THE JOURNAL OF CHEMICAL PHYSICS 132, 224907 (2010)

Collective diffusion of colloidal hard rods in smectic liquid crystals:

Effect of particle anisotropy

Alessandro Patti,"® Djamel EI Masri,' René van Roij,2 and Marjolein Dijkstra’®’

1Soft Condensed Matter, Debye Institute for NanoMaterials Science, Utrecht University, Princetonplein 5,
3584 CC Utrecht, The Netherlands
2Institute for Theoretical Physics, Utrecht University, Leuvenlaan 4, 3584 CE Utrecht, The Netherlands

(Received 16 April 2010; accepted 4 May 2010; published online 14 June 2010)

We study the layer-to-layer diffusion in smectic-A liquid crystals of colloidal hard rods with
different length-to-diameter ratios using computer simulations. The layered arrangement of the
smectic phase yields a hopping-type diffusion due to the presence of permanent barriers and
transient cages. Remarkably, we detect stringlike clusters composed of interlayer rods moving
cooperatively along the nematic director. Furthermore, we find that the structural relaxation in
equilibrium smectic phases shows interesting similarities with that of out-of-equilibrium
supercooled liquids, although there the particles are kinetically trapped in transient rather than
permanent cages. Additionally, at fixed packing fraction we find that the barrier height increases
with increasing particle anisotropy, and hence the dynamics is more heterogeneous and
non-Gaussian for longer rods, yielding a lower diffusion coefficient along the nematic director and
smaller clusters of interlayer particles that move less cooperatively. At fixed barrier height, the
dynamics becomes more non-Gaussian and heterogeneous for longer rods that move more
collectively giving rise to a higher diffusion coefficient along the nematic director. © 2070
American Institute of Physics. [doi:10.1063/1.3432864]

I. INTRODUCTION

Liquid crystals (LCs) are states of matter whose proper-
ties are in between those of a crystalline solid and an isotro-
pic liquid phase.1 They are usually classified in terms of
positional and orientational order. Nematic LCs exhibit long-
range orientational order, as the anisotropic particles are on
average aligned along a preferred direction, but they lack
long-range positional order. Smectic phases consist of stacks
of fluidlike layers of orientationally ordered particles, where
each layer is often considered to be a two-dimensional fluid.
Onsager2 showed in his seminal contribution the existence of
a purely entropy-driven isotropic-to-nematic (I-N) transition
in a system of infinitely long hard rods. Moreover, the I-N
transition was confirmed by computer simulations for sys-
tems of hard rods with finite length. Additionally, Frenkel
and co-workers explored the formation of smectic LCs of
perfectly ali gned3 and freely rotating4 hard rods, and found a
thermodynamically stable smectic phase of hard rods as a
result of entropic effects. The equilibrium properties of
smectic LCs are well studied and are well-understood by
now.’ Experirnental,(’*8 theoretical,9f14 and
computationalls’l(’ studies have analyzed the phase behavior
and structure of smectic LCs of colloidal hard rods. Other
investigations involve extensions to binary mixtures with
rods of different geometry,”_23 with other anisotropicm_27 or
spherical colloidal particles,zg_3 " or with nonadsorbing poly-
mer as depletemts.”_34

By contrast, the dynamics on a single-particle level in
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smectic LCs have only recently received attention, although
an early study on the diffusion (or “permeation”) of aniso-
tropic particles had already been reported more than 40 years
ago by Helfrich in order to explain the capillary flow in
cholesteric and smectic LCs.*® Substantial advances in new
experimental techniques (e.g., NMR coupled to strong mag-
netic field gradients36 or fluorescent labeling37) disclosed the
non-Gaussian nature and quasiquantized behavior of the
layer-to-layer diffusion. These achievements sparked off new
theoretical work, based on dynamic density functional
theory, which not only confirmed the non-Gaussian layer-to-
layer hopping-type diffusion and the presence of permanent
barriers due to the static smectic background, but also
showed the relevance of temporary cages due to the mutual
trapping of neighboring p'clr'[icle:s.38’39 We note that non-
Gaussian dynamics due to a rattling-and-jumping diffusive
behavior is common in two-dimensional liquids,40 cluster
crystals,41 and glasses,42 and has also been observed for the
diffusion of a single particle in a periodic external
potential.43 It is therefore not surprising to observe similar
behavior in smectic LCs. Our simulations of parallel44 and
freely rotating45 hard rods supported indeed these conclu-
sions, but unveiled in addition a striking analogy with the
nonexponential structural relaxation and non-Gaussian dy-
namics of supercooled liquids. The nonexponential relax-
ation of the density fluctuations might be due to either a
heterogeneous scenario with particles relaxing exponentially
at different relaxation rates, or a homogeneous scenario with
particles relaxing nonexponentially at very similar rates.*
Here, we investigate the collective motion of fast-moving
rods in stringlike clusters. Cooperative diffusion, which ac-
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TABLE I. Details of the systems that we studied in this paper, consisting of hard spherocylinders with varying
length-to-diameter ratio L*=L/D, reduced pressures P*=[8PD?, packing fractions 7, and corresponding layer
densities p,,=N,,/A, with N,, and A the average number of rods per layer and layer area, respectively. For
comparison, we give the pressure range of the stable smectic phase for the corresponding systems. Additionally,
we give the layer spacing (h); the standard deviation of the displacement from the equilibrium smectic phase
(o) in units of (L+D); the long-time in-layer Dﬁv and interlayer DZL diffusion coefficients in units of 7/D?; the

most probable (7), median (7}), and maximal (/7%) jump times; the fraction of collective jumps fc, fr, and fM%,
calculated with a temporal interval Az, equal to 7, £, and 77, respectively; and finally, the height of the energy

barriers (U) in units of kgz7. The systems are labeled by S;—Ss.
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L 34 38 5.0
Stable Sm 28=P*=<3.0 23=P"=<28 14=P*=23
P 2.85 3.00 2.35 2.50 1.60 2.00
n 0.556 0.568 0.536 0.551 0.508 0.557
pyD? 0.779 0.795 0.749 0.768 0.716 0.780
h/(L+D) 1.018 1.014 1.023 1.015 1.048 1.030
o/(L+D) 0.050 0.043 0.075 0.052 0.093 0.043
DEr/D? 0.036 0.020 0.116 0.050 0.325 0.028
D,/ D? 0.230 0.179 0.295 0.256 0.413 0.268
7T 0.19 0.23 0.17 0.20 0.14 0.20
ks 0.28 0.30 0.27 0.32 0.20 0.27
) 7 1.10 1.35 1.40 1.65 1.00 1.20
Iz 0.04 0.02 0.04 0.04 0.09 0.03
£ 0.04 0.02 0.05 0.05 0.09 0.03
fm 0.06 0.04 0.14 0.07 0.25 0.04
Uyl kT 6.2 75 4.0 58 35 75
s, s, S, S, Ss S

counts for the nonexponential decay of the correlation func-
tions, yields an intriguing link between the dynamics ob-
served in equilibrium smectic LCs and that of out-of-
equilibrium supercooled liquids. As far as smectic LCs are
concerned, this remarkable collective motion could not be
captured by the one-particle analysis of Ref. 43, and was not
observed in Ref. 47. Two-dimensional liquids of soft disks™
and cluster crystals“ did not show this feature either. By
contrast, several experimental and computational studies on
glassy systems reported the existence of structural
heterogeneitiesf‘g_52 In particular, Donati et al.® performed
molecular dynamics simulations on a fragile glass-forming
liquid and detected cooperative motion of stringlike clusters
with an increasing string length of up to ~15 particles by
cooling the system toward the glass transition. Similar results
were observed more recently in silica, a strong glass former,
suggesting that stringlike motion is a universal property of
supercooled liquids.52

In this paper, we investigate the effect of anisotropy of
the rods on the non-Gaussian layer-to-layer diffusion and
cooperative motion of stringlike clusters in bulk smectic LCs
of freely rotating hard rods. In supercooled liquids, it is gen-
erally accepted that in the case of heterogeneous dynamics,
the cooperative motion of particle clusters plays a crucial
role in the structural relaxation.”> We argue that a similar
behavior can be observed in smectic LCs, where cooperative
layer-to-layer motion of strings with various sizes contrib-
utes to the long-time relaxation behavior of the smectic
phase.

This paper is organized as follows. In Sec. II, we intro-
duce the model, the simulation details, and the computational
tools to describe the layer-to-layer diffusion. The results on

the non-Gaussian and heterogeneous dynamics, as well as
evidence of cooperative motion, are discussed in Sec. III. In
the last section, we present our conclusions.

Il. MODEL AND SIMULATION METHODOLOGY

We perform simulations of a system with N
=1530-3000 freely rotating hard spherocylindrical rods with
diameter D and length L+ D, distributed over 5-10 smectic
layers of approximately 300 rods each. Three different aspect
ratios, L*=L/D, are considered: L*=3.4, 3.8, and 5.0. The
region of stability of the smectic phase decreases with L*,
and disappears at L*=3.1, where only a stable isotropic-
crystal phase transition is found."* For L*=3.8 and 5.0, the
smectic phase is stable for 2.3=P*=2.8 and 1.4=P*=2.3,
respectively, where P*=BPD? is the reduced pressure. 3 is
1/kgT, with kg as the Boltzmann constant and 7 as the tem-
perature. For lower P*, the smectic phase transforms into a
nematic phase, while for higher P* the smectic freezes into a
crystal phase. For L*=3.4, the nematic phase is unstable, and
the smectic phase transforms directly into an isotropic phase
for P*=2.8 and crystallizes for P*=3.0. We studied the dy-
namics of the bulk smectic phase at the pressures and pack-
ing fractions # indicated in Table I. This table also contains
measured thermodynamic and dynamic quantities such as the
two-dimensional number density within a smectic layer p,,,
the layer spacing h, the standard deviation of the particle
displacements from the midplane of a smectic layer o, long-
time diffusion coefficients Df and Dﬁy parallel and perpen-
dicular to the nematic director, respectively, several typical
time scales ¢ associated with the duration of layer-to-layer
jumps, fractions f of collective jumps, and the free-energy
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FIG. 1. Trajectories in a plane perpendicular to the nematic director of
approximately 300 rods in a smectic layer of hard spherocylinders with a
length-to-diameter ratio L*=5.0 and reduced pressure P*=1.60 collected
over 5% 10° MC cycles.

barrier U, for layer-to-layer diffusion. All quantities will be
introduced and defined in detail below. Note that prDz/ n
== 1.4 for all state points, and due to this proportionality be-
tween p,, and 7, our analysis in terms of 7 below is equiva-
lent to one in terms of Pyy- For convenience, we label the
systems with §;—Sg.

We performed Monte Carlo (MC) simulations in a rect-
angular box of volume V with periodic boundary conditions.
First, we performed equilibration runs in the isobaric-
isothermal (NPT) ensemble to expand the system from an
ordered crystalline phase to an equilibrated smectic phase.
Each MC cycle consisted of N attempts to displace and/or
rotate the randomly selected particles, plus an attempt to
change the box volume by modifying the three box lengths
independently. Translational and rotational moves were ac-
cepted if no overlap was detected. The systems were consid-
ered to be equilibrated when the packing fraction reached a
constant value within the statistical fluctuations. A typical
equilibration run took roughly 3 X 10® MC cycles and was
followed by a production run in the isochoric-isothermal
(NVT) ensemble to analyze the relaxation dynamics. At this
stage, we kept the volume constant to avoid unphysical col-
lective moves which do not mimic the Brownian dynamics
of the rods properly. Standard MC simulations with small
displacements were used to mimic Brownian motion. This
computational approach was shown to be very efficient to
study the slow relaxation of glasses at low temperatures54 or
at high concentrations.” We fixed the maximum displace-
ment according to (i) a reasonable time of simulation, (ii) a
satisfactory acceptance rate, and (iii) a suitable description of
the Brownian motion of colloidal particles suspended in a
fluid (see Fig. 1). To this end, we monitored the mean-square
displacement in the z and xy directions for several values of
the maximum step $ize Opay, With Spay ;=2 6ax xy to take into
account the anisotropy of the self-diffusion of the rods.”® We
found Spax vy =D/ 10 and Oy, =D/ 5 to be the optimal values
which satisfied the above requirements.

As unit of time, we have chosen 7= D?/D;,, where Dy, is
the short-time translational diffusion coefficient at L*=5.0,
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which is the isotropic average of the diffusion coefficients in
the three space dimensions: Dy=(D]+2D; )/3. At short
times, when the single particle is rattling around its original
position without feeling the presence of its surrounding
neighbors, the dependence of Df, on the pressure can be
safely neglected. We checked that our results (measured in
units of 7) were independent of &,,,,.

In order to characterize the layer-to-layer hopping-type
diffusion and the structural relaxation of our systems, we
calculated (i) the energy barrier, (ii) the self-part of the van
Hove correlation function (VHF), (iii) the non-Gaussian pa-
rameter, (iv) the mean square displacement (MSD), (v) the
intermediate scattering function (ISF), (vi) the probability
distribution of the size of the stringlike clusters, and (vii)
their dynamic cooperativity.

A. Energy barrier

We computed the energy barriers from the (relative)
probability 7r(z) of finding a rod at a given position z along
the nematic director 71. As reported in Ref. 37, this probabil-
ity is proportional to the Boltzmann factor

(z) & exp[— U(2)/kpT], (1)

where U(z) denotes the effective potential for the layer-to-
layer diffusion.

B. Self-part of the VHF

To quantify the heterogeneous dynamics due to the rat-
tling and hopping type z-diffusion of the rods, we calculate
the self-part of the VHF, which measures the probability dis-
tribution for the displacements of the rods along the nematic
director 71 at time f,+¢, given their z positions at #,. It is
defined as”’

N
Gl = = oz i+ 0 -] ). 2)
i=1

with (---) the ensemble average over all particles and initial
time 7y, and & is the Dirac delta. Note that G,(z,7) would be
a Gaussian distribution of z for freely diffusive particles.

C. Non-Gaussian parameter

A quantitative description of the non-Gaussian behavior
of the layer-to-layer diffusion can be obtained in terms of the
non-Gaussian parameter’® (NGP)

(Az()*)

(1+2/d)(Az(0)»* 3)

a, (1) =
where Az(r)=z(ty+1)—2z(ty) denotes the z displacement of a
rod in the time interval ¢ starting at #), and d=1. Heteroge-
neous dynamics occurs on a time scale ¢, if the NGP is non-
vanishing. For the in-layer diffusion, a similar NGP, a, ,,(7),
with d=2 can be defined.
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D. ISF

The structural relaxation and, in particular, the decay of
the density fluctuations can be quantified by the self-part of
the ISF

F(t) = (expliq - Ar(1)]), 4)

at the wave vectors q=(0,0,¢,) and (q,.q,,0) corresponding
to the main peaks of the static structure factor in the z and xy
directions, respectively.

E. Cluster size distribution

In order to investigate whether or not there is coopera-
tive motion of stringlike clusters of particles, which might be
responsible for the heterogeneous dynamics and stretched-
exponential decay of the ISF, we first determine the static
clusters of interlayer particles. These particles reside more
than some rattling distance &, from the center-of-mass of
the nearest smectic layer and are roughly oriented along the
nematic director 71. Some of these particles, which can be
identified as fast-moving particles, have traveled a substan-
tially longer distance than the average in a certain time in-
terval, and contribute to the formation of dynamic clusters.
To define &,,, we first calculate the variance of one period of
7(z), defined as

2
o’ = f 227(2)dz, (3)

—h/2

where £ is the layer spacing obtained from fits to the density
profiles 7(z) and [ f/hz,zﬂ'(z)dz=l. We assume that two inter-
layer rods belong to the same string if their z and xy dis-
tances are smaller than & and D, respectively, and they are
roughly oriented with 7. We calculated the probability distri-
bution P(n) of the number of rods n in a string for &,,=20.
In Table I, we give the values of the layer spacing & and the
standard deviation (square root of the variance) o for the
systems that we studied. We find that denser states reveal a
slightly smaller layer spacing for all aspect ratios, as ex-
pected.

F. Dynamic cooperativity

To check whether or not the rods in a given string move
collectively from one layer to another layer, we require a
cluster criterion involving a spatial proximity of particles and
a temporal proximity of jumping rods. To this end, we as-
sume that two jumping rods i and j are moving cooperatively
if (1) their arrival times /) and /) in their new layers (i.e.,
the time at which their distance to the middle of the new
layer equals 8,,) satisfy | —¢/)| < A, and (2) the center-of-
mass positions of the two particles, r;(#”?) and rj(t(i)), satisfy
the above mentioned static cluster criterion. The time inter-
val At is fixed on the basis of the distribution of jump times
and will be introduced in the following section.

lll. RESULTS

The layered structure of smectic LCs yields an effective
periodic potential U(z) for the diffusion of rods out of the
middle of a smectic layer to another layer. The permanent
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FIG. 2. Potential energy barriers for the layer-to-layer diffusion in smectic
LCs of hard spherocylinders with varying length-to-diameter ratios L* and
reduced pressures P*. The open symbols refer to weak smectic states L*
=3.4;P"=2.85 (A), L*=3.8;P*=2.35 (0J), and L*=5.0;P*=1.60 (O). The
solid symbols denote state points deep in the smectic phase L*=3.4;P"
=3.00 (A), L*=3.8;P*=2.50 (W), and L*=5.0; P*=2.00 (@). The solid lines
are fits with m=5 harmonic modes.

energy barriers for the layer-to-layer diffusion are deter-
mined from the effective potential U(z) introduced in Eq. (1).
In order to evaluate the effect of the pressure on the inter-
layer diffusion, two separate state points are considered for
each aspect ratio: one in the proximity of the nematic-
smectic (N-Sm) or isotropic-smectic transition, and the other
in the proximity of the smectic-crystal transition. In Fig. 2,
we show U(z) for the six systems along with the fit U(z)
=3" U{sin(mz/h)]*, where m is an integer number, U,
=23" U, is the barrier height, and £ is the interlayer spacing
given in Table 1.

As a general consideration, we observe that the energy
barriers increase with increasing packing fraction. The
denser state is characterized by a much stronger confinement
of the particles to the middle of the smectic layers. This is
especially evident at L*=5.0 as the height of the barrier in-
creases from 3.5kzT to 7.5kgT from 7=0.508 to 0.557. A
similar behavior was detected in experiments on smectic LCs
of fd viruses, where the height of the energy barriers was
found to increase from 0.66kgT to 1.36kgT by decreasing the
ionic strength.37 According to the authors, a low ionic
strength gives rise to stronger correlations due to more pro-
nounced electrostatic interactions between the virus particles,
resulting in higher energy barriers. Older experiments on
thermotropic  LCs  estimated energy  barriers of
~1—4kBT.59’60 Our results are in good quantitative agree-
ment with those obtained by computer simulations in Ref.
61, where rods with L*=3.8 and 5.0 were studied. Addition-
ally, these authors found that the energy barrier for a rod to
achieve a transverse interlayer position was several kT
higher than that to diffuse from layer to layer, confirming the
difficulty to detect transverse particles in between smectic
laye:rs.62 We further observe that the packing fraction is not
the only parameter affecting the effective potentials U(z) as
displayed in Fig. 2. It is interesting to note that the two
systems S; and Sg, with L*=3.4 and P*=2.85 as denoted by
the open triangles (A) and with L*=5.0 and P*=2.00 as
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shown by the solid circles (@), corresponding to very similar
packing fractions 7=0.556 and 0.557, respectively, exhibit
barrier heights that differ by approximately 1.5kzT. The bar-
rier height at fixed 7 thus increases with the particle aniso-
tropy. The effect of the particle anisotropy on the effective
potential can also be illustrated by comparing the barriers for
the systems S, and S; with L*=3.4 and P*=3.00 (A) and
L*=5.0 and P*=2.00 (@), respectively. In this case, although
the packing fractions are significantly different (7=0.568
and 0.557), both barrier heights are 7.5kgT. This result shows
that a more pronounced particle anisotropy yields signifi-
cantly higher energy barriers. In conclusion, the barrier
height increases with increasing packing fraction and particle
anisotropy. Moreover, in our recent work on perfectly
aligned hard rods, we noticed that the freezing out of the
rotational degrees of freedom has also a quite tangible im-
pact on the height of the barriers, which were found to be
higher than those observed in systems of freely rotating rods,
especially at low packing fractions.** Such barriers fade out
gradually by approaching the continuous N-Sm transition,
while they remain finite in the case of the first order N-Sm
transition of freely rotating hard rods. One might expect that
structural defects, such as screw dislocations and stacking
faults, could facilitate the layer-to-layer diffusion by creating
barrier-free nematiclike pathways through the layers.63 The
small size of our system and the periodic boundary condi-
tions preclude the development of such defects.

The periodic shape of the effective potential determines
a hopping-type diffusion along the direction parallel to the
nematic director 72, with the particles rattling around in their
original layer until they find the appropriate conditions to
overcome the barrier and jump to a neighboring smectic
layer. An efficacious way to quantify the diffusion of rattling
and jumping rods along 7 is provided by the computation of
the self-part of the VHFs defined in Eq. (2). In Fig. 3, we
show the self-VHFs for the six systems of interest as a func-
tion of z at several equidistant times 7. We detect the appear-
ance of peaks at well-defined locations corresponding to the
center-of-mass of the smectic layers along 7, in agreement
with previous experimental37 and theoretical®™ results. For
each aspect ratio, we note that the height of the peaks is
larger and the number of peaks is generally higher at the
lowest packing fraction. This indicates that decreasing the
pressure leads to a higher number of jumping particles which
are able to diffuse longer distances. These fast particles de-
termine the heterogeneous dynamics of the system and affect
its structural relaxation.

Deviations from the Gaussian behavior of the VHFs
have been extensively analyzed in liquid,‘m’64 glassy,“’43 and
liquid Crystallinf:38’39 systems in terms of the non-Gaussian
parameter defined in Eq. (3). The NGPs as measured in our
six systems are shown in Fig. 4. The in-layer NGPs, «; ,,,
are essentially negligible for the whole time range, implying
a Gaussian in-layer dynamics which is typical of a liquidlike
system. The layer-to-layer NGPs exhibit a time-dependent
behavior, which is strictly linked to the caging effect exerted
on the rods by their nearest neighbors. More specifically, a; .
is basically zero at short times when the rods are rattling
around their original location and do not perceive the pres-
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FIG. 3. Self-part of the van Hove function G,(z,7) for smectic LCs of hard
spherocylinders with varying length-to-diameter ratios L* and reduced pres-
sures P*. Length-to-diameter ratio, pressure, and packing fraction are given
in each frame as (L*, P*, 7). The curves refer to the time evolution, from ¢
=0.47 (dotted lines) to r=407 (solid lines) with increments of =87.

ence of the surrounding cage. Between ¢/ 7=0.1 and 1.0, a,,
starts to increase, indicating the development of dynamical
heterogeneities. During this time interval, the motion of the
rods is hampered by the trapping cages and becomes subdif-
fusive. It is reasonable to assume that the average lifetime of
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FIG. 4. Non-Gaussian parameter «,(r) for the layer-to-layer (@) and in-
layer (O) diffusion for smectic LCs of hard spherocylinders with varying
length-to-diameter ratios L* and reduced pressures P*. Length-to-diameter
ratio, pressure, and packing fraction are given in each frame as (L*, P*, 7).
The solid lines are a guide for the eye.
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FIG. 5. MSD in units of D? along the nematic director #i (solid circles) and
along the plane perpendicular to 72 (open circles) for smectic LCs of hard
spherocylinders with varying length-to-diameter ratios L* and reduced pres-
sures P*. Length-to-diameter ratio, pressure, and packing fraction are given
in each frame as (L*, P*, ). The solid lines are a guide for the eye.
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the cages corresponds to the time between a,,=0 and a,,
= a’;';x, the maximum value of the NGP, which occurs at time
t=tma With 2r_ . /7=<10, depending on the system. This
peak increases with packing fraction and its location deter-
mines the beginning of the long-time diffusive regime, where
the deviations from Gaussian behavior start to decrease. In-
creasing the pressure affects the z diffusion in a twofold
manner: (i) it increases its heterogeneous behavior and (ii) it
delays the onset of the long-time diffusive behavior. Com-
parison of the two systems S; and S, corresponding to very
similar packing fractions, shows that the dynamics becomes
more non-Gaussian for system Sg consisting of longer rods
and higher energy barriers. On the other hand, for systems S,
and S, displaying similar barrier heights, the non-Gaussian
dynamics is again more pronounced for system Sg with
longer particles. Hence, increasing the anisotropy of the par-
ticles yields higher energy barriers and dynamics that is more
heterogeneous and non-Gaussian.

Most of the information obtained by the analysis of the
non-Gaussian parameter can also be deducted by the mean
square displacements (MSDs), (Az*(#)) and (Ax*(¢)+Ay?(1)),
shown in Fig. 5. The xy-MSD (open circles) is characterized
by a relatively smooth crossover from the short- to long-time
diffusion, as observed in slightly dense liquids. By contrast,
for the z-MSD (solid circles) one clearly detects a more so-
phisticated behavior as three separate time regimes can be
identified. The short-time dynamics, with the rods still rat-
tling in their cages, are diffusive, that is (Az(¢))e¢. In this
regime, (Az*(1)) > (Ax*(t) + Ay*(¢)) because of the anisotropy
of the rods.>® After an induction time, we observe the forma-
tion of a plateau which extends up to f,,,, and quantifies the
time to escape from the trapping cages. In this time window,
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FIG. 6. Diffusion ratio 7y, (top) and dimensionless diffusion coefficients
(bottom) as a function of the packing fraction for smectic LCs of hard
spherocylinders with length-to-diameter ratio L*=5.0. Dﬁ)‘VZ=Df),1ZT/ D? de-
notes the reduced diffusion coefficients, as given in Table 1. The solid lines
are power law fits.

the dynamics becomes subdiffusive. Finally, at different
times, the xy-MSD and z-MSD become linear with time and
the long-time diffusive regime is reached.

From the MSDs in the diffusive regime, we computed
the long-time diffusion coefficients in the z and xy directions
by applying the well-known Einstein relation.* The values of
the long-time diffusion coefficients, ny and DZL, are pre-
sented in Table I in units of D?/7. The dynamics of each
system is characterized by a diffusion coefficient in the xy
direction that is larger than the one in the z direction. This
result is in agreement with the dynamics in thermotropic
smectogenic LCs,* but in contrast with recent experiments
on the diffusion of fd viruses,”’ most probably because of
their huge aspect ratio (L*>100). In Fig. 6, we exemplarily
show the dependence on the packing fraction of the diffusion
coefficients and diffusion ratio, defined as

L /12
_ D /D ©)

= ph(L+ D)

for L*=5.0. Di‘y and DL as well as 1y, are well fitted by power
law functions of the type 7", with ¥=4.6, 26.0, and —21.4,
respectively. Increasing the pressure has a significantly larger
effect on the interlayer dynamics than on the in-layer one, as
Df decreases much faster than D% . This is to be expected as
the energy barriers (see Fig. 2) hamper the diffusion more in
dense systems. For the lowest packing fractions, i.e., where
the smectic phase almost coexists with the nematic phase,
the two diffusion coefficients approach each other. Similar
considerations are also valid for the systems with aspect ratio
L*=3.4 and 3.8 (not shown here).

In addition, we analyzed the structural relaxation by cal-
culating the self-part of the ISFs, defined in Eq. (4). In Fig. 7,
we show F,,(f) and F, (1) at the wave vectors q
=(¢..4,.,0) and (0,0,q,), respectively, corresponding to the
main peaks of the static structure factor. We found that
D+ (Qi+q§) =6 for all systems, whereas Dg,=1.4, 1.3, and

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



224907-7 Collective diffusion of colloidal hard rods

1. N HIII\I T lIIIIIII T VIIII!II T IIIII!I[ T HIIIII[ T

0 ey 1] 1
107107 10° 10" 10° 10
74"

FIG. 7. Self-ISF for smectic LCs of hard spherocylinders with length-to-
diameter ratio L*=3.4, and reduced pressures P*=2.85 and 3.00 (top), L*
=3.8, and P*=2.35 and 2.50 (middle), and L*=5.0, and P*=1.60 and 2.00
(bottom). The solid and open symbols refer to the lowest and highest pres-
sure, respectively. Squares and circles refer, respectively, to the in-layer and
interlayer relaxation. The solid lines are fits.

..

1.0 for the systems with L*=3.4, 3.8, and 5.0, respectively.
Regardless of the aspect ratio, we can affirm that the in-layer
structural relaxation is several orders of magnitude faster
than the interlayer relaxation. If we define the relaxation time
t, as the time at which F(r) decays to ¢!, then 1, /7 is of
the order of 107! and 7, ./7>103. We also find that F\(7)
decays very fast to zero with slightly stretched exponential
decay, as expected for dense liquidlike dynamics.66

By contrast, the interlayer relaxation develops in two
steps separated by a plateau, the beginning of which corre-
sponds to the development of the cage regime. During the
initial decay, which is relatively fast (¢/7=1), the rods are
free to rattle inside the temporary cage formed by the nearest
neighbors,3 8 without perceiving their trapping effect, and
F, (1) is characterized by an exponential decay. After this
short time lapse, we detect a plateau, whose height and tem-
poral extension depend on the packing of the system, as was
also found in colloidal glasses.66 In our previous analysis, we
observed that the Gaussian approximation of the self-ISF,
that is FXG’Z(t)=exp[—qZ2(AZ2(t))], does not show any signifi-
cant plateau.45 This result indicates that the existence of a
plateau must be linked to the nonvanishing NGP «, ., and
hence to the heterogeneous interlayer dynamics. After the
plateau, a second decay, which corresponds to the escape
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FIG. 8. Size probability distribution P(n) of the number of interlayer rods n
in stringlike clusters (with &,,,=20, see text), in smectic LCs of hard sphero-
cylinders with length-to-diameter ratio L*=3.4, and reduced pressures P*
=2.85 and 3.00 (top), L*=3.8, and P*=2.35 and 2.50 (middle), and L*
=5.0, and P*=1.60 and 2.00 (bottom). The solid and open symbols refer to
the lowest and highest pressure, respectively. The solid lines denote the fit
P(n) cexp(—an), with @ given in the figure.

from the temporal cages, leads the systems toward the struc-
tural relaxation on a time scale which is long at the highest
packing fractions. We were only able to estimate the long-
time relaxation decay in the z-direction for systems S5 and S;
due to their relatively low packing fractions. In particular, we
fit the long-time decay of F (1) with a stretched exponential
function of the form exp[—(t/t,)#], with ¢,/ 7=2500 and 8
=0.8 for S5, and 7,/7=650 and S=0.6 for S5. The relax-
ation time of the remaining systems are beyond our simula-
tion time.

The results shown so far give clear evidence of the ex-
istence of fast-moving particles determining a distribution of
decay rates which affects the long-time structural relaxation.
We now turn our attention to the occurrence of collectively
moving particles which might play a crucial role, or might
even be responsible, for the heterogeneous interlayer dynam-
ics in smectic LCs. To this end, we first label the interlayer
particles by applying the static cluster criterion defined be-
low Eq. (5). Figure 8 shows the probability size distribution
P(n) of the number of interlayer rods # in a stringlike cluster
using rattling distance &, =20, where o is the standard de-
viation as specified in Eq. (5) and presented in Table I. In
Fig. 9, we give an illustrative example of static strings ob-
served in system S;. Regardless of the particle anisotropy,
two interesting conclusions can be drawn: (i) the observed
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FIG. 9. Snapshot of 3000 rods with length-to-diameter ratio L*=3.8 and
packing fraction 7=0.536. In-layer rods and single interlayer rods (black),
both with diameters reduced to D/4 for clarity, are predominantly shown.
The thicker rods denote transverse ones (red or dark shaded) as well as
stringlike clusters of 2 (yellow or light shaded) up to 11 (brown or dark
shaded) rods.

strings consist mostly of two or three rods, while clusters of
more than five rods are extremely rare, but do exist, and (ii)
strings containing more than two rods are more often formed
in the denser state, as usually observed in supercooled lig-
uids and glassy systems, where the average cluster size in-
creases when the caging effect becomes stronger.48 The
semilog plot of Fig. 8 shows that the size probability distri-
bution is roughly exponential. In particular, we observed that
P(n) «exp(—an), from which the average cluster size can be
estimated: (n)=(1-exp(—a))~!. The largest clusters are thus
found for the shortest rods and the highest pressure.

The energy barriers of Fig. 2 and the periodically peaked
shape of the VHFs of Fig. 3 unfold the rattling-and-jumping

J. Chem. Phys. 132, 224907 (2010)

FIG. 10. (a) Probability distribution of jump times I1(z;) based on 8, =20
for length-to-diameter ratio L*=3.8 and packing fraction 7=0.536. (b) Tra-
jectories of jumping rods in the same system projected onto the xz plane,
with the dashed lines locating the center of the smectic layers. The arrow
indicates the trajectory of a transverse interlayer particle.

layer-to-layer diffusion of the rods, but only provide a global
picture of the dynamics in smectic LCs. In order to gain a
deeper understanding of the actual dynamics on the particle
scale behind the layer-to-layer hopping-type diffusion, we
followed the trajectories of single particles. Interestingly, we
observed that some rods diffuse very fast, others move to the
interlayer spacing, where they might reside for a long time,
and then return to their original layer, and others move from
one layer to another several times or perform consecutive
jumps as shown in Fig. 10(b) for system S;. Furthermore,
transverse interlayer rods, although extremely rare due to the
high energy barriers,®"®® have also been detected. These
transverse interlayer particles might diffuse either to a new
layer or go back to the old one by keeping or changing their
original orientation. This variegated behavior suggests a
rather broad distribution of layer-to-layer jump times I1(z,),
where #; is the time between the first and last contact with the
new and old layers, respectively. Such a contact is estab-
lished as soon as the particle is at a rattling distance &y
=20 from the middle of a smectic layer. The probability
distributions of jump times for systems S;—S¢ have been
computed by averaging over at least N jumps, with N the
number of rods in each system. In Fig. 10(a), we give the
probability distribution of jump times I1(z) for system S;. As
expected, the distribution is not particularly narrow, but ex-
tends over two time decades 0.01 <tz;/7<<1, with the most
probable jump time 7=0.177 and the median time (i.e., the
time at which 50% of the jumps have been performed) 7}
=0.287. These times increase at #=0.551, as given in Table
I. The remaining systems with shorter or longer rods show
the same tendency and similar times (see Table I). We also
distinguished single and consecutive (or multiple) jumps ac-
cording to the dwelling time being longer or shorter, respec-
tively, than 7, before another jump is started. Single jumps
are significantly more frequent than multiple jumps, espe-
cially at high densities where the latter are less than 1% of
the total number of jumps. Most of the multiple jumps con-
sist of double or triple jumps, while quadruple ones are ba-
sically irrelevant. The largest number of multiple jumps was
observed in the system with the lowest packing fraction, i.e.,
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S5:L*=5.0, 7=0.508, where ~5% of the total jumps is mul-
tiple, of which ~83% is a double and the remaining fraction
is a triple jump.

The formation of static stringlike clusters does not nec-
essarily imply the occurrence of dynamic cooperativity, as a
rod that belongs to a cluster might still diffuse individually
from layer-to-layer or might fail to jump. In order to ascer-
tain the occurrence of collective motion of strings, we intro-
duced a dynamic cluster criterion. More specifically, we as-
sume that two jumping rods i and j are actually moving
cooperatively, if (1) their arrival times ¥ and 7 in their new
layers satisfy the condition |#'—#| < At and (2) their z and xy
distances at /) and 7 are smaller than /& and D, respectively.
To select a consistent value for Az, we use the distribution
of jump times I1(z;). If we assume that Af, is the maximal
jump time ¢7'** [i.e., long enough for all jumps to be per-
formed according to I1(z,)], we find that for L*=3.4 the ratio
between the number of collective jumps and the total number
of jumps is fi™* as given in Table I. These jumps involve
mainly two or three rods, whereas collective jumps of four or
more rods are extremely rare. We further note that the va-
cated space of a jumping rod can be either occupied by an-
other rod jumping in the same direction or by a rod jumping
in the opposite direction, with roughly the same probability.
A less restrictive spatial criterion would not affect signifi-
cantly these values. By contrast, the number of collective
jumps is rather sensitive to the temporal criterion. If we re-
duce At to the median jump time 7}, then the fraction of
collective jumps, f,, decreases substantially as shown in
Table I. Regardless the details of the cluster criterion, we
thus find a fraction of 1072—107" of the jumps to be collec-
tive, the more so for longer rods at lower pressures.

The motion is indeed strongly cooperative at low pack-
ing fractions, despite the larger static stringlike clusters de-
tected in the denser systems (see Fig. 8). This result is most
probably due to the permanent smectic barriers which in-
crease upon approaching the smectic-to-solid phase transi-
tion and hence hamper the attempted jumps of the rods in the
strings. By contrast, in glass-forming systems, where no per-
manent barriers are observed, the cluster size increases upon
approaching the glass transition.**¢’

IV. CONCLUSIONS

In summary, we have studied the diffusion and structural
relaxation in equilibrium smectic LC phases of hard rods
with different anisotropies by computer simulations. Re-
markably, these systems exhibit non-Gaussian layer-to-layer
diffusion and dynamical heterogeneities which are similar to
those observed in out-of-equilibrium supercooled liquids.
The simultaneous presence of temporary cages due to the
trapping action of neighboring rods and the permanent bar-
riers due to the static smectic background provokes a
rattling-and-jumping diffusion which influences the long-
time structural relaxation decay. In analogy with glassy sys-
tems, one can clearly distinguish three separate time regimes
for z motion. The short-time diffusive regime, with the rods
rattling around their original location without feeling the sur-
rounding neighbors, is characterized by a Gaussian distribu-
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tion of the z displacements and an exponential temporal re-
laxation. The subdiffusive regime at intermediate times
displays a non-Gaussianity and a plateau in both MSD and
ISF. At this stage, the interlayer dynamics is heterogeneous
with fast-moving particles diffusing individually or coopera-
tively in a stringlike fashion. Finally, at long times, the sys-
tems enter a second diffusive regime with Gaussian distribu-
tions of the displacements and nonexponential decay of the
ISF. By contrast, at all time scales, the in-layer diffusion is
typical for two-dimensional fluids with a negligible NGP and
a structural relaxation which is at least four time decades
faster than the interlayer one.

The analysis of the self-VHFs points out the tendency
for the rods to diffuse from layer to layer through quasidis-
cretized jumps. This hopping-type motion is significantly
hampered in very dense systems, where the barriers for the
layer-to-layer diffusion intensify the confinement of the rods
to the middle of the smectic layers. The temporal extension
of the jumps is not uniform, but characterized by a rather
broad time distribution which covers approximately two time
decades. Depending on the dwelling time between two suc-
cessive jumps of the same particle, single and multiple jumps
have been detected, with the former significantly more fre-
quent than the latter, especially at high densities. Although
the interlayer rods are usually oriented along the nematic
director, some of them assume a transverse orientation. The
long tails of the VHFs indicate the presence of particles that
are able to diffuse much longer distances than the average,
especially at low packing fractions. Interestingly, the dy-
namic behavior of such fast-moving particles supports the
intriguing analogy with glassy systems even further. In par-
ticular, fast-moving particles assemble in stringlike clusters
whose average length increases upon approaching the
smectic-to-crystal phase transition. Likewise, fragile and
strong glass formers show a similar tendency when cooled
down toward the glass transition temper21ture.48‘5 2 We also
gave clear evidence that the strings detected in static con-
figurations can promote collective diffusion of jumping par-
ticles. This is especially tangible at low packing fractions
where the hampering action of the permanent energy barriers
is less effective. Finally, we also investigated the effect of
particle anisotropy on the non-Gaussian layer-to-layer diffu-
sion and cooperative motion in smectic LCs. We find that at
fixed packing fraction, the barrier height increases with in-
creasing particle anisotropy, and hence the dynamics is more
heterogeneous and non-Gaussian for longer rods, yielding a
lower diffusion coefficient along the nematic director and
smaller clusters of interlayer particles that move less coop-
eratively. At fixed barrier height, the dynamics becomes
more non-Gaussian and heterogeneous for longer rods;
smaller clusters move more collectively, giving rise to a
higher diffusion coefficient along the nematic director.

Our results, which might be relevant for the study of the
dynamics in confined fluids® as well as for the diffusion of
lipids and proteins in cellular membranes,”"" are already
stimulating the analysis of dynamical processes in columnar
LCs, where the presence of intercolumnar energy barriers
provokes a non-Gaussian hopping-type motion and a relax-
ation behavior that is also remarkably similar to that of out-
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of-equilibrium supercooled liquids.71 We hope that our find-
ings stimulate further theoretical and experimental studies of
particle-scale dynamics in heterogeneous (confined, smectic,
and columnar) liquids.
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