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We study the sedimentation of an initially inhomogeneous distribution of binary colloidal mixtures

confined to a slit using a coarse-grained hybrid molecular dynamics and stochastic rotation dynamics

simulation technique. This technique allows us to take into account the Brownian motion and

hydrodynamic interactions between colloidal particles in suspensions. The sedimentation of such

systems results in the formation of Rayleigh-Taylor-like hydrodynamic instabilities, and here we

examine both the process of the formation and the evolution of the instability, as well as the structural

organization of the colloids, depending on the properties of the binary mixture. We find that the

structural properties of the swirls that form as a consequence of the instability depend greatly on the

relative magnitudes of the Peclet numbers, and much less on the composition of the mixture. We also

calculate the spatial colloid velocity correlation functions which allow us to follow the time evolution of

the instability and the time dependence of the characteristic correlation length. Finally, we calculate the

growth rates of the unstable modes both directly from our simulation data, and also using a theoretical

approach, finding good agreement.
1 Introduction

Binary mixtures of colloidal particles exhibit a surprisingly rich

phase behavior, with a wide diversity of binary crystal structures

which have been extensively studied both by experiments and

computer simulations (for a review see, for example, ref. 1).

Depending on the properties of the constituting particles and the

structures they form, these systems can both have fundamentally

interesting properties and be useful for the development and

fabrication of advanced materials, such as photonic crystals.2

Photonic crystals are materials that do not allow light propa-

gation in all directions and are therefore potentially suitable for

applications related to controlling and manipulating the propa-

gation of light. Experimental realization of these structures on

optical scales, however, is still a challenge. The two colloidal

crystal structures that would potentially have a large band gap in

the visible region are the diamond3,4 and pyrochlore5,6 structures,

which are the underlying lattices of one of the binary Laves

phases.7 This inspired a recently proposed fabrication method

that involved using external fields to facilitate the self-assembly

of a hard sphere binary Laves phase, followed by burning or

dissolving of one of the colloidal species which would result in
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the desired structure.8 The stability of these binary crystalline

structures in hard-sphere mixtures has been investigated using

computer simulations, where Gibbs free energy calculations

showed that for diameter ratios in the range of 0.74 # q # 0.84

Laves phases are stable.8,9 However, while Laves phases have

been so far experimentally observed in nanoparticle systems10

and some colloidal systems,11,12 they have not yet been fabricated

for micro-meter-sized hard-sphere mixtures. The main issue lies

in the fact that for micro-meter-sized colloids, which would be

needed for obtaining a band gap in the visible region, gravity and

slow crystallization rates hinder the formation of binary crys-

tals.13 With photonic applications in mind, fabrication of

a binary Laves phase was attempted through the sedimentation

of colloids14 and it was observed that sedimentation starting from

a vertically inhomogeneous distribution of particles (i.e. particles

arranged on the upper capillary wall) leads to the development of

inhomogeneities in the plane perpendicular to the gravitational

field. The experiments also showed that when the sediment

formed on the bottom wall, instead of forming the desired binary

crystal structure, the particles of different species had become

separated. However, whether this separation was a direct

consequence of the observed horizontal density inhomogeneities

is unclear, and it would therefore be desirable to study this

process at the particle level.

In order to investigate the interplay between mixing and

separation we simulate the sedimentation of binary colloidal

systems immersed in a solvent and confined to a slit. The

simulations start by mimicking a frequently used experimental
Soft Matter, 2011, 7, 11177–11186 | 11177

http://dx.doi.org/10.1039/c1sm05930k
http://dx.doi.org/10.1039/c1sm05930k
http://dx.doi.org/10.1039/c1sm05930k
http://dx.doi.org/10.1039/c1sm05930k
http://dx.doi.org/10.1039/c1sm05930k
http://dx.doi.org/10.1039/c1sm05930k
http://pubs.rsc.org/en/journals/journal/SM
http://pubs.rsc.org/en/journals/journal/SM?issueid=SM007023


D
ow

nl
oa

de
d 

by
 U

ni
ve

rs
ite

it 
U

tr
ec

ht
 o

n 
01

 F
eb

ru
ar

y 
20

12
Pu

bl
is

he
d 

on
 1

3 
O

ct
ob

er
 2

01
1 

on
 h

ttp
://

pu
bs

.r
sc

.o
rg

 | 
do

i:1
0.

10
39

/C
1S

M
05

93
0K

View Online
setup - an initially homogenized dispersion is left to sediment to

the bottom of the slit so that when the sediment is equilibrated,

the slit is turned upside down leaving a heavy colloid-fluid layer

superimposed on top of a lighter one. Sedimentation of

a configuration obtained in this way is accompanied by the

formation of strong inhomogeneities, inducing lateral pattern

formation, which resemble the hydrodynamic Rayleigh-Taylor

instability. Instabilities arising due to unstable density distribu-

tions have been previously studied in different contexts.15–17 For

a one-component system of sterically-stabilized spherical colloids

sedimenting in a slit, experimental observations of the Rayleigh-

Taylor instability have been reported previously by Royall

et al.,18 and have also been studied via computer simulations by

Padding and Louis19 and Wysocki et al.,20,21 who modeled the

colloids as hard spheres.

The classic Rayleigh-Taylor instability occurs if a layer of

a heavy fluid is placed on top of a lighter one.22 The system will

tend to minimize its potential energy, i.e. to reverse the positions

of the fluids and during this process the interface that separates

them will start to fluctuate. The growth of the unstable fluctua-

tions results in the formation of the Rayleigh-Taylor instability.

The formation of the instability is driven by the gravitational

field, and in our simulations the strength of the field acting on

particles is characterized by their Peclet numbers. These numbers

can be chosen independently for each of the species in the binary

mixture. The limit in which Pe [ 1 marks the granular domain

where the effects of diffusion are small, while for Pe� 1, which is

the case for relatively small colloids, diffusion dominates. In ref.

23 Padding and Louis showed that for steady state sedimentation

and intermediate values of Pe numbers (Pe¼ 0.1–15) the average

sedimentation velocity of hard-spheres is completely dominated

by the hydrodynamic interactions and depends little on the exact

value of the Peclet number. When simulating instabilities, which

occur in non-equilibrium, along with Brownian fluctuations,

computer simulations need to properly include hydrodynamic

interactions mediated by the solvent.24

The simulation technique that we use in our study, since it

captures both of these effects, is a coarse-grained hybrid molec-

ular dynamics (MD) and stochastic rotation dynamics (SRD)

scheme. It was first introduced by Malevanets and Kapral,25 and

previously used to study colloids,23,26–29 polymers30–32 and vesicles

and cells.33–35 As mentioned above, it has also been used to

simulate the Rayleigh-Taylor-like instability of a one-component

colloidal system in ref. 19–21.

Our goal in this work is to gain a detailed insight into how the

properties of binary mixtures and their constituting particles

influence the formation and the time development of the Ray-

leigh-Taylor-like instabilities, and to investigate the potential for

controlling the organization of particle species during the

sedimentation.
2 Model

Bridging the different time and length scales between colloidal

particles and a solvent in computer simulations requires coarse-

graining. To this end, we employ stochastic rotation dynamics to

describe the hydrodynamic interactions between colloids medi-

ated by a solvent. Below we briefly outline the method and refer

the interested reader to ref. 36 for more technical details and also
11178 | Soft Matter, 2011, 7, 11177–11186
a discussion of other simulation techniques designed to describe

the dynamics of colloidal suspensions.

SRD is a coarse-graining scheme that models the solvent as

a large number, Nf, of point-like fluid particles each of mass mf,

free to move in continuous space with continuous velocities. The

system, i.e. the simulation box, is coarse-grained into cubic cells

of size a0 so that when the fluid particles interact they do so only

with the members of their own cell. There is no restriction on the

number of fluid particles in a cell.

The dynamics of the solvent is conducted in two steps:

streaming and collision. In the streaming step we integrate

Newton’s equations of motion for a time Dtc. The forces acting

on fluid particles are external and are generated by the colloids,

gravity and the walls.

In the collision step, particles are sorted into cubic cells and

their velocities relative to the center of mass velocity vcm of the

cell they belong to are rotated, i.e

vi1vcm þ Rðvi � vcmÞ; (1)

where vi is the velocity of the fluid particle i, and R is a rotation

matrix that rotates the relative velocities by a fixed angle a about

a random axis. We chose a ¼ p/2 for all our simulations. The

purpose of the collision step is to allow the solvent particles to

exchange momenta while conserving mass, momentum and

kinetic energy in the cell. The transformation we describe does

indeed conserve these properties, leading to correct hydrody-

namics.25 To ensure Galilean invariance, we include a grid shift

procedure that shifts the fluid particles by a random vector

before performing the collision step.37

Hard-sphere-like colloids are propagated through a molecular

dynamics scheme and their coupling to the SRD bath is carried

out via a repulsive interaction potential of the Weeks-Chandler-

Andersen form

ffiðrÞ ¼

8><
>:

43

��sfi

r

�12

�
�sfi

r

�6

þ 1

4

� �
r# 21=6sfi

�
;

0
�
r. 21=6sfi

�
;

(2)

where i ¼ A, B denotes the colloidal species A or B, f denotes the

solvent (fluid) particles and sfi is the colloid-fluid interaction

range for species i.

The interaction between the colloids is represented by

a similar, but steeper potential which takes the form

fijðrÞ ¼

8><
>:

43

��sij

r

�48

�
�sij

r

�24

þ 1

4

� �
r# 21=24sij

�
;

0
�
r. 21=24sij

�
;

(3)

where i, j ¼ A, B and sij is the colloid-colloid interaction range

between species i and j. The colloid-fluid and colloid-colloid

energy scales are set by 3. We integrate colloid-fluid and colloid-

colloid forces using a velocity Verlet algorithm38 with time step

DtMD ¼ Dtc/4.

The number of fluid particles is much larger than the number of

colloids, which can lead to the appearance of unwanted depletion

forces between the colloids. Even a slight overlap between two

colloids introduces strong attractions. In order to avoid this, we

set particle diameters sAA and sBB to values larger than 2sfA and

2sfB respectively, and introduce an additional depletion

compensating potential between the colloids to deal with the rare
This journal is ª The Royal Society of Chemistry 2011
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Fig. 1 Simulation snapshots of the time evolution (from top to bottom)

of the Rayleigh-Taylor-like instability in binary mixtures of hard-sphere-

like colloids with size ratio sfA/sfB ¼ 0.83. Mixtures consist of NA ¼ 2NB

(left column) and NA ¼ NB (right column) colloids with the same Peclet

numbers PeA ¼ PeB ¼ 12. The snapshots are slices of thickness 2sBB in

the vertical (xz) plane in the middle of the simulation box; gravity acts in

the direction indicated in the figure (z direction). Particles belonging to

species A (smaller) are colored red and particles belonging to species B

(larger) are green.
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cases when they are closer then 2sfi (i ¼ A, B). For purely hard-

sphere interactions the depletion potential can be calculated

analytically. However, the repulsive interactions given in eqn (2)

and (3) are slightly softer. The depletion force Fd arising due to

these potentials has been calculated numerically by Padding and

Louis who found that it fits well with a slightly altered form of the

hard-sphere result.36 The compensating force Fc is given

by FcðrÞ ¼ �FdðrÞ ¼ nf kBTs2fi0:85
h
4� ðr=ð1:05sfiÞÞ2

i
, where r is

the distance between two colloids, nf is the number density of fluid

particles, and we take kBT to be 1. The compensating potential

acts for particle separations r < 2.1sfi.

Finally, since the system we simulate is out of equilibrium we

need to couple it to a thermostat to keep the temperature

constant. We do this by defining a global temperature based on

the mean square deviations of the fluid particle velocities from

their respective center of mass velocities of the cells they belong

to. We measure the global temperature every Dtc and then rescale

the relative fluid particle velocities to get the correct

temperature.36

3 Results

We consider binary mixtures of small and large hard-sphere like

colloidal particles with diameters sfA and sfB, where sfA/sfB ¼
0.83. We choose this particle diameter ratio as it is close to the

size ratio of particles forming a binary Laves phase with the

highest packing fraction.9 The mixtures we study have two

different compositions. One consists of NA ¼ 6500 and NB ¼
3250 colloids forming a system with twice as many small particles

as large ones (which is the particle number ratio of a binary Laves

phase) and in this case the volume fractions of the two species are

roughly equal. The other mixture consists of NA ¼ NB ¼ 6500

colloidal particles. In both cases the colloids are immersed in

a bath of Nf � 15 � 106 solvent particles. The particles are

confined between two walls in xy planes and we impose periodic

boundary conditions in the x and y directions with gravity acting

in the z direction. The dimensions of the slit are Lz ¼ 72a0, Lx ¼
Ly ¼ 216a0 (giving Lz ¼ 14sBB, Lx ¼ Ly ¼ 42sBB or Lz ¼ 17sAA,

Lx ¼ Ly ¼ 51sAA) which are close to the dimensions of the

experimental setup for a one-component system presented in ref.

21. The average number of fluid particles per SRD cell was set

to g ¼ 5.

We characterize the motion of a colloid by the Peclet number,

Pe¼ sD/tS, which is the ratio between the time sD a particle needs

to diffuse over its own radius a, and the Stokes time, tS, it needs

to sediment over the same distance

tS ¼ a

vS
; (4)

where vS is the flow velocity. The Peclet number can be calculated

as

Pe ¼ Mbga

kBT
¼ 4p

3

�
rc � rf

�
ga4

kBT
; (5)

where Mb denotes the buoyant mass of a particle,

Mb ¼ 4

3
pðrc � rf Þa3, rc and rf are the mass densities of the

colloids and the fluid respectively, g denotes the gravitational

constant and a the effective hydrodynamic radius of the particle,
This journal is ª The Royal Society of Chemistry 2011
determining the characteristic length scale.36 A detailed discus-

sion on how to map the parameters of our simulation method

onto physical systems is given in ref. 36. For each system that we

study we set the Peclet numbers of each of the species, PeA and

PeB, independently and by doing so we determine the strength of

the gravitational field and the masses of the particles. We have

chosen to keep PeB at 12 and vary PeA by setting it to 6, 9, 12, 15

and 18. We note that as the particles in this study have fixed

sizes, the relative Peclet number PeA/PeB, is proportional to the

ratio of the effective mass densities of the two particle species

(rA � rf)/(rB � rf).
3.1 Rayleigh-Taylor-like instability

We let an initially homogeneous distribution of colloids confined

to a slit sediment towards one wall until they reach an equilib-

rium distribution. This is checked by monitoring colloidal

density profiles in time. Once the particles have settled at the

bottom wall of the simulation box we invert the direction of

gravity creating conditions suitable for the instability to develop.

We let the system evolve further and, as a consequence of the

instability, droplets of colloidal material form and sediment

quickly towards the bottom wall. In this section we examine the

structural properties of these droplets and their dependence on

the composition of the mixture and the properties of the colloidal

particles - specifically the Peclet numbers.

Fig. 1 shows the evolution of the systems with NA ¼ 2NB

(Fig. 1, left column) andNA ¼NB particles (Fig. 1, right column)

and Peclet numbers PeA ¼ PeB ¼ 12, in the gravity plane. We see

that the process of sedimentation is accompanied by the forma-

tion of swirls. Initially, the interface separating the colloid-rich

region from the pure solvent region is almost flat, then
Soft Matter, 2011, 7, 11177–11186 | 11179
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undulations start to form and as their amplitude grows the

colloidal layer resolves itself into droplets. This is a consequence

of the instability - it facilitates the fluid back-flow and the tran-

sition of the system to a stable configuration via the instability.

We note that the swirls we can see in Fig. 1 are very similar to

those observed for a one-component system in ref. 19–21.

The added complexity of a binary mixture, however, provides

for the possibility of different arrangements of colloidal particles

of different species within the droplets themselves. In Fig. 2 we

show the mass density profiles of each of the particle species as

well as the overall colloidal mass density profile. We plot these

against the height of the simulation box, at the start of the

sedimentation process (Fig. 2a, 2b), at a time when the instability

is fully developed (Fig. 2e, 2f) and a time in between the two

(Fig. 2c, 2d). Comparing Fig. 2a and Fig. 2b we can see that

initially the overall mass density profiles are not, qualitatively,

significantly different. However, we do observe significant

differences between the mixtures if we look at the distributions of

individual species within the simulation box. While the shape of

the distributions in the case when the Peclet number of smaller

particles is smaller indicate a degree of mixing (Fig. 2a), when the

Peclet number of smaller particles is larger we can clearly

distinguish between two layers - one composed of heavier

particles near the wall and one with lighter ones further away

(Fig. 2b). At later times we again see that for the mixture in which

the smaller particles are lighter (Fig. 2c, 2e) the relative density of

the particle species, and hence the number ratio as well, is similar

at all heights. This would lead us to expect much more evenly
Fig. 2 Colloidal density profiles as a function of height of the simulation

box at three different times, increasing from top to bottom; top corre-

sponds to initial times, bottom to times when the instability is fully

developed. Plots shown here correspond tomixtures withNA¼NB, larger

particles with PeB¼ 12 fixed and smaller with: PeA¼ 6 for the plots in the

left column (species A is lighter in this case) and PeA ¼ 18 for the plots in

the right column (species A is heavier). Reduced mass density r* is given

as r* ¼ r(a30/mf). Distances are rescaled by sAB ¼ (sfA + sfB)/2.

11180 | Soft Matter, 2011, 7, 11177–11186
mixed samples in this case then in the case when the smaller

particles are heavier (Fig. 2d, 2f) where we expect different

degrees of mixing as a function of height. Clearly, depending on

the relative magnitudes of the Peclet numbers the distributions of

the colloidal particles will progress in different ways within the

instability.

To examine the behavior within the horizontal planes, we

present in Fig. 3 a series of simulation snapshots of a slice of the

simulation box in the plane perpendicular to the direction of

gravity, as the instability develops in time. Fig. 3 allows us to

look closer at the time development of network-like structures

that appear as a consequence of the Rayleigh-Taylor-like insta-

bility. The snapshots shown correspond to the systems withNA¼
2NB (Fig. 3a, 3b) and NA ¼ NB particles (Fig. 3c, 3d), and with

Peclet numbers PeB ¼ 12 and PeA ¼ 6 and 18, i.e. PeA ¼ 0.5PeB
and PeA ¼ 1.5PeB, with those corresponding to times when the

swirls are fully developed highlighted.

If we compare the highlighted snapshots in Fig. 3a and Fig. 3b,

or the highlighted snapshots in Fig. 3c and Fig. 3d, corre-

sponding to systems with the same particle number ratios but

different relative Peclet numbers, we can see considerable

differences in the structures formed. Although there is not much

difference in the characteristic dimensions of the colloid-rich

regions corresponding to the network branches (assuming the

same particle number ratio), the distributions of particles of

different species within the branches are different. In the case

when the Peclet number of the smaller species is smaller (Fig. 3a

compared to Fig. 3b, or Fig. 3c compared to Fig. 3d) the colloid-

rich regions appear to be composed of similar numbers of A and

B particles, randomly and homogeneously scattered throughout

each region. However, in the case when the Peclet number of the

smaller species is larger, we see that the smaller, heavier colloids

are positioned mostly in the inner parts of the colloid-rich

regions, with the larger particles positioned more towards the

boundaries of these regions. As this organization of particles can

be seen in both mixtures, i.e. mixtures with different number

ratios of colloidal particles, we conclude that it must be due to

gravitational effects, and not the composition of the mixture.

Additionally, we also observe from Fig. 3d that when the

smaller particles are heavier, the Rayleigh-Taylor instability is

initiated by the lighter colloid species B, and that at later times

the heavier species A takes over as they sediment faster, leaving

a layer of species B behind after the instability has fully devel-

oped. This visually demonstrates the behavior we see in the right

column of Fig. 2.

In order to quantitatively describe the structures we see in the

simulation snapshots in Fig. 3 we calculate the radial distribution

functions gii(r), i ¼ A, B, in a slab of thickness 2sBB within the

middle plane at a time when the instabilities have fully developed.

In Fig. 4 we show the radial distribution functions for the systems

with Peclet numbers PeA ¼ 6 and PeA ¼ 18, since these are the

two extremes of the parameter range we have studied. We can see

that the radial distribution functions calculated for the two

mixtures do not depend strongly on the composition (compare

Fig. 4a and Fig. 4c or Fig. 4b and Fig. 4d), but do show different

behavior with different PeA. In the case where PeA ¼ 6 both

gAA(r) and gBB(r) curves exhibit second peaks, which for the

larger species (B) are slightly more pronounced, and for the

smaller species (A) are positioned at distances slightly larger than
This journal is ª The Royal Society of Chemistry 2011
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Fig. 3 Simulation snapshots of the time evolution (from left to right) of binary mixtures of hard-sphere-like colloids with size ratio sfA/sfB ¼ 0.83,

particle numbersNA andNB, Peclet numbersPeB¼ 12 andPeA¼ 6 andPeA¼ 18: a)NA¼ 2NB,PeA¼ 6; b)NA¼ 2NB, PeA¼ 18; c)NA¼NB,PeA¼ 6; d)

NA¼NB, PeA¼ 18. The snapshots are slices of thickness 2sBB in the xy plane in the middle of the simulation box; gravity acts in the z direction. The time

is measured in units of the Stokes time tS of the larger species. Particles belonging to speciesA (smaller) are colored red and particles belonging to species

B (larger) are green. Highlighted snapshots correspond to times when the swirls are fully developed.
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r ¼ 2sAA. In the case where PeA ¼ 18, the curves corresponding

to gBB(r) no longer exhibit a second peak which suggests a larger

degree of dilution of species B compared to the PeA ¼ 6 case. The

plots of the radial distribution functions of the smaller particles,

gAA(r) with PeA ¼ 18 show for both mixtures very pronounced

second peaks, which are positioned at r � 2sAA, and for the

mixture with NA ¼ NB also a very small third peak at an even

larger distance (Fig. 4d).

In summary, from Fig. 3 and 4 we conclude that the structure

of the Rayleigh-Taylor-like instability is hardly affected by the
This journal is ª The Royal Society of Chemistry 2011
composition of the binary mixture, but does strongly depend on

the relative Peclet numbers of the two species. When the smaller

colloids are lighter than the larger ones (PeA < PeB) the density

profiles indicate a higher degree of mixing within the colloidal

material than for the mixtures when the smaller colloids are

heavier (PeA > PeB). We would expect that, without obstacles,

the heavier colloidal species would sediment faster than the

lighter species, and therefore we would expect to see separation

of colloids whenever there is a sufficient difference in colloidal

densities. However, larger particles will inevitably meet more
Soft Matter, 2011, 7, 11177–11186 | 11181
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Fig. 4 Radial distribution functions gii(r) with i ¼ A, B in a slab of

thickness 2sBB within the middle plane of the simulation box. PeB ¼ 12 in

all cases and a) NA ¼ 2NB, PeA ¼ 6; b) NA ¼ 2NB, PeA ¼ 18; c) NA ¼ NB,

PeA ¼ 6; d) NA ¼ NB, PeA ¼ 18. Distances are rescaled by appropriate

particle diameters sAA or sBB. Insets show enlarged area in the region of

the second, and in d) the third peak.

Fig. 5 The time evolution of the r dependence of the spatial velocity

correlation functions CAB(z, r, t) for the mixture with NA ¼ 2NB particles
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resistance when propagating through the solvent (and smaller

colloids), and hence they will be slowed down, while the smaller

particles are less obstructed. Indeed, in Fig. 2d we see two peaks

in the density profile of the lighter, larger particles separated by

a peak in the profile of the heavier, smaller particles. This

suggests that the smaller particles are penetrating the layers of

large particles, (which is in accordance with what we can see in

the horizontal plane snapshots in Fig. 3) forcing a quantity of the

slower moving particles to flow up together with the solvent.

When the larger particles are heavier we see no such effect within

the colloidal material (for the parameter range studied here),

with the density profiles of both species instead progressing in

a very similar fashion. Therefore it would seem that to encourage

mixing of particles during sedimentation it would be better to

have the smaller particles in the mixture with relatively smaller

Peclet numbers.
and Peclet numbers PeA ¼ 6 and PeB ¼ 12: a) before the anti-correlation

reaches its maximum and b) after the anti-correlation has reached the

maximum. The velocity correlations were calculated in the xy plane at z¼
Lz/2 and rescaled by the thermal fluctuation strength kBT/MAB. The

distance r is rescaled by sAB ¼ (sfA + sfB)/2, and the time t is measured in

the units of Stokes time tS of the larger species.
3.2 Time correlation functions

Having examined the structural properties of the system, we next

consider the dynamics of the instability formation process. We

calculate the spatial correlations of colloid-velocity fluctuations
11182 | Soft Matter, 2011, 7, 11177–11186
in the gravity direction within the plane perpendicular to gravity.

The correlation functions of the z component are calculated as

Cijðz; r; tÞ
kBT=Mij

¼ �
dViðz; 0; tÞdVjðz; r; tÞ

	
; (6)

where i, j¼ A, B. dVi(z, r, t)¼ vi(z, r, t)� hvi(z, t)i is the deviation
of the velocity of particle i from the mean velocity in the xy plane

at height z ¼ Lz/2, at distance r in the xy plane and at time t. We

rescale the correlation functions by the corresponding thermal

fluctuation strength kBT/Mij, whereMAA ¼ MA, MBB ¼ MB and

MAB ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MAMB

p
.

The velocity correlations develop in time in such a way that we

see pronounced positive correlations at short distances, anti-

correlations at larger distances and a final decay to 0 when all the

particles have settled onto the bottom wall of the simulation box.

The anti-correlation reaching its maximum is an indication that

the swirls are fully developed and the distance r at which this

occurs is related to the characteristic length of the network-like

structure formed. As an illustration of the described behavior, in

Fig. 5 we show the r dependence of the CAB(z, r, t) correlation

functions for one of the systems studied (NA ¼ 2NB, PeA ¼ 6,

PeB ¼ 12) at different times before and after the anti-correlation

has reached its maximum.

The results of the calculations of the velocity correlation

functions are shown in Fig. 6 and 7 where we can see the time

development of the logarithm of the absolute value of Cij(z, r, t)

for the mixtures with NA ¼ 2NB (Fig. 6) and NA ¼ NB (Fig. 7),

and Peclet numbers PeA ¼ 6, 12 and 18, calculated at height

z ¼ Lz/2. These plots allow us to follow the evolution of the
This journal is ª The Royal Society of Chemistry 2011
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Fig. 6 Spatial velocity correlation functions Cij(z, r, t) for the system with NA ¼ 2NB. The time evolution of the logarithm of the absolute value of the

spatial velocity correlation function Cij(z, r, t), where ij ¼ AA, AB or BB, is plotted for the systems with PeB ¼ 12 and PeA ¼ 6, 12, 18. The correlation

functions were calculated in the xy plane at z ¼ Lz/2, and rescaled by the thermal fluctuation strengths kBT/Mij. Distances r are rescaled by s, where s¼
sfA when ij ¼ AA, s ¼ sfB when ij ¼ BB, or sAB ¼ (sfA + sfB)/2 when ij ¼ AB, and the time t by the Stokes time tS of species B.
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instability by following the time dependence of the characteristic

length scale over which the particles are correlated. Looking at

larger lengths, we see a second and sometimes even a third

characteristic distance region where the particles are also

strongly correlated.

As the sedimentation of the system progresses, we can see that

the length over which the particles are correlated grows at first

for all systems studied. Fig. 6 and 7 show that initially this

growth is monotonic in time until the characteristic length rea-

ches a maximum, after which, depending on the Peclet numbers

of the particles, it either decreases monotonically or drops

slightly before it increases again to a value higher than the first

one. This non-monotonic behavior of the characteristic length

scale, accompanied by the growing characteristic distances at

which the second peaks of the correlation functions appear, is

observed for higher Peclet numbers. We note that similar

behavior has also been observed for one-component systems20

indicating that this time dependence of the correlation length is

not specific to mixtures but is, instead, an occurrence on the level

of the complex fluid.

We also note that the plots presented in Fig. 6 and 7 show that

the length over which particle velocities are correlated is larger

for the denser system (more particles). This is in accordance with

what we also observe in Fig. 3.

3.3 Growth rates

In our simulations we create a configuration suitable for the

instability formation by turning the simulation box upside down
This journal is ª The Royal Society of Chemistry 2011
after the particles have settled on a box wall. In this way the

density profile becomes such that the higher layers of the

suspension are heavier then the lower ones, forming an interface

between the complex fluid, composed of both colloids and the

solvent, and the pure solvent.

In the initial regime of the Rayleigh-Taylor instability the inter-

face undulations grow exponentially in time, fexp(n(k)t), where n

(k) is the growth rate and k ¼ (k2x + k2y)
1/2 the wave number. We

calculate the growth rates both directly from our simulation data

and also theoretically via the linearizedNavier–Stokes equation.21,22

Determining when a system leaves the initial linear regime and

enters the non-linear regime of the instability can be done by

measuring the first and the second density moment in time.21 The

first moment of the density is defined as hzi, which denotes the

center of mass in the z direction of all colloidal particles and

quantifies the degree of sedimentation. The second moment of

the density, sz ¼ hz2i � hzi2, quantifies the spread of the colloids

in the gravity direction. Fig. 8 shows the first and the second

moment as a function of time, rescaled by the height of the

simulation box Lz, for the mixtures with NA ¼ 2NB andNA ¼NB

and varying PeA. We distinguish three different regimes in Fig. 8.

The initial linear regime, when the undulations of the interface

are still small, is identified as the regime where hzi slowly

decreases and sz slowly increases in time. The non-linear regime,

when the swirls develop fully, follows, as is indicated by the fast

drop in hzi and fast increase in sz. Finally, both hzi and sz slowly

decrease in time which corresponds to the final settling of the

particles at the bottom wall.
Soft Matter, 2011, 7, 11177–11186 | 11183
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Fig. 7 Spatial velocity correlation functions Cij(z, r, t) for the system with NA ¼ NB. The time evolution of the logarithm of the absolute value of the

spatial velocity correlation function Cij(z, r, t), where ij ¼ AA, AB or BB, is plotted for the systems with PeB ¼ 12 and PeA ¼ 6,12,18. The correlation

functions were calculated in the xy plane at z ¼ Lz/2, and rescaled by the thermal fluctuation strengths kBT/Mij. Distances r are rescaled by s, where s¼
sfA when ij ¼ AA, s ¼ sfB when ij ¼ BB, or s ¼ (sfA + sfB)/2 when ij ¼ AB, and the time t by the Stokes time tS of species B.

Fig. 8 First moment of the colloidal density hzi/Lz and second moment

of the colloidal density sz/Lz plotted as a function of time for the systems

with PeB ¼ 12, PeA ¼ 6, 12, 18 and NA ¼ 2NB: a) and b) and for the

system with NA ¼ NB: c) and d). The time t is measured in units of the

Stokes time tS of the larger species.

11184 | Soft Matter, 2011, 7, 11177–11186
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From our simulation data, taking into account only the linear

regimes, we can calculate the growth rates of the undulations for

a range of wave lengths. The results of these calculations are

presented in Fig. 9.

To calculate the growth rates theoretically, we require the

equations describing the flow of a viscous fluid with varying

density. These are the equation of continuity, which expresses the

conservation of mass in the system, and the conservation of

momentum equation. Using these equations and considering the

fluid as incompressible we can write22

D

��
r� m

n

�
D2 � k2

��
Duz � 1

n
Dm

�
D2 þ k2

�
uz

�
þ k2 g

n2
Druz

� k2
h
r� m

n

�
D2 � k2

�i
uz þ 2

k2

n
DmDuz ¼ 0; (7)

where D ¼ d/dz denotes the derivative with respect to the z

coordinate, r is the density and m the viscosity. The velocity uz
must satisfy the boundary conditions uz ¼ 0 and Duz ¼ 0 at z ¼
0 and z ¼ Lz. Eqn (7) is a fourth order boundary value problem

with variable coefficients, which makes solving it non-trivial.

Hence, we must employ numerical techniques. We follow ref. 39

and 40 and divide the fluid intoN layers of finite thickness, within

which the density and viscosity are treated as constant. In the

limit of sufficiently large N eqn (7) can be solved for arbitrary

continuous density and viscosity profiles. Treating density and
This journal is ª The Royal Society of Chemistry 2011
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Fig. 9 Growth rates nsD plotted against wave numbers ks of the insta-

bility as obtained from the simulations (symbols) and theory (lines). sD is

the diffusion time of larger colloids (B) and the length s is taken as the

average particle diameter, s¼ (sAA + sBB)/2. In all cases PeB¼ 12 and we

plot the systemswithPeA¼ 6,12 and 18, for: a)NA¼ 2NB and b)NA¼NB.
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viscosity as constants within a layer allows us to formulate an

analytical solution within this region. Depending on the specific

configuration we define a certain number of layers, and impose

boundary conditions for each of them.22 We differentiate

between the two outermost layers that are touching the walls of

the simulation box and the inner layers. Each of the surfaces of

contact between two fluid layers gives 4 boundary conditions and

each of the wall boundaries gives 2 boundary conditions, alto-

gether giving 4N equations that we must solve. In the process of

solving these equations we obtain a dispersion relation from

which we extract the n(k) dependence. Typically we find that we

must use N � 20–30 layers in the calculation.

We use this method to solve eqn (7) for the density profile r(z)

and the viscosity profile m(z) obtained from our simulations. As

previously noted, in Fig. 2 we can see that regardless of the initial

distributions of the individual particle species within the sedi-

ment, the overall initial density profiles resemble those of a one-

component system19 - in the sample preparation process the

colloidal material simply settles on the bottom wall of the

simulation box to minimize the potential energy. This suggests

that from a macroscopic perspective we should be able to analyze

the instability in terms of the instability of a complex fluid

described by the overall density and viscosity profiles, rather than

those of the individual species. Based on the colloidal packing

fraction profiles, which we obtain from the equilibrated simula-

tions, we calculate the mass density as r(z)¼ fA(z)rA + fB(z)rB +

(1 � fA(z) � fB(z))rf, where fA(z) and fB(z) are the colloidal

packing fraction profiles and rA, rB and rf are mass densities of

species A, B and the fluid respectively.

Calculating the viscosity from the simulation data, i.e. as

a function of the particle packing fraction, turns out to be

surprisingly difficult for our systems. Since the suspensions we
This journal is ª The Royal Society of Chemistry 2011
are studying are not dilute, most of the standard methods (see

e.g. ref. 41) are not valid. Instead we use a viscosity description

proposed by Mendoza and Santamaria-Holek41 which is valid

for concentrated suspensions of mono- and poly-disperse

colloidal particles. With the density and viscosity profiles calcu-

lated we extract the n(k) dependence from eqn (7) and plot this in

Fig. 9 for each of our systems. We note that it is also necessary to

include a correction of the form n*(k) ¼ n(k) � (DA + DB)k
2

which takes into account the effects of particle diffusion,21 where

DA and DB are the diffusion constants of particles A and B

respectively.

We first note that for all systems studied we find excellent

qualitative and quantitative agreement between the theoretical

predictions and the simulation results. We observe that for both

mixtures (NA ¼ 2NB and NA ¼ NB) the growth rates reach their

maxima at finite values of the wave number k. The wave lengths

corresponding to the wave numbers for which the maxima are

reached are the initially fastest growing wave lengths. In Fig. 9 it

can also be seen that the growth rates are larger for systems with

larger Peclet numbers of species A. This indicates that the

interface undulations, which develop as a consequence of the

instability, develop faster for systems with higher PeA. The

interface between the colloid-rich and the pure solvent regions in

these systems deforms faster and allows the fluid to penetrate the

colloidal layer sooner. This leads to faster formation of the swirls

that facilitate the fast sedimentation of the colloidal material

(see also Fig. 8), until the system reaches a stable configuration.
4 Conclusions

Using a computer simulation technique that incorporates both

long ranged hydrodynamic interactions between particles and

Brownian forces acting on them, we have studied the sedimen-

tation of binary mixtures of hard sphere-like colloids confined to

a slit on the particle-scale level. Initial configurations which are

vertically inhomogeneous in such a way that a heavy colloid-fluid

layer is placed above pure solvent, are not stable with respect to

gravity and hence result in the formation of a Rayleigh-Taylor-

like instability. In this paper, we have investigated the effects of

changing the strength of the gravitational drive of one of the

species, by changing its Peclet number, on the formation and

development of the instability, and on the properties of the

transient network-like structures that form during the sedimen-

tation. By keeping the Peclet number of the larger particles fixed

and changing that of the smaller particles we have simulated

a range of relative Peclet number scenarios for two different

mixtures.

We find that the organization of the particles within the

droplets formed during the sedimentation depends substantially

on the relative Peclet numbers and less so on the composition of

the mixture. For mixtures in which the smaller particles have

relatively larger Peclet numbers dense droplets, with smaller

particles mostly on the inside and larger particles mostly on the

outside, form. For mixtures in which the smaller particles have

relatively smaller Peclet numbers we again see the formation of

droplets, but without any specific organization of particles within

them. Our results indicate that when the smaller particles have

larger Peclet numbers, within the instability they cluster to
Soft Matter, 2011, 7, 11177–11186 | 11185

http://dx.doi.org/10.1039/c1sm05930k


D
ow

nl
oa

de
d 

by
 U

ni
ve

rs
ite

it 
U

tr
ec

ht
 o

n 
01

 F
eb

ru
ar

y 
20

12
Pu

bl
is

he
d 

on
 1

3 
O

ct
ob

er
 2

01
1 

on
 h

ttp
://

pu
bs

.r
sc

.o
rg

 | 
do

i:1
0.

10
39

/C
1S

M
05

93
0K

View Online
facilitate forcing their way through the lower layers of the

suspension, causing a backflow of larger colloids together with

the solvent. Therefore, to maintain a mixed sample throughout

the sedimentation process it would be desirable to have smaller

colloids with a relatively lower Peclet number.

The calculations of the spatial velocity correlation functions

allow us to follow the development of the instability in time by

following the changes of the length scale over which the particle

velocities are correlated. As the instability develops the correla-

tion length increases, showing the existence of length scales over

which the particle velocities are correlated, followed by regions of

anti-correlation, and then by regions of correlation again at even

larger distances. The distances at which we see anti-correlations

correspond to the average distances between regions of particles

moving in opposite directions, giving us an indication of the sizes

of the droplets. Also, for larger Peclet numbers we see that the

correlation lengths no longer grow monotonically and that the

higher the Peclet number, the faster the development of the

instability. For denser systems, i.e. more particles in the slit, we

see that the characteristic dimensions of colloidal droplets made

of particles with correlated velocities are larger. We also find that

the second correlation regions are more pronounced for these

denser systems, indicating that the droplets are more compact.

Finally, we have calculated the growth rates of the unstable

modes both from our simulation data and via a linear stability

analysis, finding good qualitative and quantitative agreement.

We find that the instability behavior depends only on the

macroscopic properties of the complex fluid and not on the

specific distributions of colloids within the mixture. Our results

show the existence of a wave length of fastest growth for each

system studied. Increasing the Peclet number of the smaller

particles leads to the overall increase in the magnitude of the

growth rates, i.e. the interface between the colloid-rich and pure

solvent regions deforms faster. We also find that the wave

numbers corresponding to fastest growing wave lengths increase

with the Peclet number.

In conclusion, we find that the key parameter for the manip-

ulation of distribution of colloids within the Rayleigh-Taylor-

like instabilities in binary colloidal mixtures is the relative

magnitude of the Peclet numbers of the particle species, while the

instability of the complex fluid itself can be described by overall

density and viscosity profiles. In an experimental system these

parameters could be controlled by fabricating colloids from

different materials and adjusting the solvent density.
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