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Using simulations we identify three dynamic regimes in supersaturated isotropic fluid states of short

hard rods: (i) for moderate supersaturations, we observe nucleation of multilayered crystalline clusters;

(ii) at higher supersaturation, we find nucleation of small crystallites which arrange into long-lived locally

favored structures that get kinetically arrested; and (iii) at even higher supersaturation, the dynamic arrest

is due to the conventional cage-trapping glass transition. For longer rods we find that the formation of the

(stable) smectic phase out of a supersaturated isotropic state is strongly suppressed by an isotropic-

nematic spinodal instability that causes huge spinodal-like orientation fluctuations with nematic clusters

diverging in size. Our results show that glassy dynamics and spinodal instabilities set kinetic limits to

nucleation in highly supersaturated hard-rod fluids.
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Nucleation is the process whereby a thermodynamically
metastable state evolves into a stable one, via the sponta-
neous formation of a droplet of the stable phase. From
classical nucleation theory (CNT), the Gibbs free energy
associated with the formation of a spherical cluster of the
stable phase with radius R in the metastable phase is given
by �G ¼ �4�R3�j��j=3þ 4�R2�, with � the surface
tension between the coexisting phases, � the density of the
cluster, and j��j> 0 the chemical potential difference
between the metastable and stable phase. CNT predicts a
nucleation barrier �Gcrit ¼ ð16�=3Þ�3=ð�j��jÞ2 and a
critical nucleus radius Rcrit ¼ 2�=�j��j. CNT predicts
an infinite barrier at bulk coexistence (�� ¼ 0), which
decreases with increasing supersaturation. However, CNT
incorrectly predicts a finite barrier at the spinodal, whereas
a nonclassical approach yields a vanishing barrier at the
spinodal, with a diffuse critical nucleus that becomes of
infinite size [1]. Both approaches explain why liquids must
be supercooled substantially before nucleation occurs, and
one might expect that nucleation should always occur for
sufficiently high supersaturation. For deep quenches of soft
spheres close to a spinodal, but not beyond it, simulation
studies show either nucleating anisotropic and diffuse
clusters or precritical clusters that grow further or that
coalesce in ramified structures [2]. These results contrast
the mean-field predictions that the critical size should
diverge at the spinodal [1]. Wedekind et al. showed that a
Lennard-Jones system can become unstable by a so-called
kinetic spinodal, where the largest cluster in the system has

a vanishing barrier, i.e., �G
large
crit ¼ 0, implying the imme-

diate formation of a critical cluster in the system [3].
Beyond this kinetic limit, which is system-size-dependent

as �G
large
crit ¼ �Gcrit � kBT lnN, the system is kinetically

unstable, and the phase transformation proceeds immedi-
ately via growth of the largest cluster. HereN is the number
of particles, kB the Boltzmann constant, and T the tem-

perature. This scenario also explains why it is hard to reach
the thermodynamic spinodal and why a divergence of the
critical cluster size is never observed in simulations, as the
system already becomes kinetically unstable at much lower
supersaturations. Interestingly, recent simulations of silica
also showed a kinetic limit of the homogeneous nucleation
regime that is strongly influenced by glassy dynamics,
without any spinodal effects [4]. Clearly, the nucleation
kinetics at high supersaturation is still poorly understood.
In this Letter, we investigate the nucleation pathways of

the isotropic-crystal (IX) transition of rodlike particles as a
function of supersaturation and those of the isotropic-
smectic (ISm) transition. The nucleation pathways of
structures with both orientational and positional order are
still unknown, as nucleating smectic or crystalline clusters
have never been observed in experiments or simulations
[5,6]. We show for the first time that IX nucleation pro-
ceeds via multilayer nuclei, while previous studies found
that nucleation is hampered by self-poisoning [5].
Additionally, we identify two mechanisms of dynamic
arrest that set a kinetic limit to the IX nucleation regime,
one based on dynamic arrest of small crystalline nuclei that
form locally favored structures and one based on a con-
ventional cage-trapping glass transition. Moreover, for
longer rods we show that the isotropic-nematic (IN) spi-
nodal associated with a metastable IN transition severely
hinders and even prevents ISm nucleation.
We consider a suspension of N hard spherocylin-

ders with a diameter � and a cylindrical segment of length
L ¼ 2� in a volume V or at pressure P. The bulk phase
diagram of these rods with a length-to-diameter ratio
L� ¼ L=� ¼ 2 is well known [7]; it features an IX tran-
sition at pressure P� ¼ �P�3 ¼ 5:64, with � ¼ 1=kBT.
We first use NPT Monte Carlo (MC) simulations to

compress an isotropic fluid of 10 000 rods at the moderate
pressure P� ¼ 7:6 corresponding to a chemical potential
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difference �j��j ¼ 1:11 between the (metastable) fluid
and the crystal phase. We then take random MC configu-
rations as initial configurations for molecular dynamics
(MD) simulations in the NVT ensemble to study sponta-
neous crystal nucleation, employing the cluster criterion as
described in Refs. [8,9]. We find spontaneous nucleation of
a multilayered crystalline cluster in the isotropic fluid.
Figure 1(a) shows the time evolution from a typical MD
trajectory. In the initial stage of the MD simulation, the
system remains in the metastable isotropic fluid for a long

time. After time t ¼ 1000�, with � ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m=kBT
p

andm the
mass of the particle, a nucleus consisting of multiple
crystalline layers starts to grow gradually until the whole
system has been transformed into the bulk crystal phase.
We note that the cluster prefers to grow laterally as was
also found for attractive rods [6]. We observed similar
spontaneous nucleation at P� ¼ 7:4. The long waiting
time tw before a postcritical cluster appears by a sponta-
neous fluctuation is typical for nucleation and growth. We
calculate the nucleation rate R ¼ 1=htwiV and find from
MD simulations that R�3� ¼ 5� 10�9�2 and 1:7�
10�8�1, for P� ¼ 7:4 and 7.6, respectively.

As our MD simulations provide evidence that the IX
transformation can occur via nucleation of multilayer crys-
talline clusters, we determine the nucleation barrier by
using umbrella sampling (US) in MC simulations [8]. We
performMC simulations of 2000 particles at P� ¼ 7:0, 7.2,
and 7.4 corresponding to �j��j ¼ 0:78, 0.89, and 1.0,
respectively. Figure 1(b) shows �GðnÞ, which for P� ¼
7:2 and 7.4 displays a maximum of ��Gcrit � 27� 1:5
and 20� 1:5 at critical cluster sizes ncrit � 140 and 80,
respectively. A typical configuration of the critical cluster,
consisting of three crystalline layers at P� ¼ 7:4, is shown
in the inset in Fig. 1(b); its structure agrees with those
observed in our MD simulations of spontaneous nucleation
of multilayer crystallites. For P� ¼ 7:0 the free-energy
barrier is too high to be calculated in our simulations as
the cluster starts to percolate the simulation box before the
top is reached. For lower pressures, i.e., P� ¼ 6:0 (not
shown), this problem is even more severe. For clusters up
to n ’ 100, the barrier can be calculated with the US

scheme, revealing multilayered structures very similar to
the one shown for P� ¼ 7:4. Our MC simulation results for
P� ¼ 7:2 and 7.4 can also be used to calculate the nuclea-
tion rate from R ¼ � expð���GcritÞ with kinetic prefactor
� ¼ j��G00

crit=ð2�Þj1=2�Ifncrit , with �I the number density

of the isotropic fluid and fncrit the attachment rate of par-

ticles to the critical cluster (which we compute by using
MD simulations starting with independent configurations
at the top of the nucleation barrier [10]). For P� ¼ 7:2 and
7.4 we find R�3� ¼ 1� 10�13�1 and 2� 10�10�1, respec-
tively, in agreement within error bars with the MD
simulations.
Our observation of bulk crystal nucleation of short rods

is in marked contrast with an earlier study, which showed
that the free energy never crosses a nucleation barrier [5].
These simulations showed the formation of a single crys-
talline layer, while subsequent crystal growth is hampered.
The authors attributed the stunted growth of this monolayer
to self-poisoning by rods that lie flat on the cluster surface.
If we use the same cluster criterion as in Ref. [5] for the
biasing potential, we indeed find crystalline monolayers at
P� ¼ 7:4, which cannot grow further as �GðnÞ increases
monotonically with n. These results for the nucleation
barrier agree with theoretical predictions that for suffi-
ciently low supersaturations �GðnÞ for a single layer is
always positive, while multilayer crystalline clusters can
grow spontaneously when the nucleus exceeds the critical
size [11]. However, our detailed check [9] of the order
parameter in Ref. [5] actually reveals a strong (unwanted)
bias to form single-layered clusters in US simulations.
We also study the IX transformation at higher super-

saturation. To this end, we compress 1000 rods (L� ¼ 2) in
NPT-MC simulations at P� ¼ 8 (�j��j ¼ 1:33). Using
���2 ’ 0:44, which follows from fitting the two barriers
of Fig. 1(b) to CNT, we estimate barriers as low as

��Gcrit � 12 and ��G
large
crit � 5 for P� ¼ 8. Indeed,

many small crystallites nucleate immediately after the
compression quench, indicative of the proximity of a ki-
netic spinodal. These crystallites are oriented in different
directions and have a large tendency to orient perpendicu-
lar to each other. The subsequent equilibration is extremely

FIG. 1 (color online). (a) Configurations for spontaneous crystal nucleation from a typical molecular dynamics trajectory at P� ¼
7:6 and t=� ¼ 0, 1000, and 3000 (from left to right). Isotropiclike particles are drawn 10 times smaller than their actual size. A movie
can be found in Ref. [9]. (b) Gibbs free energy �GðnÞ as a function of the number of rods n in the crystalline cluster at pressure
P� ¼ 7:0, 7.2, and 7.4. Inset: A typical configuration of a critical cluster (n ¼ 81) at P� ¼ 7:4.
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slow, since the growth of a single crystal evolves via
collective rearrangements of smaller clusters that subse-
quently coalesce. In fact, after 3� 107 MC cycles, our
system is dynamically arrested. Interestingly, Frank pro-
posed more than 50 years ago that dynamic arrest may be
attributed to the formation of locally favored structures
(LFS) in which the system gets kinetically trapped in local
potential-energy minima [12], while direct observation of
such a mechanism for dynamic arrest was only recently
reported in the gel phase of a colloid-polymer mixture [13].
In our simulations, we clearly observe the formation of
long-lived LFS consisting of perpendicularly oriented
crystallites. Only via cooperative rearrangements (rotation
of the whole cluster) can the system escape from the
kinetic traps, but these events are rare in MC simulations.
So, despite the large supersaturation and the low barrier as
predicted by CNT, the actual formation of a single crystal
is impeded dramatically by slow dynamics. Our observa-
tions agree with experiments on soft-repulsive selenium
rods, where transient structures of 5–10 aligned particles
tend to form LFS with perpendicularly oriented clusters,
which gradually merge into larger clusters [14].

To investigate whether the system can be quenched
beyond a thermodynamic spinodal (such that the trans-
formation proceeds via spinodal decomposition), we per-
form simulations at P� ¼ 10. We find again the immediate
nucleation of many small crystallites, as expected beyond
the kinetic spinodal. As the phase transformation sets in
right away, we cannot determine whether the nucleation
barrier is finite or zero; it is therefore unclear whether or
not we have crossed a thermodynamic spinodal (if there is
one for freezing). However, we did not find any character-
istics of early-stage spinodal decomposition. The small
crystallites tend to orient perpendicularly, and the system
displays clear orientational ordering along three perpen-
dicular directions (cubatic order), as shown by the orienta-
tion distribution on the surface of a unit sphere in the inset

in Fig. 2. To check for finite size effects, we studied a
system of N ¼ 4000 rods, which again shows system-
spanning cubatic order. Whether or not the cubatic order
is long-ranged for even larger systems remains unsettled.
The mean-square displacement h½�rðtÞ�2i and the second-
order orientational correlator L2ðtÞ ¼ h½3cos2	ðtÞ � 1�=2i
are displayed in Fig. 2, which shows the characteristic
plateau of structural arrest. For comparison, we also
present data for P� ¼ 7:4, which show relatively fast re-
laxation of the translational and orientational degrees of
freedom. At an even larger supersaturation P� ¼ 20, we
find that the system is kinetically arrested immediately
after the quench. We find hardly any crystalline order,
while the orientation distribution remains isotropic (not
shown). Clearly, the system crossed the conventional
cage-trapping glass transition [15] that prevents the for-
mation of any ordering. The dynamic arrest can be appre-
ciated by the plateau in h½�rðtÞ�2i and L2ðtÞ in Fig. 2. Our
results thus show that nucleation at high supersaturation is
strongly affected by vitrification, either due to LFS or by
the conventional glass transition, yielding glasses with and
without small crystallites, respectively.
We also study longer hard rods with L� ¼ 3:4, which

show ISm coexistence at P� ¼ 2:828. A previous MC
simulation study [16] showed the formation of the smectic
phase out of the highly supersaturated I phase at P� ¼ 3:1
via spinodal decomposition. However, nucleation and
growth of the smectic phase out of weakly supersaturated
I phases at P� ¼ 2:85–3:0was not observed [16]. As strong
presmectic ordering and huge nematiclike clusters were
observed in the I phase, the hampered nucleation was
attributed to slow dynamics. Here we reinvestigate the
regime P� ¼ 2:828–3:0 at much longer time scales by
MD simulations. We confirm the earlier findings of the
structure but do not find any evidence for structural arrest
in h½�rðtÞ�2i and L2ðtÞ (not shown). Instead, we find huge
and strongly fluctuating nematiclike clusters [9]. The ne-
matic character of the clusters is evident from the structure
factor SðkÞ and orientational structure factor SorðkÞ, shown
in Fig. 3, revealing a small-k divergence for SorðkÞ but not
for SðkÞ [15]. The correlation length 
 of the orientational
fluctuations obtained from fitting the orientational correla-
tion function gorðrÞ � expð�r=
Þ=r is shown in the inset to
satisfy a power law 
� jP� Pcj��, with P�

c ¼ 3:01 the
alleged IN-spinodal pressure and � ¼ 0:47, which is close
to the expected mean-field exponent � ¼ 1=2 of the IN
spinodal [17]. Apparently, the ISm nucleation is prevented
by an intervening IN spinodal. Our observation that the
metastable isotropic fluid is more susceptible to nematic
than to smectic fluctuations is corroborated by second-
virial calculations of the Zwanzig model of blocklike H �
D�D rods with three orthogonal orientations [9]. The
dimensionless Helmholtz free-energy density F=V of the I,
N, and Sm phases for H=D ¼ 4:3, shown in Fig. 3, reveal
equilibrium ISm coexistence and a metastable N branch.
The IN spinodal on the metastable isotropic branch occurs
at a lower packing fraction � than the ISm spinodal. In

FIG. 2 (color online). Mean-square displacement h½�rðtÞ�2i
and second-order orientational correlator L2ðtÞ for hard rods
with L� ¼ 2 and pressures as labeled. The inset shows a typical
configuration of a glassy state with cubatic order at P� ¼ 10.
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other words, the isotropic fluid is predicted to exhibit
spinodal nematic fluctuations upon increasing the super-
saturation, consistent with the diverging 
 as observed in
our simulations. One might expect that the presence of
these nematic clusters facilitates the formation of the
smectic phase. However, although we find some layering
of the rods, the density within these nematic clusters is too
low and the orientational fluctuations change too rapidly to
form the smectic layers.

In conclusion, our results show that nucleation of hard
rods from a supersaturated isotropic fluid phase to crystal
and smectic phases is much more rare than perhaps naively
anticipated. Only for very short rods and moderate super-
saturations do we find nucleation of multilayered crystals;
at higher supersaturations, we identified two mechanism
for dynamic arrest. The first one occurs close to the kinetic

spinodal, where (locally favored) crystalline clusters ap-
pear immediately after the quench, followed by slow dy-
namics due to geometric constraints of these tightly packed
clusters. The second type of dynamic arrest occurs at very
high supersaturation and is due to the conventional cage-
trapping glass transition. In the supersaturated isotropic
state of longer rods (L� ¼ 3:4), the nucleation of the
(equilibrium) smectic phase is found to be hampered by
nematic fluctuations due to the existence of an IN-spinodal
instability. We showed for the first time that for quenches
close to a spinodal the clusters diverge in size. Our findings
are of fundamental and practical interest. They provide
strong evidence for a local structural mechanism for dy-
namic arrest in a system with orientational and positional
degrees of freedom. They also explain why the self-
organization of ordered assemblies of nanorods is difficult
and why most of the nanorod self-assembly techniques
require additional alignment of the rods by applied electric
fields, fluid flow, or substrates in order to facilitate the for-
mation of the desired self-assembled structures [18]. Our
simulations show that this additional ‘‘steering’’ is required
since the spontaneous nucleation of the rods is strongly
affected by glassy dynamics and spinodal instabilities.
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FIG. 3 (color online). (a) Positional (top) and orientational
(bottom) structure factor of hard rods with L=� ¼ 3:4 at varying
P�. The inset shows the pressure dependence of the orientation
correlation length 
. The dashed line is the power-law fitting 
�
jP� Pcj��. (b) Typical configuration at P� ¼ 3. A movie is
shown in Ref. [9]. Isotropiclike particles are drawn 10 times
smaller than their actual size. (c),(d) Conveniently shifted and
scaled Helmholtz free-energy density F=V of Zwanzig rods
(packing fraction �, aspect ratio H=D ¼ 4:3) in the I (dashed),
N (dotted), and Sm (green) phases. ISm and metastable IN
coexistence are indicated by the solid lines, and the IN and
ISm spinodal instabilities are denoted by the symbols on the
supersaturated isotropic free-energy branch.
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Ran Ni1, Simone Belli2, René van Roij2, and Marjolein Dijkstra1

1Soft Condensed Matter, Utrecht University,

Princetonplein 5, 3584 CC Utrecht, The Netherlands and

2Institute for Theoretical Physics, Utrecht University,

Leuvenlaan 4, 3504 CE, Utrecht, The Netherlands

(Dated: June 29, 2010)

1



I. CLUSTER CRITERION USED IN THIS WORK

In order to follow a phase transformation, a cluster criterion is needed that is able to

identify the new phase from the supersaturated phase. For spherical particles several cluster

criteria have been defined to study nucleation. The cluster criterion that is proposed in Ref.

[1] to study gas-liquid nucleation, consists of (i) identifying all particles with a liquid-like

environment (i.e. particles that have a local density that is significantly higher than that

of the vapour) and (ii) applying the criterion that two liquid-like particles belong to the

same cluster when they are sufficiently close to each other. Similarly, for the liquid-solid

transformation, the cluster criterion in Ref. [2] is based on (i) identifying all particles with a

solid-like environment using the local bond orientational order parameters, and ii) applying

the criterion that two solid-like particles belong to the same cluster if they are sufficiently

close. Our cluster criterion that we developed to study nucleation of hard spherocylinders

with a length-to-diameter ratio of L/σ is within the same spirit [3]: We first identify all

particles that have an orientationally ordered environment. Subsequently, orientationally

ordered particles that are sufficiently close and aligned to each other belong to the same

cluster. To this end, we first define the local environment of particle i by all particles j with

a surface-to-surface distance ρij < 1.5σ. The local orientational order of particle i is defined

by

S(i) =
1

ni

ni∑
j=1

(
3

2
|uj · ui|2 − 1

2

)
, (1)

where uj is the unit orientation vector of particle j and ni is the number of particles with

a surface-to-surface distance ρij < 1.5σ. We have adopted the criterion that particle i is

orientationally ordered if S(i) > 0.4. After identifying the orientationally ordered particles

in the system, we determine the cluster using the criterion that two orientationally ordered

particles i and j belong to the same cluster if ρij < 0.5σ and |ui · uj| > 0.7.

II. CLUSTER CRITERION IN REF [4]

The cluster criterion that was proposed in Ref. [4] is much simpler and assumes that two

particles i and j belong to the same cluster if ρij < 0.5σ and |ui · uj| > 0.995.

In order to check this cluster criterion, we performed umbrella sampling Monte Carlo

simulations at a reduced pressure P ∗ = βP/σ3 = 7.4 for a system of hard spherocylinders
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FIG. S1: Gibbs free energy β∆G(n) as a function of cluster size n (left) and a typical cluster
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simulations using the biasing potential proposed in Ref. [4].
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FIG. S2: (a) Probability distribution function P (|ui ·uj | > c) as a function of c for particles i and

j with a surface-to-surface distance ρij < 0.5σ in a bulk crystal phase at pressure P ∗ = 5.6, 6.0, 7.0,

and 8.0. (b) P (|ui ·uj | > c) as a function of c for particles i and j within the same crystalline layer

(top) and in different layers (bottom), and a surface-to-surface distance ρij < 0.5σ.

with L∗ = L/σ = 2 using the biasing potential of Ref. [4]. The Gibbs free energy β∆G(n)

as a function of cluster size n is shown in Fig. S1 along with a typical configuration of a

cluster of size n = 95. We clearly observe that β∆G(n) increases monotonically with n and

never crosses a nucleation barrier in agreement with the findings of Ref. [4]. Additionally,

we find that only monolayered crystals are formed, which cannot grow further as β∆G(n)

increases with n.

In order to investigate why the criterion seems to bias towards monolayered clusters, we

calculated for an equilibrated bulk crystal at reduced pressures P ∗ = 5.6, 6.0, 7.0, and 8.0,
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FIG. S3: (left) Precritical clusters identified using the cluster criterion in the present work, which

are multicrystalline. (right) The cluster criterion of Ref. [4] is only able to detect monolayer

crystallites in the same configuration.

the probability distribution of P (|ui · uj| > c) as a function of c for all particle pairs that

satisfy ρij < 0.5σ. Fig. S2(a) shows that only 30-50 % of these particles in the bulk crystal

phase are recognized as crystalline by the criterion |ui · uj| > 0.995 as was used in Ref. [4].

We also determined P (|ui ·uj| > c) for particles with ρij < 0.5σ within the same crystalline

layer and in different layers in Fig. S2(b), respectively. We find that 40 − 70% of the

particles are defined to be crystalline within the same layer, while only 15 − 25% between

the layers. Hence, the cluster criterion of Ref. [4] reveals a severe (unwanted) bias towards

monolayer clusters in umbrella sampling simulations.

In addition, we employed our cluster criterion and that of Ref. [4] to analyze the structure

of precritical clusters that already appear occasionally in the supersaturated fluid phase

without using any biasing potential. Fig. S3 shows that the cluster criterion of Ref. [4] only

detects monolayer crystals, while our cluster criterion already finds multi-layered crystals,

although very small, in the same configuration.

In conclusion, a good cluster criterion should be able to identify all the particles in a well-

equilibrated system of the new bulk phase, while it detects only a very small number of tiny

clusters in the supersaturated parent phase. An additional check would be to investigate

whether the cluster criterion can already identify precritical clusters in the supersaturated

bulk phase using unbiased Monte Carlo or Molecular Dynamics simulations.
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III. ZWANZIG MODEL FREE-ENERGY CALCULATIONS

A. Second-virial functional

In order to support our simulation result that the supersaturated isotropic phase of

hard spherocylinders with L∗ = 3.4 becomes unstable with respect to nematic rather than

smectic fluctuations, we also perform free-energy calculations and stability analyses within

a density functional theory for a system of hard parallelepipeds with sides H ×D ×D and

H/D = 4.3. For the sake of simplicity the rotational degrees of freedom of the rods were

described according to the so-called Zwanzig model, in which a particle can assume only

three mutually orthogonal orientations [5]. Despite its simplicity, this model captures the

essential physics of hard-rod fluids, since, for instance, its bulk phase diagram [6] and its

wetting and capillarity behavior is very similar to that of freely rotating hard rods [7]. We

define the one-particle distribution (o.p.d.) ρα(r) (with α ∈ {x, y, z}) of rods with center-

of-mass position r whose long axis is aligned along axis α of a fixed Cartesian reference

frame. For a bulk system of N particles in a volume V the o.p.d. satisfies the normalization

condition ∑
α

∫

V

drρα(r) = N, (2)

where the α-summation is over all three possible orientations. In the formalism of density

functional theory the (intrinsic) Helmholtz free energy F of the system is expressed as a

functional of the o.p.d. [8]. Within the second-virial approximation one writes F [ρ] as a

sum of an ideal-gas and an O(ρ2) interaction term,

βF [ρ] =
∑

α

∫

V

dr{ρα(r)[log(ρα(r))− 1]}

− 1

2

∑

α,α′

∫
drdr′fαα′

M (r, r′)ρα(r)ρα′(r
′), (3)

where β = 1/kBT and fαα′
M (r, r′) = exp[−βuαα′(r, r

′)]−1 the Mayer function in terms of the

pair interaction uαα′(r, r
′) between two rods with orientations α and α′ at positions r and

r′. For the hard bodies of interest here, fM = −1 and 0 for overlapping and non-overlapping

pairs of rods, respectively.
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B. Minimization

At a fixed temperature T and density n = N/V , the equilibrium o.p.d. minimizes F [ρ]

with the constraint that the normalization condition (2) be satisfied. This gives rise to the

self-consistency equation

ρα(r) = C exp[
∑

α′

∫

V

dr′fαα′
M (r, r′)ρα′(r

′)], (4)

whose solutions are candidates for the equilibrium o.p.d. The constant C is fixed by the nor-

malization condition (2). Here we only consider solutions that satisfy translation-invariance

in the x−y plane (which includes the symmetries of isotropic, nematic, and smectic phases),

such that we can write ρα(r) = ρα(z). Assuming a periodicity λ in the z-direction, we can

expand the o.p.d. as a Fourier series

ρα(z) =
ρα0

2
+

∞∑

k=1

ραk cos[
2πk

λ
z], (5)

the coefficients of which satisfy

ραk =
2

λ

∫ λ/2

−λ/2

dzρα(z) cos[
2πk

λ
z]. (6)

Inserting the Fourier modes into the minimum condition (4) yields

ρα(z) = C exp{
∑

α′
[Fαα′(0)

ρα′0

2
+

∞∑

k=1

Fαα′
(2πk

λ

)
ρα′k cos[

2πk

λ
z]]} (7)

where

Fαα′(q) =

∫
dz12 cos(qz12)

∫
dx12dy12f

αα′
M (r1, r2). (8)

Note that Fαα′(q = 0) is (minus) the excluded volume of a pair of rods with orientations

α and α′, and that Fαα′(q) can be calculated analytically for this particular model. The

expansion in Fourier series allows to rewrite the free energy explicitly in terms of the Fourier

modes ραk and the periodicity λ. In this way one can get the value of λ at fixed density

just by minimizing the free energy with respect to this parameter. Isotropic and nematic

phase will have λ → ∞, whereas λ ' H in the smectic phase where it denotes the layer

spacing. In a numerical implementation of this scheme the summation over the modes is to

be truncated beyond a cut-off k > kmax. In the calculations we performed we set kmax = 10,

which we checked to be sufficient.

With this parameterization of the o.p.d., the following phases can be distinguished:
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• In the isotropic phase ραk = 0 for k 6= 0 (no z-dependence), and ρα0 = 2n/3 (no

orientation dependence) such that ρx(z) = ρy(z) = ρz(z) = n/3.

• In the nematic phase with director ẑ (corresponding to α = z) we have ραk = 0 for

k 6= 0 (no z-dependence), and ρx(z) = ρy(z) = n(1 − s)/3 and ρz(z) = n(1 + 2s)/3,

with the nematic order parameter s ∈ (0, 1] that follows numerically from Eq.(7).

• In the smectic A phase with director and layer normal ẑ we have ραk 6= 0 for all k,

such that ρx(z) = ρy(z) while the normalization condition

∑
α

∫ λ/2

−λ/2

dzρα(z) = nλ (9)

is to be satisfied. The scheme to find smectic o.p.d.’s is thus

1. Guess a value for λ;

2. Use this value of λ to find the corresponding values of ραk by numerically solving

the system of Eqs.(6) and (7);

3. Find the value of λ at which the free energy (3) reaches its minimum; the corre-

sponding ραk are the Fourier modes of the o.p.d. of the system at equilibrium.

For a given n we attempt to find isotropic, nematic, and smectic distributions. At low

enough n only isotropic distributions can be found, at higher densities also nematic and

smectic ones. In Fig. S4 we report some examples of o.p.d. characterized by smectic order.

The equilibrium phase diagram follows from e.g. a common tangent construction of the

equilibrium free energy density F/V as a function of n, which reveals for the parameter

choice H/D = 4.3 of present interest an isotropic-smectic A coexistence regime for 0.536 <

η < 0.566 where η = nHD2 is the packing fraction of the rods. The isotropic-nematic phase

coexistence is, for this aspect ratio, metastable. In order to facilitate the visualization of

the ISm and IN coexistence the vertical axes of Fig. 3c and 3d in the Letter represent

η(F/N − µISm), where µISm is the chemical potential of the isotropic and smectic phase at

coexistence (here µISm = 2.919kBT ).
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FIG. S4: Scaled smectic one-particle distribution of hard parallelepipeds with aspect ratio H/D =

4.3 for orientations parallel (left) and perpendicular (right) to the nematic director, as follows from

a second-virial approximation, at packing fraction η = 0.56 (red solid line), η = 0.60 (green dashed

line) and η = 0.70 (blue dotted line). The z coordinate is expressed in units of the smectic period

(λ/H = 2.17, 1.77, 1.53, respectively).

C. Bifurcation analysis

The stability of a phase requires that the system is in a state of minimum free energy.

For a phase with a distribution ρα(r) the minimum free-energy condition implies that an

arbitrary density fluctuation hα(r) increases F [ρ], in other words that

∫
drdr′

δ2βF

δρα(r)δρα′(r′)

∣∣∣∣
ρα(r)

hα(r)hα′(r
′) > 0. (10)

A spinodal instability occurs at a state (n, T ) with an o.p.d. ρα(r) such that an infinitessi-

mally small mode hα(r) exists for which the right hand side of Eq.(10) equals zero. Viewing

the second functional derivative in Eq.(10) as a matrix operator, we can identify a spinodal

instability by a vanishing eigenvalue of the operator, the unstable (”bifurcating”) mode be-

ing the corresponding eigen-vector or -function [9]. For the present functional (3) a spinodal

instability is thus to be analyzed in terms of the eigenvalue problem

δ2βF

δρα(r)δρα′(r′)
=

δαα′δ(r− r′)
ρα(r)

− fαα′
M (r, r′) = 0. (11)

Note that at extremely low densities the first (diagonal) term dominates, giving only positive

eigenvalues and hence no solution such that the state is stable. At higher ρ’s instabilities
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exist as solutions to Eq.(11). Since in this work we limit to study the stability of the isotropic

and nematic phases, which are both homogeneous with ρα(z) = ρα independent of z, the

above matrix equation is more easily solved in Fourier space, where it can be written in

terms of an eigenvalue problem as

hα(q) = ρα

∑

α′
Fαα′(q)hα′(q), (12)

where the kernel F αα′(q) was defined in Eq.(8). The lowest density n (with corresponding

isotropic or nematic distribution ρα) at which the eigenvalue problem (12) has non trivial

solution determines the spinodal point. The IN spinodal is obtained as a q = 0 mode for a

reference state ρα = n/3 at nHD2 = 0.592, where the bifurcating eigenvector of the 3 × 3

problem is (−1,−1, 2), which expresses a nematic order along the third axis. The ISm

(η = 0.604) and the NSm (η = 0.555) bifurcations give q 6= 0 modes, where the periodicity

of the smectic phase along the z axis equals λ/H = 2π/(qH) = 0.35 and 2.31 respectively.
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