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Using computer simulations, we investigate the homogeneous crystal nucleation in suspensions of
colloidal hard dumbbells. The free energy barriers are determined by Monte Carlo simulations us-
ing the umbrella sampling technique. We calculate the nucleation rates for the plastic crystal and
the aperiodic crystal phase using the kinetic prefactor as determined from event driven molecular
dynamics simulations. We find good agreement with the nucleation rates determined from sponta-
neous nucleation events observed in event driven molecular dynamics simulations within error bars
of one order of magnitude. We study the effect of aspect ratio of the dumbbells on the nucleation of
plastic and aperiodic crystal phases, and we also determine the structure of the critical nuclei. More-
over, we find that the nucleation of the aligned close-packed crystal structure is strongly suppressed
by a high free energy barrier at low supersaturations and slow dynamics at high supersaturations.
© 2011 American Institute of Physics. [doi:10.1063/1.3528222]

I. INTRODUCTION

Recent breakthroughs in particle synthesis produced a
spectacular variety of anisotropic building blocks.1 Colloidal
particles with the shape of a dumbbell are one of the simplest
anisotropic building blocks. Their unique morphologies lead
to novel self-organized structures. For instance, it was found
that magnetic colloidal dumbbells can form chainlike clusters
with tunable chirality,2 while novel crystal structures have
been predicted recently for asymmetric dumbbell particles
consisting of a tangent large and small hard sphere, which
are atomic analogs of NaCl, CsCl, γ CuTi, CrB, and αIrV,
when we regard the two individual spheres of each dumbbell
independently.3 Moreover, colloidal dumbbells also gain
increasing scientific attention in recent years due to its
potential use in photonic applications. It has been shown that
dumbbells on a face-centered-cubic lattice, where the spheres
of the dumbbells form a diamond structure, exhibit a com-
plete band gap,4, 5 while it is impossible to obtain a complete
band gap in systems consisting of spherical particles. A very
recent calculation showed that for midrange aspect ratios,
both asymmetric and symmetric dumbbells have 2–3 large
band gaps in the inverted lattice.6 Although these structures
are not thermodynamically stable for hard dumbbells,7–13 it
does show the promising potential of anisotropic particles in
photonic applications.

New routes of synthesizing colloidal dumbbells make it
easy to control the aspect ratio.14 In addition, by adding salt to
the solvent, the interactions between dumbbells can be tuned
from long-ranged repulsive to hard interactions. Although
hard dumbbells were originally modeled for simple nonspher-
ical diatomic molecules, such as nitrogen, they are also a nat-
ural model system for studying the self-assembly of colloidal
dumbbells.15–18 The phase behavior of hard dumbbells has
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been extensively studied by density functional theory7, 8 and
computer simulations.9–13 The bulk phase diagram of hard
dumbbells displays three types of stable crystal structures.7–13

For small aspect ratio, the dumbbells form a plastic crystal
phase at low densities. The freezing into a cubic plastic crys-
tal phase in which the dumbbells are positioned on a face-
centered-cubic lattice, but are free to rotate, has been deter-
mined using Monte Carlo (MC) simulations.9 These results
have been refined by Vega, Paras, and Monson, who showed
that at higher densities the cubic plastic crystal phase trans-
forms into an orientationally ordered close-packed (CP) crys-
tal structure, which they labeled CP1. Additionally, these au-
thors showed that the fluid–cubic plastic crystal coexistence
region terminates at L/σ � 0.38, where L is the distance be-
tween the centers of spheres and σ is the diameter of the
dumbbells. For longer dumbbells a fluid–CP1 coexistence re-
gion was found, whereas the relative stability of the close-
packed crystal structures CP1, CP2, and CP3, which only dif-
fer in the way the hexagonally packed dumbbell layers are
stacked, remained undetermined as the free energies are very
similar.10–12 Moreover, these authors showed by making an
estimate for the degeneracy contribution to the free energy
that dumbbells with L/σ = 1 may form an aperiodic crystal
phase.10 The stability of such an aperiodic crystal structure in
which both the orientations and positions of the particles are
disordered, while the spheres of each dumbbell are located
on the lattice positions of a random-hexagonal-close-packed
(rhcp) lattice has been verified recently for L/σ > 0.88.13 In
addition, it has been shown that the plastic crystal phase with
the hexagonal-close-packed structure is more stable than the
cubic plastic crystal for a large part of the stable plastic crys-
tal region.13 Although, the bulk phase diagram is well studied,
the kinetic pathways of the fluid–solid phase transitions are
still unknown, and only a few studies have been devoted to the
crystal nucleation of anisotropic particles.19, 20 In the present
work, we investigate the nucleation of the plastic crystal phase
of hard dumbbells using computer simulations and study
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the effect of aspect ratio of the dumbbells on the resulting
nucleation rates and the structure and size of the critical nu-
clei. Moreover, for longer dumbbells we investigate crystal
nucleation of the aperiodic crystal phase. First, we calculate
the free energy barriers for nucleation using Monte Carlo sim-
ulations with the umbrella sampling technique, which are then
combined with event driven molecular dynamics (EDMD)
simulations to determine the kinetic prefactor and the nucle-
ation rates. Additionally, we determine the nucleation rates
from spontaneous nucleation events observed in EDMD sim-
ulations. We compare the nucleation rates and critical nuclei
obtained from the umbrella sampling MC simulations with
those from EDMD simulations.

The remainder of this paper is organized as follows. In
Sec. II, we describe the methodology including the model and
simulation methods used. We present the results and discus-
sions on the nucleation of three types of crystal phases in sus-
pensions of hard dumbbells in Sec. III. We end with some
discussions and conclude in Sec. IV.

II. METHODOLOGY

We consider a system of hard dumbbells consisting of
two overlapping hard spheres with diameter σ with the cen-
ters separated by a distance L . We define the aspect ratio as
L∗ ≡ L/σ , such that the model reduces to hard spheres for
L∗ = 0 and to tangent spheres for L∗ = 1. We study crystal
nucleation of hard dumbbells for 0 ≤ L∗ ≤ 1. We focus on
the nucleation of the plastic crystal phase (0 ≤ L∗ < 0.4) and
the aperiodic crystal phase (0.88 < L∗ ≤ 1).8, 10–13

A. Order parameter

In order to study the nucleation of the crystal phase, we
require a cluster criterion that identifies the crystalline clus-
ters in a metastable fluid. In this work, we employ the order
parameter based on the local bond order parameter analysis
of Steinhardt et al.21 We define for every particle i , a 2l + 1-
dimensional complex vector ql (i) given by

qlm(i) = 1

Nb(i)

Nb(i)∑
j=1

ϒlm(r̂i j ), (1)

where Nb(i) is the total number of neighboring particles of
particle i , and ϒlm(r̂i j ) is the spherical harmonics for the nor-
malized direction vector r̂i j between particles i and j , l is
a free integer parameter, and m is an integer that runs from
m = −l to m = +l. Neighbors of particle i are defined as
those particles which lie within a given cut-off radius rc from
particle i . In order to determine the correlation between the
local environments of particles i and j , we define the rota-
tionally invariant function dl (i, j),

dl (i, j) =
l∑

m=−l

q̃lm(i) · q̃∗
lm( j), (2)

where q̃lm(i) = qlm(i)/
√∑l

m=−l |qlm(i)|2 and the asterisk is
the complex conjugate.22 If dl (i, j) > dc, the bond between
particles (sphere) i and j is regarded to be solidlike or

connected, where dc is the dot-product cutoff. We identify a
particle (sphere) as solidlike when it has at least ξc solidlike
bonds. We have chosen the symmetry index l = 6 as the par-
ticles (spheres) display hexagonal order in the plastic crystal
and the aperiodic crystal phase. We have chosen rc = 1.3σ , dc

= 0.7, and ξc = 6 in our simulations. It has been shown re-
cently that the choice of order parameter (rc, dc, and ξc)
does not affect the resulting nucleation rate if it is not too
restrictive.20, 23

To analyze the structure of the critical nuclei, we use the
averaged local bond order parameter ql and wl proposed by
Lechner and Dellago,24 which allows us to identify each par-
ticle as fcc-like or hcp-like, provided the number of neighbor-
ing particles Nb(i) ≥ 10:

ql(i) =
√√√√ 4π

2l + 1

l∑
m=−l

∣∣qlm(i)
∣∣2

, (3)

wl(i) =

∑
m1+m2+m3=0

(
l l l

m1 m2 m3

)
qlm1

(i)qlm2
(i)qlm3

(i)

(
l∑

m=−l

∣∣qlm(i)
∣∣2

)3/2 ,

(4)

where

qlm(i) = 1

Nb(i) + 1

Nb(i)∑
k=0

qlm(i). (5)

The sum from k = 0 to Nb(i) runs over all neighbors of par-
ticle (sphere) i plus the particle (sphere) i itself. While qlm(i)
takes into account the structure of the first shell around parti-
cle i , the averaged qlm(i) contains also the information of the
structure of the second shell, which increases the accuracy
of the crystal structure determination. In order to distinguish
fcc-like and hcp-like particles, we employ q4 and w4, as the
order parameter distributions of pure fcc and hcp phases of
Lennard-Jones and Gaussian core systems are well separated
in the q4 − w4 plane.24

B. Umbrella sampling

The Gibbs free energy �G(n) for the formation of
a crystalline cluster of size n is given by �G(n)/kB T
= const − ln[P(n)], where P(n) is the probability distribu-
tion function of finding a cluster of size n, kB is Boltzmann’s
constant, and T the temperature. As nucleation is a rare event
and the probability to find a spontaneous nucleation event is
very small in a brute force simulation within a reasonable
time, one has to resort to specialized simulation techniques
such as forward flux sampling, umbrella sampling, or transi-
tion path sampling. Here, we employ the method developed
by Auer and Frenkel25 to calculate the free energy of the
largest cluster. In this method, the sampling is biased toward
configurations that contain clusters with a certain size. To this
end, we introduce a biasing potential ω(rN ), which is a har-
monic function of the cluster size n:

βω(rN ) = 1
2 k

[
n(rN ) − n0

]2
, (6)
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where n(rN ) is the size of largest cluster and n0 is the center
of the umbrella sampling window whose width depends on k.
In this work we set k = 0.2. By increasing the value of n0, we
increase the size of the largest crystalline cluster in our sys-
tem, which enables us to cross the nucleation barrier. If we
define the average number of crystalline clusters with n par-
ticles by 〈Nn〉, one can calculate the probability distribution
P(n) = 〈Nn〉/N from which we can determine the Gibbs free
energy �G(n).

C. Event driven molecular dynamics simulations

Since the potential between particles in systems of hard
dumbbells is discontinuous, the pair interactions only change
when particles collide. The particles perform elastic collisions
when they encounter each other. We numerically identify and
handle these collisions by using an EDMD simulation.26, 27

Using MD simulations to determine the nucleation rate is
straightforward. Starting with an equilibrated fluid configura-
tion, the MD simulation is used to evolve the system until the
largest cluster in the system exceeds the critical nucleus size.
Then the nucleation rate is given by

I = 1

〈t〉V , (7)

where 〈t〉 is the averaged waiting time of forming a critical
nucleus in a system of volume V .

III. RESULTS AND DISCUSSIONS

In this section, we present the results on the nucleation
of the plastic crystal, the aperiodic crystal and the CP1 crystal
phase in suspensions of hard dumbbells.

A. Nucleation of the plastic crystal phase

We first investigate the nucleation of the plastic crystal
phase of hard dumbbells. Monte Carlo simulations with the
umbrella sampling technique are performed on hard dumbbell
fluids with L∗ = 0, 0.15 and 0.3 at supersaturation β|�μ|
= 0.34 and with L∗ = 0, 0.15, and 0.2 for β|�μ| = 0.54
with β = 1/kB T . We have chosen a shorter aspect ratio for
the highest supersaturation as the plastic crystal phase for
dumbbells with L∗ = 0.3 becomes metastable with respect
to the aligned CP1 phase for P∗ = Pσ 3/kB T > 30, i.e.,
β|�μ| > 0.47. The Gibbs free energy β�G(n) as a function
of cluster size n is shown in Fig. 1. We clearly observe
that at low supersaturation, i.e., β|�μ| = 0.34, the heights
of the free energy barriers increase slightly (∼ 8%) with
aspect ratio. More specifically, β�G∗ = 42.9 ± 0.3, 44.5
±1.1, and 45.2 ± 2 for L∗ = 0, 0.15 and 0.3, respectively.
According to classical nucleation theory (CNT), the nucle-
ation barrier for a spherical nucleus with radius R is given by
�G(R) = 4πγ R2 − 4π |�μ|ρs R3/3 with γ the interfacial
tension, |�μ| the chemical potential difference between the
solid and fluid phase, and ρs the bulk density of the solid
phase. CNT predicts a nucleation barrier height �G∗

= (16π/3)γ 3/(ρs |�μ|)2 and a critical radius R∗

= 2γ /ρs |�μ|. The small increase in barrier height with
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FIG. 1. Gibbs free energy �G(n)/kB T as a function of cluster size n for
the nucleation of the plastic crystal phase of hard dumbbells with various as-
pect ratios L∗ = L/σ as displayed and supersaturation β|�μ| = 0.34 (filled
symbols) and 0.54 (open symbols).

aspect ratio can be explained by the small increase in the
crystal–melt interfacial tensions that have been determined
recently for the crystal planes (100), (110), and (111) using
nonequilibrium work measurements with a cleaving proce-
dure in MC simulations.28 For a spherical cluster, the surface
tension is expected to be an average over the crystal planes,
i.e., βγ d2 = 0.58, 0.57, and 0.60, for L∗ = 0, 0.15 and 0.3,
respectively, where d3 = σ 3(1 + 3/2L∗ − 1/5L∗3). Another
work by Davidchack et al. found a slightly lower value for
the averaged interfacial tension of hard spheres, i.e., βγ d2

= 0.559.29 Using β�G∗ = 42.9 and the more precise value
for the surface tension βγ d2 = 0.559, and the values for
βγ d2 and the bulk density ρs for varying L∗ presented in
Table I, CNT predicts a slightly larger increase in barrier
height upon increasing L∗, i.e., β�G∗ = 45.6 and 50.49,
for L∗ = 0.15 and 0.3, respectively. However, when the
supersaturation is increased to β|�μ| = 0.54, we find a
decrease in barrier height upon increasing the aspect ratio
as shown in Fig. 1 and Table I, which cannot be explained
by CNT. Apparently, the pressure dependence of the surface
tension is different for dumbbells with various aspect ratios.

The nucleation barriers obtained from umbrella sampling
MC simulations can also be used to determine the nucleation
rates as given by25

I = κ exp(−β�G∗), (8)

where κ is the kinetic prefactor given by κ

= ρl fn∗
√

|�G ′′(n∗)|/2πkB T , ρl is the number density
of particles in the fluid phase, fn∗ the rate at which particles
are attached to the critical nucleus, �G

′′
(n∗) is the second

derivative on the top of the Gibbs free energy barrier. The
attachment rate can be calculated from the mean square devi-
ation of the cluster size at the top of the free energy barrier by

fn∗ = 1

2

〈[n(t) − n(0)]2〉
t

, (9)

where n(t) is the cluster size at time t . The mean square
deviation of the cluster size can be determined from EDMD
simulations starting from configurations at the top of the free
energy barriers. Using the results for the attachment rates and
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TABLE I. Nucleation rates Iσ 5/6Dl for the nucleation of the plastic crystal phase in systems of hard dumbbells with elongation L∗, at pressure Pσ 3/kB T ,
and supersaturation β|�μ|. Here, ρsd3 is the number density of dumbbells in the solid phase, β�G(n∗) is the barrier height, and |β�G

′′
(n∗)| is the second

derivative of the Gibbs free energy at the critical nucleus size n∗, i.e., the number of dumbbells in the critical cluster. Here, fn∗/6Dl is the attachment rate in
units of the long-time diffusion coefficient Dl .

L∗ Pσ 3/kB T β|�μ| ρsd3a n∗ β�G(n∗) |β�G
′′
(n∗)| fn∗/6Dl Dlτ/σ 2 Iσ 5/6Dl (US) Iσ 5/6Dl (MD)

0 15 0.34 1.107 300 42.9 ± 0.3 5.1 × 10−4 4550 0.012 9.6 × 10−18±1 . . .
0.15 13.8 0.34 1.104 265 44.5 ± 1.1 6.0 × 10−4 3700 0.01 1.4 × 10−18±1 . . .
0.3 21 0.34 1.163 220 45.2 ± 2 1.0 × 10−3 7464 0.0023 1.7 × 10−18±1 . . .
0 17 0.54 1.136 102 19.6 ± 0.3 1.2 × 10−3 3980 0.0078 1.7 × 10−7±1 1.6 × 10−7b

0.15 16 0.54 1.131 70 18.0 ± 0.7 9.7 × 10−4 3779 0.006 6.1 × 10−7±1 3.5 × 10−7±1

0.2 17.5 0.54 1.143 65 15.8 ± 0.5 2.0 × 10−3 2682 0.003 5.5 × 10−6±1 4.4 × 10−6±1

ad3 = σ 3(1 + 3/2L∗ − 1/2L∗3) (Ref. 28).
bExtrapolated from Ref. 23.

the nucleation barriers obtained from umbrella sampling MC
simulations, we can determine the nucleation rates, which
we compare with those obtained directly from spontaneous
nucleation events in EDMD simulations. We observed a large
variance in the attachment rates calculated for different nu-
clei. We used ten independent configurations on the top of the
barrier and followed ten trajectories for each of them to deter-
mine the attachment rates. Taking into account the statistical
errors in the free energy barriers and attachment rates, we es-
timate that the error in the resulting nucleation rates is one or-
der of magnitude. In order to exclude the effect of dynamics,
we compare the nucleation rates for the plastic crystal phase
in long-time diffusion times, i.e., τL = σ 2/6Dl with Dl the
long-time diffusion coefficient. We calculate Dl by measur-
ing the mean square displacement at supersaturation β|�μ|
= 0.34 and 0.54 as shown in Table I for various aspect ratios.
We clearly observe that the dynamics become slower for
increasing aspect ratio L∗, resulting in long-time diffusion
coefficients Dlτ/σ 2 = 0.012, 0.01, 0.0023 for L∗ = 0, 0.15
and 0.3 at β|�μ| = 0.34 with τ = σ

√
m/kB T . At higher

supersaturation β|�μ| = 0.54, we find even smaller values
for Dl , i.e., Dlτ/σ 2 = 0.0078, 0.006, 0.003 for L∗ = 0, 0.15
and 0.2, respectively.

The resulting nucleation rates in units of the long-time
diffusion coefficient are shown in Table I. We wish to make
a few remarks here. First, the nucleation rates obtained
from spontaneous nucleation events observed in EDMD
simulations agree well with the ones obtained from umbrella
sampling MC simulations within error bars of one order of
magnitude, which means that the nucleation results obtained
from the umbrella sampling MC simulations are reliable.
Second, we clearly observe that the nucleation rates for
the different aspect ratios ranging from L∗ = 0 to 0.3 are
remarkably similar as the differences are within the errorbars
for both supersaturations.

Finally, we made an attempt to study spontaneous
nucleation of dumbbells with L∗ = 0.3 at supersaturation
β|�μ| = 0.54 using event-driven MD simulations. As al-
ready mentioned above, the plastic crystal phase for dumb-
bells with L∗ = 0.3 becomes metastable with respect to the
aligned CP1 phase for P∗ = Pσ 3/kB T > 30, i.e., β|�μ|
> 0.47. Hence, we would expect to find the nucleation of
the CP1 phase here. However, we find that the nucleation is

severely hampered due to slow dynamics, which can be ap-
preciated from Fig. 2, where we plot the mean square dis-
placement for β|�μ| = 0.47. The resulting long-time diffu-
sion coefficient Dl = 1.72 × 10−4σ 2/τ is at least one order
of magnitude smaller than the long-time diffusion coefficients
at β|�μ| = 0.54, where we observed spontaneous nucleation
for L∗ = 0, 0.5, and 0.2.

In umbrella sampling MC simulations, we can “fix” the
simulations at the top of the nucleation barrier which allows
us to study the properties of the critical nuclei. We investi-
gate the effect of the particle anisotropy on the structure of
the critical nuclei using the order parameters q4 and w4 as de-
fined above. At supersaturation β|�μ| = 0.34, the size of the
critical nuclei is n � 250 which is sufficiently large to deter-
mine the crystal structure of the nuclei. For each dumbbell, we
calculate the averaged local bond order parameter q4 and w4,
provided the particle has Nb(i) ≥ 10 neighbors. The distribu-
tion of particles in the critical nuclei is presented as scatter
plots in the q4 − w4 plane along with those for pure fcc and
hcp plastic crystal phases of dumbbells with L∗ = 0, 0.15,
and 0.3, at corresponding pressures. From Fig. 3, we clearly
observe that the critical nuclei for L∗ = 0 and 0.15 contains
predominantly fcc-like rather than hcp-like particles. In or-
der to distinguish the fcc-like and hcp-like particles more
quantitatively, we divide the q4 − w4 plane by a straight line
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FIG. 2. Mean square displacement 〈�r2(t)〉 as a function of time t/τ in a
fluid of hard dumbbells with L∗ = 0.3 at P∗ = 30 (for β|�μ| = 0.47).
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FIG. 3. Distribution of particles in the critical nuclei for the plastic crystal nucleation in hard dumbbell systems with L∗ = 0 (a), 0.15 (b), and 0.3 (c) as
obtained from umbrella sampling MC simulations at a supersaturation β|�μ| = 0.34 in the q4 − w4 plane compared with those for pure fcc and hcp plastic
crystal phases with corresponding pressures. The dashed lines are used to distinguish the fcc-like and hcp-like particles, and the formulas are next to them.

in such a way that the particle distributions for the pure fcc
and hcp plastic crystal phases are maximally separated. We
plot the criteria to distinguish fcc-like and hcp-like particles
as dashed straight lines in Fig. 3 with the corresponding for-
mula. We note, however, that the criteria seem to be arbi-
trarily chosen, but the identification of fcc-like and hcp-like
particles for typical nuclei seems to be less sensitive on the
precise details of these criteria. Typical snapshots of the crit-
ical nuclei for L∗ = 0, 0.15, and 0.3 are shown in Fig. 4,
where the color coding denotes the identity (fcc-like, hcp-
like, or undetermined) of the particle using these criteria. As
we did not calculate the averaged local bond order parameter
q4 and w4 for particles with Nb(i) < 10 neighbors, the iden-
tity of these particles remains undetermined. We clearly ob-
serve that the critical nuclei for L∗ = 0, 0.15 contain mainly
fcc-like particles. The particle distributions become broader
for the pure fcc and hcp plastic crystal phases upon increas-
ing L∗ and consequently it becomes more difficult to distin-
guish fcc-like and hcp-like particles. However, the fraction
of hcp-like particles seems to increase with increasing par-
ticle elongation. This agrees with the results from free en-
ergy calculations of hard dumbbell systems, where it has been
shown that the hcp plastic crystal phase is more stable than
the one with the fcc structure at L∗ ≥ 0.15.13 It is worth not-
ing here that recent nucleation studies of hard spheres showed
that the critical nuclei contain approximately 80% fcc-like
particles.23 As the free energy difference per particle between
bulk fcc and hcp phases is only about 0.001 kB T at melting,
the predominance for fcc-like particles is attributed to surface
effects.

FIG. 4. Typical configurations of critical nuclei for the plastic crystal nucle-
ation of hard dumbbells with aspect ratios L∗ = 0 (a), 0.15 (b), and 0.3 (c)
at supersaturation |�μ| = 0.34kB T . The red (dark gray) particles are fcc-
like, the blue particles are hcp-like particles, while the light blue (light gray)
particles are undetermined.

B. Nucleation of the aperiodic crystal phase

For more elongated dumbbells, i.e., L∗ > 0.88, the
orientationally disordered aperiodic crystal phase becomes
stable,10–13 in which the individual spheres of the dumbbells
are on a random hcp lattice, whereas the orientations of the
dumbbells are random. In this section, we investigate the
nucleation of the aperiodic crystal phase of hard dumbbells
with different aspect ratios. We perform Monte Carlo simu-
lations using the umbrella sampling technique to determine
the Gibbs free energy as a function of cluster size for hard
dumbbells with L∗ = 1.0 and supersaturation P∗ = 16 and
17. The order parameter that is employed here in the um-
brella sampling technique is equal to the number of spheres
n (and thus not the number of dumbbells) in the largest crys-
talline cluster in the system. Thus, we check for each individ-
ual sphere whether or not it belongs to the largest crystalline
cluster and as a consequence, the whole dumbbell can be part
of the largest cluster or only one sphere of the dumbbell can
belong to the cluster, or the whole dumbbell is regarded to
be fluidlike. Consequently, it is convenient to introduce a bulk
chemical potential per sphere, which equals 0.5 times the bulk
chemical potential per dumbbell μsph = μ/2. We compare the
results with those for hard spheres at the same pressure in
Fig. 5. Since the bulk pressure for the solid–fluid transition
of hard dumbbells with L∗ = 1 is remarkably close to that
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FIG. 6. Equation of state (EOS, i.e., β Pσ 3 vs the number density of spheres
ρsphσ 3 for a system of hard spheres and hard dumbbells with L∗ = 1.0. For
the fluid and solid phases of hard spheres, the Carnahan–Starling (Ref. 30)
and Speedy (Ref. 31) EOS are plotted. The EOS of hard dumbbells for the
fluid phase is obtained from Ref. 32. The dashed vertical line denotes the bulk
coexistence pressure of hard dumbbells with L∗ = 1.0.

of hard spheres β Pcoexσ
3 = 11.8,10–13 one might naively ex-

pect that the nucleation barriers should be compared at the
same dimensionless pressure. However, we observe that at the
same pressure, the nucleation barrier for the aperiodic crys-
tal phase of hard dumbbells is slightly higher than that of
hard spheres. CNT predicts that the barrier height is given by
�G∗ = (16π/3)γ 3/(ρsph

s |�μsph|)2, and hence a difference in
barrier height should be due to a difference in the interfacial
tension γ , the density of spheres in the solid phase ρ

sph
s , or

in |�μsph|. As the reduced density of spheres ρ
sph
s σ 3 in the

aperiodic crystal phase is very close to that of a solid phase of
hard spheres at P∗ = 16 and 17, and the interfacial tensions
βγ σ 2 are also expected to be very similar, the difference in
barrier height can only be caused by a difference in |�μsph|.
We, therefore, calculated more accurately the bulk chemical
potential difference per sphere between the solid and the fluid
phase using

|�μsph| =
∫ P

Pcoex

(
1

ρ
sph
l

− 1

ρ
sph
s

)
dP, (10)

where ρ
sph
l and ρ

sph
s are the density of spheres in the liq-

uid and solid phases. In Fig. 6, we plot the equation of state
for the fluid and solid phases of hard spheres from Refs. 30
and 31 along with the equation of state for the fluid phase
of hard dumbbells for L∗ = 1 from Ref. 32. In addition, we
determined the equation of state for the solid phase using
EDMD simulations. Using these results and Eq. (10), we
indeed find that the supersaturation β|�μsph| per sphere is
∼ 2.3% smaller for hard dumbbells than for hard spheres, re-
sulting in an increase in barrier height of ∼ 5%, which per-
fectly matches our results. We conclude that the difference
in the height of the nucleation barrier between the aperiodic
crystal phase of dumbbells with L∗ = 1.0 and the hard-sphere
crystal is mostly due to the difference in |�μsph|.

Moreover, we also performed EDMD simulations for
the spontaneous nucleation of the aperiodic crystal phase of
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FIG. 7. Number of spheres in the largest cluster nmax as a function of time
t/τ for a typical trajectory obtained from EDMD simulations for the aperi-
odic crystal nucleation of hard dumbbells with L∗ = 1.0, N = 16 000, and
P∗ = 17.

dumbbells at P∗ = 17 in system of N = 16 000 hard dumb-
bells. The number of spheres in the biggest cluster as a func-
tion of time from a typical MD simulation is shown in Fig. 7.
We find that the size of critical nuclei in spontaneous nucle-
ation is around 100 spheres which agrees well with the result
obtained from umbrella sampling MC simulations shown in
Fig. 5. The nucleation rate obtained from spontaneous nucle-
ation events observed in MD simulations is Iσ 5/6Dl = 7.3
× 10−8±1 which agrees very well with the rate obtained
from umbrella sampling MC simulations, Iσ 5/6Dl = 2.8
× 10−8±1, within the error bars of one order of magnitude.

Furthermore, we study the effect of aspect ratio on
the nucleation of the aperiodic crystal phase and the
free energy barriers for hard dumbbells with aspect ratios
L∗ = 0.95, 0.97, and 1.0 at supersaturation β|�μsph| = 0.43.
We plot �G(n) as a function of cluster size n, i.e., the number
of spheres in the cluster, in Fig. 8. We observe that at the same
supersaturation, the barrier height decreases upon decreasing
the elongation of the dumbbells. According to classical nucle-
ation theory, �G∗ ∝ γ 3/(ρsph

s |�μsph|)2, where �μsph is the
supersaturation per sphere with ρ

sph
s the bulk density of
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FIG. 8. Gibbs free energy �G(n) as a function of the number of spheres n
in the largest crystalline cluster for the aperiodic crystal nucleation of hard
dumbbells with L∗ = 0.95, 0.97, and 1 at supersaturation β|�μsph| = 0.43.
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TABLE II. Nucleation rates Iσ 5/6Dl for the nucleation of the aperiodic crystal phase in systems of hard dumbbells with elongation L∗, at pressure
Pσ 3/kB T , and supersaturation per sphere β|�μsph|. Here, ρ

sph
s σ 3 is the number density of spheres in the solid phase, β�G(n∗) is the barrier height, and

|β�G
′′
(n∗)| is the second derivative of the Gibbs free energy at the critical nucleus size n∗, i.e., the number of spheres in the critical cluster. Here, fn∗/6Dl is

the attachment rate in units of the long-time diffusion coefficient Dl .

L∗ Pσ 3/kB T β|�μsph | ρ
sph
s σ 3 n∗ β�G(n∗) |β�G

′′
(n∗)| fn∗/6Dl Dlτ/σ 2 Iσ 5/6Dl (US) Iσ 5/6Dl (MD)

1 17 0.53 1.170 115 21.4 ± 0.4 1.2 × 10−3 2813 0.0026 2.0 × 10−8±1 7.3 × 10−8±1

1 16 0.43 1.158 170 29.5 ± 0.6 9.4 × 10−4 5556 0.0036 1.1 × 10−11±1 . . .
0.97 18 0.43 1.171 140 25.3 ± 0.9 8.4 × 10−4 5228 0.0022 6.6 × 10−10±1 . . .
0.95 20 0.43 1.182 100 19.9 ± 0.7 3.0 × 10−3 2273 0.0011 1.2 × 10−7±1 . . .

spheres in the solid phase. As shown in Table II, ρ
sph
s σ 3

is very similar for L∗ = 0.95, 0.97, and 1.0, and we argue
that the interfacial tension of the aperiodic crystal decreases
upon decreasing the elongation of the dumbbells. In order to
calculate the nucleation rates, we perform EDMD simulations
starting from configurations on the top of the free energy
barriers. We plot the mean square deviation of the cluster size
as a function of time in Fig. 9. We find that the attachment
rate decreases significantly as the anisotropy of the dumbbells
decreases. The resulting nucleation rates in units of the long
time diffusion coefficient are shown in Fig. 10. We clearly
observe that at fixed supersaturation the nucleation rate
increases with decreasing dumbbell elongation. However, in
the phase diagram of hard dumbbells,10–13 the pressure range
where the aperiodic crystal phase is thermodynamically
stable shrinks significantly when the aspect ratio decreases.
As a result, it is not possible to increase the supersaturation
further for shorter dumbbells, although the nucleation rates
are already much higher for shorter ones than for longer ones
at the same supersaturation.

Additionally, we also study the structure of the critical
nuclei by calculating the averaged local bond order param-
eter q4 and w4, provided the sphere has Nb(i) ≥ 10 neigh-
bors. The distribution of spheres in the critical nuclei is pre-
sented as scatter plots in the q4 − w4 plane in Fig. 11 for
L∗=1.0. We observe only a few spheres with w4 > 0 and q4
< 0.1, as most of the spheres are in the area of w4 < 0 and
q4 > 0.1, which is very similar to the scatter plots for hard
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FIG. 9. Mean square deviation of the cluster size 〈[n(t) − n(0)]2〉 as a func-
tion of time t/τ for hard dumbbells with L∗ = 0.95, 0.97, and 1.0 at super-
saturation β|�μsph| = 0.43. The resulting attachment rates fn∗ are listed in
units of τ−1.

spheres shown in Fig. 3(a). Consequently, the critical nucleus
of the aperiodic crystal phase of hard dumbbells contains also
more fcc-like than hcp-like particles, similar to the critical nu-
clei observed in hard-sphere nucleation.23 A typical configu-
ration of a critical nucleus is shown in the inset of Fig. 11,
where the spheres are considered to be fcc-like if w4 < 0.

C. Slow dynamics of hard dumbbells

The phase diagram of hard dumbbells shows a stable
aligned CP1 crystal phase at infinite pressure for all aspect
ratios of the dumbbells and a fluid-CP1 coexistence region
for 0.4 ≤ L∗ ≤ 0.8.10–13 The surface tension for the fluid-
CP1 interface of hard dumbbells with L∗ = 0.4 is βγ σ 2

� 1.8.28 The height of free energy barrier is given by �G∗

= 16πγ 3/3(ρs |�μ|)2 in CNT. If we assume that the inter-
facial tension does not change significantly with increasing
pressure, we can estimate the free energy barrier height as a
function of pressure by integrating the Gibbs–Duhem equa-
tion to obtain |�μ|. The barrier height �G∗ and the pack-
ing fraction η for the fluid phase are shown in Fig. 12 as a
function of the pressure P∗. We find that the barrier height
�G∗ is extremely high, and only becomes less than 50kB T
for P∗ > 45, corresponding to a packing fraction of the fluid
phase η > 0.67. However, if the interfacial tension increases
with increasing pressure as shown in Ref. 33, the “actual”
height of free energy barrier can become even higher. As a
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FIG. 10. Nucleation rate Iσ 5/6Dl for the aperiodic crystal phase as a func-
tion of the aspect ratio L∗ of hard dumbbells at supersaturation β|�μsph|
= 0.43.
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FIG. 11. Distribution of the spheres in the critical nuclei as obtained from
umbrella sampling MC simulations in q4 − w4 plane in systems of hard
dumbbells with L∗ = 1.0 at supersaturation β|�μsph| = 0.43. Inset: Typi-
cal configuration of a critical nucleus. Red denotes fcc-like spheres and blue
denotes hcp-like spheres, while the light blue are the undetermined ones.

consequence, nucleation of the CP1 crystal phase is an ex-
tremely rare event.

Additionally, we calculate mean square displacements
〈�r2(t)〉 and the second-order orientational correlator
L2(t) = 〈P2[cos(θ (t))]〉 for a metastable fluid of hard dumb-
bells with L∗ = 0.4, 0.5, and 0.8 at supersaturation β|�μ| =
1.0 as shown in Fig. 13. We find that at a supersatura-
tion β|�μ| = 1.0, where the barrier height is still very
high, �G∗/kB T ∼ 170 for L∗ = 0.4, the long-time diffu-
sion coefficients Dl � 10−4σ 2/τ obtained from 〈�r2(t)〉 is
extremely small (see Table III), whereas L2(t) exhibits slow
relaxation. Our findings are consistent with predictions ob-
tained from mode-coupling theory for a liquid–glass tran-
sition, in which the structural arrest is due to steric hin-
drance for both translational and reorientational motion.34–38

Moreover, mode-coupling theory predicts that the steric hin-
drance for reorientations becomes stronger with increasing
elongation, which is consistent with our results for L2(t) in
Fig. 13.34–38 Increasing the supersaturation will lower �G∗,
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FIG. 12. Estimated height of the Gibbs free energy barrier �G∗/kB T ob-
tained from classical nucleation theory (solid line) and the packing fraction η

in the supersaturated fluid phase (Ref. 32) (dashed line) as a function of pres-
sure P∗ for the nucleation of the CP1 phase of hard dumbbells with L∗ = 0.4.
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= 0.4, 0.5, and 0.8 at supersaturation β|�μ| = 1.0.

but Dl will decrease as well, while at lower supersaturation
the barrier height will only increase. As a result, the nucle-
ation of CP1 phase of hard dumbbells is severely hindered by
a high free energy barrier at low supersaturations and slow dy-
namics at high supersaturations, which explains why the CP1
phase of colloidal hard dumbbells has never been observed in
experiments18 or in direct simulations. It is worth noting that
the phase diagram might also display (meta)stable CP2 and
CP3 close-packed crystal structures,10 which only differ in the
way the hexagonally packed dumbbell layers are stacked. As
the free energy difference for the three close-packed struc-
tures is extremely small, we expect the surface tensions and
the nucleation barrier height to be very similar. Hence, we
expect that also the nucleation of the CP2 and CP3 phases
are hindered by either a high free energy barrier or slow
dynamics.

IV. CONCLUSIONS

In conclusion, we investigated the homogeneous nucle-
ation of the plastic crystal, aperiodic crystal, and CP1 crys-
tal phase of hard dumbbells using computer simulations.
Hard dumbbells serve as a model system for colloidal dumb-
bells for which the self-assembly is mainly determined by
excluded volume interactions. For charged colloidal dumb-
bells or diatomic molecules, screened Coulombic interac-
tions and Van der Waals interactions may significantly change
the kinetic pathways for nucleation. For instance, crystal nu-
cleation of hard rods proceeds via multilayered crystalline
nuclei, whereas attractive depletion interactions between the

TABLE III. Long-time diffusion coefficients Dl in units of σ 2/τ with τ =
σ
√

m/kB T for hard dumbbells with elongation L∗ at pressure P∗, packing
fraction η, and supersaturation β|�μ| = 1.0.

L∗ P∗ η Dlτ/σ 2

0.4 34.5 0.64 1.02 × 10−4

0.5 31.2 0.63 2.47 × 10−4

0.8 24.8 0.61 2.78 × 10−4
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rods in a polymer solutions favor the nucleation of single-
layered nuclei.20, 39 For the nucleation of the plastic crystal
phase of hard dumbbells, we found that at low supersatura-
tions the free energy barriers increase slightly with increasing
dumbbell anisotropy, which can be explained by a small in-
crease in surface tension for more anisotropic dumbbells.28

When the supersaturation increases, the barrier height de-
creases with increasing dumbbell aspect ratio, which can only
be explained by a different pressure dependence of the in-
terfacial tension for hard dumbbells with different aspect ra-
tios. Although the nucleation rate for the plastic crystal phase
does not vary much with aspect ratio, the dynamics do de-
crease significantly. We also carried out EDMD simulations
and compared the nucleation rates obtained from spontaneous
nucleation events with those obtained from the umbrella sam-
pling Monte Carlo simulations and found good agreement
within the error bars of one order of magnitude. Addition-
ally, we investigated the structure of the critical nuclei of the
plastic crystal phase of hard dumbbells with various aspect
ratios. We found that the nuclei of the plastic crystal tend
to include more fcc-like particles rather than hcp-like ones,
which is similar to the critical nuclei of hard spheres.23 How-
ever, the amount of hcp-like particles increases with increas-
ing dumbbell aspect ratio, which agrees with the free energy
calculations13 where it has been shown that the hcp structure
is more stable than fcc structure for L∗ ≥ 0.15.

Moreover, we also studied the nucleation of the aperi-
odic crystal phase of hard dumbbells, and our results showed
that at the same pressure, the nucleation barrier of the aperi-
odic crystal phase of hard dumbbells with L∗ = 1.0 is slightly
higher than that of hard spheres which is mostly due to a
small difference in supersaturation β|�μsph|. We also per-
formed EDMD simulations for the spontaneous nucleation of
the aperiodic crystal from hard dumbbell fluid phase, and we
found that the nucleation rate obtained from spontaneous nu-
cleation agrees very well with the one obtained from umbrella
sampling MC simulations. Furthermore, we studied the ef-
fect of aspect ratio on the nucleation of the aperiodic crystal
phase and found that at the same supersaturation, the nucle-
ation rate in units of long-time diffusion coefficients increases
for shorter hard dumbbells. However, when the aspect ratio of
dumbbells decreases, the pressure range where the aperiodic
crystal phase is stable becomes smaller. Additionally, we also
found that the structure of the critical nuclei of the aperiodic
crystal phase formed by hard dumbbells with L∗ = 1.0 is very
similar to that of hard spheres which tend to have more fcc-
like particles rather than hcp-like ones.

We estimated the height of the free energy barrier for the
nucleation of the CP1 crystal phase of hard dumbbells ac-
cording to classical nucleation theory, which turns out to be
extremely high in the normal pressure range due to a high
interfacial tension. Furthermore, we calculated the long-time
diffusion coefficients for hard dumbbells at a moderate super-
saturation, i.e., β|�μ| = 1.0, which appears to be very small.
As a result, we conclude that the high free energy barrier as

well as the slow dynamics suppress significantly the nucle-
ation of CP1 phase.
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