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Joost de Graaf,1,* René van Roij,2 and Marjolein Dijkstra1,†

1Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University,
Princetonplein 5, 3584 CC Utrecht, The Netherlands

2Institute for Theoretical Physics, Utrecht University, Leuvenlaan 4, 3584 CE Utrecht, The Netherlands
(Received 23 June 2011; revised manuscript received 17 August 2011; published 3 October 2011)

We present a new numerical scheme to study systems of nonconvex, irregular, and punctured particles

in an efficient manner. We employ this method to analyze regular packings of odd-shaped bodies, both

from a nanoparticle and from a computational geometry perspective. Besides determining close-packed

structures for 17 irregular shapes, we confirm several conjectures for the packings of a large set of 142

convex polyhedra and extend upon these. We also prove that we have obtained the densest packing for

both rhombicuboctahedra and rhombic enneacontrahedra and we have improved upon the packing of

enneagons and truncated tetrahedra.
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The synthesis of colloids and nanoparticles has advanced
tremendously over the last decade [1–4]. Currently it is not
only possible to synthesize spherical particles, but also a
wide variety of convex faceted shapes, such as tetrahedra,
cubes, and octahedra [1,3]. Perhaps the most remarkable
advancement in synthesis techniques is the capability to
create with high precision and reproducibility nonconvex,
irregular, and even punctured particles, e.g., colloidal caps
[4], tetrapods [2], and octapods [5]. Along with the in-
creased availability of complex shapes, there is a concur-
rent increase in the study of their self-assembly into liquid
[6], amorphous [7], and ordered (quasi) crystalline struc-
tures [8], as well as their material properties. Interestingly,
in studying these dense configurations, materials-science
research interfaces with fields as diverse as discrete ge-
ometry, number theory, and computer science [9–12].

Predictions obtained from computer simulations on the
phase behavior and the self-assembled structures of these
particles have been essential in guiding experimental stud-
ies and in answering fundamental mathematical questions
on the packing of particles. Convex objects such as spheres
[6,12] and ellipsoids [7], as well as (semi) regular
[9,11,13–18] and space-filling [19] solids have been the
subject of intense ongoing investigation. However, ordered
structures composed of irregular nonconvex particles
have hardly been studied by simulation. Implementing
excluded-volume interactions for such systems imposes
numerical challenges, because of the complex particle
shape and the additional rotational degrees of freedom.
Only recently were the first attempts made to study such
systems, namely, for superdisks, superballs [20], and
bowls [21].

In this Letter, we present a novel composite technique by
which we numerically study the dense packings of non-
convex irregular solids, colloids, and nanoparticles. The
technique consists of the following elements: the floppy
box Monte Carlo method [22] (FBMC), the triangular

tessellation method [23] (TT), and the triangle interference
detection method [24] (TID). The choice for these individ-
ual elements is based on their successful application
elsewhere. The FBMC method forms the core of the tech-
nique and is an isothermal-isobaric (NPT) ensemble
Monte Carlo (MC) simulation, by which crystal structures
can be predicted. The hard-particle interaction in this
simulation is handled using TT, by which any shape is
approximated with triangles, in tandem with TID, by
which intersections of triangles are efficiently determined.
Two particles overlap whenever there is an intersection
between a pair of triangles in the respective TT meshes.
To speed up the overlap algorithm and prevent inclusions
we employed inscribed- and outscribed-sphere overlap
predetection. Interior triangles can be added to a particle
to further prevent inclusions, whenever the gap between a
particle and its inscribed sphere is too wide. This is allowed
because TID models do not have to obey topological
constraints [24].
In order to demonstrate the general applicability of this

method, we apply our technique to study packings of an
enormous set of 142 convex polyhedra and 17 irregular
particle shapes, also see the Supplemental Material [25].
This set includes a few models that contain a huge number
of triangles, e.g., the colloidal cap, the Stanford bunny, and
the hammerhead shark, with 3850, 3756, and 5116 tri-
angles, respectively. All particle models have been gener-
ated using particle databases or created to resemble
existing nanoparticles and colloids [2,4,5]. Systems of
tessellated particles are prepared in a dilute phase. By
gradually increasing the reduced pressure we are able to
compress the system to a high-density crystalline state. We
apply this scheme many times and select the densest pack-
ing among these. This packing is allowed to compress
further to obtain a maximally compressed state, see
Ref. [25] for further details. The method is typically quite
fast with simulations taking minutes to hours on a modern
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desktop PC [25]. Even for high-triangle models the time
scales are accessible, mostly due to the advanced TID
routine employed [24]. For the purpose of analyzing nano-
particle systems at lower pressures [5], soft potential terms
may be added by introducing point interaction sites dis-
tributed over the particle.

It should be noted that the FBMC method is similar to
the adaptive shrinking cell (ASC) method of Refs. [14,15],
since both allow for a sequential search of configurational
space and lattice space using a Metropolis based MC
procedure. However, the FBMC method uses a lattice
reduction technique [26] to avoid unphysical distortions
of the unit cell, whereas the ASC algorithm employs a
symmetric strain tensor. In addition, the FBMC method
drives the system towards its densest configuration by
employing a gradual pressure increase in an NPT-MC
simulation scheme, whereas the ASC method drives com-
pression using the negative packing fraction as the basis of
its Metropolis acceptance rule. The method of Ref. [27]
should also be mentioned, as a different means of deter-
mining densest packings. Of the three techniques, the
FBMC method has the advantage that it can be used to
explore suboptimal packings in accordance with the statis-
ticalNPT ensemble at finite pressures. The densest-packed
candidate crystal structure need not be thermodynamically
stable at all pressures for which the system crystallizes
[5,18,19]. However, it goes beyond the scope of this Letter
to determine which of the techniques is most suited to
achieving densest-packed structures.

To prove the accuracy of our method, we have redeter-
mined the lower bound �LB to the volume fraction of the
densest packing both for the 5 Platonic and for the 13
Archimedean solids. We find excellent agreement [25]
with Refs. [11,14–17]: the system was typically com-
pressed to within 0.002 of the �LB literature value. The
simulations we performed yielded a very narrow distribu-
tion of crystal-structure candidates near the closest-packed
configuration. The densest of these only required minimal
additional compression to achieve the given densest pack-
ing fraction value �LB. Moreover, for truncated tetrahedra
we have discovered a new crystal structure, a dimer lattice
with �LB ¼ 0:988 . . . , see Fig. 1 and Ref. [25]. This is not
only mathematically interesting [28], but also relevant to
the study of nanoparticle systems, since truncated tetrahe-
dra have recently been synthesized [29].

After verifying the accuracy of our technique, we ap-
plied our method to study 17 nonconvex (irregular) shapes,
some of which even contained holes, thereby going beyond
existing studies. Figure 2 shows representations of the
shape and predicted crystal structure for 4 different parti-
cles, see Ref. [25] for additional information. Such candi-
date crystal structures can be used in large simulations or
theory to determine their stability using, e.g., free-energy
calculations. One physical system we considered in more
detail is that of the colloidal cap, see Fig. 2(a), which shows

the model that was used. The model is derived from a
numerical analysis: the Hamiltonian that describes the
bending and in-plane stretching elasticity terms [4,30],
which govern the collapse of a shell under an external
isotropic pressure, was minimized using surface evolver
[31]. The cap that was obtained in this way contains 3850
triangles. We found our model to yield crystal structures
similar to the ones that were obtained using a much simpler
bowl-shaped model [21]: columnar, braided, and inverse
braided phases [25]. Figure 2(b) shows a braided configu-
ration. Support is thus provided for the idea that the simple
bowl shape [21] captures the essential shape-related phys-
ics of these systems.
Another physical system we studied in greater detail was

that of octapod-shaped nanocrystals [5] [Fig. 3(a)]. In
Ref. [5] we analyzed the hierarchical self-assembly of
these objects into interlocked chains and three dimensional
(3D) superstructures by including attractive van der Waals
interactions between the octapods. Figure 3 shows an
example (simple-cubic) candidate crystal structure ob-
tained by our method for a system of octapods with a
soft interaction potential: the centroids of the tips are
attracted to each other according to a short-ranged, yet
deep square-well interaction. Although simulations on oc-
tapods proved technically challenging, we can conclude
that such systems may be studied over a range in volume
fractions and that the hard-particle overlap can be supple-
mented with soft interaction potentials to more accurately
model the experimental system. By these two physical
examples, caps and octapods, we have shown that we can
study previously inaccessible nanoparticle and colloid sys-
tems, as well as approximate their shape with greater
precision, if required.
In the course of our investigation we also obtained

several exciting and remarkable results on the packing of

FIG. 1 (color online). The dimer crystal structure for truncated
tetrahedra that achieves a packing fraction �LB ¼ 0:988 . . . .
(a) The dimer formed by two truncated tetrahedra (blue and
red; dark and light gray, respectively). (b) A piece of the crystal
structure this unit cell generates; only 7 periodic images are
shown. The viewpoint is such that the dimers in this crystal are
pointing out of the paper, with the top triangle [as given in (a)]
facing the reader.
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faceted particles [25]. (i) We have extended the verification
of Ulam’s conjecture [32], which states that all convex
objects pack denser than spheres, to: the first 8 regular
prisms and antiprisms, the 92 Johnson solids, and the 13
Catalan solids [25]. For regular n-prisms and n-antiprisms,
where n indicates the number of edges of the bases, the
verification of Ulam’s conjecture may be further extended
to n ¼ 1. For regular prisms this follows from the analysis
of regular n-gons [9,10] and the columnar way in which
these prisms stack, whereas for antiprisms an outscribed-
cylinder estimate for �LB shows that it is sufficient to
check up to n ¼ 7. (ii) Our results show that there is no
clear dependence between the sphericity �, the ratio of the
inscribed- and outscribed-sphere radius, and the densest
packing fraction �LB [25]. (iii) We confirmed for 49

convex centrosymmetric particles that their densest-known
lattice packing is a Bravais lattice, in accordance with the
conjecture of Ref. [14]. (iv) Our data also support the
conjecture [15] that convex, congruent solids without cen-
tral symmetry do not necessarily pack densest in a Bravais
lattice. In general noncentrosymmetric particles do not
pack densest in a Bravais lattice, however, there are in-
dications that some do. A possible example is the snub
cube [Fig. 4(c)] that achieves �LB ¼ 0:787 . . . for N ¼ 1
particle in the unit cell (Bravais lattice). We confirmed this
using an extended sample set to achieve a higher numerical
accuracy [25]. This may be an indication that central
symmetry is not as strong a prerequisite for 3D systems,
in contrast with the result for two-dimensional (2D)
packings [33]. However, our result constitutes only a
possible counterexample, not a full mathematical proof.
Nevertheless, the snub cube is not the only particle
for which we have observed this [25], e.g., the snub

FIG. 2 (color online). Four nonconvex shapes and three of
their associated crystal structures. (a) A side and bottom view
of the model (3850 triangles) for a colloidal cap. (b) A piece of
the double-braided structure formed by these caps. There are
four particles in the unit cell, i.e., the caps form a quadrumer,
each has been indicated with a different color. (c) The centro-
symmetric dimer formed by two Szilassi polyhedra (blue and
red; dark and light gray, respectively) that achieves the densest-
known packing in relation to its unit cell (gray box). We do not
show the crystal this generates, since it is difficult to make out
individual particles in it even when they are color coded. (d) A
centrosymmetric tetrapod dimer (red, blue) and the associated
unit cell (gray box). (e) A piece of the crystal structure formed
by this dimer. (f) The densest-known packing for great stellated
dodecahedra, again the structure is a dimer lattice as indicated by
the red and blue color coding.

FIG. 3 (color online). A crystal structure obtained for octapod-
shaped particles, which have an additional soft interaction term.
(a) The model of the octapod used in this simulation. (b) Side
view of the candidate crystal structure, which is a simple cubic
phase. Note that the octapods touch each other at the tips.

FIG. 4 (color online). Four representations of convex particles
and the densest-known packing for enneagons. A rhombicuboc-
tahedron (a) and rhombic enneaconrahedron (b). For both we
have proved that its Bravais lattice packs densest. (c) The snub
cube, which is not centrally symmetric, yet it achieves its
densest-known packing in a Bravais lattice. (d) An enneagon.
(e) The centrosymmetric-dimer (blue, red) lattice that achieves
the densest packing for enneagons.
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dodecahedron and the metabigyrate rhombicosidodecahe-
dron probably achieve their densest packing forN ¼ 1. For
the snub cube and snub dodecahedron this possibility was
already alluded to in Ref. [34]. (v) Many noncentrosym-
metric particles, both convex and nonconvex, do form a
centrosymmetric compound which achieves the densest
regular packing, e.g., truncated tetrahedra [Fig. 1(a)],
(anti)prisms (n < 11), Szilassi polyhedra [Fig. 2(c)], and
tetrapods [Fig. 2(d)], form centrosymmetric dimers and
tetrahedra form centrosymmetric quadrumers [17].
(vi) Remarkably, it appears that some noncentrosymmetric
particles, e.g., the gyrate rhombicosidodecahedron and the
tetrapod, have a noncentrosymmetric N ¼ 1 packing and
an N ¼ 2 centrosymmetric-dimer packing that achieve
(nearly) the same packing fraction.

For rhombicuboctahedra [RCH, Fig. 4(a)] and rhombic
enneacontrahedra [RECH, Fig. 4(a)] our technique estab-
lished the densest packing [25]. We found that �LB equals
the inscribed-sphere upper bound �UB to the packing
fraction [14] within the numerical precision. We subse-
quently verified this by analytic calculation: for RCH

�LB ¼ �UB ¼ ð4=3Þð4 ffiffiffi

2
p � 5Þ and for RECH �LB ¼

�UB ¼ 16� 34=
ffiffiffi

5
p

. Here we have redetermined the �UB

for the RCH, which was incorrectly listed as �UB ¼ 1 in
Ref. [14]. Interestingly, we can now invoke the same argu-
ment as for spheres [14] and determine two additional
upper bounds to the densest packing fraction, based on
the largest inscribed RCH and RECH, respectively.
By extension of our result for the 9-prism, we also
obtained a new 2D packing [Fig. 4(e), Ref. [25] ] with
�LB ¼ 0:901 . . . for the regular Enneagon [Fig. 4(d)]
that surpasses the previously obtained value of �LB ¼
0:897 . . . [10].

In conclusion, we have shown that regular packings of
irregular, nonconvex, and punctured objects may be ob-
tained in a rigorous way by means of our composite
technique. The complex problem of the packing of such
shapes has been tremendously reduced by the FBMC
method and triangulation. We have predicted candidate
crystal structures for (faceted) nonconvex and irregular
particles, improved upon the literature values for the dens-
est packings of a huge number of solids, and confirmed and
extended upon existing conjectures on their densest pack-
ing. Moreover, we also prove that we obtained the densest
packing of rhombicuboctahedra and rhombic enneacontra-
hedra. This is remarkable not only because it has histori-
cally [12] been exceedingly difficult to prove that the
densest packing of objects is indeed achieved for a certain
configuration, but also because these particles can now be
used to determine new estimates for the upper bound to the
maximum packing fraction for other particle shapes.
Finally, we also discovered denser packings than previ-
ously obtained for noncentrosymmetric enneagons and
truncated tetrahedra in centrosymmetric-dimer lattices. In
addition, our method can easily be extended to study dense

amorphous (granular) and quasicrystalline packings and
systems of arbitrarily shaped colloids and nanoparticles
with soft interaction potentials in an external field, both
in and out of equilibrium. Ourmethod thus opens theway to
a more comprehensive study of the material and structure
properties than has previously been considered feasible.
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Packing Fractions and Crystal Structures for Various Particle Types

In this Supplemental Material we present the main body of data we have collected using both our composite
technique and literature studies for a large group of solids, particle approximates and several miscellaneous shapes.
We also prove that the crystal structures we obtained for rhombicuboctahedra and rhombic enneacontrahedra achieve
the densest packing. Furthermore, we present new crystal structures for enneagons, as well as the truncated tetrahedra,
which achieve higher packing fractions than previously obtained, both in a centrosymmetric-dimer lattice. In addition
to these crystal structures, we consider the relation between the sphericity and packing fraction and show that there
is no clear dependence between the two. Finally, we give visual representations for a few of the crystal structures we
obtained during our simulation studies.

Method and Systems

Here, we represent the data gathered by our composite technique of the floppy box Monte Carlo method1 (FBMC),
the triangular tessellation method2 (TT), and the triangle interference detection method3 (TID). For the TID routine
we implemented the Robust and Accurate Polygon Interference Detection library3 (RAPID). In our simulations we
use a modified criterion to perform lattice reduction4

(1/18) · (|a|+ |b|+ |c|) · S(a,b, c)/V (a,b, c) ≥ 1.5,

with | · | the vector norm; a, b, and c the 3 vectors that span the simulation box; S(a,b, c) its surface area; and
V (a,b, c) its volume.

Systems of tessellated particles were prepared in a dilute phase. By increasing the reduced pressure p ≡ PVM/kBT
from p = 1 to p ≈ 105 over 50,000 Monte Carlo (MC) cycles we compress the system to a high-density crystalline state.
Here P is the pressure, VM is the volume of a particle model, kB is the Boltzmann constant, T is the temperature,
and one cycle is understood to be one trial move per particle. We typically apply this scheme for each number of
particles in the unit cell N (N = 1, . . . , 6) and for each considered shape a total of 25 times and select the densest
packing among these. These 6 packings (per shape) are allowed to compress for another 106 cycles at p ≈ 106, to
obtain a maximally compressed state. Finally, we compare these packings and determine the lowest value of N for
which the densest packing is achieved and what the lower bound to the packing fraction of the densest packing φLB

is, based on our results.
This way of obtaining densest-packed crystal structures is quite efficient. We find excellent agreement with Refs. [5–

9] for the Platonic and Archimedean Solids. That is, the system was typically compressed to within 0.002 of the φLB

literature value. The simulations we performed yielded a very narrow distribution of crystal-structure candidates near
the closest-packed configuration, typically within 1%. Moreover, the method is quite fast. We observed that in the
initial 50,000 MC cycles of compression the algorithm exhibits linear scaling. We disregard the final compression run
of 106 MC cycles here, since this part only serves to achieve a high decimal accuracy, while the close packed structure
no longer changes. Let NT be the number of triangles of a specific model, NC = 50, 000 the number of MC cycles,
and T the total run time of the simulation, we obtained

T

(NNC)(NNT )
= constant.

The algorithm thus scales linearly with the total number of triangles times the total number of attempted moves.
The value of this constant differs per model, because some models ‘crystallize’ more easily than others. For the 159
models we studied, we found that the mean value of this constant is ∼ 70 µs with a median value of ∼ 40 µs on a
modern 2.0 GHz desktop computer system, with only 27 models exceeding 100 µs. For more information on the TID
algorithm and its benchmarking we refer to Ref. [3].
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Tables of Packing Fractions

In Tables I - XI we consider the following quantities: (i) The centrosymmetry of the particle, indicated with ‘CS’.
‘C’ denotes centrosymmetric and ‘NC’ noncentrosymmetric. (ii) The number of particles N in the unit cell for which
densest packing was achieved. (iii) The value of the packing fraction φLB for the densest-known crystal structure.
This value has been rounded down to 5 decimals of precision. (iv) The way in which the densest-known packing is
accomplished: in a centrosymmetric compound or not. A compound is defined here as an arrangement of particles
in space, which are in contact. Our definition is such that the compound may consist of one particle. We abbreviate
this parameter by ‘CSc’, which assumes the values ‘y’ for yes, ‘n’ for no, and ‘-’ for packings where we did not verify
this property. (v) Similarly, we determine if the densest-known packing admits a space-filling compound, abbreviated
with ‘SFc’, which assumes the analogous values ‘Y’, ‘N’, and ‘-’. (vi) The inscribed-sphere upper bound7 to the
packing fraction φUB that we obtained using constrained optimization. (vii, viii) The outscribed-sphere φOS and
oriented-bounding-box φOBB lower bounds to the maximum packing fraction, which were obtained using constrained
optimization and the method of Ref. [10]. (ix) The sphericity γ ∈ [0, 1] which we define to be the ratio of the inscribed-
sphere radius over the outscribed-sphere radius, in analogy to Ref. [7]. We have supplemented the simulation based
material with literature results, since most readers will be predominantly interested in the highest φLB value. We
have put references in the footnotes whenever appropriate - only for 29 out of 159 entries a literature result is known.

TABLE I: Data for the Platonic solids.

Code CS N φLB CSc SFc φUB φOS φOBB γ name

PS01 NC 4 0.85634a y N 1.00000 0.09072 0.33333 0.33333 Tetrahedron

PS02 C 1 0.83635b y N 0.89343 0.44833 0.51502 0.79465 Icosahedron

PS03 C 1 0.90450b y N 0.98116 0.49235 0.47745 0.79465 Dodecahedron

PS04 C 1 0.94736b y Yc 1.00000 0.23570 0.56218 0.57734 Octahedron

PS05 C 1 1.00000b y Yc 1.00000 0.27216 1.00000 0.57734 Cube
.

aRef. [5]
bRef. [6] and [7].
cCubes are space filling.11,12 Octahedra and tetrahedra form a uniform partition of 3-space (a space-filling compound comprised of

Platonic and Archimedean solids) in a 1:2 ratio with equal edge lengths.11
dThe following solids have a nanoparticle or colloid shape equivalent: tetrahedra,13–15 cubes,16–18 octahedra,19,20 dodecahedra (macro-

scopic),21 and icosahedra.15,22,23
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TABLE II: Data for the Archimedean solids.

Code CS N φLB CSc SFc φUB φOS φOBB γ name

AS01 NC 2 0.99519a y Yd 1.00000 0.29718 0.41071 0.52223 Truncated Tetrahedrone

AS02 C 1 0.78498b y N 0.83856 0.64230 0.51351 0.91495 Truncated Icosahedron

AS03 NC 1 0.78769b nc N 0.93492 0.57484 0.66109 0.85033 Snub Cubef

AS04 NC 1 0.78864b nc N 0.85547 0.66367 0.53018 0.91886 Snub Dodecahedron

AS05 C 1 0.80470b y N 0.83596 0.66075 0.54747 0.92459 Rhombicosidodecahedron

AS06 C 1 0.82721b y N 0.89731 0.66498 0.53395 0.90494 Truncated Icosidodecahedron

AS07 C 1 0.84937b y N 1.00000 0.59356 0.74491 0.82594 Truncated cuboctahedron

AS08 C 1 0.86472b y N 0.93800 0.57737 0.50464 0.85064 Icosidodecahedron

AS09 C 1 0.87580b y N 0.87580 0.56262 0.61928 0.86285 Rhombicuboctahedrong

AS10 C 1 0.89778b y N 0.97387 0.57413 0.50032 0.83850 Truncated Dodecahedron

AS11 C 1 0.91836b y N 1.00000 0.41666 0.83333 0.70710 Cuboctahedron

AS12 C 1 0.97374b y Yd 1.00000 0.42712 0.96649 0.67859 Truncated Cube

AS13 C 1 1.00000b y Yd 1.00000 0.50596 0.53333 0.77459 Truncated Octahedron
.

aRef. [6]
bRef. [24] and Ref. [25].
cNote that the snub cube and snub dodecahedron are not centrally symmetric, yet they achieve their densest packing in unit cell containing

N = 1 particles (Bravais lattice), rather than in a non-Bravais lattice, nor do they form a centrosymmetric compound.
dTruncated tetrahedra and tetrahedra from a 2:6 space-filling compound with a 3:1 edge length ratio.24 Cuboctahedra and octahedra

form a 1:1 uniform partition of 3-space with 1:1 edge length ratio.11 truncated cubes and octahedra form a 1:1 uniform partition of 3-space
with edge length ratio 1:1.11
eFor truncated tetrahedra we obtained a new dimer crystal structure, with φLB = 0.98854 . . . , which was followed by the discovery of

the densest packed dimer lattice.24,25
fThis result was established using 500 computer experiments for N = 1, . . . , 8 with a slow pressure increase over 4.5 · 106 MC cycles

from p = 1 to p = 1.2100 in 100 steps, followed by 0.5 · 106 MC cycles of production at that pressure. For all systems we approached the
literature value φLB = 0.78769 . . . to within 0.005 and for each N we obtained the same crystal structure, namely the Bravais lattice of
Ref. [6], within the numerical uncertainty of our algorithm.
gWe have demonstrated that Rhombicuboctahedra achieve their densest packing in a crystal lattice: φLB = (4/3)(4

√
2− 5).

hThe following solids have a nanoparticle or colloid shape equivalent: truncated tetrahedra,15,26 truncated cubes,20,26 truncated octahe-
dra,27 and cuboctahedra.16,20

TABLE III: Data for the Catalan solids.

Code CS N φLB CSc SFc φUB φOS φOBB γ name

CS01 C 1 0.77155 y N 0.78287 0.61878 0.53980 0.92459 Deltoidal Hexecontahedron

CS02 C 1 0.79693 y N 0.85134 0.54691 0.54525 0.86285 Deltoidal Icositetrahedron

CS03 C 1 0.79328 y N 0.81365 0.45844 0.54603 0.82594 Disdyakis Dodecahedron

CS04 C 1 0.76549 y N 0.77313 0.57295 0.54354 0.90494 Disdyakis Triacontahedron

CS05 NC 2 0.74107 na N 0.78283 0.60732 0.52603 0.91886 Pentagonal Hexecontahedron

CS06 NC 2 0.74363 na N 0.84856 0.52174 0.51407 0.85033 Pentagonal Icositetrahedron

CS07 C 1 0.75755 y N 0.78799 0.60356 0.53419 0.91495 Pentakis Dodecahedron

CS08 C 1 1.00000 y Yb 1.00000 0.35355 0.50000 0.70710 Rhombic Dodecahedron

CS09 C 1 0.80174 y N 0.83462 0.51374 0.59016 0.85064 Rhombic Triacontahedron

CS10 C 1 0.87601 y N 0.93728 0.29289 0.63158 0.67859 Small Triakis Octahedron

CS11 C 1 0.81401 y N 0.87841 0.40824 0.55555 0.77459 Tetrakis Hexahedron

CS12 C 1 0.80479 y N 0.81804 0.48227 0.55402 0.83850 Triakis Icosahedron

CS13 NC 2 0.79886 y N 1.00000 0.16329 0.59999 0.52223 Triakis Tetrahedron

aNote that the pentagonal hexecontahedron and pentagonal icositetrahedron are not centrally symmetric, yet these particles do not
achieve their densest-known packing by forming a centrosymmetric compound.
bRhombic dodecahedra are space filling.12
cThe following solids have a nanoparticle or colloid shape equivalent: rhombic dodecahedra17,18 and possibly deltoidal icositetrahedra.28,29
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TABLE IV: Data for the Johnson solids

Code CS N φLB CSc SFc φUB φOS φOBB γ name

JS01 NC 2 0.88745 - - 1.00000 0.41071 0.49624 0.73848 Augmented Dodecahedron

JS02 NC 2 0.97192 - - 1.00000 0.21678 0.69255 0.37819 Augmented Hexagonal Prism

JS03 NC 4 0.90463 - - 1.00000 0.21120 0.66082 0.42422 Augmented Pentagonal Prism

JS04 NC 2 0.83264 - - 1.00000 0.26330 0.44643 0.57631 Augmented Sphenocorona

JS05 NC 2 0.94527 - - 1.00000 0.18200 0.57321 0.48671 Augmented Triangular Prism

JS06 NC 2 0.85704 - - 1.00000 0.13072 0.28916 0.38646 Augmented Tridiminished Icosahedron

JS07 NC 2 0.96347 - - 1.00000 0.40619 0.85433 0.63827 Augmented Truncated Cube

JS08 NC 1a 0.87969 - - 1.00000 0.54646 0.51399 0.81740 Augmented Truncated Dodecahedron

JS09 NC 2 0.90795 - - 1.00000 0.27695 0.57813 0.57344 Augmented Truncated Tetrahedron

JS10 NC 2 0.90677 - - 1.00000 0.16543 0.56196 0.37650 Biaugmented Pentagonal Prism

JS11 NC 2 0.91501 - - 1.00000 0.22322 0.60549 0.48294 Biaugmented Triangular Prism

JS12 C 1 0.96102 y - 1.00000 0.36374 0.78361 0.59153 Biaugmented Truncated Cube

JS13 NC 2 0.81863 - - 1.00000 0.62385 0.58749 0.80687 Bigyrate Diminished Rhombicosidodecahedron

JS14 C 1 0.95273 - - 1.00000 0.19876 0.62377 0.49112 Bilunabirotunda

JS15 NC 2 0.82232 - - 1.00000 0.62385 0.57791 0.80687 Diminished Rhombicosidodecahedron

JS16 NC 2 0.85634 - - 1.00000 0.07654 0.29003 0.33333 Dipyramid 3

JS17 NC 2 0.84024 - - 1.00000 0.17317 0.32759 0.49112 Dipyramid 5

JS18 NC 2 0.85870 - - 1.00000 0.37476 0.53256 0.69884 Disphenocingulum

JS19 NC 2 0.83541 - - 1.00000 0.36461 0.65928 0.45045 Elongated Pentagonal Cupola

JS20 NC 2 0.83751 - - 1.00000 0.38059 0.46158 0.67091 Elongated Pentagonal Dipyramid

JS21 C 1 0.79475 y - 1.00000 0.44920 0.60407 0.60567 Elongated Pentagonal Gyrobicupola

JS22 C 1 0.81918 y - 1.00000 0.43524 0.57603 0.74693 Elongated Pentagonal Gyrobirotunda

JS23 NC 2 0.78374 - - 1.00000 0.51299 0.58594 0.79010 Elongated Pentagonal Gyrocupolarotunda

JS24 NC 2 0.79329 - - 1.00000 0.44920 0.60407 0.60567 Elongated Pentagonal Orthobicupola

JS25 NC 2 0.81243 - - 1.00000 0.43524 0.57603 0.74693 Elongated Pentagonal Orthobirotunda

JS26 NC 2 0.79266 - - 1.00000 0.51299 0.58594 0.79010 Elongated Pentagonal Orthocupolarotunda

JS27 NC 2 0.86656 - - 1.00000 0.35743 0.53225 0.67555 Elongated Pentagonal Pyramid

JS28 NC 2 0.81652 - - 1.00000 0.44260 0.61737 0.65993 Elongated Pentagonal Rotunda

JS29 NC 2 0.85746 - - 1.00000 0.43718 0.68054 0.61012 Elongated Square Cupola

JS30 C 1 0.90995 y - 1.00000 0.14788 0.60947 0.41421 Elongated Square Dipyramid

JS31 NC 2 0.80639 - - 0.87580 0.56262 0.61928 0.86285 Elongated Square Gyrobicupola

JS32 NC 2 0.94371 - - 1.00000 0.21844 0.72385 0.49999 Elongated Square Pyramid

JS33 NC 2 0.91258 - - 1.00000 0.35441 0.60017 0.65935 Elongated Triangular Cupola

JS34 NC 2 0.83284 - - 1.00000 0.05180 0.29326 0.21927 Elongated Triangular Dipyramid

JS35 C 1 0.87941 y - 1.00000 0.29486 0.62703 0.60243 Elongated Triangular Gyrobicupola

JS36 NC 2 0.88043 - - 1.00000 0.29486 0.54326 0.60243 Elongated Triangular Orthobicupola

JS37 NC 4 0.86089 - - 1.00000 0.09737 0.35016 0.28867 Elongated Triangular Pyramid

aNote that the augmented truncated dodecahedron is not centrally symmetric, yet it achieves its densest-known packing for N = 1
particles in the unit cell.
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TABLE V: Data for the Johnson solids - continued.

Code CS N φLB CSc SFc φUB φOS φOBB γ name

JS38 NC 2 0.83325 - - 1.00000 0.58695 0.56431 0.77906 Gyrate Bidiminished Rhombicosidodecahedron

JS39 NC 1a 0.80470 - - 0.83596 0.66075 0.54302 0.92459 Gyrate Rhombicosidodecahedron

JS40 NC 2 1.00000 - Yc 1.00000 0.15309 0.50000 0.43301 Gyrobifastigium

JS41 NC 2 0.76412 - - 1.00000 0.42911 0.58293 0.57146 Gyroelongated Pentagonal Bicupola

JS42 NC 2 0.77761 - - 0.94171 0.45641 0.55737 0.78549 Gyroelongated Pentagonal Birotunda

JS43 NC 4 0.80695 - - 1.00000 0.34161 0.63982 0.41448 Gyroelongated Pentagonal Cupola

JS44 NC 2 0.78540 - - 1.00000 0.51719 0.56621 0.78342 Gyroelongated Pentagonal Cupolarotunda

JS45 NC 2 0.86077 - - 1.00000 0.38637 0.50959 0.64079 Gyroelongated Pentagonal Pyramid

JS46 NC 2 0.81250 - - 1.00000 0.44203 0.59756 0.63546 Gyroelongated Pentagonal Rotunda

JS47 NC 2 0.77850 - - 0.97994 0.55378 0.54574 0.82676 Gyroelongated Square Bicupola

JS48 NC 2 0.80712 - - 1.00000 0.42183 0.60324 0.56972 Gyroelongated Square Cupola

JS49 NC 2 0.80261 - - 1.00000 0.17614 0.43129 0.51974 Gyroelongated Square Dipyramid

JS50 NC 2 0.82236 - - 1.00000 0.25752 0.45133 0.59228 Gyroelongated Square Pyramid

JS51 NC 4 0.79162 - - 1.00000 0.32153 0.52112 0.67198 Gyroelongated Triangular Bicupola

JS52 NC 2 0.83145 - - 1.00000 0.37306 0.56343 0.64231 Gyroelongated Triangular Cupola

JS53 NC 2 0.83853 - - 1.00000 0.36444 0.54634 0.62123 Hebesphenomegacorona

JS54 NC 2 0.87796 - - 1.00000 0.38632 0.51502 0.71464 Metabiaugmented Dodecahedron

JS55 NC 2 0.93602 - - 1.00000 0.18772 0.65039 0.35100 Metabiaugmented Hexagonal Prism

JS56 NC 2 0.86978 - - 1.00000 0.53239 0.52766 0.80327 Metabiaugmented Truncated Dodecahedron

JS57 NC 2 0.91942 - - 1.00000 0.32441 0.46065 0.57232 Metabidiminished Icosahedron

JS58 NC 2 0.83373 - - 1.00000 0.58695 0.56431 0.77852 Metabidiminished Rhombicosidodecahedron

JS59 NC 1b 0.80470 - - 0.83596 0.66075 0.54302 0.92459 Metabigyrate Rhombicosidodecahedron

JS60 NC 1b 0.82056 - - 1.00000 0.62385 0.58749 0.80687 Metagyrate Diminished Rhombicosidodecahedron

JS61 C 1 0.88941 y - 1.00000 0.33173 0.51502 0.67926 Parabiaugmented Dodecahedron

JS62 C 1 0.97102 y - 1.00000 0.13937 0.65778 0.31783 Parabiaugmented HexagonalPrism

JS63 C 1 0.88053 y - 1.00000 0.51540 0.52766 0.79465 Parabiaugmented TruncatedDodecahedron

JS64 C 1 0.85486 y - 1.00000 0.58695 0.63661 0.68915 Parabidiminished Rhombicosidodecahedron

JS65 C 1 0.80470 y - 0.83596 0.66075 0.55217 0.92459 Parabigyrate Rhombicosidodecahedron

JS66 NC 1a 0.82048 - - 1.00000 0.62385 0.57791 0.80687 Paragyrate Diminished Rhombicosidodecahedron

JS67 NC 2 0.85648 - - 1.00000 0.09698 0.44385 0.16245 Pentagonal Cupola

JS68 C 1 0.85891 y - 1.00000 0.19397 0.44385 0.32491 Pentagonal Gyrobicupola

JS69 NC 2 0.84969 - - 1.00000 0.38567 0.48784 0.58777 Pentagonal Gyrocupolarotunda

JS70 NC 2 0.82381 - - 1.00000 0.19397 0.44385 0.32491 Pentagonal Orthobicupola

JS71 NC 2 0.81713 - - 0.93800 0.57737 0.50464 0.85064 Pentagonal Orthobirotunda

JS72 NC 2 0.83123 - - 1.00000 0.38567 0.48784 0.58777 Pentagonal Orthocupolarotunda

JS73 NC 2 0.85874 - - 1.00000 0.28868 0.50464 0.42532 Pentagonal Rotunda

aNote that the gyrate rhombicosidodecahedron and the paragyrate diminished rhombicosidodecahedron are not centrally symmetric, yet
they achieve their densest-known packing for N = 1 particles in the unit cell. However, both their densest-known N = 2 packings form a
centrosymmetric-dimer lattice, which achieves a packing fraction remarkably close to that of their N = 1 packing.
bNote that the metabigyrate rhombicosidodecahedron and metagyrate diminished rhombicosidodecahedron are not centrally symmetric,

yet they achieve their densest-known packing in unit cell containing N = 1 particles.
cThe gyrobifastigium is space filling.12
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TABLE VI: Data for the Johnson solids - continued.

Code CS N φLB CSc SFc φUB φOS φOBB γ name

JS74 NC 2 0.94582 - - 1.00000 0.11785 0.33333 0.36601 Pyramid 4

JS75 NC 2 0.80887 - - 1.00000 0.08658 0.23032 0.27365 Pyramid 5

JS76 NC 2 0.86477 - - 1.00000 0.18900 0.65970 0.48676 Snub Disphenoid

JS77 NC 4 0.81981 - - 1.00000 0.34434 0.52936 0.55150 Snub Square Antiprism

JS78 NC 2 0.82102 - - 1.00000 0.27733 0.44893 0.58532 Sphenocorona

JS79 NC 2 0.85093 - - 1.00000 0.16304 0.39771 0.44699 Sphenomegacorona

JS80 NC 2 0.94227 - - 1.00000 0.15397 0.47140 0.27059 Square Cupola

JS81 NC 2 0.82692 - - 1.00000 0.30795 0.47140 0.54119 Square Gyrobicupola

JS82 C 1 0.94249 y - 1.00000 0.30795 0.55228 0.54119 Square Orthobicupola

JS83 NC 2 0.91836 - - 1.00000 0.20833 0.41666 0.40824 Triangular Cupola

JS84 NC 2 0.87496 - - 1.00000 0.26151 0.47213 0.49999 Triangular Hebesphenorotunda

JS85 NC 2 0.88316 - - 1.00000 0.41666 0.52465 0.70710 Triangular Orthobicupola

JS86 NC 2 0.87421 - - 1.00000 0.36090 0.52502 0.69033 Triaugmented Dodecahedron

JS87 NC 2 0.89315 - - 1.00000 0.15008 0.49731 0.31783 Triaugmented Hexagonal Prism

JS88 NC 2 0.82855 - - 1.00000 0.20411 0.42377 0.50211 Triaugmented Triangular Prism

JS89 NC 2 0.86679 - - 1.00000 0.52875 0.53355 0.79465 Triaugmented Truncated Dodecahedron

JS90 NC 2 0.91669 - - 1.00000 0.26245 0.37267 0.50209 Tridiminished Icosahedron

JS91 NC 2 0.84993 - - 1.00000 0.55005 0.52883 0.73251 Tridiminished Rhombicosidodecahedron

JS92 NC 2 0.80456 - - 0.83596 0.66075 0.54302 0.92459 Trigyrate Rhombicosidodecahedron

TABLE VII: Data for regular prisms.

Code CS N φLB CSc SFc φUB φOS φOBB γ name

RP03 NC 2 1.00000a y Yc 1.00000 0.17181 0.50000 0.37796 Prism 3

RP04 C 1 1.00000a y Yc 1.00000 0.27216 1.00000 0.57734 Cube

RP05 NC 2 0.92131a y N 1.00000 0.31659 0.69098 0.50673 Prism 5

RP06 C 1 1.00000a y Yc 1.00000 0.32863 0.75000 0.44721 Prism 6

RP07 NC 2 0.89269a y N 1.00000 0.32407 0.73825 0.39803 Prism 7

RP08 C 1 0.90615a y Yc 1.00000 0.31175 0.82842 0.35740 Prism 8

RP09 NC 2 0.90103b y N 1.00000 0.29629 0.75712 0.32361 Prism 9

RP10 C 1 0.91371a y N 1.00000 0.28003 0.77254 0.29524 Prism 10

aWe used Ref. [30] to compare our results to the literature studies of two-dimensional (2D) regular polygons. See Table I for more
information on the cube.
bFor regular enneaprisms (9-gonal base) we have discovered a new densest packing, which also improves upon the result of Ref. [30] for

the regular 9-gon (enneagon, nonagon).
cCubes (square base) and regular tri- (triangular base) and hexaprisms (hexagonal base) are space filling.11,12 Octaprisms (8-gonal base)

can form a space-filling compound with irregular triprisms.

TABLE VIII: Data for regular antiprisms.

Code CS N φLB CSc SFc φUB φOS φOBB γ name

AP03 C 1 0.94736 y Y 1.00000 0.23570 0.56218 0.57734 Octahedrona

AP04 NC 2 0.86343 y N 1.00000 0.30385 0.66666 0.51108 Antiprism 4

AP05 C 1 0.92052 y N 1.00000 0.32441 0.67418 0.44721 Antiprism 5

AP06 NC 2 0.88189 y N 1.00000 0.32114 0.73204 0.39331 Antiprism 6

AP07 C 1 0.90137 y N 1.00000 0.30741 0.72740 0.34904 Antiprism 7

AP08 NC 2 0.89332 y N 1.00000 0.28987 0.75526 0.31270 Antiprism 8

AP09 C 1 0.90672 y N 1.00000 0.27164 0.75000 0.28264 Antiprism 9

AP10 NC 2 0.89731 y N 1.00000 0.25411 0.76608 0.25750 Antiprism 10

aSee Table I for more information on the octahedron.
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TABLE IX: Data for several miscellaneous solids.

Code CS N φLB CSc SFc φUB φOS φOBB γ name

MS01 C 1 0.98926 y N 1.00000 0.31151 0.60300 0.59880 Dürer’s Solidb

MS02 C 1 1.00000 y Ya 1.00000 0.31426 0.66666 0.57734 Elongated Dodecahedron

MS03 C 1 0.79473 y N 0.79473 0.60457 0.54914 0.91286 Rhombic Enneacontahedronc

MS04 C 1 0.82280 y N 1.00000 0.34650 0.52786 0.64945 Rhombic Icosahedron

MS05 NC 2 1.00000 y Ya 1.00000 0.35355 0.50000 0.70710 Squashed Dodecahedron

MS06 NC 4 0.70503 n N 1.00000 0.13380 0.31616 0.41221 Stanford Bunnyd

MS07 NC 2 0.47242 y N 1.00000 0.00853 0.06853 0.11355 Hammerhead Sharkd

aThe elongated dodecahedron and the squashed dodecahedron are space filling.
bNote that Dürer’s Solid is not the same as the dimer compound formed by truncated tetrahedra.
cFor the rhombic enneacontahedron we have shown that the Bravais lattice we discovered achieves the densest packing.
dFor the Stanford bunny31 and the hammerhead shark32 the number of triangles that comprise these models is very high, 3756 and 5116

triangles respectively, however all quantities could be established with the appropriate accuracy.

TABLE X: Data for nonconvex polyhedra.

Code CS N φLB CSc SFc φUB φOS φOBB γ name

PH01 NC 2 0.61327 n N 1.00000 0.04157 0.23149 0.17469 Császár Polyhedron

PH02 C 1 0.29477 y N 1.00000 0.07659 0.06269 0.26640 Echidnahedron

PH03 C 1 1.00000 y Ya 1.00000 0.22922 0.45845 0.55284 Escher’s Solid

PH04 C 1 0.55728 y N 1.00000 0.21644 0.20989 0.51160 Great Rhombictriacontrahedron

PH05 C 2 0.88967 n N 1.00000 0.18806 0.18237 0.18759 Great Stellated Dodecahedron

PH06 C 1 0.74965 y N 1.00000 0.34558 0.39699 0.53633 Jessen’s Orthogonal Icosahedron

PH07 C 1 0.55602 y N 1.00000 0.20643 0.20019 0.51455 Mathematica Spikey 1b

PH08 C 1 0.59998 y N 1.00000 0.14378 0.20246 0.35355 Rhombic Dodecahedron Stellation 2c

PH09 C 2 0.55654 n N 1.00000 0.19854 0.19253 0.41946 Rhombic Hexecontrahedron

PH10 C 2 0.69528 n N 0.97719 0.49635 0.47293 0.79787 Small Triambic Icosahedron

PH11 NC 2 0.51913 y N 1.00000 0.03637 0.13732 0.16538 Szilassi Polyhedron

aEscher’s solid is space filling by construction.
bThe number ‘1’ in the name ‘Mathematica spikey 1’ refers to the first version of the Mathematica spikey, which was used as a logo for

the first version of the Mathematica software package.33 It is a cumulated icosahedron with cumulation ratio
√

6/3.
cThe number ‘2’ in the name ‘rhombic dodecahedron stellation 2’ refers to the fact that there are three stellations of the rhombic

dodecahedron (four when including the original). This particular stellation is listed as number ‘2’ in the Mathematica polyhedron
database.34

TABLE XI: Data for nonconvex nanoparticle and colloid approximates.

Code CS N φLB CSc SFc φUB φOS φOBB γ name

PA01 NC 4 0.51850 n N 1.00000 0.18253 0.27282 0.155754 Capb

PA02 C 1 0.68615 y N 1.00000 0.09602 0.22903 0.38489 Nanostar

PA03 C 1 0.31077 y N 1.00000 0.02525 0.06681 0.13281 Octapod

PA04 NC 2a 0.59207 y N 1.00000 0.04864 0.10628 0.20303 Tetrapod

aThe tetrapod achieves its densest-known packing for N = 2 particles in the unit cell, however, the densest-known N = 1 the packing
fraction is remarkably close to that value.
bThe cap35 is comprised of 3850 triangles. Despite this model’s complexity, all quantities could be established with the appropriate

accuracy.
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Densest Packing Configurations for Rhombicuboctahedra and Rhombic Enneacontrahedra

In this section we prove that the densest-packed configurations for rhombicuboctahedra φLB = (4/3)
(
4
√

2− 5
)

and for rhombic enneacontrahedra φLB = 16− 34/
√

5 are given by their Bravais lattices.

Rhombicuboctahedron: Let the rhombicuboctahedron (RCH) be specified by the vertex coordinates(
i

(
1
2

+
p√
2

)
, j

(
1
2

+
q√
2

)
, k

(
1
2

+
r√
2

))
,

where i, j, and k ∈ {−1, 1} and p, q, and r ∈ {0, 1}, with p + q + r = 1. This gives a list of 24 vertices centred on the
origin, which span a RCH with volume 4 + 10

√
2/3. For this system a possible choice of three vectors which describe

a unit cell that realizes the densest packing, is given by

v0 =
(

1 +
1√
2
,−1− 1√

2
, 0
)

,

v1 =
(

1 +
1√
2
, 0,−1− 1√

2

)
,

v2 =
(

0, 1 +
1√
2
, 1 +

1√
2

)
.

Checking for overlaps in this configuration is a simple matter of verifying that there are no overlaps for an appropriate
number of nearest neighbors. It follows that the volume of the unit cell is given by |v0 · (v1 × v2)| = 5 + 7/

√
2.

Therefore, the packing fraction is

φLB =
4 + 10

√
2/3

5 + 7/
√

2
=

4
3

(
4
√

2− 5
)

.

We determined the face-to-point minimum distance for all 26 faces of the RCH, which leads to a set of 26 constrained
equations. Using constrained minimization on this set of equations the maximum inscribed sphere can be obtained.
Its radius is 1/2 + 1/

√
2 and it is centred on the origin. This results in the following upper-bound estimate for the

packing fraction

φUB =
π√
18

4 + 10
√

2/3

(4π/3)
(
1/2 + 1/

√
2
)3 =

4
3

(
4
√

2− 5
)

.

We have thus proven that the maximum packing fraction is obtained, since φUB = φLB. Here is should be noted
that this proof is conditionally dependent on the proof of Ref. [36] via the proof for the upper-bound criterion of Ref. [7].

Rhombic enneacontrahedron: Let the rhombic enneacontrahedron (RECH) be described by the 92 vertex
coordinates listed in Tables XII and XIII. These are centred on the origin and span a RECH with volume

20
3

√
43 +

56
√

5
3

.

For this system a possible set of three vectors which describes a unit cell that realizes the densest packing, is given by

v0 =

(
−5

6

(
2 +

√
5
)

,
1
2

√
5
3
,
1
3

(
5 + 2

√
5
))

,

v1 =

− 5
12

(
1 +

√
5
)

,

√
235
24

+
35
√

5
8

,
1
6

(
5 +

√
5
) ,

v2 =

(
1
12

(
25 + 13

√
5
)

,
5 +

√
5

4
√

3
,
1
6

(
5 +

√
5
))

.
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Checking for overlaps in this configuration is again a simple matter. It follows that the volume of the unit cell is given
by

|v0 · (v1 × v2)| =
10
(
20 + 9

√
5
)

3
√

3
.

Therefore, the packing fraction that is achieved for this structure is φLB = 16− 34/
√

5. By determining the set of 90
face-to-point constrained equations, the maximum inscribed sphere is easily determined to be centred on the origin
and have radius √

35
12

+
5
√

5
4

,

using constrained minimization. This results in the following upper bound to the packing fraction φUB = 16−34/
√

5.
We have thus proven that the maximum packing is obtained.

TABLE XII: Vertices of the rhombic enneacontrahedron.`
1
3

`
−5−

√
5

´
, 0, 1

3

`
−7 + 2

√
5

´´ `
1
3

`
−5−

√
5

´
, 0, 2

3

`
−2 +

√
5

´´„
1
6

`
−7− 3

√
5

´
,−

q
1
6

`
3 +

√
5

´
, 2

3

`
−3 +

√
5

´« „
1
6

`
−7− 3

√
5

´
,−

q
1
6

`
3 +

√
5

´
,−1 + 2

√
5

3

«
„

1
6

`
−7− 3

√
5

´
,
q

1
6

`
3 +

√
5

´
, 2

3

`
−3 +

√
5

´« „
1
6

`
−7− 3

√
5

´
,
q

1
6

`
3 +

√
5

´
,−1 + 2

√
5

3

«
`
− 2

3

`
1 +

√
5

´
, 0, 2

3

`
−1 +

√
5

´´ “
1
3

`
−4−

√
5

´
,− 1√

3
, 1

3

`
−7 +

√
5

´”
“

1
3

`
−4−

√
5

´
, 1√

3
, 1

3

`
−7 +

√
5

´” „
1
6

`
−5− 3

√
5

´
,−

q
7
6

+
√

5
2

, 1
3

`
−6 +

√
5

´«
„

1
6

`
−5− 3

√
5

´
,−

q
7
6

+
√

5
2

, 1
3

`
−3 +

√
5

´« „
1
6

`
−5− 3

√
5

´
,
q

1
6

`
7 + 3

√
5

´
, 1

3

`
−6 +

√
5

´«
„

1
6

`
−5− 3

√
5

´
,
q

1
6

`
7 + 3

√
5

´
, 1

3

`
−3 +

√
5

´« “
−1−

√
5

3
, 0,− 7

3

”
„

1
2

`
−1−

√
5

´
,−

q
1
6

`
3 +

√
5

´
,−2

« „
1
2

`
−1−

√
5

´
,−

q
1
6

`
3 +

√
5

´
,−1 +

√
5

«
„

1
2

`
−1−

√
5

´
,
q

1
6

`
3 +

√
5

´
,−2

« „
1
2

`
−1−

√
5

´
,
q

1
6

`
3 +

√
5

´
,−1 +

√
5

«
„

1
6

`
−7−

√
5

´
,−

q
7
6

+
√

5
2

, 2
3

`
−1 +

√
5

´« „
1
6

`
−7−

√
5

´
,
q

1
6

`
7 + 3

√
5

´
, 2

3

`
−1 +

√
5

´«
“
− 2

√
5

3
, 0,− 2

3
+
√

5
” „

1
6

`
−5−

√
5

´
,−

q
5
6

`
3 +

√
5

´
, 1

3

`
−5 +

√
5

´«
„

1
6

`
−5−

√
5

´
,−

q
5
6

`
3 +

√
5

´
, 1

3

`
−2 +

√
5

´« „
1
6

`
−5−

√
5

´
,
q

5
6

`
3 +

√
5

´
, 1

3

`
−5 +

√
5

´«
„

1
6

`
−5−

√
5

´
,
q

5
6

`
3 +

√
5

´
, 1

3

`
−2 +

√
5

´« „
1
3

`
−1−

√
5

´
,−

q
2
3

`
3 +

√
5

´
, 1

3

`
−7 +

√
5

´«
„

1
3

`
−1−

√
5

´
,
q

2
3

`
3 +

√
5

´
, 1

3

`
−7 +

√
5

´« „
1
6

`
−3−

√
5

´
,−

q
7
6

+
√

5
2

,− 2
3

+
√

5

«
„

1
6

`
−3−

√
5

´
,−

q
1
6

`
3−

√
5

´
,− 8

3

« „
1
6

`
−3−

√
5

´
,
q

1
6

`
3−

√
5

´
,− 8

3

«
„

1
6

`
−3−

√
5

´
,
q

1
6

`
7 + 3

√
5

´
,− 2

3
+
√

5

« “
−
√

5
3

,−
q

5
3
,− 7

3

”
“
−
√

5
3

,− 1√
3
,− 1

3
+
√

5
” “

−
√

5
3

, 1√
3
,− 1

3
+
√

5
”

“
−
√

5
3

,
q

5
3
,− 7

3

” „
1
6

`
−1−

√
5

´
,−

q
5
6

`
3 +

√
5

´
, 2

3

`
−1 +

√
5

´«
„

1
6

`
−1−

√
5

´
,
q

5
6

`
3 +

√
5

´
, 2

3

`
−1 +

√
5

´« „
− 1

3
,−

q
3 + 4

√
5

3
, 1

3

`
−6 +

√
5

´«
„
− 1

3
,−

q
3 + 4

√
5

3
, 1

3

`
−3 +

√
5

´« „
− 1

3
,

q
3 + 4

√
5

3
, 1

3

`
−6 +

√
5

´«
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TABLE XIII: Vertices of the rhombic enneacontrahedron - continued.„
− 1

3
,

q
3 + 4

√
5

3
, 1

3

`
−3 +

√
5

´« „
1
6

`
−3 +

√
5

´
,−

q
1
6

`
3 +

√
5

´
,− 1

3
+
√

5

«
„

1
6

`
−3 +

√
5

´
,
q

1
6

`
3 +

√
5

´
,− 1

3
+
√

5

« „
0,−

q
2
3

`
3 +

√
5

´
,−2

«
„

0,−
q

2
3

`
3 +

√
5

´
,−1 +

√
5

«
(0, 0,−3)`

0, 0,
√

5
´ „

0,
q

2
3

`
3 +

√
5

´
,−2

«
„

0,
q

2
3

`
3 +

√
5

´
,−1 +

√
5

« „
1
6

`
3−

√
5

´
,−

q
1
6

`
3 +

√
5

´
,− 8

3

«
„

1
6

`
3−

√
5

´
,
q

1
6

`
3 +

√
5

´
,− 8

3

« „
1
3
,−

q
3 + 4

√
5

3
, 2

3

`
−3 +

√
5

´«
„

1
3
,−

q
3 + 4

√
5

3
,−1 + 2

√
5

3

« „
1
3
,

q
3 + 4

√
5

3
, 2

3

`
−3 +

√
5

´«
„

1
3
,

q
3 + 4

√
5

3
,−1 + 2

√
5

3

« „
1
6

`
1 +

√
5

´
,−

q
5
6

`
3 +

√
5

´
, 1

3

`
−7 +

√
5

´«
„

1
6

`
1 +

√
5

´
,
q

5
6

`
3 +

√
5

´
, 1

3

`
−7 +

√
5

´« “√
5

3
,−

q
5
3
,− 2

3
+
√

5
”

“√
5

3
,− 1√

3
,− 8

3

” “√
5

3
, 1√

3
,− 8

3

”
“√

5
3

,
q

5
3
,− 2

3
+
√

5
” „

1
6

`
3 +

√
5

´
,−

q
7
6

+
√

5
2

,− 7
3

«
„

1
6

`
3 +

√
5

´
,−

q
1
6

`
3−

√
5

´
,− 1

3
+
√

5

« „
1
6

`
3 +

√
5

´
,
q

1
6

`
3−

√
5

´
,− 1

3
+
√

5

«
„

1
6

`
3 +

√
5

´
,
q

1
6

`
7 + 3

√
5

´
,− 7

3

« „
1
3

`
1 +

√
5

´
,−

q
2
3

`
3 +

√
5

´
, 2

3

`
−1 +

√
5

´«
„

1
3

`
1 +

√
5

´
,
q

2
3

`
3 +

√
5

´
, 2

3

`
−1 +

√
5

´« „
1
6

`
5 +

√
5

´
,−

q
5
6

`
3 +

√
5

´
, 1

3

`
−7 + 2

√
5

´«
„

1
6

`
5 +

√
5

´
,−

q
5
6

`
3 +

√
5

´
, 2

3

`
−2 +

√
5

´« „
1
6

`
5 +

√
5

´
,
q

5
6

`
3 +

√
5

´
, 1

3

`
−7 + 2

√
5

´«
„

1
6

`
5 +

√
5

´
,
q

5
6

`
3 +

√
5

´
, 2

3

`
−2 +

√
5

´« “
2
√

5
3

, 0,− 7
3

”
„

1
6

`
7 +

√
5

´
,−

q
7
6

+
√

5
2

, 1
3

`
−7 +

√
5

´« „
1
6

`
7 +

√
5

´
,
q

1
6

`
7 + 3

√
5

´
, 1

3

`
−7 +

√
5

´«
„

1
2

`
1 +

√
5

´
,−

q
1
6

`
3 +

√
5

´
,−2

« „
1
2

`
1 +

√
5

´
,−

q
1
6

`
3 +

√
5

´
,−1 +

√
5

«
„

1
2

`
1 +

√
5

´
,
q

1
6

`
3 +

√
5

´
,−2

« „
1
2

`
1 +

√
5

´
,
q

1
6

`
3 +

√
5

´
,−1 +

√
5

«
`

1
3

`
3 +

√
5

´
, 0,− 2

3
+
√

5
´ „

1
6

`
5 + 3

√
5

´
,−

q
7
6

+
√

5
2

, 2
3

`
−3 +

√
5

´«
„

1
6

`
5 + 3

√
5

´
,−

q
7
6

+
√

5
2

,−1 + 2
√

5
3

« „
1
6

`
5 + 3

√
5

´
,
q

1
6

`
7 + 3

√
5

´
, 2

3

`
−3 +

√
5

´«
„

1
6

`
5 + 3

√
5

´
,
q

1
6

`
7 + 3

√
5

´
,−1 + 2

√
5

3

« “
1
3

`
4 +

√
5

´
,− 1√

3
, 2

3

`
−1 +

√
5

´”
“

1
3

`
4 +

√
5

´
, 1√

3
, 2

3

`
−1 +

√
5

´” `
2
3

`
1 +

√
5

´
, 0, 1

3

`
−7 +

√
5

´´„
1
6

`
7 + 3

√
5

´
,−

q
1
6

`
3 +

√
5

´
, 1

3

`
−6 +

√
5

´« „
1
6

`
7 + 3

√
5

´
,−

q
1
6

`
3 +

√
5

´
, 1

3

`
−3 +

√
5

´«
„

1
6

`
7 + 3

√
5

´
,
q

1
6

`
3 +

√
5

´
, 1

3

`
−6 +

√
5

´« „
1
6

`
7 + 3

√
5

´
,
q

1
6

`
3 +

√
5

´
, 1

3

`
−3 +

√
5

´«
`

1
3

`
5 +

√
5

´
, 0, 1

3

`
−5 +

√
5

´´ `
1
3

`
5 +

√
5

´
, 0, 1

3

`
−2 +

√
5

´´
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New Crystal Structures for Enneagons and Truncated Tetrahedra

In this section we describe the construction of a new crystal structure for enneagons (nonagons, regular 9-gon),
which achieves the densest-known packing. The method we use here has similarities the ones employed in Refs. [5]
and [9]; both of these present the analytic construction of a dense family of tetrahedral dimers. Finally, we list our
numerical data, by which the dimer lattice of truncated tetrahedra can be constructed.

Enneagons: We begin with some basic definitions. An enneagon is defined here to have a centre-to-tip distance of
1. It is centred on the origin of a Cartesian coordinate system with its tips mirror-symmetrically distributed around
the y-axis and one tip located on the positive y-axis. To describe the crystal structure we further require three
two-dimensional (2D) vector parameterizations

p1(q) =

(
q

(
sin
[π
9

]
−
√

3
2

)
+ 2 cos

[π
9

]
sin
[
2π

9

]
,
1
4

(
q
(
2− 4 cos

[π
9

])
− csc

[ π

18

]))
,

p2(r) =
(

2 cos
[π
9

]
sin
[π
9

]
− r sin

[
2π

9

]
, 2 cos2

[π
9

]
+ r

(
1− cos

[
2π

9

]))
,

p3(s) =

(
s

(
sin
[π
9

]
−
√

3
2

)
+ 2 cos

[π
9

]
sin
[
2π

9

]
,−1

4

(
s
(
2− 4 cos

[π
9

])
− csc

[ π

18

]))
,

with q, r, and s ∈ [−1, 1]. We will employ these to describe lattice vectors and positions of the enneagons in the
unit cell. We eliminate two of the variables such that different enneagons in the lattice have some of their edges and
corners touch and slide over each other upon varying the third:

T (k, l) =
csc
[
2π
9

]
4
(
cos
[
2π
9

]
− 1
) ·{√

3
(

cos
[
2π

9

]
− 1
)

(k + l) + 2 sin
[π
9

]
(k + l)− 8 sin

[π
9

]
cos
[π
9

]
− sin

[π
9

]
cos
[
2π

9

]
(k + l) + 8 sin

[π
9

]
cos
[π
9

]
cos
[
2π

9

]
+ sin

[
2π

9

]
(l − k)

−2 sin
[
2π

9

]
cos
[π
9

]
(l − k) + 8 sin

[
2π

9

]
cos
[π
9

]
− 8 sin

[
2π

9

]
cos
[π
9

]
cos
[
2π

9

]}
U(k) =

{√
3k + 2 cos

[ π

18

]
− k cos

[ π

18

]
−
√

3k cos
[π
9

]
+ 2k cos

[ π

18

]
cos
[π
9

]
+
√

3k sin
[ π

18

]
− k sin

[π
9

]
4 sin

[ π

18

]
cos
[ π

18

]
− 2k sin

[ π

18

]
sin
[π
9

]
− 4 sin

[
2π

9

]
cos
[π
9

]
− 8 sin

[ π

18

]
sin
[
2π

9

]
cos
[π
9

]}
V (k) = sin

[π
9

]
+ 2 sin

[ π

18

]
sin
[π
9

]
− cos

[ π

18

]
−
√

3
(
sin
[ π

18

]
+ cos

[π
9

])
+ 2 cos

[ π

18

]
cos
[π
9

]
W (k) =

U(k)
V (k)

,

with k and l ∈ [−1, 1]. Using T (k, l) and W (k), we may write

P0(k) = (0, 0) ,

P1(k) = p2 (T (k, W (k))) ,

V0(k) = p3 (W (k)) + p2 (T (k, W (k))) ,

V1(k) = p1 (k) + p3 (W (k)) ,

where the Pi give the position of the enneagons in the unit cell (N = 2) with lattice vectors Vi (i ∈ {0, 1}). The
enneagon at P0 has the same orientation as the base enneagon defined above and the one at P1 is rotated by π with
respect to the base enneagon, also see Fig. 1a which shows this configuration for the densest-known packing. By
determining the value of k, say k∗, for which the volume fraction Fv associated to this lattice is maximized,

Fv(k) =
18 sin

[
π
9

]
cos
[

π
9

]
|V0,x(k)V1,y(k)− V0,y(k)V1,x(k)|

,
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we obtain the lattice with the highest-known packing fraction. For this value of k, we obtain the following

k∗ = 0.334782056761309 . . . ,

Fv(k∗) = 0.901030078420934 . . . = φLB,

P0(k∗) = (0, 0) ,

P1(k∗) = (0.8471436672437109 . . . , 1.691664920976177 . . . ) ,

V0(k∗) = (1.7675368645589482 . . . , 3.372726522382239 . . . ) ,

V1(k∗) = (1.9530111855752121 . . . , 0.094167780690677 . . . ) .

This results in the following 2D crystal structure, see Fig. 1, which shows the unit cell and a piece of the crystal this
generates. Note that we have confirmed that at least one the packings of Ref. [30] can be impoved upon by large scale
reorganizations. Also note that this configuration forms a centrosymmetric-dimer lattice.

P(k*)
1

P(k*)
0

V(k*)
1

V(k*)
0

a) b)

FIG. 1: New densest-packing crystal structure for enneagons. (a) The unit cell vectors V0(k
∗) and V1(k

∗) and the
N = 2 enneagons in it, positioned at P0(k

∗) and P1(k
∗). (b) A piece of the crystal structure this dimer generates.
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Truncated tetrahedra: For the system containing N = 2 truncated tetrahedra we provide additional information
on the composition of the dimer lattice that we obtained using our method and which achieves a packing fraction
φLB = 0.988 . . . . Table XIV lists the position and orientation of the particles within the unit cell, as well as the shape
of the cell itself. We have transformed the unit cell of the dimer lattice (N = 2), using lattice reduction4, in such a
way that it is almost cubic and that one of the particles is located in the origin.

TABLE XIV: Coordinates which specify the dimer lattice of truncated tetrahedra. This Table lists the 12 vertices
v of the truncated tetrahedron model used in our simulations. It also gives the three vectors um, with m = 1, 2, 3 an index,
which span the unit cell; the two position vectors Ri, with i = 1, 2 the particle number, which indicate where the truncated
tetrahedra are located with respect to the origin; and the two rotation matrices Mi, which specify how to rotate the particles
from their initial configuration. This initial configuration is given by the set of v presented here. A single vertex is a three
dimensional (3D) vector, of which the components are indicated by vx, vy, and vz, relative to a standard Cartesian coordinate
frame. These v have been written in a row format in the Table, other vectors are treated similarly. The entries of the matrices
M are denoted as Mkl, with k, l = x, y, z. For this choice of vertices, the volume enclosed by the particle’s surface is unity.
We have provided all vector and matrix entries in 6 decimal precision. Rounding errors may lead to small overlaps of particles
in the crystal generated using these coordinates.

vx vy vz vx vy vz ux, Rx uy, Ry uz, Rz

0.621121 -0.358604 -0.439200 0.621121 0.358604 -0.439200 u1 0.241977 0.928872 0.855892

0.828162 0.000000 0.146400 -0.414081 -0.717209 0.146400 u2 0.604353 -0.735843 0.832841

-0.621121 -0.358604 -0.439200 0.000000 -0.717209 -0.439200 u3 -1.053988 -0.200499 0.654313

0.000000 0.717209 -0.439200 -0.621121 0.358604 -0.439200

-0.414081 0.717209 0.146400 -0.207040 0.358604 0.732000 R1 0.000000 0.000000 0.000000

-0.207040 -0.358604 0.732000 0.414081 0.000000 0.732000 R2 -0.073508 -0.001753 0.875316

Mxx Mxy Mxz Myx Myy Myz Mzx Mzy Mzz

M1 -0.892816 -0.442579 0.083685 -0.443985 0.896032 0.001996 -0.075867 -0.035373 -0.996490

M2 0.892816 -0.442579 -0.083685 0.443985 0.896032 -0.001996 0.075867 -0.035373 0.996490
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Visual Representations of the Closest Packing Results

In this section we visually represent the data of Tables I - XI to show that there is no clear relation between the
sphericity γ and the densest packing fraction φLB for the 159 particle species that we have investigated. Here, we also
show that for the convex particles Ulam’s conjecture is satisfied. Finally, we give more extensive visual representations
of some of the data in Tables III, IX and X by showing several of the packings achieved using our method.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

φ
L
B

γ

convex      

nonconvex   

φSPH      

 0.735

 0.74

 0.745

 0.8  0.9  1

FIG. 2: Packing fraction for the densest-known configuration of a particle and the relation to its sphericity.
The graph shows the achieved maximum packing fraction φLB as a function of the sphericity γ for the convex particles (circles,
blue) and nonconvex particles (crosses, red) we investigated. Also see Tables I - XI for the numerical value associated with this
data. Note that particles with a sphericity of γ > 0.8 tend to group closer to the packing fraction of spheres (φSPH, solid line).
However, there is significant spread in the φLB for all particles we considered, even for γ > 0.8. Therefore, we conclude that
there is no clear relation between γ and φLB on the strength of our data. Using the line φSPH and the inset, we show that all
convex particles satisfy Ulam’s conjecture.
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FIG. 3: Upper and lower bounds to the densest packing fraction. Graph (a) shows bounds to the densest packing
fraction for 13 Catalan solids and graph (b) shows analogous data for 13 nonconvex solids. The graphs show the achieved
densest-known packing fraction (φLB, connected crosses), as well as the outscribed-sphere lower bound (φOS, circles), oriented-
bounding-box lower bound (φOBB, squares), and inscribed-sphere upper bound7 (φUB, diamonds) values to the packing fraction
for the models given below it. Also see Table III, IX and X, which gives both the numerical values and the full name
corresponding to the abbreviations used here. Based on the available data we expect to find our FBMC result inside the
gray area, which is bounded from below and above by the established lower and upper bound to the densest packing fraction
respectively. The value of the densest packing for spheres φSPH is indicated by a red line. Note that the improvement of the
FBMC method with respect to the established lower bounds is significant for all models.
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e) f)

d)c)

b)a)

FIG. 4: Several crystal structures achieved for a model of a colloidal cap. This figure shows two views of the cap
model used in our simulations (a) - (b), which is representative of colloidal caps obtained in syntheses, see for instance Refs. [37]
and [38]. The cap model is derived from the numerical analysis of the collapse of a spherical shell. This analysis35,39 was
performed using Surface Evolver40 to minimize the Hamiltonian, which describes the properties of the shell. The Hamiltonian
incorporates bending and in-plane stretching elasticity terms to properly account for the physics behind the collapse under an
external isotropic pressure. Note the buckling that has occurred in the impression left by the shell collapse (b). Also note
that the model is not rotationally symmetric (b). We find several crystal-structure candidates. For N = 1 we find a columnar
phase (c); the 26 of its periodic images are shown. For N = 2, 3, 4, and 5, we obtain braided phases without inversion, such
phases are labeled ‘B’ in Ref. [41]. The unit cell and crystal structure for N = 4 particles in the unit cell are shown in (d)
and (e) respectively, where we have labelled the different caps with colors. The structure is a binary braided configuration;
only 7 periodic images are shown. The binary nature is likely due to the lack of rotational symmetry, which allows for better
packing. Finally, for N = 6 we obtain a rough braided phase with inversions (f), which looks similar to the ‘IB phase’ predicted
in Ref. [41]; again only 7 periodic images are shown and colors were used to aid in indentifying the periodicity. Because of
the substantial difference in shape to the bowl-shaped particles used in Ref. [41], we do not think it appropriate to assign an
approximate L/σ (see Ref. [41]) value to the cap model.



17

a) b) c) d)

g)f)

e)

FIG. 5: The densest known regular packing of hammerhead shark models. Different views (a) - (e) of hammerhead
shark model.32 The unit cell of the densest regular packing (φLB = 0.472) is shown in (f), and a piece of the crystal in (g). The
crystal structure is a double lattice where two hammerhead sharks (red, blue) point in opposite directions and one is rotated
by an angle of ∼ π radians around its long axis with respect to the other, thereby forming a centrosymmetric dimer.
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