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Packing Fractions and Crystal Structures for Various Particle Types

In this Supplemental Material we present the main body of data we have collected using both our composite
technique and literature studies for a large group of solids, particle approximates and several miscellaneous shapes.
We also prove that the crystal structures we obtained for rhombicuboctahedra and rhombic enneacontrahedra achieve
the densest packing. Furthermore, we present new crystal structures for enneagons, as well as the truncated tetrahedra,
which achieve higher packing fractions than previously obtained, both in a centrosymmetric-dimer lattice. In addition
to these crystal structures, we consider the relation between the sphericity and packing fraction and show that there
is no clear dependence between the two. Finally, we give visual representations for a few of the crystal structures we
obtained during our simulation studies.

Method and Systems

Here, we represent the data gathered by our composite technique of the floppy box Monte Carlo method! (FBMC),
the triangular tessellation method? (TT), and the triangle interference detection method® (TID). For the TID routine
we implemented the Robust and Accurate Polygon Interference Detection library® (RAPID). In our simulations we
use a modified criterion to perform lattice reduction*

(1/18) - (Ja] 4 [b| + [c]) - S(a, b, ¢)/V(a,b,c) = 1.5,

with | - | the vector norm; a, b, and ¢ the 3 vectors that span the simulation box; S(a,b,c) its surface area; and
V(a, b, c) its volume.

Systems of tessellated particles were prepared in a dilute phase. By increasing the reduced pressure p = PV /kpT
from p = 1 to p &~ 10° over 50,000 Monte Carlo (MC) cycles we compress the system to a high-density crystalline state.
Here P is the pressure, Vi is the volume of a particle model, kg is the Boltzmann constant, 7" is the temperature,
and one cycle is understood to be one trial move per particle. We typically apply this scheme for each number of
particles in the unit cell N (N =1, ..., 6) and for each considered shape a total of 25 times and select the densest
packing among these. These 6 packings (per shape) are allowed to compress for another 10 cycles at p ~ 10°, to
obtain a maximally compressed state. Finally, we compare these packings and determine the lowest value of N for
which the densest packing is achieved and what the lower bound to the packing fraction of the densest packing ¢,
is, based on our results.

This way of obtaining densest-packed crystal structures is quite efficient. We find excellent agreement with Refs. [5—
9] for the Platonic and Archimedean Solids. That is, the system was typically compressed to within 0.002 of the ¢r,5
literature value. The simulations we performed yielded a very narrow distribution of crystal-structure candidates near
the closest-packed configuration, typically within 1%. Moreover, the method is quite fast. We observed that in the
initial 50,000 MC cycles of compression the algorithm exhibits linear scaling. We disregard the final compression run
of 106 MC cycles here, since this part only serves to achieve a high decimal accuracy, while the close packed structure
no longer changes. Let Np be the number of triangles of a specific model, No = 50,000 the number of MC cycles,
and T the total run time of the simulation, we obtained

T
(NN¢)(NNr)

The algorithm thus scales linearly with the total number of triangles times the total number of attempted moves.
The value of this constant differs per model, because some models ‘crystallize’ more easily than others. For the 159
models we studied, we found that the mean value of this constant is ~ 70 us with a median value of ~ 40 us on a
modern 2.0 GHz desktop computer system, with only 27 models exceeding 100 ps. For more information on the TTD
algorithm and its benchmarking we refer to Ref. [3].

= constant.



Tables of Packing Fractions

In Tables I - XI we consider the following quantities: (i) The centrosymmetry of the particle, indicated with ‘CS’.
‘C’ denotes centrosymmetric and ‘NC’ noncentrosymmetric. (ii) The number of particles N in the unit cell for which
densest packing was achieved. (iii) The value of the packing fraction ¢rp for the densest-known crystal structure.
This value has been rounded down to 5 decimals of precision. (iv) The way in which the densest-known packing is
accomplished: in a centrosymmetric compound or not. A compound is defined here as an arrangement of particles
in space, which are in contact. Our definition is such that the compound may consist of one particle. We abbreviate
this parameter by ‘CS.’, which assumes the values ‘y’ for yes, ‘n’ for no, and ‘-’ for packings where we did not verify
this property. (v) Similarly, we determine if the densest-known packing admits a space-filling compound, abbreviated
with ‘SF.’, which assumes the analogous values ‘Y’, ‘N’, and ‘. (vi) The inscribed-sphere upper bound” to the
packing fraction ¢uyp that we obtained using constrained optimization. (vii, viii) The outscribed-sphere ¢ogs and
oriented-bounding-box ¢opp lower bounds to the maximum packing fraction, which were obtained using constrained
optimization and the method of Ref. [10]. (ix) The sphericity v € [0, 1] which we define to be the ratio of the inscribed-
sphere radius over the outscribed-sphere radius, in analogy to Ref. [7]. We have supplemented the simulation based
material with literature results, since most readers will be predominantly interested in the highest ¢rp value. We
have put references in the footnotes whenever appropriate - only for 29 out of 159 entries a literature result is known.

TABLE I: Data for the Platonic solids.

Code CS N oLB CSc SF. ¢uB os ¢OBB vy name
PS01 NC 4 0.85634 vy N 1.00000 0.09072 0.33333 0.33333 Tetrahedron
PS02 C 1 0.83635° v N 0.89343 0.44833 0.51502 0.79465 Icosahedron
PS03 C 1 0.90450° y N 0.98116 0.49235 0.47745 0.79465 Dodecahedron
PS04 C 1 0.94736° vy Y€ 1.00000 0.23570 0.56218 0.57734 Octahedron
PS05 C 1 1.00000° y Y¢ 1.00000 0.27216 1.00000 0.57734 Cube

“Ref. [5]

bRef. [6] and [7].

°Cubes are space filling.!1''2 Octahedra and tetrahedra form a uniform partition of 3-space (a space-filling compound comprised of
Platonic and Archimedean solids) in a 1:2 ratio with equal edge lengths.!!

4The following solids have a nanoparticle or colloid shape equivalent: tetrahedra,’3~15 cubes,16718 octahedra,'920 dodecahedra (macro-
scopic),?! and icosahedra.!%:22,23



TABLE II: Data for the Archimedean solids.

Code| CS N oLB CS.  SF. ouB Pos ¢oBB 0 name

AS01| NC 2 0.99519¢ y Y 1.00000  0.29718  0.41071  0.52223| Truncated Tetrahedron®
AS02 C 1 0.78498° y N 0.83856 0.64230  0.51351 0.91495 Truncated Icosahedron
AS03| NC 1 0.78769° n® N 0.93492  0.57484  0.66109  0.85033| Snub Cube’

AS04| NC 1 0.78864° n® N 0.85547  0.66367  0.53018  0.91886| Snub Dodecahedron
AS05 C 1 0.80470° y N 0.83596 0.66075 0.54747  0.92459 Rhombicosidodecahedron
AS06 C 1 0.82721° y N 0.89731  0.66498  0.53395  0.90494| Truncated Icosidodecahedron
AS07 C 1 0.84937° y N 1.00000  0.59356  0.74491  0.82594| Truncated cuboctahedron
AS08 C 1 0.86472° y N 0.93800  0.57737  0.50464  0.85064| Icosidodecahedron

AS09 C 1 0.87580° y N 0.87580 0.56262 0.61928 0.86285 Rhombicuboctahedron?
AS10 C 1 0.89778° y N 0.97387  0.57413  0.50032 0.83850| Truncated Dodecahedron
AS11 C 1 0.91836° y N 1.00000  0.41666  0.83333  0.70710| Cuboctahedron

AS12 C 1 0.97374° y Y 1.00000 0.42712 0.96649 0.67859 Truncated Cube

AS13|  C 1 1.00000 y Y¢  1.00000 0.50596  0.53333  0.77459| Truncated Octahedron
aRef. [6]

PRef. [24] and Ref. [25].

“Note that the snub cube and snub dodecahedron are not centrally symmetric, yet they achieve their densest packing in unit cell containing
N =1 particles (Bravais lattice), rather than in a non-Bravais lattice, nor do they form a centrosymmetric compound.

dTruncated tetrahedra and tetrahedra from a 2:6 space-filling compound with a 3:1 edge length ratio.?* Cuboctahedra and octahedra
form a 1:1 uniform partition of 3-space with 1:1 edge length ratio.!! truncated cubes and octahedra form a 1:1 uniform partition of 3-space
with edge length ratio 1:1.11

¢For truncated tetrahedra we obtained a new dimer crystal structure, with ¢y, = 0.98854 ..., which was followed by the discovery of
the densest packed dimer lattice.24:25

/This result was established using 500 computer experiments for N = 1,...,8 with a slow pressure increase over 4.5 - 105 MC cycles
from p =1 to p = 1.2190 in 100 steps, followed by 0.5 - 106 MC cycles of production at that pressure. For all systems we approached the
literature value ¢, = 0.78769... to within 0.005 and for each N we obtained the same crystal structure, namely the Bravais lattice of
Ref. [6], within the numerical uncertainty of our algorithm.

9We have demonstrated that Rhombicuboctahedra achieve their densest packing in a crystal lattice: ¢rg = (4/3)(4v2 — 5).

hThe following solids have a nanoparticle or colloid shape equivalent: truncated tetrahedra,'®26 truncated cubes,29:26 truncated octahe-
dra,27 and cuboctahedra.l6:20

TABLE III: Data for the Catalan solids.

Code CS N oLB CS. SF. dUB dos POBB 0% name

CS01 C 1 0.77155 y N 0.78287 0.61878 0.53980 0.92459 Deltoidal Hexecontahedron
CS02 C 1 0.79693 y N 0.85134  0.54691 0.54525 0.86285 Deltoidal Icositetrahedron
CS03 C 1 0.79328 y N 0.81365  0.45844  0.54603  0.82594| Disdyakis Dodecahedron
CS04 C 1 0.76549 y N 0.77313 0.57295 0.54354  0.90494| Disdyakis Triacontahedron
CS05 NC 2 0.74107 n N 0.78283 0.60732 0.52603 0.91886 Pentagonal Hexecontahedron
CS06 NC 2 0.74363 n* N 0.84856 0.52174  0.51407  0.85033 Pentagonal Icositetrahedron
CS07 C 1 0.75755 y N 0.78799 0.60356 0.53419 0.91495 Pentakis Dodecahedron
CS08 C 1 1.00000 y Y® 1.00000 0.35355 0.50000 0.70710 Rhombic Dodecahedron
CS09 C 1 0.80174 y N 0.83462 0.51374 0.59016 0.85064 Rhombic Triacontahedron
CS10 C 1 0.87601 y N 0.93728  0.29289  0.63158  0.67859 Small Triakis Octahedron
CS11 C 1 0.81401 y N 0.87841 0.40824 0.55555 0.77459 Tetrakis Hexahedron

CS12 C 1 0.80479 y N 0.81804  0.48227  0.55402 0.83850 Triakis Icosahedron

CS13| NC 2 0.79886 y N 1.00000  0.16329  0.59999  0.52223| Triakis Tetrahedron

“Note that the pentagonal hexecontahedron and pentagonal icositetrahedron are not centrally symmetric, yet these particles do not
achieve their densest-known packing by forming a centrosymmetric compound.
bRhombic dodecahedra are space filling.12

¢The following solids have a nanoparticle or colloid shape equivalent: rhombic dodecahedral?:18

and possibly deltoidal icositetrahedra.28:29



TABLE IV: Data for the Johnson solids

Code| CS N  ¢1B CS:. SF. ¢us Pos ¢oBB vy name

JS01| NC 2 0.88745 - - 1.00000 0.41071 0.49624 0.73848| Augmented Dodecahedron

JS02| NC 2 0.97192 - - 1.00000 0.21678 0.69255 0.37819| Augmented Hexagonal Prism

JS03| NC 4 0.90463 - - 1.00000 0.21120 0.66082 0.42422| Augmented Pentagonal Prism

JS04| NC 2 0.83264 - - 1.00000 0.26330 0.44643 0.57631| Augmented Sphenocorona

JS05| NC 2 0.94527 - - 1.00000 0.18200 0.57321 0.48671| Augmented Triangular Prism

JS06 | NC 2 0.85704 - - 1.00000 0.13072 0.28916 0.38646| Augmented Tridiminished Icosahedron
JS07| NC 2 0.96347 - - 1.00000 0.40619 0.85433 0.63827| Augmented Truncated Cube

JS08 | NC 1% 0.87969 - - 1.00000 0.54646 0.51399 0.81740| Augmented Truncated Dodecahedron
JS0O9 | NC 2 0.90795 - - 1.00000 0.27695 0.57813 0.57344| Augmented Truncated Tetrahedron
JS10| NC 2 0.90677 - - 1.00000 0.16543 0.56196 0.37650| Biaugmented Pentagonal Prism

JS11| NC 2 0.91501 - - 1.00000 0.22322 0.60549 0.48294| Biaugmented Triangular Prism

Js12| C 1 0.96102 'y - 1.00000 0.36374 0.78361 0.59153| Biaugmented Truncated Cube

JS13| NC 2 0.81863 - - 1.00000 0.62385 0.58749 0.80687| Bigyrate Diminished Rhombicosidodecahedron
JS14] C 1 0.95273 - - 1.00000 0.19876 0.62377 0.49112| Bilunabirotunda

JS15| NC 2 0.82232 - - 1.00000 0.62385 0.57791 0.80687| Diminished Rhombicosidodecahedron
JS16 | NC 2 0.85634 - - 1.00000 0.07654 0.29003 0.33333| Dipyramid 3

JS17| NC 2 0.84024 - - 1.00000 0.17317 0.32759 0.49112| Dipyramid 5

JS18| NC 2 0.85870 - - 1.00000 0.37476 0.53256 0.69884| Disphenocingulum

JS19| NC 2 0.83541 - - 1.00000 0.36461 0.65928 0.45045| Elongated Pentagonal Cupola

JS20| NC 2 0.83751 - - 1.00000 0.38059 0.46158 0.67091| Elongated Pentagonal Dipyramid
JS21| C 1 0.79475 y - 1.00000 0.44920 0.60407 0.60567| Elongated Pentagonal Gyrobicupola
Js22| C 1 0.81918 y - 1.00000 0.43524 0.57603 0.74693| Elongated Pentagonal Gyrobirotunda
JS23| NC 2 0.78374 - - 1.00000 0.51299 0.58594 0.79010| Elongated Pentagonal Gyrocupolarotunda
JS24| NC 2 0.79329 - - 1.00000 0.44920 0.60407 0.60567| Elongated Pentagonal Orthobicupola
JS25| NC 2 0.81243 - - 1.00000 0.43524 0.57603 0.74693| Elongated Pentagonal Orthobirotunda
JS26 | NC 2 0.79266 - - 1.00000 0.51299 0.58594 0.79010| Elongated Pentagonal Orthocupolarotunda
JS27| NC 2 0.86656 - - 1.00000 0.35743 0.53225 0.67555| Elongated Pentagonal Pyramid

JS28 | NC 2 0.81652 - - 1.00000 0.44260 0.61737 0.65993| Elongated Pentagonal Rotunda

JS29| NC 2 0.85746 - - 1.00000 0.43718 0.68054 0.61012| Elongated Square Cupola

JS30| C 1 0.9099 vy - 1.00000 0.14788 0.60947 0.41421| Elongated Square Dipyramid

JS31| NC 2 0.80639 - - 0.87580 0.56262 0.61928 0.86285| Elongated Square Gyrobicupola

JS32| NC 2 0.94371 - - 1.00000 0.21844 0.72385 0.49999| Elongated Square Pyramid

JS33| NC 2 091258 - - 1.00000 0.35441 0.60017 0.65935| Elongated Triangular Cupola

JS34| NC 2 0.83284 - - 1.00000 0.05180 0.29326 0.21927| Elongated Triangular Dipyramid

JS35| C 1 0.87941 y - 1.00000 0.29486 0.62703 0.60243| Elongated Triangular Gyrobicupola
JS36 | NC 2 0.88043 - - 1.00000 0.29486 0.54326 0.60243| Elongated Triangular Orthobicupola
JS37| NC 4 0.86089 - - 1.00000 0.09737 0.35016 0.28867| Elongated Triangular Pyramid

“Note that the augmented truncated dodecahedron is not centrally symmetric, yet it achieves its densest-known packing for N = 1
particles in the unit cell.



TABLE V: Data for the Johnson solids - continued.

Code| CS N  ¢uB CS: SF. o¢us dos POBB ¥ name

JS38| NC 2 0.83325 - - 1.00000 0.58695 0.56431 0.77906| Gyrate Bidiminished Rhombicosidodecahedron
JS39 | NC 1% 0.80470 - - 0.83596 0.66075 0.54302 0.92459| Gyrate Rhombicosidodecahedron

JS40 | NC 2 1.00000 - Y° 1.00000 0.15309 0.50000 0.43301| Gyrobifastigium

JS41 | NC 2 0.76412 - - 1.00000 0.42911 0.58293 0.57146| Gyroelongated Pentagonal Bicupola

JS42 | NC 2 0.77761 - - 0.94171 0.45641 0.55737 0.78549| Gyroelongated Pentagonal Birotunda

JS43 | NC 4 0.80695 - - 1.00000 0.34161 0.63982 0.41448| Gyroelongated Pentagonal Cupola

JS44 | NC 2 0.78540 - - 1.00000 0.51719 0.56621 0.78342| Gyroelongated Pentagonal Cupolarotunda
JS45 | NC 2 0.86077 - - 1.00000 0.38637 0.50959 0.64079| Gyroelongated Pentagonal Pyramid

JS46 | NC 2 0.81250 - - 1.00000 0.44203 0.59756 0.63546| Gyroelongated Pentagonal Rotunda

JS47 | NC 2 0.77850 - - 0.97994 0.55378 0.54574 0.82676| Gyroelongated Square Bicupola

JS48 | NC 2 0.80712 - - 1.00000 0.42183 0.60324 0.56972| Gyroelongated Square Cupola

JS49 | NC 2 0.80261 - - 1.00000 0.17614 0.43129 0.51974| Gyroelongated Square Dipyramid

JS50 | NC 2 0.82236 - - 1.00000 0.25752 0.45133 0.59228| Gyroelongated Square Pyramid

JS51| NC 4 0.79162 - - 1.00000 0.32153 0.52112 0.67198| Gyroelongated Triangular Bicupola

JS52 | NC 2 0.83145 - - 1.00000 0.37306 0.56343 0.64231| Gyroelongated Triangular Cupola

JS53 | NC 2 0.83853 - - 1.00000 0.36444 0.54634 0.62123| Hebesphenomegacorona

JS54 | NC 2 0.87796 - - 1.00000 0.38632 0.51502 0.71464| Metabiaugmented Dodecahedron

JS55 | NC 2 0.93602 - - 1.00000 0.18772 0.65039 0.35100| Metabiaugmented Hexagonal Prism

JS56 | NC 2 0.86978 - - 1.00000 0.53239 0.52766 0.80327| Metabiaugmented Truncated Dodecahedron
JS57 | NC 2 0.91942 - - 1.00000 0.32441 0.46065 0.57232| Metabidiminished Icosahedron

JS58 | NC 2 0.83373 - - 1.00000 0.58695 0.56431 0.77852| Metabidiminished Rhombicosidodecahedron
JS59 | NC 1% 0.80470 - - 0.83596 0.66075 0.54302 0.92459| Metabigyrate Rhombicosidodecahedron
JS60 | NC 1° 0.82056 - - 1.00000 0.62385 0.58749 0.80687| Metagyrate Diminished Rhombicosidodecahedron
JS61| C 1 0.88941 y - 1.00000 0.33173 0.51502 0.67926| Parabiaugmented Dodecahedron

Jse62| C 1 0.97102 y - 1.00000 0.13937 0.65778 0.31783| Parabiaugmented HexagonalPrism

Js63| C 1 0.88053 'y - 1.00000 0.51540 0.52766 0.79465| Parabiaugmented TruncatedDodecahedron
JS64| C 1 0.85486 y - 1.00000 0.58695 0.63661 0.68915| Parabidiminished Rhombicosidodecahedron
JS65| C 1 0.80470 'y - 0.83596 0.66075 0.55217 0.92459| Parabigyrate Rhombicosidodecahedron
JS66 | NC 1% 0.82048 - - 1.00000 0.62385 0.57791 0.80687| Paragyrate Diminished Rhombicosidodecahedron
JS67 | NC 2 0.85648 - - 1.00000 0.09698 0.44385 0.16245| Pentagonal Cupola

JS68| C 1 0.85891 vy - 1.00000 0.19397 0.44385 0.32491| Pentagonal Gyrobicupola

JS69 | NC 2 0.84969 - - 1.00000 0.38567 0.48784 0.58777| Pentagonal Gyrocupolarotunda

JS70| NC 2 0.82381 - - 1.00000 0.19397 0.44385 0.32491| Pentagonal Orthobicupola

JS71| NC 2 0.81713 - - 0.93800 0.57737 0.50464 0.85064| Pentagonal Orthobirotunda

JS72| NC 2 0.83123 - - 1.00000 0.38567 0.48784 0.58777| Pentagonal Orthocupolarotunda

JS73| NC 2 0.85874 - - 1.00000 0.28868 0.50464 0.42532| Pentagonal Rotunda

“Note that the gyrate rhombicosidodecahedron and the paragyrate diminished rhombicosidodecahedron are not centrally symmetric, yet
they achieve their densest-known packing for N = 1 particles in the unit cell. However, both their densest-known N = 2 packings form a
centrosymmetric-dimer lattice, which achieves a packing fraction remarkably close to that of their N = 1 packing.

bNote that the metabigyrate rhombicosidodecahedron and metagyrate diminished rhombicosidodecahedron are not centrally symmetric,

et they achieve their densest-known packing in unit cell containing N = 1 particles.
y y p g g p

¢The gyrobifastigium is space filling.?



TABLE VI: Data for the Johnson solids - continued.

Code| CS N PLB CS: SF. duB bos POBB 0% name

JS74| NC 2 0.94582 - - 1.00000 0.11785 0.33333 0.36601| Pyramid 4

JS75| NC 2 0.80887 - - 1.00000 0.08658 0.23032 0.27365| Pyramid 5

JS76 | NC 2 0.86477 - - 1.00000 0.18900 0.65970 0.48676| Snub Disphenoid

JS77| NC 4 0.81981 - - 1.00000 0.34434 0.52936 0.55150| Snub Square Antiprism

JS78| NC 2 0.82102 - - 1.00000 0.27733 0.44893 0.58532| Sphenocorona

JS79| NC 2 0.85093 - - 1.00000 0.16304 0.39771 0.44699| Sphenomegacorona

JS80| NC 2 0.94227 - - 1.00000 0.15397 0.47140 0.27059| Square Cupola

JS81| NC 2 0.82692 - - 1.00000 0.30795 0.47140 0.54119| Square Gyrobicupola

JS82 C 1 0.94249 y - 1.00000 0.30795 0.55228 0.54119| Square Orthobicupola

JS83| NC 2 0.91836 - - 1.00000 0.20833 0.41666 0.40824| Triangular Cupola

JS84| NC 2 0.87496 - - 1.00000 0.26151 0.47213 0.49999| Triangular Hebesphenorotunda

JS85| NC 2 0.88316 - - 1.00000 0.41666 0.52465 0.70710| Triangular Orthobicupola

JS86| NC 2 0.87421 - - 1.00000 0.36090 0.52502 0.69033| Triaugmented Dodecahedron

JS87| NC 2 0.89315 - - 1.00000 0.15008 0.49731 0.31783| Triaugmented Hexagonal Prism

JS88| NC 2 0.82855 - - 1.00000 0.20411 0.42377 0.50211| Triaugmented Triangular Prism

JS89| NC 2 0.86679 - - 1.00000 0.52875 0.53355 0.79465| Triaugmented Truncated Dodecahedron

JS90| NC 2 0.91669 - - 1.00000 0.26245 0.37267 0.50209| Tridiminished Icosahedron

JS91| NC 2 0.84993 - - 1.00000 0.55005 0.52883 0.73251| Tridiminished Rhombicosidodecahedron

JS92| NC 2 0.80456 - - 0.83596  0.66075 0.54302 0.92459| Trigyrate Rhombicosidodecahedron
TABLE VII: Data for regular prisms.

Code CS N ¢LB CSc SF. ¢uB dos $OBB vy name

RPO03 NC 2 1.00000* y Y 1.00000 0.17181 0.50000 0.37796 Prism 3

RP04 C 1 1.00000* y Y 1.00000 0.27216 1.00000 0.57734 Cube

RPO05 NC 2 0.92131¢ y N 1.00000 0.31659 0.69098 0.50673 Prism 5

RP06 C 1 1.00000* y Y 1.00000 0.32863 0.75000 0.44721 Prism 6

RPO7 NC 2 0.89269 y N 1.00000 0.32407 0.73825 0.39803 Prism 7

RPO08 C 1 0.90615 y Y 1.00000 0.31175 0.82842 0.35740 Prism 8

RP0O9 NC 2 0.90103° y N 1.00000 0.29629 0.75712 0.32361 Prism 9

RP10 C 1 0.91371° y N 1.00000 0.28003 0.77254 0.29524 Prism 10

“We used Ref. [30] to compare our results to the literature studies of two-dimensional (2D) regular polygons. See Table I for more
information on the cube.
YFor regular enneaprisms (9-gonal base) we have discovered a new densest packing, which also improves upon the result of Ref. [30] for
the regular 9-gon (enneagon, nonagon).
¢Cubes (square base) and regular tri- (triangular base) and hexaprisms (hexagonal base) are space filling.11:12 Octaprisms (8-gonal base)
can form a space-filling compound with irregular triprisms.

TABLE VIII: Data for regular antiprisms.

Code CS N oLB CS. SF. ouB 0s $oBB Y name

APO03 C 1 0.94736 y Y 1.00000 0.23570 0.56218 0.57734 Octahedron®
AP04 NC 2 0.86343 y N 1.00000 0.30385 0.66666 0.51108 Antiprism 4
APO05 C 1 0.92052 vy N 1.00000 0.32441 0.67418 0.44721 Antiprism 5
APO06 NC 2 0.88189 y N 1.00000 0.32114 0.73204 0.39331 Antiprism 6
APO7 C 1 0.90137 y N 1.00000 0.30741 0.72740 0.34904 Antiprism 7
APO08 NC 2 0.89332 y N 1.00000 0.28987 0.75526 0.31270 Antiprism 8
AP09 C 1 0.90672 y N 1.00000 0.27164 0.75000 0.28264 Antiprism 9
AP10 NC 2 0.89731 y N 1.00000 0.25411 0.76608 0.25750 Antiprism 10

@See Table I for more information on the octahedron.



TABLE IX: Data for several miscellaneous solids.

Code CS N oLB CS.  SF. ouB b0s ¢oBB 0 name

MS01 C 1 0.98926 y N 1.00000  0.31151  0.60300  0.59880| Diirer’s Solid®

MS02 C 1 1.00000 y Y* 1.00000 0.31426 0.66666 0.57734 Elongated Dodecahedron
MS03 C 1 0.79473 y N 0.79473 0.60457 0.54914 0.91286 Rhombic Enneacontahedron®
MSo04 C 1 0.82280 y N 1.00000  0.34650  0.52786  0.64945| Rhombic Icosahedron

MS05 NC 2 1.00000 y Y* 1.00000 0.35355 0.50000 0.70710 Squashed Dodecahedron
MS06 NC 4 0.70503 n N 1.00000 0.13380 0.31616 0.41221 Stanford Bunnyd

MS07| NC 2 0.47242 y N 1.00000  0.00853  0.06853  0.11355| Hammerhead Shark?

“The elongated dodecahedron and the squashed dodecahedron are space filling.
bNote that Diirer’s Solid is not the same as the dimer compound formed by truncated tetrahedra.
°For the rhombic enneacontahedron we have shown that the Bravais lattice we discovered achieves the densest packing.

4For the Stanford bunny?! and the hammerhead shark3? the number of triangles that comprise these models is very high, 3756 and 5116
triangles respectively, however all quantities could be established with the appropriate accuracy.

TABLE X: Data for nonconvex polyhedra.

Code| CS N oLB CS. SF. ouB dos POBB ~ name

PHO1| NC 2 0.61327 n N 1.00000 0.04157 0.23149 0.17469| Csészdr Polyhedron

PHO02 C 1 0.29477 y N 1.00000 0.07659 0.06269 0.26640| Echidnahedron

PHO03 C 1 1.00000 y Y*e 1.00000 0.22922 0.45845 0.55284| Escher’s Solid

PHO4 C 1 0.55728 y N 1.00000 0.21644 0.20989 0.51160| Great Rhombictriacontrahedron
PHO5 C 2 0.88967 n N 1.00000 0.18806  0.18237 0.18759| Great Stellated Dodecahedron
PHO6 C 1 0.74965 y N 1.00000 0.34558 0.39699 0.53633| Jessen’s Orthogonal Icosahedron
PHO7 C 1 0.55602 y N 1.00000 0.20643 0.20019 0.51455| Mathematica Spikey 1°

PHO8 C 1 0.59998 y N 1.00000 0.14378 0.20246 0.35355| Rhombic Dodecahedron Stellation 2°
PHO09 C 2 0.55654 n N 1.00000 0.19854 0.19253 0.41946| Rhombic Hexecontrahedron
PH10 C 2 0.69528 n N 0.97719 049635 0.47293 0.79787| Small Triambic Icosahedron
PH11| NC 2 0.51913 y N 1.00000 0.03637 0.13732 0.16538| Szilassi Polyhedron

“FEscher’s solid is space filling by construction.

bThe number ‘1’ in the name ‘Mathematica spikey 1’ refers to the first version of the Mathematica spikey, which was used as a logo for
the first version of the Mathematica software package.?3 It is a cumulated icosahedron with cumulation ratio \/6/3

¢The number ‘2’ in the name ‘rhombic dodecahedron stellation 2’ refers to the fact that there are three stellations of the rhombic
dodecahedron (four when including the original). This particular stellation is listed as number ‘2’ in the Mathematica polyhedron
database.34

TABLE XI: Data for nonconvex nanoparticle and colloid approximates.

Code CS N oLB CSc SF. PuUB bos PoOBB 0% name
PAO1 NC 4 0.51850 n N 1.00000 0.18253 0.27282 0.155754 Cap®
PAO2 C 1 0.68615 vy N 1.00000 0.09602 0.22903 0.38489 Nanostar
PAO03 C 1 0.31077 y N 1.00000 0.02525 0.06681 0.13281 Octapod
PAO4 NC 2¢ 0.59207 y N 1.00000 0.04864 0.10628 0.20303 Tetrapod

%The tetrapod achieves its densest-known packing for N = 2 particles in the unit cell, however, the densest-known N = 1 the packing
fraction is remarkably close to that value.

bThe cap3® is comprised of 3850 triangles. Despite this model’s complexity, all quantities could be established with the appropriate
accuracy.



Densest Packing Configurations for Rhombicuboctahedra and Rhombic Enneacontrahedra

In this section we prove that the densest-packed configurations for rhombicuboctahedra ¢ = (4/3) (4\f — 5)
and for rthombic enneacontrahedra ¢ = 16 — 34/+/5 are given by their Bravais lattices.

Rhombicuboctahedron: Let the rhombicuboctahedron (RCH) be specified by the vertex coordinates

(oG )4 )

where 4, j, and k € {—1,1} and p, ¢, and r € {0,1}, with p+ ¢+ r = 1. This gives a list of 24 vertices centred on the
origin, which span a RCH with volume 4 + 10v/2/3. For this system a possible choice of three vectors which describe
a unit cell that realizes the densest packing, is given by

vy = (1+\}§7—1—\}§,0>,
v = (1+\2,0,—1—¢1§>,
v (‘”*f }>

Checking for overlaps in this configuration is a simple matter of verifying that there are no overlaps for an appropriate
number of nearest neighbors. It follows that the volume of the unit cell is given by |vg - (v1 X v2)| = 5 + 7/V/2.
Therefore, the packing fraction is
4+10v2/3 4 (
=T — (42— 5) .
f = +7/V2 3

We determined the face-to-point minimum distance for all 26 faces of the RCH, which leads to a set of 26 constrained
equations. Using constrained minimization on this set of equations the maximum inscribed sphere can be obtained.
Its radius is 1/2 + 1/ V2 and it is centred on the origin. This results in the following upper-bound estimate for the
packing fraction

o 4+10v2/3 _4 ~
fon = VI8 (4n/3) (172 +1/v2)" 3 (4v2-5).

We have thus proven that the maximum packing fraction is obtained, since ¢yg = ¢rp. Here is should be noted
that this proof is conditionally dependent on the proof of Ref. [36] via the proof for the upper-bound criterion of Ref. [7].

Rhombic enneacontrahedron: Let the rhombic enneacontrahedron (RECH) be described by the 92 vertex
coordinates listed in Tables XII and XIII. These are centred on the origin and span a RECH with volume

561/5
4 56Y5,
3 3

For this system a possible set of three vectors which describes a unit cell that realizes the densest packing, is given by

v = (—6(2+\f) \[;(5+2f)>

w = (=2 (14 vE) | 22 358“5,%(“@) ,

V2

(112(25+13\/5),5+\/5 (15(5+\/5)>.



Checking for overlaps in this configuration is again a simple matter. It follows that the volume of the unit cell is given
by

0o+ (01 % v2)] = W

Therefore, the packing fraction that is achieved for this structure is ¢rp = 16 — 34/v/5. By determining the set of 90
face-to-point constrained equations, the maximum inscribed sphere is easily determined to be centred on the origin
and have radius

35 5vV5
TR

using constrained minimization. This results in the following upper bound to the packing fraction ¢yg = 16 —34//5.
We have thus proven that the maximum packing is obtained.

TABLE XII: Vertices of the rhombic enneacontrahedron.

(5 (-5-v5) 0.3 (-7+2/5)) (5 (-5-v5) 0.3 (-2 V5)
(5(7-3v8) .~ /5 6+ VB). 3 (=34 v5)) (5 (7-3v8) /1 VB -1+ 2
(5C7-3v8). /1 +VE).3 (-3+v9)) (5C7-3v8) /i B+ vE). -1+ %)

(=3 (1+5) 0.3 (-1+V5)) (3 (-4-V3), =553 (-7+V5))

(3(-1-v8). 53 (74 V5)) (§(5-3v8)~\/5+ %4 (-6+ )
(5(5-3v8). i+ £.3(-3+9) (5(-5-3v8) /5 (T+3v8) 5 (64 v5))
(%<_5_3¢5), %(7+3\/5),§(_3+\/5)) (-1-%,0-3)

(3C1-v8). i 6+ V). 2) (3(-1-v8). - /F G+ V). -1+ v5)

(31-v9) /i +vE).-2) (3C1-v9) i+ V). -1+ v5)
(7-v9) i+ £.3 (14 v5)) (57-v9) i T+3v8). 2 (14 v9))

(-2£,0.-2+ v5) (5(5-v9).~\/3E+vE). 3 (-5+v5))
(5(-5-v5) . ~\/3G+E 3 (-2+9) (5(-5-v9) 36+ VB4 (54 v5)
H(-5-v5) /3B +VE).} (24 V5) (1-v9) 1B+ VB4 (-7+v5)

(-4~ -3+ v5) (- 95 -1+ 5)
SN L1 V8) 1B+ VE) (14 V5)
(1-v9) 2B+ VB3 (14 V5)) (-3 -Var 25 o+ vB)
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TABLE XIII: Vertices of the rhombic enneacontrahedron - continued.

(6+v8).~/i6-vD. -4+
(464 v8) /5 (T+3v5). -
(104916 +v.3(-1+v9)
L6+V5). 3B+ VB3 (24 V5))
(5645 \3E+vE).3 (24 v5)
(049 ~VE+ £ (7+v9)
(30+4v8).~ /s +vE).-2)
CIEORVATRE )
(36+v5).0.-3
($6+3v8) 5+ % -1426)
(£ 6+3v8).\/5 (r+3v5). -1+ 26

(30+v5). 553 (-1+v5))
(é (7+3V5),—/s (3+V5), % (f6+\/5)>
(% (7+3\/5),\/g(3+7\/5),§ (—6+\/5)>

(5 (6+v5),0,5 (-5+V5))

%)
)

/N

(434 v8) . ~\/5 G+ B -3+ v5)
(0,7,/3 (3+\/5),72>

(0,0,-3)

1
2
(5+3v5), —\/ I+ 5,2 (-3 +5)

(3(+v8), 5.2 (-1+v9))
(3(14+v5),0,3 (-7+V5))
(5+3v9) ~\/1 B+ VB4 (-3+v5))
(50+3v8).\/3 3+ VB3 (-3+v5))

(5 (6+v5),0.5 (-2+V5))
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New Crystal Structures for Enneagons and Truncated Tetrahedra

In this section we describe the construction of a new crystal structure for enneagons (nonagons, regular 9-gon),
which achieves the densest-known packing. The method we use here has similarities the ones employed in Refs. [5]
and [9]; both of these present the analytic construction of a dense family of tetrahedral dimers. Finally, we list our
numerical data, by which the dimer lattice of truncated tetrahedra can be constructed.

Enneagons: We begin with some basic definitions. An enneagon is defined here to have a centre-to-tip distance of
1. It is centred on the origin of a Cartesian coordinate system with its tips mirror-symmetrically distributed around
the y-axis and one tip located on the positive y-axis. To describe the crystal structure we further require three
two-dimensional (2D) vector parameterizations

i = (s3] -5 2o [ n 5] 4 0o 1om 5]) - 2]
i) = (sew 5[5 - ron [ 5] 2o [5] +r (1= [5))
o = (s (5] =) 2 5] 5] =5 (s oo 3]~ ).

with ¢, r, and s € [-1,1]. We will employ these to describe lattice vectors and positions of the enneagons in the
unit cell. We eliminate two of the variables such that different enneagons in the lattice have some of their edges and
corners touch and slide over each other upon varying the third:

rn = 4<H>
{\/g(cos [iﬂ )(k‘f'l)"'?Sln[g}(k+l)_88m[79r} o8 [g]

—sin 7] cos | 37| -+ )+ 8sin [ 7] cos [ cos [ 2] s 2] 0

~2sin [iﬂ cos [g} (1— k) + 8sin [29”} cos [g} — 8sin {25] cos E] cos {29”] }
Uk) = {\/3k4-2cos[;;_-kcos[ ] \/*kcos[ }-%QkCOb[lg}cos[g} +-v§ksn1[f%}-ksnl[g}
b o 5] 2k [ 5] [£] - 2] 2] - 2 2] o ]

V(k) = sin [9} + 2sin [171-8} sin [g] — cos [171-8} \/§<bln [18] + cos [9}) + 2cos [18] cos [g]
U(k)
V(R

with k and [ € [—1,1]. Using T'(k,1) and W (k), we may write

= (0,0),

p2 (T (k, W (k))),

= ps (W (k) +p2 (T (k,W (K))),
= p1 (k) +p3 (W (k)),

where the P; give the position of the enneagons in the unit cell (N = 2) with lattice vectors V; (i € {0,1}). The
enneagon at Py has the same orientation as the base enneagon defined above and the one at P; is rotated by m with
respect to the base enneagon, also see Fig. la which shows this configuration for the densest-known packing. By
determining the value of k, say k*, for which the volume fraction F, associated to this lattice is maximized,

il Ry

N N TN /N

>

zEz=Ex=
Il

18 sin [g} cos [%]
Voo (k) Viy (k) — Vo,u (k)Va,2 (k)]

Fv(k) =
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we obtain the lattice with the highest-known packing fraction. For this value of k, we obtain the following

o~
*
|

0.334782056761309. . .,

0.901030078420934 ... = ¢,

= (0,0),

(0.8471436672437109.. . .,1.691664920976177 ... ),
(1.7675368645589482 . . . , 3.372726522382239 .. .) ,
(1.9530111855752121 . ..,0.094167780690677 . .. ) .

il R e

A~ o~~~

O R R~

NN AN N SN
Il

This results in the following 2D crystal structure, see Fig. 1, which shows the unit cell and a piece of the crystal this
generates. Note that we have confirmed that at least one the packings of Ref. [30] can be impoved upon by large scale
reorganizations. Also note that this configuration forms a centrosymmetric-dimer lattice.

a) Vi(k*) b)

(7

FIG. 1: New densest-packing crystal structure for enneagons. (a) The unit cell vectors Vo(k*) and Vi(k*) and the
N = 2 enneagons in it, positioned at Po(k*) and Pi(k*). (b) A piece of the crystal structure this dimer generates.

Vi(k*)
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Truncated tetrahedra: For the system containing N = 2 truncated tetrahedra we provide additional information
on the composition of the dimer lattice that we obtained using our method and which achieves a packing fraction
oL = 0.988.... Table XIV lists the position and orientation of the particles within the unit cell, as well as the shape
of the cell itself. We have transformed the unit cell of the dimer lattice (N = 2), using lattice reduction®, in such a
way that it is almost cubic and that one of the particles is located in the origin.

TABLE XIV: Coordinates which specify the dimer lattice of truncated tetrahedra. This Table lists the 12 vertices
v of the truncated tetrahedron model used in our simulations. It also gives the three vectors u,,, with m = 1, 2, 3 an index,
which span the unit cell; the two position vectors R;, with ¢ = 1, 2 the particle number, which indicate where the truncated
tetrahedra are located with respect to the origin; and the two rotation matrices M;, which specify how to rotate the particles
from their initial configuration. This initial configuration is given by the set of v presented here. A single vertex is a three
dimensional (3D) vector, of which the components are indicated by vz, vy, and v, relative to a standard Cartesian coordinate
frame. These v have been written in a row format in the Table, other vectors are treated similarly. The entries of the matrices
M are denoted as My, with k, [ = x, y, 2. For this choice of vertices, the volume enclosed by the particle’s surface is unity.
We have provided all vector and matrix entries in 6 decimal precision. Rounding errors may lead to small overlaps of particles
in the crystal generated using these coordinates.

Vg Uy V. Vg Uy vy Uz, Ry Uy, Ry Uz, R,
0.621121 -0.358604 -0.439200 0.621121 0.358604 -0.439200 u; 0.241977 0.928872 0.855892
0.828162 0.000000 0.146400 -0.414081 -0.717209 0.146400 Uz 0.604353 -0.735843 0.832841
-0.621121 -0.358604 -0.439200 0.000000 -0.717209 -0.439200 us -1.053988 -0.200499 0.654313
0.000000 0.717209 -0.439200 -0.621121 0.358604 -0.439200
-0.414081 0.717209 0.146400 -0.207040 0.358604 0.732000 Ry 0.000000 0.000000 0.000000
-0.207040 -0.358604 0.732000 0.414081 0.000000 0.732000 R -0.073508 -0.001753 0.875316

My Mry M. Myw Myy Myz Mo sz M.,
M, -0.892816 -0.442579 0.083685 -0.443985 0.896032 0.001996 -0.075867 -0.035373 -0.996490
M, 0.892816 -0.442579 -0.083685 0.443985 0.896032 -0.001996 0.075867 -0.035373 0.996490
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Visual Representations of the Closest Packing Results

In this section we visually represent the data of Tables I - XI to show that there is no clear relation between the
sphericity v and the densest packing fraction ¢rg for the 159 particle species that we have investigated. Here, we also
show that for the convex particles Ulam’s conjecture is satisfied. Finally, we give more extensive visual representations
of some of the data in Tables III, IX and X by showing several of the packings achieved using our method.

1 T T o *Oy P T
°o P 80 P ° o
0P 8 o 92 o
X & & Q O PP
EERRL G LY G
0.8 o © (-] e&)o e ) g‘EE g -
X ° o
x % X
0.6 [ X% X ]
X x 0.745 T
a x 9]
<
x o
0.74 F B
04 B
x x 0.735 !
08 09 1
02 convex o ]
nonconvex x
OspH
0 1 1 T T
0 0.2 0.4 0.6 0.8 1

Y

FIG. 2: Packing fraction for the densest-known configuration of a particle and the relation to its sphericity.
The graph shows the achieved maximum packing fraction ¢rp as a function of the sphericity =y for the convex particles (circles,
blue) and nonconvex particles (crosses, red) we investigated. Also see Tables I - XI for the numerical value associated with this
data. Note that particles with a sphericity of v > 0.8 tend to group closer to the packing fraction of spheres (¢spw, solid line).
However, there is significant spread in the ¢1,p for all particles we considered, even for v > 0.8. Therefore, we conclude that
there is no clear relation between v and ¢r.5 on the strength of our data. Using the line ¢spu and the inset, we show that all
convex particles satisfy Ulam’s conjecture.
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FIG. 3: Upper and lower bounds to the densest packing fraction. Graph (a) shows bounds to the densest packing
fraction for 13 Catalan solids and graph (b) shows analogous data for 13 nonconvex solids. The graphs show the achieved
densest-known packing fraction (¢rg, connected crosses), as well as the outscribed-sphere lower bound (¢os, circles), oriented-
bounding-box lower bound (¢ops, squares), and inscribed-sphere upper bound” (éus, diamonds) values to the packing fraction
for the models given below it. Also see Table ITI, IX and X, which gives both the numerical values and the full name
corresponding to the abbreviations used here. Based on the available data we expect to find our FBMC result inside the
gray area, which is bounded from below and above by the established lower and upper bound to the densest packing fraction
respectively. The value of the densest packing for spheres ¢spn is indicated by a red line. Note that the improvement of the
FBMC method with respect to the established lower bounds is significant for all models.
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FIG. 4: Several crystal structures achieved for a model of a colloidal cap. This figure shows two views of the cap
model used in our simulations (a) - (b), which is representative of colloidal caps obtained in syntheses, see for instance Refs. [37]
and [38]. The cap model is derived from the numerical analysis of the collapse of a spherical shell. This analysis®**° was
performed using Surface Evolver®® to minimize the Hamiltonian, which describes the properties of the shell. The Hamiltonian
incorporates bending and in-plane stretching elasticity terms to properly account for the physics behind the collapse under an
external isotropic pressure. Note the buckling that has occurred in the impression left by the shell collapse (b). Also note
that the model is not rotationally symmetric (b). We find several crystal-structure candidates. For N = 1 we find a columnar
phase (c); the 26 of its periodic images are shown. For N = 2, 3, 4, and 5, we obtain braided phases without inversion, such
phases are labeled ‘B’ in Ref. [41]. The unit cell and crystal structure for N = 4 particles in the unit cell are shown in (d)
and (e) respectively, where we have labelled the different caps with colors. The structure is a binary braided configuration;
only 7 periodic images are shown. The binary nature is likely due to the lack of rotational symmetry, which allows for better
packing. Finally, for N = 6 we obtain a rough braided phase with inversions (f), which looks similar to the ‘IB phase’ predicted
in Ref. [41]; again only 7 periodic images are shown and colors were used to aid in indentifying the periodicity. Because of
the substantial difference in shape to the bowl-shaped particles used in Ref. [41], we do not think it appropriate to assign an
approximate L/o (see Ref. [41]) value to the cap model.
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5

/

FIG. 5: The densest known regular packing of hammerhead shark models. Different views (a) - (e) of hammerhead
shark model.>? The unit cell of the densest regular packing (¢r.s = 0.472) is shown in (f), and a piece of the crystal in (g). The
crystal structure is a double lattice where two hammerhead sharks (red, blue) point in opposite directions and one is rotated
by an angle of ~ 7 radians around its long axis with respect to the other, thereby forming a centrosymmetric dimer.
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