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We use computer simulations to investigate the crystallization dynamics of sedimenting hard spheres
in large systems (hundreds of thousands of particles). We show that slow sedimentation results pri-
marily in face-centered cubic (fcc) stacked crystals, instead of random hexagonal close packed or
hexagonal close packed (hcp) crystals. We also find slanted stacking faults, in the fcc regions. How-
ever, we attribute the formation of fcc to the free energy difference between fcc and hcp and not to
the presence of these slanted stacking faults. Although the free energy difference between hcp and
fcc per particle is small (only 10−3 times the thermal energy), it can become considerable, when
multiplied by the number of particles in each domain. The ratio of fcc to hcp obtained from dynamic
simulations is in excellent agreement with well-equilibrated Monte Carlo simulations, in which no
slanted stacking faults were found. Our results explain a range of experiments on colloids, in which
the amount of fcc increases upon lowering the sedimentation rate or decreasing the initial volume
fraction. © 2011 American Institute of Physics. [doi:10.1063/1.3609103]

I. INTRODUCTION

The bulk phase behavior of hard spheres has been stud-
ied in great detail and is well-understood by now. In particu-
lar, it was shown by computer simulations that such a system
shows a purely entropy-driven phase transition from a disor-
dered fluid phase to a face-centered-cubic (fcc) crystal phase
at sufficiently high densities.1–3 Although the fcc phase is the
most stable phase, the free energy difference with respect to
the metastable hexagonal-close-packed (hcp) structure is only
very small, on the order of 10−3kB T per particle at the melting
transition.4 Here, we define kB as Boltzmann’s constant and
T as the temperature. Computer simulations of hard spheres
have shown that crystals formed spontaneously in a supersat-
urated fluid predominantly have a random-hexagonal-close-
packed (rhcp) structure.5, 6

Suspensions of colloidal particles can serve as excellent
experimental realizations of the hard-sphere system as the ef-
fective interactions of the colloids can be tuned in such a way
that the particles interact approximately as hard spheres.7, 8

However, gravity is often non-negligible in colloidal suspen-
sions, as in most common solvents the gravitational energy
corresponding to a height difference of about one colloid di-
ameter is comparable to the thermal energy for micron sized
colloidal particles. Hence, a spatial inhomogeneous suspen-
sion is obtained due to the gravitational field. The param-
eter that is associated with a gravitational field is the so-
called gravitational length and reads �/σ = (βmgσ )−1, where
m is the effective or buoyant mass of the colloidal particles,
β = (kB T )−1, σ is the diameter of the colloids, and g is the
gravitational acceleration. The Peclet number Peσ ≡ σ/� is
also used. If a gravitational field is applied to a fluid of col-
loidal particles,9–18 the density will become inhomogeneous.
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Furthermore, if, due to the gravitational field, the density at
the bottom increases sufficiently, the system can start to crys-
tallize upwards from the bottom.

Crystallization in sediments of hard spheres was studied
using Monte Carlo (MC) simulations and density functional
theory 12–16, 18 and for colloids by confocal microscopy.19, 20

The simulations in Ref. 12 show a discontinuous transition
where the first two layers crystallize at the same gravita-
tional field strength. Upon increasing the gravitational field
further, the crystalline film grows continuously. However, in
contrast with the simulation results12 density functional the-
ory predicts discontinuous crystal growth via layering transi-
tions upon increasing gravity. In a recent simulation study,21

the freezing transition in suspensions of hard spheres was in-
vestigated in more detail. This study supported the continu-
ous layer-by-layer growth as found in the Monte Carlo sim-
ulations of Biben et al.12 Furthermore, it was shown that the
chemical potential μ at which the nth layer crystallizes can be
predicted by a simple expression, which we will use to grow a
crystal of hard spheres in a controlled layer-by-layer fashion
in this study.

Stacking faults are irregularities in the way in which crys-
talline layers are stacked on top of each other. In this work,
we will consider fcc to be the defect-free crystal, since it is
the equilibrium structure (even though the free energy dif-
ference with hcp is very small). A stacking fault in a fcc
crystal is a juxtaposition of two hcp layers.22 Colloids that
exhibit hard sphere-like interactions are an ideal system for
studying stacking faults, since the free energy for a stacking
fault23 is only around 10−4kB T/a2, where a is the lattice con-
stant of a hard-sphere crystal. For comparison, face-centered-
cubic atomic systems, such as Cu (Ref. 24) and γ -Fe,25 have
a stacking fault energy of several kB T/a2, limiting the size
of mis-stacked domains to a few unit cells. The stacking of
colloidal crystals as found in natural opals26 as well as self-
assembled20, 27–33 and convectively assembled34, 35 crystals
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of synthetic colloids has been extensively investigated
experimentally.

The effect of gravity on the stacking of colloidal crys-
tals has been made apparent by comparing crystals grown on
earth to those grown in reduced gravity. Reduced gravity can
be achieved either by adjusting the mass density of the solvent
to be almost equal to the mass density of the colloids,27, 31

by performing the experiments in microgravity36–39 or even
by applying an electrophoretic force opposing gravity.40 It
should also be noted that the particle diameter σ ranges
from 200 nm to 1 μm, which implies that the Peclet num-
ber (∝ σ 4) can change by three orders of magnitude depend-
ing on the diameter. Crystals grown in reduced gravity show
random stacking with almost equal probabilities to find fcc
and hcp (Refs. 27 and 36) at least in the first few days af-
ter the onset of the crystallization.37 The experiments with
a non-negligible gravitational field seem to fall in roughly
three categories, (i) slow sedimentation starting from a low
volume fraction or with a small Peclet number; (ii) fast sed-
imentation starting with a volume fraction below the density
of the bulk fluid at coexistence with the crystal; and (iii) ex-
periments that have an initial volume fraction that lies above
the coexistence density of the fluid. In case (i), heteroge-
neous nucleation occurs at the bottom wall and mostly fcc
grows.28–30 Randomly stacked crystals grow upon fast sedi-
mentation after nucleation at the bottom wall in case (ii) and,
finally, in case (iii), homogeneous nucleation of rhcp in the
bulk of the sample occurs as well as heterogeneous nucle-
ation at the wall. It is worth noting here that a recent sim-
ulation study shows that the critical crystal nucleus which
forms in the bulk of a supersaturated hard-sphere fluid is pre-
dominantly fcc-like.41 However, the nucleus grows out to a
mostly rhcp crystal with only a small preference for fcc. The
rhcp crystal formed in cases (ii) and (iii) as well as under re-
duced gravity, slowly transforms to fcc (Refs. 31, 32, 37, 38,
and 42) as predicted by Pronk and Frenkel.23 However, the
rate at which this transition occurs is usually higher than ex-
pected, which has been explained by the mechanical pertur-
bations that are unavoidable during manual handling of the
sample.32

Homogeneous nucleation during sedimentation is diffi-
cult to interpret and can only be related to the bulk behav-
ior in a simple way using an extrapolation to the time of
homogenization.43 A crystallite of colloids will have a higher
mass density than the surrounding colloidal fluid phase, be-
cause the number density in the crystal is larger than that in
the fluid. Even though this density difference is small, the net
gravitational force on the crystallite will become important
during some stage of the crystallization (even if the gravita-
tional length is large), as the net mass of the crystallite will
increase with its radius cubed, while its drag coefficient scales
only linearly with its radius. The resulting sedimentation ve-
locity difference between a crystallite and the surrounding
colloidal fluid phase might cause sufficient shear near the sur-
face of the crystallite to affect the stacking.32 Simulations on
these types of systems would require full calculations of the
hydrodynamic interactions for large numbers of particles and
would be prohibitively slow. Therefore, we focus on systems
with initial volume fractions below bulk coexistence, in which

the crystallization occurs at the wall and the hydrodynamic in-
teractions play a minor role.

When the initial volume fraction is low, the structure of
the crystal seems to be mainly influenced by a parameter in-
troduced by Hoogenboom et al.,28 the product of the initial
volume fraction, and the Peclet number, which is proportional
to the flux of particles from the homogeneous, sedimenting
bulk fluid onto the sediment. When this flux is low, the sys-
tem has time to equilibrate and the fraction of fcc is large,
whereas predominantly randomly stacked layers are found if
the particle flux is high. Interestingly, observation by both
x-ray scattering33 and confocal microscopy20 indicates that
these randomly stacked layers are grouped and that these re-
gions of randomly stacked layers are intermixed with regions
of almost pure fcc with a single stacking direction (i.e., no
twinning defects) for intermediate sedimentation fluxes. Hil-
horst et al., showed that these fcc regions often contain a
slanted stacking fault, that is a stacking fault (2 subsequent
hcp stacked layers) which runs along one of the (1̄11), (11̄1),
or (111̄) planes, if the (111) plane is aligned with the bot-
tom wall. As the crystal grows up from the bottom wall,
it grows along the slanted stacking fault and in this way,
Hilhorst et al.20 proposed that the stacking is forced to be fcc
with a fixed stacking direction (see Sec. III A and Ref. 44). Al-
though slanted stacking faults in colloidal systems were first
observed45 as misfit dislocations46, 47 that relieve stress due to
an ill-fitting template, Hilhorst et al. argued that slanted stack-
ing faults can also originate from a line where two differently
stacked domains meet.20

In this work, we study the crystalline structure of sedi-
ments of hard spheres as obtained from dynamic simulations.
To this end, we have employed a simulation method where
event driven molecular dynamics are extended with Brown-
ian motion. Using this method, we are able to achieve sys-
tem sizes large enough to investigate spontaneously grown
defect structures, such as slanted stacking faults.20 We con-
firm the increase in the fraction of fcc stacked particles
α = Nfcc/Ncrystal with decreasing initial volume fraction as
observed in experiments. Second, slanted stacking faults are
found using a combination of order parameters and their
number is shown to be correlated with the amount of fcc
stacked layers. However, we propose an alternative expla-
nation for the increase of the fraction of fcc with decreas-
ing volume fraction: the amount of fcc is simply determined
by the small bulk free energy difference per particle be-
tween hcp and fcc multiplied by the size of a typical do-
main. A slanted stacking fault is then simply a type of defect
that can only occur in fcc crystallites and not in hcp re-
gions. Three-layer stacking probabilities are shown to be in
agreement with the bulk free energies from Ref. 48. As fur-
ther proof of the role of the bulk free energy in determining
the stacking of sedimented hard sphere crystals, we perform
Monte Carlo simulations similar to the ones performed for
dumbbells under gravity.49 A large probability for a layer to
stack fcc-like was also found in these simulations, in which
no slanted stacking faults were formed. Finally, the results
of Hilhorst et al.20 are reinterpreted by assuming a distri-
bution of domain sizes: domain sizes above the critical do-
main size for the formation of fcc are predominantly fcc
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stacked, domains smaller than this critical size are randomly
stacked.

II. SIMULATION METHODS

A. Model

We consider a system of hard spheres with diameter
σ in a gravitational field oriented along the z-direction.
The spheres are confined between two smooth hard parallel
walls at z = 0 and z = H and are subjected to the external
potential:

φ(z) =
{

mgz, σ/2 ≤ z ≤ H − σ/2

∞, otherwise
, (1)

where z is the vertical coordinate, g is the gravitational ac-
celeration, and m is the buoyant mass of the hard spheres.
The height H is chosen such that the final density at the top
of the box ρ(z = H − σ/2) is negligibly small and thus the
system can be considered to be infinite in the z−direction.
The Peclet number was Peσ = 1 for all simulations consid-
ered unless stated otherwise. This value of the Peclet num-
ber corresponds to the lighter of the two types of colloids of
Hoogenboom et al.28

The event driven Brownian dynamics simulations (see
below) were performed in the N V T ensemble, using a num-
ber of particles N = 105 or 4 × 105, while the simulation box
had a horizontal area of A = 50σ × 50σ or 100σ × 100σ ,
such that the number of particles per area was always 40/σ 2.
The initial configurations of these simulations were homo-
geneous fluids with initial volume fractions φi = 0.010467,
0.02, 0.05, and 0.2. A volume of A × (H − σ ) was randomly
filled with N = 105 or 4 × 105 non-overlapping spheres up
to a certain density for a height H − σ . Unless specified oth-
erwise, all event driven Brownian dynamics simulations (see
Sec. III B ) were performed with the lowest initial volume
fraction (φi � 0.01). This initial volume fraction was chosen
to match the experimental conditions of Hoogenboom et al.28

MC simulations were performed in both the N V T and μV T
(grand canonical) ensemble. Using N V T MC simulations,
the effect of gravity on perfect crystals was studied; there-
fore, the bottom part of the simulation box was filled with an
initially perfect crystal of 60 layers with a lattice constant of
1.06σ or 1.1σ . The lateral dimensions of the simulation box
in all types of MC simulations were chosen to match a per-
fect hexagonal layer with dimensions na × m

√
3a, for inte-

gers n, m. The μV T MC simulations21 (in which the number
of particles varies to maintain a constant chemical potential
μ) were used to grow a well-equilibrated crystal in a series of
simulations by increasing the chemical potential, such that ex-
actly a single crystalline layer grows during each simulation.
The initial configuration of the first run of this series consisted
of a well-equilibrated fluid-like sediment.

B. Sedimentation versus crystallization

The faster the sedimentation and the higher the initial vol-
ume fraction, the less time the sediment has available for equi-
libration during the sedimentation. To quantify the available

time for equilibration, we define the dimensionless particle
flux as

J = vdρiσ
2τ L

s , (2)

where vd is the sedimentation velocity and ρi is the initial
number density. The flux J is equal to the number of particles
that traverse an area equal to the diameter squared σ 2 in a time
τ L

s = σ 2/(6DL
s ), where DL

s is the long time self-diffusion
constant. We use the long-time self-diffusion constant DL

s
of the fluid just below coexistence with the crystal (with
φ � 0.49) in Eq. (2), since we are interested in rearrange-
ments during crystallization. Measurements of DL

s in exper-
iments have been performed for this packing fraction, which
resulted in DL

s /D0 � 0.051,50 where D0 = kB T/(6πηR) is
the Stokes-Einstein diffusion constant with the dynamic vis-
cosity η and the radius of the colloids R = σ/2. We measured
DL

s in our event driven Brownian dynamics simulations and
obtained DL

s /D0 = 0.03252(1) (the difference is due to the
simulation method, see Sec. III B). For high values of J we
expect small crystalline domains and many defects or even
a glass, while for low values we expect large crystalline do-
mains with few defects. Another motivation for using J to
characterize the deviation from equilibrium can be given by
noting that J is approximately equal to the time that is needed
to equilibrate a layer divided by the time that is available for
equilibration. We assume that local equilibrium is reached af-
ter a time τ L

s , which then corresponds to the required time to
equilibrate a layer of particles. The time available for equi-
libration is of the order of the sedimentation time of a layer
τsed = Nlay/(ρi vd A), where Nlay is the number of particles in
a layer with area A. Dividing τ L

s by τsed and using A � Nlayσ
2

for hard spheres, one obtains J . The dimensionless flux J can
be written in terms of the Peclet number Peσ = vdσ/D0, the
initial volume fraction φi , and DL

s /D0:

J = Peσ

D0

DL
s

φi

π
� τ L

s

τsed
. (3)

The values for J of this work are compared to those of three
experimental studies in Table I. In all experimental studies
where J is considerably smaller than one, large amounts of
fcc crystals were found, while for J > 1 no preference for fcc
was found. For the experimental study,20 J varied between
0.12 and 0.62 and indeed both fcc and rhcp crystallites were
found, such that the average stacking parameter is between
0.5 and 1.

Note that the definitions of the Brownian time and the
Peclet number that are used in the literature19, 51, 52 vary by
constant factors of order unity. For instance, Hoogenboom
et al.28 used �ρgR4/kB T for the Peclet number, such that
their definition of the Peclet number differs from ours by a
factor of about 8.

C. Event driven Brownian dynamics (BD) simulations

Experiments on colloidal hard spheres have been per-
formed to study certain types of defects in colloidal
crystals.20, 53–55 Furthermore, these defects have been claimed
to have an effect on the stacking of colloidal crystals.20 A
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TABLE I. The Peclet number Peσ , initial volume fraction φi , and the di-
mensionless particle flux due to sedimentation J [Eqs. (2) and (3)] of the
simulations in this work, which are compared to those of the experiments
from Refs. 20, 28, and 29.

Peσ φi J

This work 1.015 0.0105 0.104
1.015 0.020 0.199
1.015 0.051 0.503
1.015 0.2 1.987
0.5008 0.104 0.518
0.5008 0.207 1.030

Expt. (Ref. 28) 1.1 0.002 0.014
1.1 0.004 0.027
4.19 0.005 0.13
4.19 0.026 0.68
4.19 0.052 1.36

Expt. (Ref. 20) 0.2 0.1 0.12
0.2 0.2 0.25
0.2 0.5 0.62

Expt. (Ref. 29) 0.002 4 × 10−5 5 × 10−7

0.08 0.002 0.001

large system size is required to study these defects in simu-
lations in order to correctly simulate the long-range deforma-
tions these defects cause in the crystals. Hard spheres cannot
be treated exactly using conventional BD simulations as the
particles only interact during the instant they collide. This in-
stant will always be missed in conventional BD simulations,
where the forces between the particles are only evaluated at
discrete time intervals. Therefore, a very steep, but finite in-
teraction potential is usually used to model colloids. Unfor-
tunately, a very small step size is required to accurately inte-
grate the resulting equations of motion, which slows down the
simulations. Therefore, the system sizes of interest (hundreds
of thousands of particles) cannot be simulated using conven-
tional Brownian dynamics techniques.

Molecular dynamics (MD) of hard spheres are possible
using event driven simulations. In these simulations the equa-
tions of motion are integrated exactly, which is only possible
because the particles exhibit free motion in between collisions
and the collisions occur instantly and, therefore, only involve
two particles. Therefore, we used an event driven BD sim-
ulation very similar to the techniques employed by Strating
and Scala et al.56, 57 We adjust the conventional event driven
MD simulations by randomly adjusting the velocities of the
particles at regular intervals �t . This randomization, which is
similar to the velocity adjustment of an Anderson thermostat,
reads

v(t + �t) = αt v(t) + βt vR(t), (4)

where vR(t) is a random uncorrelated three-dimensional (3D)
Gaussian variable with mean 0 and variance kB T/m. Further-
more, αt is α0 with probability ν�t and 1 otherwise. It can be
shown that setting βt =

√
1 − α2

t keeps the temperature con-
stant. Finally, ν is similar to the collision frequency of an An-
derson thermostat. The velocity adjustment equation (4) to-
gether with the usual position and velocity updates of an event
driven MD simulation define event-driven Brownian dynam-

ics (EDBD). Previous versions of EDBD,56, 57 are obtained if
α0 and ν�t are set to one.

Our version of event driven BD mimics Langevin dynam-
ics with friction factor γ = (1 − 〈αt 〉)/�t for small γ�t . The
motion of a single particle with no forces other than these ve-
locity adjustments can be integrated analytically to obtain the
mean square displacement, and the corresponding diffusion
constant reads

D = 〈�r (t)2〉/(2t) = kB T

m

1 − γ�t/2

γ
, (5)

which has the correct value for a friction constant γ apart from
the factor 1 − γ�t/2 which is almost unity for small γ�t .
The drift velocity vd , when a gravitational acceleration g is
applied, can also be calculated and the corresponding Peclet
number reads

Peσ = vdσ

D
= 1

1 − γ�t/2

mgσ

kB T
, (6)

which differs from the usual value by 1/(1 − γ�t), due to the
presence of this factor in the diffusion constant.

The values ν = 10τ−1
MD, �t = 0.01τMD, and α0

= β0 = 1/
√

2 are used in all our simulations, where τMD

is the natural time unit of an event driven MD simulation,
such that mσ 2/τ 2

MD = kB T . Inserting these values into the
definition of γ , γ�t = 1 − 〈αt 〉 = �tν(1 − α0) = 0.1(1
− 1/

√
2) � 0.0293, which is indeed considerably smaller

than 1, showing that our event driven BD approximates
Langevin dynamics well. The Peclet number for our system
is ∼Peσ = 1.015. The Brownian time reads

τB = σ 2

6D
� 0.495τMD. (7)

The Brownian time τB will be used as a unit of time through-
out this work.

Unfortunately, the particles in our event driven Brownian
dynamics simulations, like in the Langevin dynamics simula-
tions they resemble, have finite inertia, which is a disadvan-
tage when simulating colloids that do not have significant in-
ertia. The inertia in our simulations most clearly shows up in
the self-diffusion for large packing fractions, which does not
show diffusive behavior at very short times, since the “colli-
sions” with the thermostat are almost always preceded by a
particle–particle collision. However, we do not expect the ef-
fects of this finite inertia to have a large effect on our results
for the following reasons: (i) The initial packing fraction is
chosen to be small, such that during the sedimentation stage
the colloids have a large mean free path and do show diffu-
sive behavior in between collisions. (ii) By comparing with
equilibrium Monte Carlo simulations, we show that the sedi-
ment is always in quasi-equilibrium during the crystallization
stage, such that the exact details of the short time dynamics
are not important. For the same reasons, we do not expect
hydrodynamics to play a large role in an experiment with a
similar setup as our simulations (except for slowing down the
diffusion in the sediment, which is taken into account in def-
inition (2) of the dimensionless flux J ). In summary, we de-
veloped a new simulation technique, event driven Brownian
dynamics simulations, which has the (in our case, slight) dis-
advantage of finite inertia, but which is also the only available
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simulation technique that combines diffusive dynamics with
the ability to simulate systems of hundreds of thousands of
particles.

D. Order parameters

We use a large set of order parameters to find the stacking
and to automatically identify slanted stacking faults and (100)
oriented crystals, that is, fcc domains whose (100), (010), or
(001) plane is aligned with the bottom wall. However, all of
these order parameters are well studied in the literature and
we refer to the corresponding references for the analysis of
their performance. We checked the performance of several or-
der parameters and identified the ones that allow us to analyze
the stacking, the slanted stacking faults, and the orientation of
the fcc domains in crystalline sediments of hard spheres. We
will define the order parameters we use and our values for the
adjustable parameters that feature in their definitions. In the
calculation of the 3D bond order parameter, a list of “neigh-
bors” is determined for each particle. The neighbors of par-
ticle i include all particles within a radial distance rc = 1.3σ

of particle i , and the total number of neighbors is denoted by
Nb(i). An (un-normalized) bond order parameter qu

l,m(i) for
each particle is then defined as

qu
l,m(i) = 1

Nb(i)

Nb(i)∑
j=1

Yl,m(θi, j , φi, j ), (8)

where θi, j and φi, j are the inclination and azimuth of the bond
between i and j and Yl,m(θ, φ) are the spherical harmonics
with m ∈ [−l, l]. The normalized bond order parameters are
defined as

ql,m(i) ≡ qu
l,m(i) /

(
l∑

m=−l

|qu
l,m(i)|2

)1/2

. (9)

Solid-like particles are identified58 as particles for which
the number of crystalline connections per particle ncon(i) is
greater than a critical number nc = 4. A neighbor j of par-
ticle i forms a crystalline connection with i , if d6(i, j) > dc,
where the symmetry index l is chosen to be 6, dc = 0.7 is
a threshold value, and dl (i, j) is the correlation between the
bond orientational order of particle i and j given by

dl (i, j) =
l∑

m=−l

ql,m(i)q∗
l,m( j). (10)

In order to determine the stacking of the crystalline lay-
ers we first need to locate the hexagonal layers. To this end
we measure the n-fold two-dimensional bond order parame-
ter ψ S

m(i) of particle i in its environment of type S (see below),
defined as

ψ S
m(i) = 1

N (i)

N (i)∑
j=1

exp(mıθi j ), (11)

where the sum over j is over the N (i) particles in the en-
vironment (of type S) of particle i , θi j is the angle between
the projection of ri j ≡ ri − r j on the horizontal plane and

some arbitrary horizontal axis, and ı (without dot) is the imag-
inary number. The environment for ψ

layer
m (i) is defined by the

nearest neighbors j in the same layer, for which |z j − zi |
< 0.5σ and the horizontal distance ρi j between i and j is less
than rc = 1.3σ . We use the hexagonal order parameter ψ6(i)
≡ |ψ layer

6 (i)| to determine the crystalline order within a hor-
izontal layer. The environment of a solid-like particle i is
hexagonal ordered in the plane perpendicular to gravity, if
ψ6(i) > 0.7. The stacking can only be defined if the neigh-
bors in the layer above and below i are hexagonally ordered
and are a part of the same crystalline domain. This is de-
fined to be the case if ψ surr

6 (i) ≡ |ψ+
6 (i) + ψ−

6 (i)| > 0.5 with
ψ S

6 (i) being the hexagonal order parameter of particle i . Here
S = + corresponds to the neighbors j in the layer above par-
ticle i , for which 0.55σ < (z j − zi ) < 1.2σ and ρi j < 0.95σ ,
while S = − corresponds to the neighbors in the layer below
i , for which −1.2σ < (z j − zi ) < −0.55σ and ρi j < 0.95σ .
Note that there are particles j with 0.5σ < |z j − zi | < 0.55σ ,
which are excluded from the calculation of both ψ

layer
m (i) and

ψ±
m (i). However, the number of excluded particles is very

small, as the region 0.5σ < |z j − zi | < 0.55σ is only 0.05σ

thick and will most of the times be located in between the
layers, where the density is small.

To determine the stacking of the hexagonal layers we
use the trigonal bond order parameter of particle i , ψ S

3 (i),
where the neighbors corresponding to S = ± are defined
analogously to ψ S

6 (i). For perfect fcc, ψ fcc
3 (i) ≡ |ψ+

3 (i)
+ ψ−

3 (i)| = 1, while ψ
hcp
3 (i) ≡ |ψ+

3 (i) − ψ−
3 (i)| = 1 for per-

fect hcp. The stacking parameter α(i) ≡ ψ fcc
3 (i)/[ψ fcc

3 (i)
+ ψ

hcp
3 (i)] measures whether particles are fcc or hcp stacked.

Particle i belongs to a (111) oriented fcc domain if α(i) > 0.5
and to a hcp domain otherwise.

In order to identify the stacking faults, we use the av-
erage local bond order parameters w̄l(i). Following Lechner
et al.,59 a crystalline particle i is identified as fcc stacked when
w̄4(i) > w̄c and hcp stacked otherwise. Here, w̄l(i) is defined
as

w̄l(i) =
∑

m1,m2,m3

′
(

l l l
m1 m2 m3

)
q̄l,m1 (i)q̄l,m2 (i)q̄l,m3 (i) (12)

with ( l l l
m1 m2 m3

) being the Wigner 3 j symbols, the sums

over m1, m2, and m3 run over all values between −l and l
such that m1 + m2 + m3 = 0, and

q̄u
l,m(i) = 1

Ñb(i)

Ñb(i)∑
k=1

qu
l,m(k). (13)

The sum over k denotes a sum over the neighbors of particle i
including the particle itself. We use the threshold value w̄c

= −0.07. Finally, q̄u
l,m(i) are normalized using Eq. (9). In

principle, this parameter could also be used to define the
stacking of the horizontal layers. However, this might lead
to a bias towards either fcc or hcp, when threshold w̄c is
not chosen exactly right. The definition of α(i) using ψ fcc

3 (i)
and ψ

hcp
3 (i) as described above, has no such threshold value

and is guaranteed to lead to α = 0.5 for a crystal with per-
fectly random stacking. Furthermore, the distribution of α(i)
(not shown) for the particles that are (111) fcc or hcp has
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TABLE II. The various structures observed in the crystalline sediment and the criteria on the order parameters that we
use to find particles that belong to such structures. The various symbols are explained in the text.

Structure Conditions on particle i
Crystalline ncon(i) > 4

(111) oriented fcc ncon(i) > 4, ψ6(i) > 0.7, ψ surr
6 (i) > 0.5, and α(i) > 0.5

Hcp ncon(i) > 4, ψ6(i) > 0.7, ψ surr
6 (i) > 0.5, except α(i) < 0.5

Slanted stacking fault candidate ncon(i) > 4, ψ6(i) < 0.7, w̄4(i) > −0.07

Slanted stacking fault i is a slanted stacking fault candidate and nst(i) ≥ 4

(100) oriented fcc ncon(i) > 4, w̄4(i) ≤ −0.07, ψ6(i) < 0.7, and ψ4(i) > 0.5

two clearly separated peaks, (corresponding to fcc and hcp)
with a density of α(i) values that is nearly zero in between.
Finally, we also identify (100) oriented fcc domains by
w̄4(i) ≤ −0.07, ψ6(i) < 0.7, and ψ4(i) > 0.5.

In Table II, we list the structures which our analysis finds
and the corresponding conditions on the order parameters.
By definition, defect structures have limited crystalline order
and, consequently, they are hard to detect by crystalline order
parameters. For this reason, particles are occasionally mis-
identified as part of a slanted stacking fault, especially near
the crystal–fluid interface. Therefore, we first define for all
particles, whether or not they are a slanted stacking fault can-
didate as defined in Table II. Subsequently, a stacking fault
candidate i is defined to be part of a slanted stacking fault, if
it has more than a certain number of neighbors that are also
slanted stacking fault candidates; we denote the number of
such neighbors by nst(i). With this modification, the identifi-
cation of the various defect features is surprisingly accurate.

III. RESULTS AND DISCUSSION

We performed five separate EDBD runs of N = 4 × 105

particles with varying initial volume fractions. First, we will
discuss the results for the lowest volume fraction φi � 0.01
and subsequently we will discuss the effect of volume fraction
on our results. In this entire work, the gravitational length � is
set to σ (Peσ � 1).

We show the onset of crystallization and the final config-
uration of the crystal as observed during these runs with the
aid of typical snapshots in Fig. 1.60 The particles are colored

depending on whether a particle is a part of a fcc or hcp crys-
tal, or a slanted stacking fault, which is determined using the
methods described in Sec. II D. At first, particles that have
sedimented onto the bottom wall form a fluid that becomes
increasingly dense due to the increasing gravitational pres-
sure. Once the pressure due to the gravitational push of par-
ticles in the sediment reaches the crystallization pressure, the
system starts to crystallize. Just after the crystallization of the
first layers, the fluid–crystal interface can be seen to be very
rough in Fig. 1(a), with small piles of crystalline particles in
an otherwise disordered fluid phase. The roughness of this in-
terface is still visible when the sedimentation is completed,
see Fig. 1(b). Clearly, fcc particles, which are color-coded
green in Fig. 1, occur predominantly in the final configura-
tion. More quantitative information about the stacking of the
layers in the final configuration can be found in Fig. 2, where
the stacking parameter αn = N fcc

n /N stack
n of layer n is shown,

which is equal to the number of fcc particles N fcc
n in layer n

divided by the total number of particles N stack
n = N fcc

n + N hcp
n

in layer n for which the stacking could be defined. The stack-
ing parameter was averaged over five runs to obtain sufficient
statistics. In the experiments of Hoogenboom et al.19 and a
previous simulation study,21 it is shown that the local osmotic
pressure at which the first layer crystallizes is larger than the
local osmotic pressure at crystallization of the other layers.
Therefore, the crystallization of the second and third layer oc-
cur before the first layer is fully formed. For this reason, the
first few layers are not well-equilibrated, which presumably
explains the small value of αn for the first few layers n in
Fig. 2, which was also observed in experiments.28 For our

g g(b)(a)

FIG. 1. The side view of the sediment just after crystallization at t = 4441τB (a) and at the end of the simulation, t = 13928τB . The direction of gravity is
denoted by the arrow labeled “g.” The colors denote the stacking (light green: fcc, blue: hcp) and the defects (white: disordered/fluid, red: slanted stacking fault,
dark green: (100) oriented fcc). Gray particles are ordered, but the stacking could not be defined (see Sec. II D).
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FIG. 2. The fraction of (111) oriented fcc particles αn ≡ N fcc
n /N stack

n in layer
n as a function of n, where N fcc

n is the number of fcc-like particles (see Sec.
II D) and N stack

n is the number of particles in layer n for which the stacking
could be measured. The first layer is absent because no stacking parameter
αn can be defined for n = 1.

simulations, the third layer seems relatively well equilibrated
in that respect, since the stacking parameter α3 is large. How-
ever, the third layer of the sediment of Hoogenboom et al.28

was not predominantly fcc stacked, which might be explained
by the hydrodynamic interactions between the wall and the
colloids, which slow down the diffusion. We will focus on the
fourth layer and higher, in order to enable comparison with
experiments.

In Fig. 3, we show typical snapshots during the
crystallization and subsequent equilibration of the fourth
layer. Small crystallites form at first, as also visible from
Fig. 1, which are randomly stacked. When the crystallites
grow larger, more of these crystallites are found to be fcc
stacked. The horizontal growth of the crystallites proceeds un-
til they meet, at the time when a poly-crystalline sediment of
a few layers is formed. The smaller of the crystalline domains
in these layers slowly disappear, while the larger remain and
typically define the domains in the layers above. Further re-
arrangements are only possible after very long times. Inter-
estingly, these rearrangements sometimes result in the ap-
pearance of (100) oriented fcc crystallites, while a simple
calculation shows that the (111) oriented crystallites result in
a lower free energy, because the gravitational energy of the
(111) crystallites is lower, and the interfacial tension between
a fcc crystal and a hard wall is lowest if the (111) face of fcc
is at the wall.61 We observed that these (100) oriented crystal-
lites typically originate at grain boundaries where two or three
crystallites meet that have sufficiently incompatible lattice di-
rections. One of the horizontal lattice directions of the (100)
is always aligned with one of the original crystallites, while
the other one is usually aligned with one of the other original
crystallites, see Fig. 3. In this way, the (100) crystallites help
to relieve stresses on the interface between crystallites with
misaligned lattice directions.

A. Slanted stacking faults

Crystalline sediments of colloids usually contain many
defects, such as vacancies and grain boundaries. The most
striking defects are formed when, on top of a hexagonal do-

main with horizontal position A, two different domains grow,
for which particles occupy the B and C positions as depicted
in Fig. 4. Where these two domains meet, a (straight) line of
holes is formed, which are too small to fit a particle in. The
next layer can be A stacked, in which case the defect is cov-
ered over. The resulting line defect, due to ACA and ABA
stacked domains, can diffuse relatively easily and will likely
merge with another line defect (or grain boundary). Other
possibilities are ACA and ABC. In principle, ACB and ABC
are also possible, but this causes a wide line defect which is
unfavorable.53 Hilhorst et al. argued that the defect line of
holes will be partially filled with particles due to the gravita-
tional force on these particles. The configuration of the parti-
cles around the line defect causes these particles to be ACA
and ABC stacked.20 Therefore, the ACA and ABA scenario is
unlikely. Similarly, the defect will also persist in the next lay-
ers, forcing the stacking of both crystallites to be fcc. Such
a process results in planar defects along one of the (11̄1),
(1̄11), and (111̄) planes, if the plane of the fcc crystal aligned
with the bottom wall is (111). When such a planar defect is
shifted perpendicular to the plane of the defect, such that the
gap between the hexagonal layers on either side of the defect
is closed, a stacking fault (consisting of two hcp layers) is
formed (see Fig. 4). Stacking faults occur frequently in atomic
fcc crystals22 and are most likely also the planar defects that
cost the least free energy (per unit area) in hard-sphere crys-
tals. Because the stacking faults are slanted with respect to
the bottom wall in our case, they are called slanted stacking
faults. The shift that closes the aforementioned gap results in
a vertical displacement between the two horizontal domains
of about one third of a diameter.20 In practice, the vertical
shift starts out being zero at the originating line defect (the
gap between the B and C stacked domains) and it increases
slowly to σ/3 as the slanted stacking fault grows. Once this
vertical shift is formed, the formation of a single horizontal
domain that covers the defect is complicated further. In this
case, fcc continues to grow on both sides of the slanted stack-
ing fault (in a direction parallel to the stacking fault).53 It is
suggested that this effect explains the occurrence of fcc in col-
loidal sediments.20

The configurations in Figs. 1 and 3, show clearly that
the slanted stacking faults are the most common defects. If
slanted stacking faults indeed force the stacking to be fcc, one
should observe an increase in fcc after the number of slanted
stacking faults has increased. To investigate the order of these
two events, we show the behavior of the stacking parameter αn

and the fraction of particles that are part of a stacking fault as
a function of time in Fig. 5 for two individual layers n = 4 and
n = 15. The fourth layer forms fcc domains quite rapidly as
shown in Fig. 5, while the slanted stacking faults take longer
to fully develop. This is the case for all layers 3 < n � 8. For
these layers we do not expect the slanted stacking faults to
play a major role in determining the stacking. However, for
the layers n � 9, large slanted stacking faults emerge during
or immediately after the crystallization, probably due to the
presence of slanted stacking faults in the layers below. The
stacking parameter αn of layer n also increases at the same
time and, therefore, we are not certain that the larger value of
αn is caused by the slanted stacking faults.
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(d)(c)

(a) (b)

FIG. 3. The fourth layer (from the bottom) for different times t/τB = 4441 (a), 4643 (b), 4844 (c), and 13928 (d). Gravity is directed into the plane of the
figure. The colors are the same as in Fig. 1.

We notice that more slanted stacking faults in the lower
layers form at longer times, see Fig. 5. This cannot be ex-
plained by nucleation on a layer which has two adjacent do-
mains which are stacked differently, since the domains do
not change anymore. We postulate that these slanted stack-
ing faults are formed to relieve the stress caused by the de-
crease of the (gravitational) pressure with height in the sed-
iment. The lower layers form with a lattice constant close
to the coexistence value. However, the pressure on a layer
increases due to the increasing number of layers on top,
which should result in a smaller lattice constant of this
layer. However, a smaller lattice constant is incompatible
with the lattice of the layers above. To resolve the incom-
patibility of lattice constants, slanted stacking faults will be
formed, as has been shown by Schall et al. by sediment-

ing colloidal hard spheres on an ill-fitting template.45 In
a Monte Carlo simulation of an initially perfect fcc crys-
tal with a lattice constant of 1.1σ , around the coexistence
value, slanted stacking faults were also found (not shown).
However, a simulation with a lattice constant of 1.06σ , a
more reasonable lattice constant for the pressure at the bot-
tom (around 40kB T σ−3),21 did not show these defects. This
shows that slanted stacking faults can indeed form in or-
der to relieve stress, when part of a crystal becomes denser
than the rest of the crystal. Finally, crystallites with sim-
ilar lattice directions sometimes formed a single crystal-
lite by slowly changing lattice directions and the resulting
stress was also relieved with the aid of short slanted stack-
ing faults perpendicular to the interface between the original
crystallites.
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FIG. 4. (a) Top view of the origin of a slanted stacking fault (idealized):
when a B stacked domain (green) and a C stacked domain (blue) grows on
top of a single A domain (red), a line defect is formed (as indicated). A line
of particles (gray) on top of the defect have a lower z-position (the direc-
tion of gravity (opposite to the z direction) points into the plane). To avoid
overlap with the gray particles, only a C domain can grow on top of the B
domain. The defect in the top layer can be healed by slightly shifting the
gray particles and the particles in the C domain (as indicated by the yellow
arrows). (b) Side view of a slanted stacking fault observed in an EDBD sim-
ulation: the slanted stacking fault in yellow; fcc stacked particles are colored
green, hcp stacked particles are colored blue. No stacking can be defined for
the first layer (A); it is colored arbitrarily green. The hexagonal layers are
oriented perpendicular to the direction of gravity (as denoted by the arrow
labeled “g”).

B. Explanation of the stacking behavior

As we were unable to show that there is a link between
slanted stacking faults and the stacking parameter αn , we
propose an alternative explanation for the high values of α.
Our explanation is based on the free energy difference be-
tween fcc and hcp and therefore assumes that the system is
locally in thermodynamic equilibrium. Since the particle flux
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FIG. 6. The stacking parameter αn as a function of the layer number n. The
results from event driven Brownian dynamics simulations (EDBD) with hor-
izontal box sizes of 50σ × 50σ (dashed line) and 100σ × 100σ (dotted line)
are compared to grand canonical Monte Carlo simulations with horizontal
box size 40σ × 38.4σ (solid line). Small horizontal shifts are applied to the
points to allow easier distinction between them.

J � 0.104 in our simulations is not much smaller than the
one for the EDBD simulations, particles might not have suf-
ficient time to rearrange and reach local equilibrium. In order
to check whether or not our EDBD simulations correspond
with (near) thermodynamic equilibrium conditions, we per-
form grand canonical MC simulations, in which a thin sedi-
mentary crystal is grown essentially infinitely slowly. In ad-
dition, the thickness of the crystalline part of the sediment is
limited to 7 layers, so that stresses due to the pressure differ-
ences play hardly any role. Hence, the crystalline sediments
obtained from MC simulations, where no slanted stacking
faults are formed, can be regarded as well-equilibrated. We
note that the system sizes of the MC simulations are much
larger than in Ref. 21, but still considerably smaller than in
the EDBD simulations as the MC simulations are less ef-
ficient than our EDBD simulations. We compare the stack-
ing parameter αn obtained from MC simulations to the re-
sults from EDBD simulations with a horizontal box size of
100σ × 100σ and 50σ × 50σ and with the same initial vol-
ume fraction in Fig. 6. The size of the crystal in the Monte
Carlo simulations was equal to the horizontal box size, which

 0

 0.2

 0.4

 0.6

 0.8

 1

 15000 0  5000  10000
t/τB

α4

fst,4

 0

 0.2

 0.4

 0.6

 0.8

 1

 15000 0  5000  10000
t/τB

α15

fst,15

(a) (b)

FIG. 5. The fraction of (111) oriented fcc particles αn ≡ N fcc
n /N stack

n and particles in a slanted stacking fault fst,n ≡ N slst
n /Nn in layer n for n = 4 (a) and

n = 15 (b), as a function of time t , where N fcc
n is the number of fcc-like particles in layer n, N slst

n is the number of particles in a slanted stacking fault in layer
n, N stack

n is the number of particles in layer n for which the stacking could be reliably determined, and Nn is the total number of particles in layer n. Shown are
the averages of 5 runs (black line) as well as the results from the 5 separate runs (gray lines).
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FIG. 7. The stacking parameter 〈α〉l (triangles; left axis), the domain size
〈Nd 〉l (circles; right axis), and the fraction of particles in slanted stacking
faults 〈 fst〉l (squares; left axis) of a layer for φi = 0.01 as a function of the
amount of time �t elapsed since time t50% at which 50% of the particles in
a layer was crystalline. In the special average 〈.〉l over all layers, the prop-
erty of a layer n at interest is taken from the snapshot at t = t50%

n (see text).
Finally, the average and standard error for each �t are calculated from five
independent EDBD runs with 4 × 105 particles.

is approximately equal to the size of the domains that grew in
both EDBD simulations. The similarity between the MC and
EDBD results shows that slanted stacking faults play a minor
role in determining the stacking in slowly grown sediments
of (colloidal) hard spheres. We propose that the fcc stacking
is due to the tiny free energy per particle that is multiplied
by the large number of crystalline particles in a domain. In
Fig. 7, we plot the average stacking parameter 〈α〉l , the av-
erage domain size 〈Nd〉l , and the average fraction of solid-
like particles in a slanted stacking fault 〈 fst〉l as a function
of �t , the time elapsed since the layer was 50% crystalline,
averaged over all layers n and five EDBD runs with 4 × 105

particles. The subscript l, denotes the average of any property
X over all layers such that the time �t since each layer was
50% crystalline is held fixed, i.e.,〈X〉l (�t) ≡ ∑

n Xn(t50%
n +

�t)/Nl(�t), where Xn(t) is X averaged over the particles in
a layer n at time t . The sum runs over the Nl (�t) layers for
which t50%

n + �t < ttot, where ttot denotes the total run time.
Note that this average, which measures a property at a differ-
ent time for each layer, differs from 〈X〉, which we will use
to denote the average over all crystalline layers in a single
snapshot. Clearly, the average number of particles in a do-
main around the time that the domains become primarily fcc
stacked is of the order of a few thousand, which gives a free
energy difference of several kB T for hcp and fcc, which is
large enough to explain the observed preference for fcc.

This argument can be made more quantitative by compar-
ing measured stacking sequences to a theoretical prediction.
Mau and Huse48 determined the free energy of various stack-
ing sequences in bulk systems and fitted a general stacking
free energy expression to their results. Their expression fea-
tures the free energy of three layers, depending on the stack-
ing σl of each layer, where σl = + if layer l is fcc stacked
and σl = − if layer l is hcp stacked. Mau and Huse48 showed
that one of the terms in their general expression has a prefac-
tor which is zero within the statistical error and, therefore, we
will neglect this term. For a crystal grown by sedimentation,
the stacking of layer l depends within reasonable approxima-
tion only on the stacking of the layers l − 1 (σl−1) and l − 2

TABLE III. The probability P+|σl−1σl−2 to find a fcc layer (denoted by ‘+’)
on top of two layers with stacking σl−2 and σl−1 as measured in the final
configurations of the EDBD simulations and as calculated using Eq. (15).

Pσl |σl−1σl−2 Measured Calculated
P+|−− 0.83(13) 0.743
P+|+− 0.81(4) 0.852
P+|−+ 0.52(10) 0.594
P+|++ 0.93(1) 0.919

(σl−2), since the layers above l are not completely formed at
the time when the stacking is determined. Using this approxi-
mation, the probability that layer l is fcc (σl = +) rather than
hcp (σl = −) stacked, is equal to

P+|σl−1σl−2 = 1/{1 + exp[−β�F(σl−1, σl−2)]}, (14)

where �F(σl−1, σl−2) is the free energy difference between
the three-layer configuration that features a hcp-like layer l
and the configuration with a fcc-like layer l, while the stack-
ing of layers l − 1 and l − 2 is σl−1 and σl−2, respectively,
in both configurations. Using the expression of Mau et al.,48

this free energy difference can be written as

�F(σl−1, σl−2) = Nd [h + σl−1γ
∗ + σl−2σl−1h′], (15)

where Nd is the number of particles per layer in the do-
main. The stacking parameters obtained by Mau et al.48 are
h = 74 ± 6, γ ∗ = 36 ± 6, and h′ = 18 ± 6 in units of
10−5kB T at the density of the hard sphere crystal at bulk coex-
istence. Note that the bulk free energy difference between hcp
and fcc is simply (h + h′) per particle and that γ ∗ is the sur-
face free energy per particle of the interface between a bulk
fcc crystal and a bulk hcp crystal,23 when the interface be-
tween the two crystals is chosen along a hexagonal plane. The
corresponding interfacial tension is simply γ ∗ divided by the
area per particle in a hexagonal layer. In Table III, P+|σl−1σl−2

averaged over all layers in the final configurations of five
EDBD simulations with φi � 0.01 is compared with the the-
oretical three-layer stacking probability. The only adjustable
parameter in Eq. (15) is the domain size Nd at the time when
the stacking is determined. Accordingly, we set Nd to 1900,
the domain size at t − t50%

l � 400τB , when the rate of change
of 〈αl〉 is the largest. The excellent agreement between the
measured and predicted stacking probabilities shows that even
the smaller terms in the free energy can have a measurable
effect if the typical size Nd of a domain is large enough. Fur-
thermore, this indicates that, at least for small J , the stacking
of sedimented hard sphere crystals within a single domain is
completely determined by free energy effects. The values of
h, γ ∗, and h′ depend on the density of the bulk crystal 48 and,
therefore, are susceptible to fitting. However, the deviation be-
tween the results and Eq. (14) is only 0.96 times the error aver-
aged over the four points and the deviations can be reduced to
0.56 times the error on average by increasing h′ by its standard
error (i.e., h′ → 24). We conclude that the values of h, γ ∗, and
h′ at bulk coexistence describe our results well and further fit-
ting is not justified. The main assumption in the derivation of
Eq. (15) is that the time a horizontal domain requires to equi-
librate is much smaller than the time it requires to grow, such
that the domain is always in equilibrium while it grows.
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FIG. 8. The stacking parameter 〈α〉 averaged over the whole crystalline part
of the final configuration from EDBD simulations with varying φi , and ex-
periments (Refs. 20 and 28) as a function of the dimensionless sedimentation
flux J . The values for J are listed in Table I. The results from EDBD simula-
tions are denoted by the pluses, while the circles and the triangle denote the
experimental results of Hoogenboom et al. (Ref. 28) (Expt. I) and Hilhorst
et al. (Ref. 20) (Expt. II), respectively. The simulation results at J � 0.5 for
Peσ =� 0.5 and 1 lie on top of each other.

C. Effect of initial volume fraction and sedimentation
speed

In order to study the effect of the initial volume frac-
tion φi , we compare EDBD simulations with φi = 0.02, 0.05,
and 0.2 to the simulations with φi = 0.01 that are discussed
in Secs. III A and III B of this paper. These simulations at
higher volume fraction correspond to J of the order of 1, see
Table I, that is, the effect of the limited equilibration time
is expected to become significant. Furthermore, these values
for J are similar to the ones in the experiments of Hilhorst
et al.20 The observed average stacking parameters 〈α〉 in our
EDBD simulations are compared to experimental results in
Fig. 8. The trend in the dependence of α on J is the same for
experiments and simulations: the fcc stacking parameter 〈α〉
decreases with J (and thus with volume fraction φi ). Quan-
titative agreement within the error bars of the experiments
can even be found, providing confidence in our simulation
method. All EDBD simulations are performed with the same
number of particles and gravitational length. Therefore, the
stress in the crystal caused by the increasing gravitational
pressure with decreasing height in the sediment, which has
been quoted to have an effect on sedimented crystals,36, 38 is
the same in all cases. Figure 9 shows the final configuration
of the fourth layer for φi = 0.2, which we compare with the
one for φi = 0.01 as displayed in the bottom right panel of
Fig. 3. The most striking difference is the much smaller size
of the ordered domains for φi = 0.2 than for φi = 0.01. The
decrease in domain size with increasing J causes a decrease
in the free energy difference between the fcc and hcp stack-
ing of a domain (Eq. (15), which might explain the observed
decrease in fcc stacking. However, at these high volume frac-
tions, the free energy difference might not be the dominant
factor. Another likely reason for the more random stacking in
the simulations with a higher initial volume fraction is that the
layers simply have less time to sample phase space and find
their equilibrium structure.

Hilhorst et al.20 showed that the probability Phf to form
a fcc layer on top of a hcp layer depended on the average
stacking probability 〈α〉 in a crystallite in a way that could

FIG. 9. The fourth layer (from the bottom) of the final configuration of an
EDBD simulation at φi = 0.2. The color-coding is the same as in Fig. 3.
Gravity is directed into the plane of the paper.

neither be explained by the free energy difference between
fcc and hcp, nor by the surface tension between the two. The
model that did give a good fit to the data assumes that ran-
domly stacked crystallites co-existed with primarily fcc-like
crystallites. The authors postulated that the fcc growth of the
domains is caused by a slanted stacking fault. We indeed find
the presence of slanted stacking faults in some of the fcc do-
mains in Figs. 3 and 9. However, an alternative explanation for
the difference in stacking of the various crystalline domains is
as follows. The spread of domain sizes in the sample is quite
large, as can be seen from Figs. 3 and 9. As a consequence,
there will be domains both smaller and larger than the critical
domain size for which the free energy difference between the
fcc and hcp stacking starts to become significant (about 1000
particles). Since the dependence of the stacking probability is
exponential in the domain size, the larger domains will have
a considerably larger probability to be fcc stacked than the
smaller domains. It is interesting to investigate the domain
size distribution and the different domains in more detail in
future experiments and simulations.

Finally, we also lowered the sedimentation velocity, by
decreasing the Peclet number. This should have a negative ef-
fect on both mechanisms for the formation of slanted stack-
ing faults that were described in Sec. III A. Indeed, we find
a significant decrease (about a factor of four) in the number
of slanted stacking faults (not shown), when the Peclet num-
ber is decreased from 1.015 to 0.5008 at a constant J of about
0.5. However, the corresponding stacking probabilities are the
same within the error bounds, see Fig. 8. This provides further
evidence that the slanted stacking faults are not the main cause
of the preference for fcc.

IV. CONCLUSIONS

We have employed a new simulation method to study the
crystallization dynamics of sedimenting hard spheres. This
method is based on event driven MD simulations which is
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extended to include Brownian dynamics. Our results show
that primarily fcc-stacked crystals are grown instead of ran-
domly stacked crystals, if the Peclet number is not too
high and the initial configuration is a low density ho-
mogeneous fluid phase. These findings are in agreement
with experiments.28 Similar defect structures as in other
experiments20, 53 were found, among which were the slanted
stacking faults along a hexagonal plane of fcc other than the
plane which is aligned with the wall. The observation of Hil-
horst et al.20 that slanted stacking faults cause an increased
preference for fcc could not be confirmed using our simu-
lations. Although we did find a correlation between slanted
stacking faults and a preference for fcc, this correlation is ex-
pected since the slanted stacking faults can only form and per-
sist in fcc regions. As an explanation for the large amount
of fcc found in our simulations, we propose that the pref-
erence for fcc can be explained simply by the equilibrium
free energy difference between fcc and hcp, which can be
larger than the thermal energy for large domains (� 1000
particles). All results observed by Hilhorst et al.,20 which
seemed to indicate the role of slanted stacking faults in de-
termining the stacking can also be explained by free en-
ergy expressions and taking a distribution of domain sizes
into account. We thus assume that the system is (nearly)
in thermodynamic equilibrium, which can only be true if
the top layer of a crystalline domain has sufficient time to
equilibrate.

We have shown that the dimensionless particle flux J ,
proportional to the initial volume fraction and the sedimenta-
tion speed, is an excellent tool for gauging the extent to which
the sedimentation disturbs the equilibrium. In our simula-
tions with varying initial volume fractions and sedimentation
speeds, as well as in experiments, 20, 28, 29 randomly stacked
crystals were found when J was larger than 0.5, while a clear
preference for fcc was found when J was less than 0.2. We
should note that it is not proven that slanted stacking faults
have no effect on the stacking at all although we could not
measure any effect in our simulations. Furthermore, slanted
stacking faults might prove important for processes, which are
too slow to measure in our simulations, such as the conversion
of the rhcp crystal to fcc.23, 32 Finally, we note that our argu-
ments based on free energies can only explain the stacking of
crystals that are grown layer by layer at a wall. This excludes
experiments with volume fractions above coexistence and/or
with Peclet numbers which are very small.54

ACKNOWLEDGMENTS

Financial support is acknowledged from an NWO-VICI
grant and from the High Potential Programme of Utrecht Uni-
versity. We are grateful to J. Hilhorst and A. van Blaaderen for
useful discussions.

1W. W. Wood and J. D. Jacobson, J. Chem. Phys. 27, 1207 (1957).
2B. J. Alder and T. E. Wainwright, J. Chem. Phys. 27, 1208 (1957).
3W. G. Hoover and F. H. Ree, J. Chem. Phys. 49, 3609 (1968).
4P. G. Bolhuis, D. Frenkel, S. C. Mau, and D. A. Huse, Nature (London)
388, 235 (1997).

5S. Auer and D. Frenkel, Nature (London) 409, 1020 (2001).

6B. O’Malley and I. Snook, Phys. Rev. Lett. 90, 085702 (2003).
7P. N. Pusey and W. van Megen, Nature (London) 320, 340 (1986).
8A. Yethiraj and A. van Blaaderen, Nature (London) 421, 513 (2003).
9R. Piazza, T. Bellini, and V. Degiorgio, Phys. Rev. Lett. 71, 4267 (1993).

10M. A. Rutgers, J. H. Dunsmuir, J.-Z. Xue, W. B. Russel, and P. M. Chaikin,
Phys. Rev. B 53, 5043 (1996).

11T. Biben, J. P. Hansen, and J. L. Barrat, J. Chem. Phys. 98, 7330 (1993).
12T. Biben, R. Ohnesorge, and H. Löwen, Europhys. Lett. 28, 665 (1994).
13D. C. Hong, Phys. A. 271, 192 (1999).
14J. A. Both and D. C. Hong, Phys. Rev. E 64, 061105 (2001).
15W. Nuesser and H. Versmold, Mol. Phys. 96, 893 (1999).
16A. Mori, S.-i. Yanagiya, Y. Suzuki, T. Sawada, and K. Ito, J. Chem. Phys.

124, 174507 (2006).
17H. Chen and H. Ma, J. Chem. Phys. 125, 024510 (2006).
18S. C. Kim and S. H. Suh, J. Phys. Condens. Matter 15, 6617 (2003).
19J. P. Hoogenboom, P. Vergeer, and A. van Blaaderen, J. Chem. Phys. 119,

3371 (2003).
20J. Hilhorst, J. R. Wolters, and A. V. Petukhov, Cryst. Eng. Comm. 12, 3820

(2010).
21M. Marechal and M. Dijkstra, Phys. Rev. E 75, 061404 (2007).
22J. W. Christian and V. Vítek, Rep. Prog. Phys. 33, 307 (1970).
23S. Pronk and D. Frenkel, J. Chem. Phys. 110, 4589 (1999).
24P. Heino, L. Perondi, K. Kaski, and E. Ristolainen, Phys. Rev. B 60, 14625

(1999).
25J. Spitznagel and R. Stickler, Metall. Mater. Trans. B 5, 1363 (1974).
26J. V. Sanders, Acta Crystallogr. 24, 427 (1968).
27P. N. Pusey, W. van Megen, P. Bartlett, B. J. Ackerson, J. G. Rarity, and

S. M. Underwood, Phys. Rev. Lett. 63, 2753 (1989).
28J. P. Hoogenboom, D. Derks, P. Vergeer, and A. van Blaaderen, J. Chem.

Phys. 117, 11320 (2002).
29H. Mìguez, F. Meseguer, C. López, A. Mifsud, J. S. Moya, and L. Vázquez,

Langmuir 13, 6009 (1997).
30Y. A. Vlasov, V. N. Astratov, A. V. Baryshev, A. A. Kaplyanskii, O. Z. Ka-

rimov, and M. F. Limonov, Phys. Rev. E 61, 5784 (2000).
31W. K. Kegel and J. K.G. Dhont, J. Chem. Phys. 112, 3431 (2000).
32V. C. Martelozzo, A. B. Schofield, W. C.K. Poon, and P. N. Pusey, Phys.

Rev. E 66, 021408 (2002).
33I. P. Dolbnya, A. V. Petukhov, D. G. A. L. Aarts, G. J. Vroege, and H. N.

W. Lekkerkerker, Europhys. Lett. 72, 962 (2005).
34L. Meng, H. Wei, A. Nagel, B. J. Wiley, L. E. Scriven, and D. J. Norris,

Nano Lett. 6, 2249 (2006).
35H. Wei, L. Meng, Y. Jun, and D. J. Norris, Appl. Phys. Lett. 89, 241913

(2006).
36J. Zhu, M. Li, R. Rogers, W. Meyer, R. H. Ottewill, STS-73 Space Shut-

tle Crew, W. B. Russel, and P. M. Chaikin, Nature (London) 387, 883
(1997).

37Z. Cheng, P. M. Chaikin, J. Zhu, W. B. Russel, and W. V. Meyer, Phys. Rev.
Lett. 88, 015501 (2001).

38Z. Cheng, J. Zhu, W. B. Russel, W. V. Meyer, and P. M. Chaikin, Appl. Opt.
40, 4146 (2001).

39T. Okubo, A. Tsuchida, T. Okuda, K. Fujitsuna, M. Ishikawa, T. Morita,
and T. Tada, Colloids Surf. A 153, 515 (1999).

40M. Holgado, F. García-Santamaría, A. Blanco, M. Ibisate, A. Cin-
tas, H. Míguez, C. J. Serna, C. Molpeceres, J. Requena, A. Mifsud,
F. Meseguer, and C. López, Langmuir 15, 4701 (1999).

41L. Filion, M. Hermes, R. Ni, and M. Dijkstra, J. Chem. Phys. 133, 244115
(2010).

42C. Dux and H. Versmold, Phys. Rev. Lett. 78, 1811 (1997).
43S. E. Paulin and B. J. Ackerson, Phys. Rev. Lett. 64, 2663 (1990).
44B. W. van de Waal, Phys. Rev. Lett. 67, 3263 (1991).
45P. Schall, I. Cohen, D. A. Weitz, and F. Spaepen, Science 305, 1944

(2004).
46T. G. Andersson, Z. G. Chen, V. D. Kulakovskii, A. Uddin, and J. T. Vallin,

Appl. Phys. Lett. 51, 752 (1987).
47J. H. van der Merwe, Crit. Rev. Solid State Mater. Sci. 17, 187 (1991).
48S. C. Mau and D. A. Huse, Phys. Rev. E. 59, 4396 (1999).
49M. Marechal and M. Dijkstra, Soft Matter 7, 1397 (2011).
50A. van Blaaderen, J. Peetermans, G. Maret, and J. K. G. Dhont, J. Chem.

Phys. 96, 4591 (1992).
51W. van Megen and P. N. Pusey, Phys. Rev. A 43, 5429 (1991).
52A. Fortini, E. Sanz, and M. Dijkstra, Phys. Rev. E 78, 041402 (2008).
53V. W. A. de Villeneuve, Ph.D. thesis, Utrecht University, 2008.
54J.-M. Meijer, V. W. A. de Villeneuve, and A. V. Petukhov, Langmuir 23,

3554 (2007).

Downloaded 24 Oct 2011 to 131.211.45.184. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions

http://dx.doi.org/10.1063/1.1743956
http://dx.doi.org/10.1063/1.1743957
http://dx.doi.org/10.1063/1.1670641
http://dx.doi.org/10.1038/40779
http://dx.doi.org/10.1038/35059035
http://dx.doi.org/10.1103/PhysRevLett.90.085702
http://dx.doi.org/10.1038/320340a0
http://dx.doi.org/10.1038/nature01328
http://dx.doi.org/10.1103/PhysRevLett.71.4267
http://dx.doi.org/10.1103/PhysRevB.53.5043
http://dx.doi.org/10.1063/1.464726
http://dx.doi.org/10.1209/0295-5075/28/9/009
http://dx.doi.org/10.1016/S0378-4371(99)00181-8
http://dx.doi.org/10.1103/PhysRevE.64.061105
http://dx.doi.org/10.1080/00268979909483029
http://dx.doi.org/10.1063/1.2193149
http://dx.doi.org/10.1063/1.2213249
http://dx.doi.org/10.1088/0953-8984/15/40/001
http://dx.doi.org/10.1063/1.1589737
http://dx.doi.org/10.1039/c0ce00022a
http://dx.doi.org/10.1103/PhysRevE.75.061404
http://dx.doi.org/10.1088/0034-4885/33/1/307
http://dx.doi.org/10.1063/1.478339
http://dx.doi.org/10.1103/PhysRevB.60.14625
http://dx.doi.org/10.1007/BF02646622
http://dx.doi.org/10.1107/S0567739468000860
http://dx.doi.org/10.1103/PhysRevLett.63.2753
http://dx.doi.org/10.1063/1.1522397
http://dx.doi.org/10.1063/1.1522397
http://dx.doi.org/10.1021/la970589o
http://dx.doi.org/10.1103/PhysRevE.61.5784
http://dx.doi.org/10.1063/1.480923
http://dx.doi.org/10.1103/PhysRevE.66.021408
http://dx.doi.org/10.1103/PhysRevE.66.021408
http://dx.doi.org/10.1209/epl/i2005-10325-6
http://dx.doi.org/10.1021/nl061626b
http://dx.doi.org/10.1063/1.2404973
http://dx.doi.org/10.1038/43141
http://dx.doi.org/10.1103/PhysRevLett.88.015501
http://dx.doi.org/10.1103/PhysRevLett.88.015501
http://dx.doi.org/10.1364/AO.40.004146
http://dx.doi.org/10.1016/S0927-7757(98)00474-9
http://dx.doi.org/10.1021/la990161k
http://dx.doi.org/10.1063/1.3506838
http://dx.doi.org/10.1103/PhysRevLett.78.1811
http://dx.doi.org/10.1103/PhysRevLett.64.2663
http://dx.doi.org/10.1103/PhysRevLett.67.3263
http://dx.doi.org/10.1126/science.1102186
http://dx.doi.org/10.1063/1.98856
http://dx.doi.org/10.1080/10408439108243751
http://dx.doi.org/10.1103/PhysRevE.59.4396
http://dx.doi.org/10.1039/c0sm00589d
http://dx.doi.org/10.1063/1.462795
http://dx.doi.org/10.1063/1.462795
http://dx.doi.org/10.1103/PhysRevA.43.5429
http://dx.doi.org/10.1103/PhysRevE.78.041402
http://dx.doi.org/10.1021/la062966f


034510-13 Stacking of colloidal hard spheres J. Chem. Phys. 135, 034510 (2011)

55V. W. A. de Villeneuve, P. S. Miedema, J. M. Meijer, and A. V. Petukhov,
EPL 79, 56001 (2007).

56P. Strating, Phys. Rev. E 59, 2175 (1999).
57A. Scala, T. Voigtmann, and C. De Michele, J. Chem. Phys. 126, 134109

(2007).
58P. R. ten Wolde, M. J. Ruiz-Montero, and D. Frenkel, Phys. Rev. Lett. 75,

2714 (1995).

59W. Lechner and C. Dellago, J. Chem. Phys. 129, 114707
(2008).

60See the supplementary material at http://dx.doi.org/10.1063/1.3609103 for
a movie of the full evolution of the sediment.

61M. Heni and H. Löwen, Phys. Rev. E 60, 7057 (1999).

Downloaded 24 Oct 2011 to 131.211.45.184. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions

http://dx.doi.org/10.1209/0295-5075/79/56001
http://dx.doi.org/10.1103/PhysRevE.59.2175
http://dx.doi.org/10.1063/1.2719190
http://dx.doi.org/10.1103/PhysRevLett.75.2714
http://dx.doi.org/10.1063/1.2977970
http://dx.doi.org/10.1063/1.3609103
http://dx.doi.org/10.1103/PhysRevE.60.7057

