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We study suspensions of semiflexible colloidal rods and biopolymers using an Onsager-type second-

virial functional for a segmented-chain model. For mixtures of thin and thick fd virus particles, we

calculate full phase diagrams, finding quantitative agreement with experimental observations. We show

that flexibility, which renders the rods effectively shorter and thicker depending on the state point, is

crucial to understanding the topologies of the phase diagrams. We also calculate the stretching of

wormlike micelles in a host fd virus suspension, finding agreement with experiments.
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Rodlike particles are capable of forming a great variety
of liquid-crystalline phases [1], and have been widely ex-
plored experimentally and theoretically [2]. Today, a
prominent role is being played by aqueous suspensions
of fd virus particles, which are charged, semiflexible,
Brownian needles with a length-to-diameter ratio exceed-
ing 100, exhibiting isotropic (I), cholesteric nematic (N),
smectic, columnar, and crystalline phases upon increasing
the concentration [3–5]. Moreover, wild-type fd virus
particles have been bioengineered to have, for instance, a
polyethylene-glycol (PEG) coating, such that mixtures of
thin and thick rods with diameter ratios d varying from 1.1
to 3.7 could be studied experimentally [6]. The resulting
phase diagrams are extremely rich, even in the regime
where only I and N phases are relevant. The observations
not only include I-N coexistence with strong fractionation
effects, but also, for d * 3, two-phase N-N and three-
phase I-N-N coexistence with phase diagram topologies
that strongly depend on d. Given the needlelike shape of
the fd virus particles, and the relative structural simplicity
of I and N phases, one would expect these phase diagrams
to be well understood, e.g., resembling those of theoretical
predictions based on Onsager’s second-virial theory for
thin-thick mixtures of rigid rods [7]. However, these sys-
tems turn out to be surprisingly poorly understood. For
instance, the experiments show N-N demixing with a low-
density (lower) critical point that shifts to lower densities
with increasing d [6], while the theory predicts the exact
opposite: a high-density (upper) N-N critical point and
N-N demixing that extends to higher densities with in-
creasing d [7,8]. Moreover, the experiments show N-N
demixing at diameter ratios as low as d * 2–3 while
rigid-rod models predict d * 4–5 [6,7]. In this Letter we
will show that the key to a real understanding of these
systems is flexibility, which renders the needles effectively
shorter and fatter depending on the state point [9,10]. In
addition, our model and theory can also quantify the ob-
served stretching of guest biopolymers in host suspensions
of fd virus particles [11].

One-component systems of semiflexible rods have been
studied using numerousmethods, and it is known that only a
slight flexibility is enough to shift the I-N transition to
significantly higher concentrations [12–16]. We follow the
segmented-chain model introduced byWessels and Mulder
[16], in which (i) flexibility is incorporated by introducing a
bending potential between the chain segments and
(ii) excluded volume is taken into account at the segment
level. This approach reproduces (in the appropriate limits)
the results of Ref. [12], with the advantage of only having to
deal with a discrete number of degrees of freedom.Here, we
generalize this model to two-component systems and map
out, for the first time, the full phase behavior beyond stabil-
ity analysis. Moreover, we calculate the effective particle
shape, which turns out to be strongly state-point dependent.
We consider a suspension of Ni semiflexible rods of

species i ¼ 1; 2 with contour lengths Li, in a volume V
at temperature T. Following Ref. [16] we model a rod of
species i as a chain of Mi rodlike segments of length li ¼
Li=Mi and diameter Di � li. Denoting the orientation of
the mth segment by a unit vector !m (with 1 � m � Mi),
we write the bending energy of a chain of species i with
orientation � ¼ f!1; . . . ; !Mi

g as

Uið�Þ¼ XMi�1

m¼1

uið!m;!mþ1Þ¼�Pi

li

XMi�1

m¼1

!m �!mþ1; (1)

where stiffness is described in terms of the persistence
length Pi [16]. Throughout we use thermal energy units
by setting kBT ¼ 1. The state of the suspension is charac-
terized by the orientation distribution functions (ODFs)
fið�Þ, which satisfy the normalization conditionR
d�fið�Þ ¼ 1, where d� ¼ QMi

m¼1 d!m. Denoting the

total number of rods by N ¼ N1 þ N2, the density by � ¼
N=V, and the mole fraction of species i by xi ¼ Ni=N, we
generalize the variational free energy functional in
Ref. [16] to F½f1; f2� to describe binary mixtures within
an Onsager-like second-virial approximation as
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F½f1;f2�
N

¼ lnðB�Þ�1þx1 lnx1þx2 lnx2

þX2
i¼1

xi
Z
fið�Þfln½4�fið�Þ�þUið�Þgd�

þ�

2

X2
i;j¼1

xixj
Z
fið�Þfjð�0ÞKijð�;�0Þd�d�0:

(2)

The first line of Eq. (2) represents the translational and the
mixing ideal-gas contributions (with B ¼ �

4 D1L
2
1, a con-

stant), the second line denotes the orientation entropy and
bending energy, and the third line the excluded volume
interactions, which can be considered at the segment level

with Kijð�;�0Þ ¼ PMi

m¼1

PMj

m0¼1
kijð!m;!m0 Þ. For Mi ¼ 1

and Ui � 0, Eq. (2) reduces to the Onsager functional for
binary mixtures of rigid rods [7,17]. From hereon, we
simply summarize our method and direct those interested
in the complete outline to Ref. [8]. At a given thermody-
namic state point, the equilibrium ODFs minimize F and
therefore satisfy

fið�Þ ¼ exp½�Uið�Þ � Við�Þ�
Qi

; (3)

Við�Þ ¼ �
X2
j¼1

xj
Z

Kijð�;�0Þfjð�0Þd�0; (4)

where Við�Þ can be seen as a self-consistent field acting on
all segments of a chain, and Qi is a partition functionlike
normalization factor [16]. Explicitly solving Eqs. (3) and
(4) for state points of interest would be prohibitively
expensive computationally due to the high-dimensional
angular � grids that would be required in the case when
Mi � 1. Instead, we formally evaluate the functional F of
Eq. (2) in its minimum by inserting the solutions fi of
Eqs. (3) and (4) to find the equilibrium free energy

Feq

N
¼ lnðB�Þ � 1þ x1 ln

x1
Q1

þ x2 ln
x2
Q2

� 1

2
�

�X2
i;j

xixj
XMi

m¼1

XMj

m0¼1

Z
kijð!;!0Þfi;mð!Þfj;m0 ð!0Þd!d!0;

(5)

where fi;mð!Þ is the ODF of the mth segment of a chain of

species i given by fi;mð!Þ ¼ R
fið�Þ�ð!�!mÞd�.

Equation (5) implies that the thermodynamics does not
require the full solutions fið�Þ but only the Mi

single-segment ODFs fi;mð!Þ and the normalization

factors Qi. The calculation of these is given in Ref. [8].
With the ODFs, and hence Feq, known, all thermodynamic

properties such as osmotic pressure� and phase diagrams
follow [7].

We have calculated the phase diagrams for mixtures of
bare fd particles (species 1, thin) and PEG-coated ones
(species 2, thick), with equal contour and persistence
lengths, L1 ¼ L2 ¼ 0:88 �m and P1 ¼ P2 ¼ 2:2 �m
[6]. The bare fd diameter is fixed to D1 ¼ 6:6 nm, and
following the experiments of Ref. [6] we consider several
diameter ratios d ¼ D2=D1 to describe varying thicknesses
of the PEG coating. We use sufficient segments per virus
particle such that we are in the continuum limit for all state
points of interest [8]. In Fig. 1 we show, for several d, the
resulting phase diagrams in the (�1; �2) representation,
including the scaled [8] experimental data from Ref. [6].
For all d we find isotropic-nematic (I-N) coexistence, with
the tie-lines indicating, for increasing d, an increasing
fractionation of the thinner and thicker rods preferentially
into the I and N phase, respectively.
In agreement with the experiments of Ref. [6], we find

noN-N coexistence in the density regime of interest for the
smallest diameter ratio d ¼ 1:2 [Fig. 1(a)]. For increasing
d an N-N demixing regime appears in the density regime
of interest, with a lower critical point as shown for d ¼ 3:1
in Fig. 1(b); in the experiments of Ref. [6] such a phase
diagram was found for d ’ 2:9. Slightly increasing the
PEG layer thickness to d ¼ 3:11 reveals an I-N-N triple
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FIG. 1 (color online). Phase diagrams (see text) for mixtures of
bare (thin) fd virus particles (species 1) and PEG-coated (thick)
ones (species 2), with diameter ratios (a) d ¼ 1:2, (b) 3.1,
(c) 3.11, (d) 3.5, (e) 6. The lighter colored areas indicate the
two-phase regions with tie-lines connecting coexisting state
points; triangles denote I-N-N and I-I-N triple points.
Experimental results from Ref. [6] are shown by circles (I-N)
and squares (N-N) for (a) d ¼ 1:1, (b) 2.9, and (d) 3.
(f) Topology of the phase diagram (two- and three-phase coex-
istence) of binary mixtures of (modified) fd virus particles as a
function of their diameter ratio d and persistence length P.
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point and an associated N-N demixing regime with an
upper critical point emerging out of the I-N coexistence
regime [Fig. 1(c)]. This N-N upper critical point has not
been reported experimentally, perhaps because it only ex-
ists in a small regime of diameter ratios: for d ¼ 3:125 the
upper and lower N-N points have merged to form a single
neck-shaped N-N regime that is separated from the I-N
coexistence regime by an I-N-N triple point, with the I and
one N phase rich in bare fd particles and the other N phase
rich in PEG-coated fd particles [Fig. 1(d) shows an ex-
ample of this behavior for d ¼ 3:5]. Interestingly, such
neck-shaped phase diagrams have also been reported in
Ref. [6] for diameter ratios d * 3. For d ¼ 6, Fig. 1(e)
shows an I-I-N triple point and I-I coexistence, as found
also for thin-thick mixtures of rigid rods with diameter
ratios exceeding d ’ 8 [7]. We find that this behavior is
present for d * 4:5. We also compare our results in Fig. 1
to experimental data from Ref. [6], using a d value that
gives the best fit. At low d we find excellent agreement,
although we must use a d value of 1.2 (compared to the
experimental value of 1.1). For larger d, we tend to slightly
overestimate the size of the I-N coexistence region.
However, our results are quantitatively much closer to
the experimental data than those obtained for rigid rods
(see also Ref. [8]).

Motivated by recent progress in the bioengineering of
fd virus particles [18], which may allow for tuning their
flexibility, we have also calculated phase diagrams for a
large variety of diameter ratios and persistence lengths
P1 ¼ P2 � P. Figure 1(f) summarizes our findings by
dividing the (d; P) plane into regimes with phase diagrams
featuring only an I-N transition (for stiff rods and small d)
all the way to complex phase diagrams with I-N, I-I, N-N
phase coexistence and I-I-N and I-N-N triple points (for
flexible rods and large d). Clearly, increasing d and de-
creasing P have similar effects on the phase diagram, and
hence increasing the flexibility is expected to considerably
enhance the complexity of the phase diagrams.

In order for a model system of rigid rods to begin to
capture the phase behavior of binary fd virus systems, one
must use a system of much shorter, thicker rods, with
L=D & 7 for the PEG-coated fd virus [6], much lower
than the true values of 20–110. The inference is that long
semiflexible rods exhibit the same phase behavior as short
rigid rods [9,10]. Our model enables us to define an effec-
tive shape, whereby we map the excluded volume of the
semiflexible rods onto that of rigid rods. We define the
mean square effective length L2

e;i as

L2
e;i ¼ l2i

XMi

m¼1

XMi

m0¼1

Z
ð! �!0Þfi;m;m0 ð!;!0Þd!d!0; (6)

where fi;m;m0 ð!;!0Þ is the pair orientation distribution

function (PDF) (calculated in Ref. [8]). We use the PDFs
to calculate Le;i and, from this, the effective diameter De;i

required for rigid rods of length Le;i to have the same

excluded volume as flexible rods of length Li.

Figure 2(a) shows the effective shape Le;i=De;i for a

mixture of thick-thin fd virus particles with d ¼ 3,
throughout the phase diagram [the route we follow is
shown in Fig. 2(b), where we use the x2-� representation
for clarity]. It is immediately apparent that throughout the
phase diagram, while the rods always behave as shorter,
thicker rods, the effective shape varies considerably. In the
isotropic phase, we find for both species Le;i=De;i to be

about 20% of Li=Di. This corresponds to Le=De 	 8:5 for
the thick rods, close to the L=D & 7 required for rigid-rod
systems to capture the phase behavior of these binary
systems [6]. For the nematic phase, however, Le;i=De;i

jumps to over 50% of Li=Di, and increases considerably
as � is increased. Interestingly, the thick rods stretch out
more than the thin rods, with the rods now effectively
differing in both diameter and length. We conclude that a
fixed effective shape does not capture the essential physics
of these suspensions; the state-point dependent stretching
of the flexible rods is a key feature.
Finally, we present results for the effective length of

semiflexible polymers dissolved in an fd virus suspension.
A range of polymers which undergo a coil-rod transition,
stretching out over the I-N transition of the host fd virus,
has been studied experimentally [11]. Here, we examine
wormlike micelles, which have constant P ¼ 0:5 �m,
D ¼ 14 nm and variable L ¼ 5–50 �m. The concentra-
tion of the polymers is sufficiently low that they can be
treated as a single particle in a bulk fd virus suspension,
and we study the behavior of the polymer Le over the I-N
phase transition of the fd virus (found at �B ¼ 29:54).
The results are shown in Fig. 3(a). For the shortest poly-
mers studied, we see a considerable jump in Le, from Le ’
0:26L to ’ 0:61L, corresponding to a coil-rod transition.
For longer polymers, the jump in Le becomes smaller, and
the longest ones only become truly rodlike well into the
nematic phase of the fd virus. It is interesting to note that
in the isotropic phase, for all cases, Le appears to remain
essentially constant.
In the isotropic fd virus phase, the polymer may be

considered along the lines of the Kratky-Porod wormlike
chain model [19], generalized to account for excluded
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FIG. 2 (color online). (a) Relative effective shape of fd virus
particles ðLe;i=De;iÞ
 ¼ ðLe;i=De;iÞ=ðLi=DiÞ as a function of os-

motic pressure (�) (solid lines show bare fd, dashed lines show
PEG-coated fd), and (b) the path we follow throughout the
phase diagram in the x2-� representation, indicated by the
arrows.
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volume effects [20]. The average end-to-end length is

defined as LKP ¼
ffiffiffiffiffiffiffiffiffiffiffi
4P0P

p ðL=2PÞ�, where P0 is an effective
persistence length. For an ideal Kratky-Porod chain P0 ¼
P and � ¼ 0:5. We calculate Le in the isotropic phase (Le;I)

for a range of L values and fit LKP to our results for the
range of wormlike micelle parameters. We find P0 ¼
0:573P, and � ¼ 0:529, shown in Fig. 3(b), where we
also compare our results to the ideal Kratky-Porod worm-
like chain and to the rigid-rod length L. Clearly, for shorter
micelles, Le;I approaches L, while for longer ones, Le;I

approaches the ideal Kratky-Porod length.
In the nematic fd virus phase, we can consider the

polymer using the Odijk confined wormlike chain model
[15], where the host nematic acts as a confining cylinder.
The average end-to-end length is defined as LO ¼ Lh! �
ni, proportional to the average ! � n along the chain,
where n is the nematic director. We find that our predicted
Le at the I-N phase transition (Le;N) is significantly below

LO [Fig. 3(c)], from which we infer that the host nematic is
neither dense nor ordered enough to fully confine the
polymer. By altering the stiffness of the host fd virus
such that it is denser (flexible fd virus) or more ordered
(rigid) at the transition (see Ref. [8]), we may confine
better the polymer causing it to stretch out more over the
I-N transition. Figure 3(d) shows �Le ¼ Le;N � Le;I for

micelles of L ¼ 10 �m, using a range of P values for the
fd virus. Here we see that �Le is largest when using very
flexible fd virus. �Le then decreases as the fd virus
becomes stiffer, reaching a minimum, then increasing
again for the most rigid fd virus studied. This presents
the opportunity to tune the stretching of the polymers by
varying the stiffness of the host fd virus. We also compare
�Le to �L0

e ¼ LO � LKP [Fig. 3(d)], finding that this
qualitatively matches our nonmonotonic results.

In conclusion, we have developed a model for binary
mixtures of semiflexible rods and applied it to binary fd
virus mixtures. The addition of flexibility in our model
gives results that are quantitatively much closer to experi-
mental data than those obtained using rigid rods [6]. The
key reason appears to lie in the effective shape of the rods,
which changes throughout the phase diagrams and can
effectively render them a mixture of rods of differing
diameter and length, indicating that any static-shaped
rigid-rod model will miss some of the essential physics.
In addition, we have studied the stretching of semiflexible
polymers in an fd virus solvent. We find that sufficiently
short polymers stretch out considerably over the I-N tran-
sition of the host solvent, while for the longer ones some
stretching is observed, but the effect is much less pro-
nounced. Changing the stiffness of the host fd virus can
greatly increase the stretching effect. We hope that our
findings will stimulate further experimental explorations,
and believe that extensions of the theory to, e.g., inhomo-
geneous states and nonequilibrium phenomena are within
reach of the present model.
Financial support of a FOM and a NWO-VICI grant is
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