can be understood in terms of a depletion
effect. More specifically, when size polydispersity becomes
relevant, N− rather than N+ ordering determines the higher
total entropy due to the minimization of the overall depletion
regions of the large particles with respect to the smaller ones.
In further analogy with the boards–depletant mixture, no such
competition is predicted for platelike boards and consequently
no tetracritical point appears in this case.

Besides furnishing an explanation for the results of [17],
we suggest that manipulating the attraction induced by a
depletant, e.g. a non-adsorbing polymer, furnishes an original
and effective way to control the phase behavior of boardlike
particles, allowing us to stabilize prolate and oblate uniaxial
and biaxial nematic states. Moreover, the depletant density is
expected to be an easy experimental control parameter.
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