
THE JOURNAL OF CHEMICAL PHYSICS 135, 144106 (2011)

The effects of shape and flexibility on bio-engineered fd-virus suspensions
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We present a theoretical model to describe binary mixtures of semi-flexible rods, applied here to fd-
virus suspensions. We investigate the effects of rod stiffness on both monodisperse and binary sys-
tems, studying thick-thin and long-short mixtures. For monodisperse systems, we find that fd-virus
particles have to be made extremely stiff to even approach the behavior of rigid rods. For thick-thin
mixtures, we find increasingly rich phase behavior as the rods are either made more flexible or if their
diameter ratio is increased. For long-short rod mixtures we find that the phase behavior is controlled
by the relative stiffness of the rods, with increasing the stiffness of the long rods or decreasing that of
the short rods resulting in richer phase behavior. We also calculate the state point dependent effective
shape of the rods. The flexible rods studied here always behave as shorter, thicker rigid rods, but
with an effective shape that varies widely throughout the phase diagrams, and plays a key role in
determining phase behavior. © 2011 American Institute of Physics. [doi:10.1063/1.3646951]

I. INTRODUCTION

In his seminal paper on nematic liquid crystals,1 Onsager
demonstrated that the transition from an isotropic (I) to a
nematic (N) phase can be driven by entropic effects alone.
Specifically, Onsager showed how the I-N phase transition of
very long and thin hard rods can be explained by the compe-
tition between entropy arising from the mixing of particles of
differing orientations, and that arising from excluded volume
effects which are expressed via the virial coefficients.

Truncated at second virial order, Onsager theory is exact
for infinitely long, rigid hard rods. However, for more real-
istic particles a more generalized approach is required. For
instance, to accurately describe more spherical particles, such
as spheroids2–4 or cut-spheres,5 higher order virial coefficients
must either be included explicitly or approximated in some
way. For very long rod-like particles, where the second virial
approximation may be valid, it is often the case that the parti-
cles to be studied are not rigid, but instead are semi-flexible.

Introducing flexibility to models of rod-like particles
can be done using a number of methods. Khokhlov and
Semenov6, 7 used an excluded volume driven model to de-
scribe the nematic ordering in semi-flexible worm-like chains.
The chain may flex in a continuous and uniform manner,
with a stiffness that is characterized by the persistence length.
Khokhlov and Semenov showed that only a slight flexibil-
ity is needed to significantly increase the coexistence densi-
ties of the I-N phase transition, later confirmed by simulation
results.8 However, the continuous nature of the chain makes
the model mathematically somewhat complex, and as such
the predictions obtained by Khokhlov and Semenov were in
the limits where finite size effects were assumed to be negli-
gible. These predictions were later confirmed by Chen,9 who
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exactly solved the Khokhlov-Semenov model by discretizing
the continuous chain.

Evans10 introduced a bendable ellipsoid model, where the
bending amplitude can be related to the persistence length.
This model had the advantage of offering a complete analytic
density-functional solution, although only when the ellipsoids
remain convex, limiting the study to relatively small degrees
of flexibility. However, the study showed the same behavior
as Refs. 6 and 7, with an increase in the bending amplitude
(decrease in stiffness) resulting in an increase in the coexis-
tence densities. Also observed was the stretching of particles
in the nematic phase as density was increased.

Ultimately, theories of semi-flexible rods that wish to
study non-convex behavior rely on discretizing the flexibil-
ity to some extent. For instance, one may split the rod into
segments of length equal to the persistence length P, which is
the length over which the particle orientation remains corre-
lated, and consider the rod as rigid over this length, although
such a simple approximation is rarely valid and often requires
reformulating.11 An appealing model, which offers a fully
discrete description of particle flexibility, was given by Wes-
sels and Mulder,12, 13 who described a semi-flexible rod as a
chain of connected, identical rigid-rod segments. Flexibility
is incorporated in the model by introducing a bending poten-
tial between chain segments, and the excluded volume of the
chain is considered at the segment level. The bending poten-
tial gives rise to a stiffness of the rod, characterized by its
persistence length. This approach reproduces (within the con-
tinuum limit) the results of Refs. 6 and 7. The advantage of
this model is that only a discrete number of degrees of free-
dom has to be considered, such that explicit calculations of
extensions to binary systems are possible.14

Binary mixtures have long been used as a first-step
generalization of liquid crystalline theory towards describ-
ing polydispersity. In addition to the orientational and ex-
cluded volume interaction entropies present for monodisperse
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systems, an additional mixing entropy is now included,15, 16

leading to increasingly rich phase behavior. For thick-thin
rigid rod mixtures, for instance, the phase behavior predicted
theoretically16 and observed using simulations17 includes I-
N coexistence with strong fractionation effects, N-N and I-I
demixing regimes, and I-I-N and I-N-N triple points. The ob-
served phase behavior is strongly dependent on the diameter
ratio d of the rods, with mixtures with small d exhibiting only
I-N coexistence. Increasing d shows the emergence of a N-
N demixing regime, emerging from an I-N-N triple point and
ending in a high-density (upper) critical point. Increasing d
still further leads to the emergence of an I-I demixing regime,
beginning from a low-density (lower) critical point and end-
ing in an I-I-N triple point.

Long-short rigid rod mixtures show much the same phase
behavior,15, 18–21 with simple phase diagrams showing only I-
N coexistence for small length ratios q, to complex diagrams
with I-N, N-N, and I-N-N coexistence at large length ratios,
with experimental observations showing the same qualitative
phase behavior as predicted theoretically.22 Long-short
mixtures have also been studied both theoretically11 and
experimentally23 for semi-flexible polymers, although only
for a restricted persistence length range. Experimentally, the
observed phase behavior was qualitatively the same as that
observed for rigid rods, although the theoretical model of
Ref. 11 failed to predict I-N-N and N-N coexistence. No I-I
demixing has been reported in these long-short systems.21

A study by Purdy et al. gave the first experimen-
tal results for thick-thin binary colloidal rod mixtures.24

The system consisted of fd-virus particles, which are
charged and semi-flexible needles with a contour length L
= 880 nm, a length-to-diameter ratio (L/D) exceeding 100,
and a persistence length P = 2.5 L, often used as model
systems of colloidal rods due to their long, thin shape and low
polydispersity. In a monodisperse system the fd-virus exhibits
isotropic, nematic, smectic, columnar, and crystalline phases
upon increasing the concentration.25–27 By coating particles
with a polymer, polyethylene-glycol (PEG), systems of bare
and PEG-coated fd-virus particles were used to give mixtures
with diameter ratios of d = 1.1 − 3.7. The study showed much
the same phase behavior as predicted theoretically on the ba-
sis of the rigid rod model16 (with an absence of I-I and I-I-N
regions due to the limited diameter ratio range). However, the
N-N demixing range observed showed a lower critical point
that shifts to lower densities with increasing d, in contrast to
the upper critical point found in Ref. 16. A rescaled Onsager
theory, which approximated the higher order virial coeffi-
cients using the Parsons-Lee method,28, 29 gave qualitative
agreement with these experimental results,24, 30 predicting
the observed lower critical point of the N-N demixing range,
but only by making assumptions about the shape of the rods:
in order for this model system of rigid rods to fully capture
the qualitative phase behavior of the binary fd-virus systems,
much shorter, thicker rods had to be used, with the PEG
coated fd-virus found to require L/D � 7, much lower than
the true values.24, 30 The inference is that long semi-flexible
rods exhibit the same phase behavior as short rigid rods due
to the equivalent excluded volumes.31, 32 Quantitatively, this
rigid rod model overestimates the diameter ratios at which

the various phase separations are found. For instance, the
experiments show N-N demixing to be present for diameter
ratios as low as d � 2 − 3, while the rigid-rod models predict
d � 4 − 5.24, 30 In a recent publication, we demonstrated that
the key to a real understanding of these systems is flexibility,
which renders the rods effectively shorter and thicker, avoids
having to make explicit assumptions about their shape, and
gives excellent qualitative and quantitative agreement with
experimental observations.14 In this paper, our purpose is
twofold: (i) to give a complete description of the method used
in Ref. 14, and (ii) to explore the effects of flexibility on both
monodisperse and bidisperse fd-virus systems with different
diameter (thick-thin) and length (long-short) ratios. This is
achieved by altering the fd-virus stiffness, via changing the
persistence length, which has recently been shown to be
possible experimentally,33 with persistence lengths ranging
from 2.5 L to ∼10 L. We also define and calculate an effective
shape for the particles, which allows us to look at how they
stretch throughout the systems we study.

The structure of the paper is as follows. In Sec. II we gen-
eralize the segmented chain model of Wessels and Mulder12, 13

to describe binary systems of semi-flexible rods, and define
the effective shape of the particles. In Sec. III we apply this
model to monodisperse fd-virus suspensions of different per-
sistence lengths. In Sec. IV we apply the model to the binary
fd-virus systems studied in Ref. 24, looking at an expanded
diameter ratio range than the experiments and also looking at
the effects of particle stiffness on phase behavior. In addition,
we study long-short fd-virus mixtures. Finally, we present our
conclusions in Sec. V.

II. THEORY

We consider a suspension of Ni semi-flexible rods of
species i = 1, 2 with contour lengths Li, in a volume V at tem-
perature T. We follow Wessels and Mulder,12, 13 and model a
rod of species i as a chain of Mi rod-like segments of length
li = Li/Mi and diameter Di � li. Connected chain segments
have a bending energy given by

ui(ωm,ωm+1) = −Pi

li
ωm · ωm+1, (1)

where the orientation of the mth segment is given by the
unit-vector ωm (with 1 ≤ m ≤ Mi) and Pi is the persistence
length which describes the stiffness of the chain.12, 13 We
use thermal energy units by setting β = 1/kBT = 1. The to-
tal bending potential of a chain of species i with orientation
� = {ω1, . . . , ωMi

} is then given as

Ui(�) =
Mi−1∑
m=1

ui(ωm,ωm+1). (2)

The Helmholtz free energy of the suspension, F, consists
of four key parts: the translational and mixing ideal-gas con-
tributions, the orientation entropy, the bending energy, and
the excluded volume interactions. The variational free-energy
functional F[f1, f2] of the system within an Onsager-like
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second virial approximation is therefore given as

F

N
= ln(Bρ) − 1 + x1 ln x1 + x2 ln x2

+
2∑

i=1

xi

∫
fi(�)(ln(4πfi(�)) + Ui(�))d�

+ ρ

2

2∑
i,j=1

xixj

∫
fi(�)fj (�′)Kij (�,�′)d�d�′,

(3)

where N = N1 + N2 is the total number of rods, ρ = N/V is
the number density, B = πD1L

2
1/4 is a constant, xi = Ni/N

defines the composition of the mixture (with x1 = 1 − x2),
and fi(�) is the orientation distribution function (ODF) of
species i, which satisfies the normalization

∫
d�fi(�) = 1

where d� = ∏Mi

m=1 dωm. The excluded volume interaction
between species i and j is given by12, 13

Kij (�,�′) =
Mi∑

m=1

Mj∑
m′=1

kij (ωm,ωm′ ), (4)

where kij (ωm,ωm′ ) is the excluded volume between segment
m of species i and segment m′ of species j, which is given by

kij (ωm,ωm′ ) = li lj (Di + Dj )| sin γ (ωm,ωm′ )|, (5)

where γ (ωm,ωm′ ) = arccos(ωm · ωm′) is the angle between
chain segments m and m′. Equation (3) is a two-component
generalization of the one-component segmented-chain func-
tional of Refs. 12 and 13. In the case of M1 = M2 = 1 and
U1 = U2 ≡ 0, it reduces to the Onsager functional for binary
mixtures of rigid rods,15, 16 while for M1 = M2 = 1, U1 = U2

≡ 0, and identical species 1 = 2, it reduces to the standard
Onsager Helmholtz free energy.1

The equilibrium ODFs minimize F subject to the normal-
ization constraints, and must therefore satisfy the nonlinear
self consistent equation

fi(�) = exp(−Ui(�) − Vi(�))

Qi

, (6)

where Qi is a partition function-like normalization factor aris-
ing from the normalization condition

∫
d�fi(�) = 1, and

Vi(�) can be seen as a self-consistent field, arising from the
excluded volume interactions, acting on all segments of a
chain, given as

Vi(�) = ρ

2∑
j=1

xj

∫
Kij (�,�′)fj (�′)d�′. (7)

Although it is, in principle, possible to explicitly solve
Eqs. (6) and (7) for a given state point numerically, this calcu-
lation is not very efficient for a large number M of segments.
Instead, it turns out to be much more efficient to calculate the
ODFs at the segment level. We denote the ODF of the mth
segment (m = 1, . . . , Mi) of a chain of species i = 1, 2 as
fi, m(ωm), which is defined by

fi,m(ωm) =
∫

fi(�)dω1 . . . dωm−1dωm+1 . . . dωMi
, (8)

where we are integrating out all degrees of freedom from fi(�)
except those of the mth segment. Inserting Eq. (6) into Eq. (8),
and evaluating, gives us

fi,m(ωm) = 1

Qi

qi,m(ωm) exp[−vi(ωm)]qi,M−m+1(ωm),

(9)
where vi(ω) is given by expressing Eq. (7) at the segment
level by combining Eq. (4) with Eq. (7) to give Vi(�)
= ∑Mi

m=1 vi(ωm), with vi(ω) being the same self-consistent
field

vi(ωm) = ρ

2∑
j=1

Mj∑
m′=1

xj

∫
kij (ωm,ωm′ )fj,m′ (ωm′)dωm′ ,

(10)
acting on all segments of a chain of species i. The factor
qi, m(ωm) is the partial-chain partition function of segment m,
given by

qi,m(ωm) =
∫ m−1∏

n=1

exp[−vi(ωn) − ui(ωn, ωn+1)]dωn,

(11)
which can be rewritten as the recursion relation:

qi,m(ωm) =
∫

dωm−1qi,m−1(ωm−1)

× exp[−vi(ωm−1) − ui(ωm−1, ωm)]. (12)

Due to the normalization of fi, m(ωm), we may arbitrarily
choose qi, 1(ω1) = 1, from which the recursion relation can
be started.

At a given state point, fi, m(ωm) is then calculated as fol-
lows. We choose an initial guess for vi(ωm), from which we
may calculate qi, m(ωm) for m = 2, . . . , Mi from Eq. (12) and
qi, 1(ω1) = 1. We use these to calculate fi, m(ωm) and Qi from
Eq. (9), from which vi(ωm) is recalculated from Eq. (10).
The new vi(ωm) is then reinserted into Eq. (12) to calculate
qi, m(ωm) for m = 2, . . . , Mi, and the process is repeated un-
til convergence is found. The equilibrium free energy is then
given by

Feq

N
= ln(Bρ) − 1 + x1 ln

x1

Q1
+ x2 ln

x2

Q2

− 1

2
ρ

2∑
i,j

xixj

Mi∑
m=1

Mj∑
m′=1

×
∫

kij (ωm,ωm′ )fi,m(ωm)fj,m′(ωm′)dωmdωm′ .

(13)

We note that as we are studying uniaxial particles and
phases that the ODFs are only dependent on the polar angle
θ of ω with respect to the nematic director, such that the
azimuthal angle φ may be accounted for in advance of the
calculations. For example, functions dependent on only a
single orientation ω, such as the ODFs, simply become
fi, m(ωm) = fi, m(θm). Functions dependent on two orientations,
such as the excluded volume interactions kij (ωm,ωm′ ), may
also be integrated over the azimuthal angles prior to the main
calculations. This involves a new excluded volume term
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k′
ij (θm, θm′ ), which is given by

k′
ij (θm, θm′ ) =

∫ 2π

0
dφm

∫ 2π

0
dφm′kij (ωm,ωm′ ). (14)

Due to this azimuthal symmetry, and after performing these
integrations prior to the main calculation, we only need to
consider an angular grid for θ , which due to the up-down
symmetry of the rods considered in this work reduces to a
grid for the polar angle in the range θ ∈ (0, π /2). We then use
simple numerical integration to evaluate all integrals.

With the ODFs known, Feq may be calculated from
Eq. (13). From this, all other thermodynamic properties fol-
low. The osmotic pressure 	 is calculated from

	 = ρ2 ∂(Feq/N )

∂ρ
, (15)

while the Gibbs free energy per particle g̃ is given by

g̃(x,	) = Feq

N
+ 	

ρ
. (16)

We locate coexisting phases by fixing 	 and calculating g̃ as
a function of x2, in both the isotropic and nematic phases, and
then performing common tangent constructions.16, 34, 35

We may also calculate the nematic order parameters Si

of the rods. We start by defining the local order of the mth
segment Si, m as

Si,m =
∫

dωmfi,m(ωm)P2(ωm · n), (17)

where P2(ωm · n) is the second Legendre polynomial, and
n is the nematic director. As before, we only need to con-
sider the polar dependence of the particle orientation, and this
therefore becomes

Si,m = 4π

∫ π/2

0
dθmfi,m(θm)P2(cos θm), (18)

where we define n to be along the z axis, such that ωm · n
= cos θm. The total nematic order of a rod is defined as the
average nematic order along the chain, given as

Si = 1

Mi

Mi∑
m=1

Si,m. (19)

The calculation of the effective length goes as follows.
We define the mean square effective length L2

e,i as

L2
e,i = l2

i

Mi∑
m=1

Mi∑
m′=1

〈ωm · ωm′ 〉

= l2
i

Mi∑
m=1

Mi∑
m′=1

∫
(ωm · ωm′)

× fi,m,m′ (ωm,ωm′ )dωmdωm′ , (20)

where we are summing the squares of the average length pro-
jections of all chain segments m′ along the director of all seg-
ments m. Here, fi,m,m′ (ωm,ωm′ ) is the pair orientational dis-

tribution function (PDF) defined by

fi,m,m′ (ωm,ωm′ ) =
∫

fi(�)δ(ωm − ω)δ(ωm′ − ω′)d�,

(21)
where we are integrating out all degrees of freedom from fi(�)
except those of segments m and m′. Note that fi,m,m′ (ωm,ωm′ )
is the probability that a chain of species i is in a configuration
with the mth and m′th segments having orientations ωm and
ωm′ , simultaneously. Inserting Eq. (6) into Eq. (21), and using
Eqs. (10) and (11), we find that

fi,m,m′ (ωm,ωm′ ) = 1

Qi

qi,m(ωm) exp[−vi(ωm)]

×Qi,m,m′ (ωm,ωm′ ) exp[−vi(ωm′)]

× qi,M−m′+1(ωm′), (22)

with the same notation as before. Here, Qi,m,m′ (ωm,ωm′ ) is
the partial chain partition function that takes into account the
effect of the chain segments that link segment m and seg-
ment m′. For neighboring segments, m′ = m + 1, we have
Qi,m,m′ (ωm,ωm′ ) = exp[−ui(ωm,ωm′ )], and for m′ = m + 2,
. . . , Mi, it follows the recursion relation

Qi,m,m′ (ωm,ωm′ ) =
∫

dωm′−1Qi,m,m′−1(ωm,ωm′−1)

× exp[−vi(ωm′−1)]

× exp[−ui(ωm′−1, ωm′ )]. (23)

By construction, each pair orientation distribution
function also obeys the normalization condition∫

fi,m,m′ (ωm,ωm′ )dωdωm′ = 1. As we already know the
ODFs, and hence qi, m(ωm) and vi(ωm), from our phase
diagram calculations, the calculation of the PDFs and Le, i

is relatively straightforward. We use Le, i to calculate the
effective diameter De, i, which we define as the diameter
required for rigid rods to have the same excluded volume as
our semi-flexible rods at the same state point. We calculate
this by equating the excluded volume of species i (calculated
in Eq. (13)) to that of a system of rigid rods of length Le, i

with the same composition x2 and at the same nematic order
parameter S, such that

l2
i Di

Mi∑
m=1

Mi∑
m′=1

∫
fi,m(ωm)fi,m′(ωm′)

×| sin γ (ωm,ωm′ )|dωmdωm′

= L2
e,iDe,i

∫
fi(�)fi(�

′)| sin γ (�,�′)|d�d�′.

(24)

The top two lines are the excluded volume of a system of
semi-flexible rod of species i, as calculated in Eq. (13). The
bottom line is the excluded volume of a system of rigid rods
of length Le, i, with the same composition x2 and at the same
nematic order parameter S as the semi-flexible rods. To solve
this, we initially evaluate the integral for a range of order pa-
rameters S, producing a lookup table from which we extract
the value that corresponds to the S value of the flexible rod
system via spline interpolation. This leaves De, i as the only
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unknown in Eq. (24), and we then obtain the effective shape
of the rods Le, i/De, i. We express this as a fraction of the actual
shape by

(Le,i/De,i)
∗ = Le,i/De,i

Li/Di

. (25)

III. MONODISPERSE SYSTEMS

In this section, we examine the behavior of monodisperse
fd-virus suspensions for a range of persistence lengths. We
keep the contour length fixed at L = 0.88 μm and the diameter
at D = 6.6 nm,24 and vary the persistence length P.

It is first important to check that the segment chain model
is within the continuum limit of semi-flexible rods. That is,
we must ensure that we use a sufficiently large number of
chain segments M such that our results capture the physics
of a continuous chain. We therefore examine the convergence
of our results with increasing M. In Fig. 1(a) we show the
equations of state (EOS) of both the I and N phases of a
one-component bare-fd-virus system, with the unmodified
fd-virus persistence length P = 2.5 L = 2.2 μm. We observe
that for all M values the isotropic EOS is the same, while the
nematic branch and I-N coexistence densities differ. Using
M = 1 chain segment, corresponding to a rigid rod, gives the
lowest coexistence densities and pressure (with isotropic den-
sity ρIB = 3.29, nematic density ρNB = 4.19, and coexis-
tence pressure β	INB = 14.12), and a nematic branch of the
EOS that is significantly below the other results. Increasing M
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FIG. 1. Convergence of equation of state in ρ/ρN − 	/	IN representation
(with ρN being the “converged” nematic coexistence density and 	IN be-
ing the coexistence pressure, using (a) M = 15 and (b) M = 22 chain seg-
ments), for increasing number of chain segments M for fd-virus parameters L
= 0.88 μm and D = 6.6 nm with (a) P = 2.2 μm (ρIB = 4.96, ρNB = 5.44,
and β	INB = 29.55 at coexistence, using M = 15) and (b) fd-virus with P
= 1.1 μm (ρIB = 6.74, ρNB = 7.26, and β	INB = 52.21 at coexistence,
using M = 22).
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FIG. 2. Properties of fd-virus suspension (L = 0.88 μm and D = 6.6 nm) of
a range of persistence lengths P at isotropic-nematic coexistence. (a) Coexis-
tence osmotic pressure 	IN, (b) coexistence densities ρI and ρN, (c) jump in
density at coexistence �ρ = ρN − ρI (normalized and unnormalized (inset)
by ρI), and (d) nematic order parameter S. Points show experimental data of
Ref. 33.

gives progressively higher values of the coexistence densities
and nematic EOS, until we see convergence beyond M ∼ 11.
As such, we use M = 15 chain segments for all unmodified
fd-virus particles, for which we find the isotropic-nematic
coexistence properties to be ρIB = 4.96, ρNB = 5.44, and
β	INB = 29.55. For more flexible particles with lower
persistence lengths, more chain segments must be used to
find convergence. This is illustrated in Fig. 1(b), where for P
= 1.1 μm we see convergence only beyond M ∼ 20, and
hence we use M = 22 in our calculations. We find the
coexistence properties to be ρIB = 6.74, ρNB = 7.26,
and β	INB = 52.21, a significant shift from those of the
unmodified fd-virus.

We now examine the behavior of the suspensions at I-N
coexistence. Figure 2 shows the osmotic pressure at coexis-
tence (	IN), the isotropic and nematic coexistence densities
(ρI and ρN, respectively), the jump in density at coexistence
�ρ = ρN − ρI, and the nematic order parameter S at ρN for
fd-virus suspensions of a range of stiffnesses, ranging from
rigid rods to fd-virus particles with P = L/2 = 0.44 μm.
Figures 2(a) and 2(b) show that, as one would expect, the pres-
sure and coexistence densities increase greatly as the fd-virus
is made more flexible, qualitatively consistent with the theo-
retical results of Refs. 6, 7, 9–13 and the simulation results of
Ref. 8. Comparing our predicted coexistence densities to the
experimental data of Ref. 33 (which we scale from concentra-
tions to the dimensionless units used here using the method
in Ref. 14) also shows very good quantitative agreement. In
Fig. 2(d) we see that the nematic order parameter behaves
in the opposite manner, decreasing as the rods become more
flexible. Interestingly, while the pressure and coexistence
densities continue to increase drastically as P is decreased, the
decrease in the nematic order parameter appears to tail off. In
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FIG. 3. Nematic order parameter S of fd-virus particles (L = 0.88 μm and D
= 6.6 nm) at various osmotic pressures 	, at a distance r ∈ [0, L] along
the rod. (a) P = 0.44 μm, (b) P = 1.5 μm, (c) P = 2.2 μm, and (d) P
= 17.6 μm. The lowest line is for 	 at I-N coexistence (	IN), and higher
lines are for 	 = 1.2, 1.5, 2, 3, and 5	IN, respectively.

Fig. 2(c) we show the jump in density at coexistence, show-
ing both the absolute jump and the jump normalized by the
isotropic coexistence density ρI. The normalized value, which
is the jump in density as a fraction of the density at coexis-
tence, shows similar behavior to the nematic order parameter,
initially decreasing rapidly with P before tailing off for small
persistence lengths, showing that the transition becomes a
progressively weaker first-order transition as the particles
become more flexible. The absolute value behaves some-
what differently, showing a minimum at L/P ∼ 0.5, which
corresponds to fd-virus that is slightly more flexible than the
unmodified fd-virus with L/P = 0.4. Comparing to experi-
mental data,33 we see our results underestimate the jump in
density at coexistence, although they do match qualitatively.

Figures 3(a)–3(d) show the “local” nematic order param-
eter along the contour for fd-virus particles of a range of stiff-
nesses at various osmotic pressures 	. For the most flexible
rods examined (P = 0.44 μm, shown in Fig. 3(a)), we see that
at coexistence (	 = 	IN), the innermost regions of the fd-
virus are much more aligned along the nematic director than
the outer segments, with the order parameter ranging from S
∼ 0.3 to S ∼ 0.5, with a single peak value at the very center
of the rod. As 	 is increased we see that the difference in ne-
matic ordering between the end segments and the center of the
rods become progressively less dramatic, until at 	 = 5	IN

we see S ranging from S ∼ 0.72 to S ∼ 0.84. Interestingly,
as 	 is increased, the peak value in the middle of the rod be-
comes a plateau, with more and more of the inner segments
having the same S values, and the less ordered end sections
become shorter. As the particles are made stiffer they become
increasingly more uniformly aligned, as expected, although
for unmodified fd-virus (Fig. 3(c)) the difference is still quite
pronounced, with S values ranging from 0.48 to 0.6 at coexis-
tence and 0.83 to 0.9 at 	 = 5	IN.

 0.4

 0.6

 0.8

1

   
 

 

 

 
0  1  2

L
e 

/ L

L / P

(a)

 

 

 

 

   
 0.4

 0.6

 0.8

 1
 0.001  0.1  10

L
e 

/ L

L / P

I
N

(b)

 1

 3

 5

 0  1  2
 

 

 
   

D
e 

/ D

L / P

(c)

 

 

 

 0.001  0.1  10
 1

 3

 5
   

D
e 

/ D

L / P

I
N (d)

FIG. 4. Effective length Le ((a) on linear L/P scale and (b) on logarithmic
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arithmic L/P scale) of fd-virus (with contour length L = 0.88 μm and di-
ameter D = 6.6 nm) suspension of a range of persistence lengths P at I-N
coexistence. Solid line shows results for isotropic phases, dashed line shows
nematic phases.

We finally show results for the effective shape of fd and
modified fd-virus systems. While the nematic order parameter
S along the contour (shown in Fig. 3) gives us an indication
of the local stretching of the chain in the nematic phase, the
effective shape allows us to look at this explicitly in both the
isotropic and nematic phases. Figures 4(a) and 4(b) show the
effective length Le and Figs. 4(c) and 4(d) show the effective
diameter De (defined in Eq. (20) and Eq. (24), respectively) in
both the isotropic and nematic phases at coexistence, for fd-
virus particles of a range of persistence lengths. In Figs. 4(a)
and 4(c), we use a linear L/P scale, while in Figs. 4(b) and
4(d), we use a logarithmic L/P scale. As one would expect,
we see shorter effective lengths and larger effective diameters
for more flexible particles than for stiffer ones in both phases.
This is particularly true of the isotropic phase, where we see
Le ∼ 0.45 L and Le/De ∼ 0.09 L/D ∼ 12 for the most flexible
particles studied (P = L/2 = 0.44 μm). Similar, but less ex-
treme, results are obtained for unmodified fd-virus (P = 2.5 L
= 2.2 μm), which have Le ∼ 0.6 L and Le/De ∼ 0.2 L/D ∼ 27.
Surprisingly, we see a sharp change in the L/P dependence of
the isotropic phase curves shown in Figs. 4(a) and 4(c) at high
persistence lengths, with the effective shape increasing only
gently with P before approaching the actual shape rapidly af-
ter P ∼ 15 L. This indicates that it is necessary to increase the
persistence length significantly before the effective shape of
fd-virus in the isotropic phase begins to approach the actual
shape, to a value of P > 15 L, currently beyond experimental
techniques for fd-virus particles.36

In the nematic phase, the behavior is similar but much
less pronounced. In Fig. 4 we see Le ∼ 0.75 L and Le/De

∼ 0.4 L/D ∼ 53 for the most flexible fd-virus studied and
Le ∼ 0.83 L and Le/De ∼ 0.6 L/D ∼ 80 for the unmodified
fd-virus. The L/P dependence of the curve as the particles
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are made stiffer is also much smaller than in the isotropic
phase, indicating that the excluded volume induced nematic
ordering plays a stronger role in the straightening of the rods
than increasing their stiffness.

In Fig. 5 we show the effective length of fd-virus particles
for a range of persistence lengths as a function of osmotic
pressure. Here, we track Le as the systems become denser. We
find that for rods of large persistence length (P = 100 L) the
rods become effectively completely stretched at pressures just
after coexistence, while for more flexible particles, including
the unmodified fd-virus, the pressure must be increased far
beyond coexistence for them to become completely stretched
out. Such stretching of particles in the nematic phase was also
observed in the bendable ellipsoid model of Ref. 10. We also
note that even very stiff rods with P = 100 L are only slightly
more stretched out in the isotropic phase than very flexible
rods with P = L/2 are in the nematic phase at I-N coexistence,
again showing how stiff the rods have to be made to become
significantly stretched out in the isotropic phase.

IV. BINARY MIXTURES

A. Unmodified thick-thin fd-virus mixtures

In this section, we present phase diagrams for mix-
tures of bare-fd particles (species 1, thin) and PEG-coated
ones (species 2, thick), with equal contour lengths L1 = L2

= 0.88 μm. We take the bare-fd diameter to be fixed at D1

= 6.6 nm, and we study a range of diameter ratios
d = D2/D1.24 We begin by studying fd-virus particles with
persistence lengths P1 = P2 = 2.2 μm, which is the standard
value for unmodified fd-virus particles.24 In Fig. 6 we show
the phase diagrams, in the packing fraction representation η2

− η1, for diameter ratios d = 1.2 − 6. We distinguish be-
tween isotropic phases (I, with fi, m(ω) = 1/4π , a constant)
and nematic phases (N, with fi, m(ω) peaked about the nematic
director, with the inner segments more so than those close to
the chain ends, see Fig. 3).

For all d studied we find I-N coexistence, with the I phase
richer in thinner rods and the N phase richer in thicker rods,
consistent with experimental observations.24 For the small-
est diameter ratio studied (d = 1.2, Fig. 6(a)), we see only
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FIG. 6. Phase diagrams for mixtures of bare (thin) fd-virus particles
(species 1) and PEG-coated (thick) ones (species 2) in the packing fraction
representation η2−η1, with L1 = L2 = 0.88 μm, P1 = P2 = 2.2 μm, D1
= 6.6 nm, and diameter ratios d = D2/D1 = (a) 1.2, (b) 3.1, (c) 3.11,
(d) 3.125, (e) 3.5, (f) 4, (f) 5, and (h) 6. The lighter areas indicate the
two-phase regions with tie-lines connecting coexisting state-points; triangles
denote I-N-N and I-I-N triple points. Experimental results of Ref. 24 denoted
by circles (I-N coexistence) and squares (N-N coexistence), for d = (a) 1.1,
(b) 2.9, and (e) 3.

this phase separation, and no N-N coexistence in the density
regime of interest. Increasing d leads to the emergence of a N-
N demixing regime, which we first see for d ∼ 2.5, consisting
of one N phase rich in thinner rods and one richer in thicker
rods. The N-N region begins from a lower critical point, and
is separated from the I-N region by a single phase nematic
region. We show this behavior for d = 3.1 in Fig. 6(b), and
a similar phase diagram has been reported experimentally
for d = 2.9.24 If we increase d slightly beyond this to 3.11
(Fig. 6(c)), we see the emergence of a second N-N demixing
regime, which begins from an I-N-N triple point connected to
the I-N coexistence region, and ends in an upper critical point.
The initial N-N region beginning from a lower critical point is
still present. Such phase behavior has not been reported exper-
imentally, possibly because it is only found for a very small
range of diameter ratios, and increasing d to 3.125 (Fig. 6(d))
results in the two N-N demixing regions merging to form a
single region, which begins from an I-N-N triple point and
continues throughout the density range of interest here. This
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phase behavior has been reported experimentally for d ≥ 3,24

and is found in our model for all d values greater than 3.125,
with the demixed N phases becoming increasingly monodis-
perse for increasing d values. For d values larger than d � 4.5
we see the emergence of an I-I demixing regime, which begins
from a lower critical point and ends in an I-I-N triple point,
merging with the I-N region. Such phase behavior has previ-
ously been found for rigid rod mixtures with diameter ratios
exceeding d � 8,16 but not yet in experimental systems where
the largest diameter ratio studied has been d = 3.7.24 We show
this behavior for d = 5 and d = 6, noting that as d is increased
the I-I demixing region shows increasing fractionation.

We also make a quantitative comparison of our results
to those found experimentally, using the method outlined in
Ref. 14 to convert these from concentrations into packing
fractions. We find very good agreement, particularly for low
d values, although we note that for larger diameter ratios we
have to use a larger d value in our theory than that used exper-
imentally.

We now present results for the effective shape of bare
and PEG-coated fd-virus particles for several of the binary
mixtures studied above. Shown in Figs. 7(a)–7(c) is the

 0

 0.2

 0.4

 0.6

 0.8

 1
 0  10  20  30  40  50  60

(L
e,

i /
 D

e,
i)*

Π B

thin
thick

I I + N N

 0

 0.2

 0.4

 0.6

 0.8

 1

(L
e,

i /
 D

e,
i)*

thin
thick

I I + N N N + N

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  10  20  30  40  50  60

(L
e,

i /
 D

e,
i)*

Π B

thin
thick

I I + N N + N

FIG. 7. Relative effective shape (Le, i/De, i)* = (Le, i/De, i)/(Le/De) of thin
(solid line) and thick (dashed line) rods with L1 = L2 = 0.88 μm, P1 = P2
= 2.2 μm, D1 = 6.6 nm, and diameter ratios d = D2/D1 = (a) 2, (b) 3,
(c) 4, as a function of osmotic pressure 	 with mole fraction x2 = 0.25 of
thick rods.

x2

 0

 30

 60

   
 

 

 
 0  0.5  1(a)

I

N

β 
Π

 B

 0

 30

 60

   
 

 

 
   (b)

I

I+N

N2N1

x2

 0

 30

 60

 0  0.5  1
 

 

 
   (c)

I

I+N
N2

N1

FIG. 8. Phase diagrams for mixtures of bare (thin) fd-virus particles
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gles denote I-N-N and I-I-N triple points. The arrows show the path along x2
= 0.25.

relative effective shape (Le, i/De, i)* = (Le, i/De, i)/(Le/De) of
both the thick and thin rods for diameter ratios d = 2, 3, and
4, respectively. The phase diagrams of these systems in the x2

− 	 representation are shown in Figs. 8(a)–8(c). We begin
with a mixture of x2 = 0.25 at low pressure. We then increase
	, calculating Le and De at each step, until we reach the
I-N coexistence regime. We then follow the two coexisting
phases until we leave the I-N coexistence regime, entering
either a single phase nematic region or a N-N demixing
region, depending on the system studied.

For d = 2, the phase behavior is relatively straightfor-
ward, with only I-N coexistence found. In Fig. 7(a) we see
that for the isotropic phase of this system the effective shape
of both the thick and the thin rods is about 20% of their ac-
tual L/D, corresponding to Le, i ∼ 0.6 Li and De, i ∼ 3 Di. En-
tering the I-N coexistence region, we see that the rods in the
isotropic phase maintain the same effective shape, while in the
nematic phase, the rods stretch out considerably. Interestingly,
we see that the thick rods stretch out more than the thin rods,
which implies that the system effectively becomes a mixture
in length as well as diameter. Upon entering the single phase
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nematic region, the rods continue to stretch out as the pressure
is increased, the thick rods more so than the thin ones.

As we increase d to 3, which results in increasingly
rich phase behavior with the emergence of a N-N demixing
regime, we again observe the rods stretching out to different
degrees in the coexisting phases (Fig. 7(b)). We see that in
the I-N region, the rods in the nematic phase stretch out with
increasing pressure before the effective shape reaches a max-
imum. It then decreases slightly just before the system enters
the single phase nematic region, despite the increase in pres-
sure. This corresponds to the coexisting nematic phase be-
coming increasingly rich in thin rods (and poor in thick rods),
with the decrease in the effective shape likely due to the rela-
tive decrease in excluded volume interactions associated with
this. Thus, the rods are not forced to stretch out as much de-
spite the increase in pressure. A similar effect can also be seen
upon entering the N-N coexisting region, where we see that
the rods in the thick-rod-rich nematic phase are stretched out
more than those in the thin-rod-rich nematic phase.

For mixtures with d = 4 (Fig. 7(c)), the rods behave in
a similar way to systems with d = 3, stretching out in the
various nematic phases as the pressure is increased, more so
in the nematic phases that are richer in thick rods, and with
the thick rods stretched out more than the thin ones. In this
system, however, the N-N demixing region begins from an I-
N-N triple point, at which we see that the rods in each of the
three coexisting phases are stretched out to different degrees.
Firstly, in the isotropic phase we, as before, see Le, i/De, i

∼ 0.2 Li/Di for both the thick and thin rods. In the thin-
rod-rich nematic phase the rods are considerably more
stretched out, with Le, 1/De, 1 ∼ 0.6 L1/D1 and Le, 2/De, 2

∼ 0.8 L2/D2. In the thick-rod-rich nematic phase we see
Le, 1/De, 1 ∼ 0.8 L1/D1 and Le, 2/De, 2 ∼ 0.9 L2/D2, giving three
phases with three distinct rod behaviors. We thus conclude
that any rigid rod treatment of semi-flexible particles, such as
the fd-virus, will miss some of the key physics.

B. Modified thick-thin fd-virus mixtures

Recent progress in the bio-engineering of fd-virus
particles allows for tuning their flexibility,33 and we therefore
also apply our model to binary mixtures of fd-virus particles
of various persistence lengths. We keep d fixed, and set L1

= L2 = 0.88 μm and D1 = 6.6 nm in all cases, and calculate
the phase diagrams for various P = P1 = P2 values. In
Fig. 9 we show example phase diagrams for d = 3 for P
ranging from 20 μm to 0.5 μm.

As can be seen, the progression of the phase behav-
ior as P is decreased is remarkably similar to that observed
when increasing d for the standard fd-virus mixtures with P
= 2.2 μm. To summarize these results, we divide the (d, P)
plane into regimes featuring different phase diagrams (see
Fig. 10), from those where only an I-N transition is found
(for stiff rods and small d), all the way to complex phase dia-
grams with I-N, I-I, N-N phase coexistence and I-I-N and I-N-
N triple points (for flexible rods and large d). We see that in-
creasing d and decreasing P clearly have similar effects on the
phase diagram, and hence increasing the flexibility enhances
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FIG. 9. Phase diagrams for mixtures of modified bare (thin) fd-virus par-
ticles (species 1) and PEG-coated (thick) ones (species 2) in the packing
fraction representation η2−η1, with L1 = L2 = 0.88 μm, D1 = 6.6 nm, d
= D2/D1 = 3, and persistence length P1 = P2 = (a) 20 μm, (b) 1.9 μm,
(c) 1.86 μm, (d) 1.85 μm, (e) 1.8 μm, (f) 1.1 μm, (f) 0.7 μm, and
(h) 0.5 μm. The lighter areas indicate the two-phase regions with tie-lines
connecting coexisting state-points; triangles denote I-N-N and I-I-N triple
points.
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FIG. 10. Topology of the phase diagram (two- and three-phase coexistence)
of binary mixtures of (modified) fd-virus particles (see text) as a function of
their diameter ratio d = D2/D1 and persistence length P = P1 = P2, with
fixed L = L1 = L2 = 0.88 μm and D1 = 6.6 nm. (1) I-N coexistence only.
(2) I-N coexistence, N-N demixing beginning from a lower critical point and
extending to infinite densities. (3) I-N coexistence, N-N demixing beginning
from an I-N-N triple point and extending to infinite densities. (4) I-N coex-
istence, N-N demixing beginning from an I-N-N triple point and extending
to infinite densities, I-I demixing beginning from a lower critical point and
ending in an I-I-N triple point.
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the complexity of the phase diagrams considerably. This of-
fers increased possibilities for tuning the phase behavior of
semi-flexible rod mixtures, through the choice of stiffness and
diameter ratio.

C. Long-short fd-virus mixtures

It is also possible to produce fd-virus particles of
different lengths26, 36 and we now study the effects of particle
stiffness on long-short fd-virus mixtures of equal diameter.
Experimentally, it is possible to produce fd-virus of lengths
ranging from L = 0.3 μm to 2 μm, and with persistence
lengths P = 2.2 μm to 10 μm.36 Here, we only study the most
extreme length ratio case, setting L1 = 0.3 μm and L2 = 2 μm
to give a length ratio q = L2/L1 = 6.67, which for rigid rods
is known to exhibit I-N coexistence with a N-N demixing
region beginning from an I-N-N triple point and extending
to infinite densities.20 We initially fix P1 = 2.2 μm, and then
control the stiffness of the longer rod by varying P2 from
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= 2.2 μm. In all cases P1 = 2.2 μm.

2.2 μm to 10 μm. The resulting phase diagrams are shown in
Figs. 11(a)–11(g). Figure 11(h) shows the case where P1

= P2 = 10 μm with the same length ratio q = 6.67. The
diameter ratio is kept constant at d = 1 in all cases.

At low P2 values, we find only I-N coexistence in the
density regime of interest (Fig. 11(a)), with some degree of
fractionation. Increasing P2 results in a greater degree of
fractionation and the emergence of a N-N coexistence regime
(shown in Fig. 11(b)). This begins from an I-N-N triple point,
and ends in an upper critical point. We find this behavior to
begin at P2 ∼ 4 μm, while in rigid rod mixtures, such phase
behavior has been reported for length ratios greater than ∼3.20

Further increasing P2 to about ∼7 μm results in the emer-
gence of a second N-N coexistence regime (in the density
region of interest), which begins from a lower critical point
(this behavior is shown in Fig. 11(c) for P2 = 7.5 μm). As
P2 is increased further, the two N-N regimes become larger
(Fig. 11(d)), until they merge to form a single N-N coex-
istence region (shown in Fig. 11(e)). We find this behavior
to begin at about P2 = 7.7 μm, and for P2 larger than this,
the N-N region shows increasing fractionation. In rigid rod
mixtures such phase diagrams are found for length ratios
beyond ∼3.2.20

This change in phase behavior is due to the change in the
effective shape of the longer rod as the stiffness is changed.
Figure 12 shows the difference in the effective shape through-
out the phase diagram for the two most extreme systems, P2

= 10 μm and P2 = 2.2 μm (again with L1 = 0.3 μm and L2

= 2 μm). Here, we begin with a mixture of x2 = 0.05 in the
single phase isotropic region, and increase the osmotic pres-
sure 	. As can be seen, while the behavior of the short rods
is very similar between the two systems, the long rods behave
much differently, particularly in the isotropic phase where for
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FIG. 13. Effective length ratio Le, 2/Le,1 and diameter ratio De, 2/De,1 of long-
short fd-virus mixtures of length ratio q = L2/L1 = 6.67 and diameter ra-
tio d = 1 as a function of osmotic pressure 	, beginning from an initial
long rod mole fraction of x2 = 0.05. (a) P2 = 10 μm, (b) P2 = 7.5 μm,
(c) P2 = 5 μm, and (d) P2 = 2.2 μm. In all cases P1 = 2.2 μm. Solid lines
show isotropic phases, dashed lines show nematic phases. The actual size
ratios are indicated by the horizontal line.

low P2 the long rods stretch out relatively less than the short
ones, while for large P2 they show a similar degree of stretch-
ing to the short ones. In the nematic phase the long rods are
always stretched out more regardless of their stiffness.

We now examine the effective size ratios of the rods,
shown in Figs. 13(a)–13(d), where we plot the effective length
and diameter ratios of several of the systems throughout the
phase diagrams, again beginning in the single phase isotropic
region with a mixture of x2 = 0.05, and increasing the os-
motic pressure 	. In all cases, except that with the largest P2,
we see that the effective length ratio is smaller than the actual
ratio in the isotropic phase, while the effective diameter ratio
is larger than the actual ratio. In the nematic phase the op-

posite is true, with a larger effective length ratio and smaller
effective diameter ratio than the actual values. This gives an
indication as to how the phase behavior is controlled: by in-
creasing the stiffness of the longer rod we increase the effec-
tive length ratio, which leads to richer phase behavior. As this
also decreases the effective diameter ratio, which for a fixed
length ratio would lead to less rich phase behavior but here
leads to richer behavior, we may infer that length ratio plays a
more dominant role in determining phase behavior than diam-
eter ratio. This should not come as a surprise if one realizes
that the excluded volume of rods as given in Eqs. (4) and (24)
is linear in the diameter and quadratic in the lengths. We also
note that the biggest difference between the behavior of the
effective size ratios of the rods is in the isotropic phase.

While increasing the stiffness of the long rod for a
fixed short rod stiffness leads to increasingly rich phase
behavior, we find the opposite effect when increasing the
stiffness of the short rod for a fixed long rod stiffness.
Figure 11(h) shows the phase diagram for a long-short
mixture, again with L1 = 0.3 μm and L2 = 2 μm, with P1

= 10 μm and P2 = 10 μm. As can be seen, the phase behav-
ior has now become less rich, with only I-N coexistence and a
small N-N demixing regime (beginning from an I-N-N triple
point) found. In Fig. 14 we show the effective length and
diameter ratios of this system. We see that both the phase dia-
gram itself and the effective shape ratios are remarkably sim-
ilar to those found for the mixture with P1 = 2.2 μm and P2

= 5 μm (shown in Figs. 11(b) and 13(c)), which shows identi-
cal phase behavior. To summarize these results, we divide the
(P1, P2) plane into regions featuring different phase diagrams
(see Fig. 15), from those where the phase diagrams show only
I-N coexistence, to those where I-N, I-N-N, and N-N coexis-
tence is found. From this, we see that increasing the stiffness
of the long rod (for a fixed short rod stiffness) has the same
effect on phase behavior as decreasing the short rod stiffness
(for a fixed long rod stiffness). While we have only studied
one length ratio here, we would expect to see the same basic
behavior for other ratios, with the diagram shown in Fig. 15
showing either a larger rich phase behavior region (for larger
length ratios) or a smaller one (for smaller length ratios).
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FIG. 14. Effective length ratio Le, 2/Le,1 and diameter ratio De, 2/De,1 of long-
short fd-virus mixtures with P1 = 10 μm and P2 = 10 μm, length ratio
q = L2/L1 = 6.67, and diameter ratio d = 1 as a function of osmotic pressure
	, beginning from an initial long rod mole fraction of x2 = 0.05. Solid lines
show isotropic phases, dashed lines show nematic phases. The actual size
ratios are indicated by the horizontal line.
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FIG. 15. Topology of the phase diagram (two- and three-phase coexistence)
of long-short binary mixtures of (modified) fd-virus particles (see text) as a
function of the persistence lengths P1 and P2, with fixed L1 = 0.3 μm and
L2 = 2 μm (q = 6.67), and D1 = D2 = 6.6 nm (d = 1). (1) I-N coexistence
only. (2) I-N coexistence, N-N demixing beginning from an I-N-N triple point
and ending in an upper critical point. (3) I-N coexistence, N-N demixing
beginning from an I-N-N triple point and ending in an upper critical point,
N-N demixing beginning from a lower critical point and extending to infinite
densities. (4) I-N coexistence, N-N demixing beginning from an I-N-N triple
point and extending to infinite densities.

V. CONCLUSIONS

In this paper, we have presented a theoretical model to
describe suspensions of semi-flexible colloidal rods, which
we have applied here to fd-virus particles. We have studied
the influence of the geometry and stiffness of the virus parti-
cles on the behavior of a range of systems. For monodisperse
systems, we find that, in agreement with previous studies,
isotropic-nematic coexistence is moved to significantly
higher densities as the rods are made more flexible, with
the increase in flexibility causing the first-order transition
to become increasingly weaker. We have also calculated
the nematic order parameter along the length of the rods,
finding them to be more aligned in the center than the ends,
particularly for more flexible particles. At densities just above
the I-N coexistence density the nematic ordering changes
continuously along the contour, reaching a peak value in
the center. At higher densities we see the peak value in the
center become a plateau and that the less ordered end sections
become shorter. We have also calculated the effective shape
of the rods in both the isotropic and nematic phases. We find
the effective aspect ratio to be always much smaller than the
actual shape for all but the stiffest rods studied, particularly in
the isotropic phase, with persistence lengths much larger than
those that are possible to produce experimentally for fd-virus
particles required for the rods to be considered effectively
rigid. Indeed, it seems that the excluded volume induced
stretching of the rods in the nematic phase has a greater
effect in stretching out fd-virus particles than increasing the
persistence length, with the most flexible particles studied
here having a larger effective shape in the nematic phase than
all but the stiffest rods have in the isotropic phase.

We have also studied thick-thin binary mixtures of fd-
virus particles. Consistent with experimental observations we
find I-N, N-N, and I-N-N coexistence, as well as I-I and I-I-
N coexistence at diameter ratios larger than those studied in
experiments so far. Our results also show good quantitative

agreement with experimental data. We find that the effective
shape of the rods changes widely throughout the systems stud-
ied, with the thick rods stretching out more than the thin rods.
Interestingly, we find that the rods stretch out more in nematic
phases that are richer in thick rods than thin ones, showing
the effects of the larger excluded volume interactions in these
phases on the stretching of semi-flexible rods. We also see that
altering the stiffness of the fd-virus particles has the same ef-
fect on phase behavior as changing the diameter ratio, with a
decrease in particle stiffness leading to increasingly rich phase
behavior.

Finally, we have studied long-short binary mixtures con-
sisting of fd-virus particles of identical diameter and differing
persistence and contour lengths. We find the richest phase be-
havior for systems consisting of stiffer long rods and more
flexible short rods. Decreasing the stiffness of the long rods
or increasing that of the short rods results in less rich phase
behavior. This is despite the fact that the length ratio we stud-
ied shows very rich phase behavior in rigid rod systems, and
that the persistence lengths we study are always larger than
the contour lengths of the rods. The reason for this lies in the
effective length ratio, which is largest for systems compris-
ing of stiff long rods and more flexible short rods, and can be
used to control the phase behavior. We find that the effective
diameter ratio, which is larger for smaller effective length ra-
tios, appears to play a less significant role in influencing phase
behavior.

In conclusion, we find the behavior of fd-virus systems
to be very sensitive to the stiffness of the constituent particles,
with only small changes in particle stiffness required to give
dramatic changes in the observed phase behavior. This gives
an enhanced degree of control over phase behavior, with the
possibility to, say, control the degree of fractionation in coex-
isting phases, important for purifying samples. In future work
we aim to study further the interplay between the stiffness
and length of semi-flexible rods and the resultant particle be-
havior. We hope that this work stimulates further experimen-
tal studies of bio-engineered fd-virus suspensions and other
semi-flexible particles.
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