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Non-Gaussian dynamics in smectic liquid crystals of parallel hard rods
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Using computer simulations, we studied the diffusion and structural relaxation in equilibrium smectic liquid-
crystal bulk phases of parallel hard spherocylinders. These systems exhibit a non-Gaussian layer-to-layer
diffusion due to the presence of periodic barriers and transient cages and show remarkable similarities with the
behavior of out-of-equilibrium supercooled liquids. We detect a very slow interlayer relaxation dynamics over
the whole density range of the stable smectic phase which spans a time interval of four time decades. The
intrinsic nature of the layered structure yields a hopping-type diffusion which becomes more heterogeneous for
higher packing fractions. In contrast, the in-layer dynamics is typical of a dense fluid with a relatively fast
decay. Our results on the dynamic behavior agree well with that observed in systems of freely rotating hard
rods but differ quantitatively as the height of the periodic barriers reduces to zero at the nematic-smectic

transition for aligned rods, while it remains finite for freely rotating rods.
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I. INTRODUCTION

Non-Gaussian diffusion and dynamical heterogeneities
have been shown to slow down or completely arrest the
structural relaxation of systems, such as supercooled liquids
[1-3] and gels [4,5]. The heterogeneous dynamics of these
systems, in which individual particles are trapped in transient
cages by neighboring particles, explains the nonexponential
relaxation and non-Gaussian diffusive behavior. Two sce-
narios are usually proposed to explain the nonexponential
relaxation behavior: a heterogeneous scenario in which the
particles relax exponentially at different relaxation rates and
a homogeneous scenario where the particles relax nonexpo-
nentially at nearly identical rates [6]. Recently, the analysis
of dynamical heterogeneities has been extended to other
complex systems, such as granular media [7] and liquid crys-
tals (LCs) in confined nanopores [8,9]. Interestingly, the dy-
namics of LCs has been shown to share many features with
supercooled liquids, especially in the so-called LC isotropic
phase [10,11] and in the smectic LC phase [12]. The LC
isotropic phase is a macroscopically homogeneous liquid
phase, which exhibits nematic ordered domains near the
isotropic-nematic (IN) transition. The size of these nematic
domains, which are driven by a precursor of the nematic
phase, increases upon approaching the IN transition [13].
The caging behavior, i.e., the temporary localization of indi-
vidual particles, as observed in supercooled liquids, is caused
by the transient structural inhomogeneities of the nematic
domains in the isotropic LC phase. Hence, the heterogeneous
dynamics of such an isotropic phase with prenematic order
resembles that of supercooled liquids [10]. The non-Gaussian
behavior becomes even stronger by confining the LC in a
nanoporous material [8,9]. The reason is that confinement
modifies the dynamics of the LC particles, which yields a
nonuniform relaxation depending on, e.g., the distance to the
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pore surface and the pore size, which is indeed observed
experimentally by dielectric spectroscopy [14] and quasielas-
tic neutron scattering [8,15].

For the bulk smectic LCs, recent developments of experi-
mental techniques (e.g., NMR coupled to strong magnetic
field gradients [16] or fluorescent labeling of rods [17]) al-
lowed for direct observations of non-Gaussian quasiquan-
tized layer-to-layer diffusion. In particular, Lettinga and Gre-
let found that the interlayer diffusion of rodlike fd viruses
(aspect ratio =130) in smectic phases is faster than the layer-
to-layer one [17]. In the light of these advances, Bier ef al.
proposed a dynamic density functional approach to study the
self-diffusion in colloidal dispersions of infinitely elongated
particles [18]. In particular, they investigated the effect of the
local fluid structure, which temporarily cages individual par-
ticles and competes with the one-dimensional “permanent”
barriers due to the smectic layered structure. This theoretical
work shows qualitative agreement with recent experiments
on the self-diffusion of filamentous bacteriophage fd viruses
through smectic layers [17]. In both studies, the self-part of
the van Hove correlation function showed clear evidence of
an interlayer diffusion (or permeation) occurring by discon-
tinuous jumps of nearly one rod length. Simulations on
freely rotating hard rods confirmed the important role of tem-
porary cages and permanent barriers on the non-Gaussian
permeation through smectic layers and revealed insights on
the relaxation behavior and cooperative motion of stringlike
clusters [12]. However, the simulations did not show a faster
layer-to-layer diffusion compared with the in-layer diffusion
as found in the experiments on fd virus particles [17]. This
might be explained by the huge aspect ratio of fd virus,
while the simulations were performed on relatively short
rods.

In this work, we investigate the diffusion in bulk smectic
liquid crystals of perfectly aligned hard spherocylinders. The
phase diagram of parallel hard spherocylinders exhibit
nematic-to-smectic (N-Sm) and smectic-to-crystal (Sm-K)
phase transitions in a broad range of length-to-diameter ra-
tios of the rods [19,20]. Using computer simulations, we are
able to study the long-time relaxation decay which approxi-
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mately spans up to four time decades in the whole density
range from the N-Sm to the Sm-K transition. We investigate
the substantial differences between the fluidlike in-layer and
the hopping-type interlayer dynamics, which are caused by
the temporary cages and permanent barriers. In addition, we
study the heterogeneous character of the layer-to-layer dy-
namics, which is not exclusively a feature of confined LCs,
and we determine the crossover between the cage regime,
with the particles rattling around their center of mass, and the
long-time diffusive regime as a function of density.

II. MODEL AND SIMULATIONS

Our system is composed of N=2100 parallel hard sphero-
cylinders with aspect ratio L*=L/D=5, where D is the di-
ameter of the hemispherical caps joined together by a cylin-
drical part of length L. Hence, the overall length of the rods
is L+D. The phase diagram of this system displays stable
nematic, smectic, and crystal phases [20]. For L*=5, the
smectic phase melts into a nematic phase for P*=<2.1,
and crystallizes for P*=6.3, where P*=Puvy/kzT is
the reduced pressure with kp Boltzmann’s constant and
vo=m(D3/6+LD?/4) the molecular volume. We studied
the dynamics of this system at pressures P*=2.0, 2.5,
3.0, 4.0, and 5.0 corresponding to packing fractions
n=Nv,/V=0.394, 0.441, 0.475, 0.525, and 0.563, respec-
tively. We performed Monte Carlo (MC) simulations in a
rectangular box of volume V with seven smectic layers of
aligned rods and we employ periodic boundary conditions.

We first performed equilibration runs using MC simula-
tions in the isobaric-isothermal (NPT) ensemble. The initial
configurations for the smectic phase were obtained by ex-
panding a solid phase at pressures P*=2.0, 2.5, 3.0, and 4.0.
The smectic phase at P*=5.0 was obtained by a compression
run from P*=4.0. We only performed translational moves,
which were accepted if no overlap was detected, whereas
rotational moves were not allowed. Volume changes have
been attempted every N MC cycles by randomly changing
the three box lengths independently. The systems were con-
sidered to be equilibrated when the packing fraction had
reached a constant value. In the production runs, we carried
out MC simulations in the canonical (NVT) ensemble, i.e.,
we kept the volume constant, as the collective moves asso-
ciated with the volume changes would not correspond with
Brownian dynamics. The maximum displacement of the MC
moves was chosen in such a way that we achieve (i) a rea-
sonable time of simulation, (ii) a satisfactory acceptance rate,
and (iii) a suitable description of the Brownian motion of the
particles in a colloidal suspension. To this end, we monitored
the mean-square displacement in the z and xy directions for
several values of the maximum step size o, Wwith
Omax:=2Onax.ry due to the anisotropy of the short-time self-
diffusion coefficient of the rods [21]. &,4.,=D/10 and
Snax.=D/5 were found to be the optimal values satisfying
the above requirements. We have neglected the hydrody-
namic effects as it was shown recently by computer simula-
tions of highly concentrated rod suspensions that the dynam-
ics is dominated primarily by the excluded volume and steric
effects [22].
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FIG. 1. (top) Interlayer g;(z) and (bottom) in-layer g, (x,y) pair-
correlation functions as a function of z and r, =Vx?+y?, respec-
tively, for varying pressures as labeled.

As unit of time, we have chosen 7= D?/D,,, where D,, is
the translational short-time diffusion coefficient, which is the
isotropic average of the diffusion coefficients in the three
space dimensions: D,.=(Dy+2D )/3. At short times, when
the single particle is rattling around its original position and
does not yet feel the presence of the surrounding cage, the
dependence of D,, on the reduced pressure is very weak and
can be safely neglected.

III. RESULTS

The intrinsic nature of the smectic phases can be appreci-
ated by computing the in-layer g, (x,y) and interlayer g(z)
pair-correlation functions as a function of r | = Va2 + y2 and z,
respectively. In Fig. 1, we display g | (x,y) and g(z) for vary-
ing pressures. We find features of fluidlike behavior for
g1 (x,y): the first peak is located at a distance approximately
equal to one diameter length and an exponential decay of the
oscillations to one at long distances. By contrast, g,(z) shows
pronounced periodic correlations which reveal the layered
structure along the nematic director 7i. The location of the
peaks corresponds to the center of the smectic layers, where
the particle density is maximal. In Fig. 2, we show the top
and side view of two typical configurations of the smectic
LC phase at P*=2.5 and 5.0, where one can clearly see the
periodic structure of the smectic layers and the two-
dimensional (2D) fluidlike structure within each layer.

Upon increasing the pressure, the peaks become more
pronounced indicating that the smectic layers are more well
defined and the layer spacing reduces significantly from
h=17.03D at P*=2.0 to h=6.48D at P*=5.0. At P*=2.0, very
close to the N-Sm transition, it is difficult to distinguish the
individual layers as the amplitude of the periodic structure
reduces continuously, and g;(z) approaches a nearly flat pro-
file in the proximity of the continuous N-Sm transition. At
pressures P*=4.0, the peaks become more pronounced,
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FIG. 2. (Color online) Top and side views of two bulk smectic
liquid-crystal phases observed at (a) P*=2.5 and (b) P*=5.0.

while the minima corresponding to the interlayer spacings
tends to zero. Hence, it becomes more difficult for the par-
ticles to diffuse from layer to layer at these high pressures.
In addition, we measure the (relative) probability 7(z) of
finding a particle at position z with the z axis chosen parallel
to the nematic director 7. We estimated the potential-energy
barrier from the Boltzmann factor 7(z) < exp[-U(z)/kzT] as
in Ref. [17]. U(z) denotes the effective potential and
quantifies the potential-energy barrier for the layer-to-layer
diffusion. In Fig. 3, we give U(z) at different pressures with
the fitting function U(z)=37,U[sin(wz/h)]*, where
Uy=2"!,U, is the potential barrier height and & is the inter-
layer spacing. We find Uy=0.2kgT at P*=2.0 and

T T T T T T T

FIG. 3. Effective potential U(z) in the bulk smectic phase at
P=2.0(0),2.5 (M), 3.0(<), 4.0 (A), and 5.0 (V). The solid lines
are fits.

PHYSICAL REVIEW E 81, 021704 (2010)

Uy=8.3kgT at P*=5.0. The potential barrier for a rod to dif-
fuse from layer to layer increases with increasing packing
fraction and becomes less steep when the N-Sm phase tran-
sition is approached at lower densities. A similar trend was
observed in Ref. [17], where the height of the potential bar-
rier increases from 0.66kzT to 1.36kzT by decreasing the
ionic strength. This is most probably due to the fact that at
low ionic strength there might be a stronger correlation be-
tween the particles, which give rise to a denser packing. We
note that potential-energy barriers of ~1-4kpT were mea-
sured experimentally in thermotropic liquid crystals [23,24].

Our results should be compared with those of Ref. [25]
and the barrier heights estimated recently for smectic phases
of freely rotating hard rods with L*=5, where the nematic
order parameter was defined as S=(3|u;-n|>~1)/2, with u;
and n as the orientation of particle i and the nematic director,
respectively [12]. The smectic order is characterized by a
nonhomogeneous density profile 7(z) with z along the nem-
atic director. Interestingly, we find that the barrier height in
smectic LC phases is higher for aligned hard rods than for
freely rotating rods at the same packing fraction, i.e., we find
Uy=5.1kgT at 7=0.508 (P*=3.7) for aligned rods, which
should be compared with Uy=3.5kzT for freely rotating rods,
and Uy=7.8kzT at 7=0.557 (P*=4.8) for parallel rods to be
compared with Uy=7.5kgT. The difference in barrier height
decreases with increasing pressure, and we expect that it
tends to zero upon approaching the Sm-K transition, where
the freely rotating rods become more and more aligned. In
summary, the intralayer diffusion is more delayed in the case
of perfectly aligned rods, due to an increase in layer-to-layer
order, resulting in significantly higher potential-energy barri-
ers.

Barrier-free diffusion pathways can be observed even at
high densities as a result of screw dislocations. Such struc-
tural defects create helical connections between neighboring
smectic layers where the rods diffuse as in the nematic phase
[26]. Tt is not an easy task to model screw dislocations in
computer simulations as these are not compatible with peri-
odic boundary conditions. Slip boundary conditions may
overcome this complication [27].

To study the non-Gaussian behavior of the layer-to-layer
diffusion, we computed the following non-Gaussian param-
eter [28]:

Bzl
3Az(nH?

where Az(r)=z(ty+1)—2z(t,) is the displacement of the rods in
the z direction in the time interval starting at #, and ending at
o+t and (...) denotes an ensemble average over all particles
and initial time 7,. For the in-layer diffusion, a similar non-
Gaussian parameter, a, ,,(f), can be computed. In Fig. 4, we
show a, (1) at different pressures. This parameter quantifies
the deviation from the Gaussian behavior of the probability
density function for single-particle diffusion. At short times,
the particles are freely diffusing as the trapping cage formed
by the surrounding neighbors is not reached yet and, hence,
a, . is basically zero. At long times, the system enters the
diffusive regime and the non-Gaussian parameter tends to
zero. At intermediate times, the motion of each particle is

(1)

azgz(t) =
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FIG. 4. Non-Gaussian parameter o, (f) and mean-square dis-
placement in the direction parallel to the nematic director calculated
at the pressures indicated in the top frame.

hampered by its neighbors and becomes subdiffusive. In this
time interval, a, . is nonvanishing, indicating the develop-
ment of dynamical heterogeneities. Additionally, we find that
the peak height of a, () at " increases and moves to larger
values of ¢* upon increasing the packing fraction as the time
for the particles to escape out of their cage increases. We also
plot the mean-square displacement (MSD) (z%(¢)) in Fig. 4
for the same state points. The MSD show a clear cage-
trapping plateau, which becomes more pronounced upon in-
creasing pressure. The time 7* at which a, , displays a maxi-
mum corresponds to the end of the plateau observed in the
MSD as can be observed clearly in Fig. 4.

Interestingly, non-Gaussian dynamics due to cage-escape
processes have also been observed in single-particle diffu-
sion in periodic external potentials [29], 2D liquids [30],
cluster crystals [31], but also in glasses [32-35]. In particu-
lar, it was shown that the time to escape out of a cage in-
creases because cage rearrangement (or recaging) involves a
larger number of particles [32-35] upon approaching the
glass transition. @, ,,(#) (not shown here) does not deviate
significantly from zero. At the highest pressure studied, the
peak is lower than 0.2, confirming that the in-layer relaxation
dynamics is (nearly) diffusive. The behavior of the non-
Gaussian parameter «, . is consistent with the theoretical
predictions in systems of infinitely long parallel hard rods
[18] and with the simulation results of freely rotating hard
rods [12] although the latter exhibit higher peaks especially
close to the smectic-to-crystal transition. Stronger deviations
have been observed in colloidal systems with short-range
attractions when approaching the gel transition [36] or in
permanent gels where static heterogeneities give rise to a
plateau at long times (i.e., the non-Gaussian parameter does
not vanish) [4,37]. Glass transitions, by contrast, are usually
characterized by weaker deviations [33,35].

The periodic shape of the effective potential implies a
hopping-type diffusion in the direction of 71, with the rods
rattling around in a given layer until they overcome the free-
energy barrier shown in Fig. 3 and jump to a neighboring
layer. We quantify this layer-to-layer diffusion by calculating
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FIG. 5. Self-part of the Van Hove function G,(z,7) at ¢t/ 7=10
(thick solid lines), t/7=100 (dashed lines), and #/7=1000 (solid
lines) for pressure (a) P*=2.0, (b) 3.0, (c) 4.0, and (d) 5.0.

the self-part of the Van Hove correlation function (VHF) [38]
defined as

N
1
Gzt = > z-[zlte+D)-z(10)]) ), (2)
i=1

where & is the Dirac delta function. G(z,t) measures the
probability distribution for the z displacements of the rods at
time fy+t, given their z positions at 7,. In Fig. 5, the self-
VHF is presented as a function of z at P*=2.0 to 5.0. At
P*=3.0 to 5.0, we observe the appearance of peaks at dis-
tances that correspond to the center of the smectic layers in
the z direction. No peaks are observed at P*=2.0, where the
barrier height (0.2k5T) of the effective potential for the layer-
to-layer diffusion is sufficiently small that there is no

021704-4



NON-GAUSSIAN DYNAMICS IN SMECTIC LIQUID ...

D
T EEERTTTY MW RTTIT MW

10° 10

4

10" 10°

tt

FIG. 6. Self-intermediate scattering function F() for the struc-
tural relaxation in the z (top) and xy (bottom) direction at P*=2.0
(©),2.5 (M), 3.0(<),4.0(A), and 5.0 (V). The solid lines are fits.

hopping-type diffusion between neighboring layers. As a re-
sult, the discontinuous diffusion observed in strong smectic
phases, with the particles occupying quasidiscretized posi-
tions, is substituted by a quasicontinuous Gaussian diffusion
for weak smectic phases. At long times, less and less par-
ticles are still at their original positions, and consequently,
the profiles of the VHF become almost constant in a nematic
phase or periodically peaked in a smectic phase. The pres-
ence of peaks at distances of neighboring layers for small to
intermediate pressures show that a significant number of par-
ticles have displaced a long distance even at short times.
These fast-moving particles contribute to the heterogeneous
dynamics of the system and affect its structural relaxation. In
recent simulations of smectic phases of freely rotating hard
rods, it was shown that the fast-moving particles form string-
like clusters which exhibit cooperative motion [12]. We be-
lieve that this result is still valid if the orientational degrees
of freedom are frozen out, but further investigation is needed
to address this point in more detail.

Finally, we also study the structural relaxation by calcu-
lating the self-part of the intermediate scattering function:

F(t) = (expliq - Ar(1)]) 3)

at wave vectors ¢D=(0,0,¢,) and (q,.q,,0), with g,=1 and
(q§+q§)1/ 2=6, which correspond to the main peaks of the
static structure factor. Ar(¢) is the displacement of a particle
in the time interval ¢. Results at pressures P*=2.0, 3.0, and
4.0 are shown in Fig. 6. For the pressure range
P*=2.5-5.0, the interlayer dynamics shows a significantly
slow relaxation which is characterized by a two-step decay.
In the first step, which is relatively fast, each rod rattles
around its original position without feeling the presence of
the surrounding neighbors. We detect an exponential decay
of F,(r) toward a plateau whose height and time extension
increase with pressure as also observed for colloidal glasses
[3]. The plateau establishes the beginning of the cage regime,
where the particles start to interact with their nearest neigh-
bors which form a temporary cage for the particle. The fol-
lowing step takes place at much longer times (note the loga-
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FIG. 7. Relaxation time 7,/ 7 as a function of packing fraction 7.
The solid and empty circles refer to the interlayer and in-layer re-
laxation, respectively. The solid lines are power-law fits of the type
t,/tc o, with a=25.2 and 2.89 for the interlayer and in-layer re-
laxation, respectively.

rithmic scale of Fig. 6) and marks the escape from the cage
regime. The second decay of F;  is well fitted by a stretched
exponential function of the form exp[(z/tr)f], where
B=0.6 and t, is the time at which the intermediate scattering
function decays to e~!. The stretched exponential form of the
relaxation decay at long times confirms the heterogeneous
nature of the inter layer dynamics. In Fig. 7, the relaxation
time is given as a function of the packing fraction and fitted
with a power law covering four time decades in a density
interval spanning from the N-Sm to the Sm-K transition. At
P*=2.0, we still observe an initial exponential decay at short
times and a stretched exponential decay at long times, but it
is very hard to detect a plateau (if any) due to the weak
smectic character of the bulk phase and, hence, to the weak
permanent background barriers (see Fig. 3). Nevertheless,
there might be a discontinuity between two separated relax-
ation regimes since F, cannot be fitted by a single scaling
law.

By contrast, the in-layer relaxation is very fast and occurs
in a single step. As can be observed in Fig. 7, the relaxation
time, which covers basically half a time decade, does not
change significantly as a function of density. Interestingly,
the long time decay of F,,, which is exponential at short
times, is also fitted by a stretched exponential function with
B=0.7 at long times. This behavior is unusual for simple
fluids, where a single exponential decay is observed, and can
also not be associated with that of a supercooled liquid as the
characteristic cage-trapping plateau is absent. However, the
in-layer dynamics in smectic liquid crystals is similar to that
of low-density supercooled liquids which do not display a
plateau but only a stretched exponential relaxation at long
times [39].

IV. CONCLUSIONS

In conclusion, we have studied using computer simula-
tions the diffusion of perfectly aligned rodlike particles in
smectic liquid-crystal phases, where the interlayer dynamics
exhibits a non-Gaussian rattling-and-jumping-type diffusion
due to the simultaneous presence of temporary cages and
permanent barriers. The caging due to the mutual trapping of
neighboring particles, slows down the diffusion, and the cor-
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responding relaxation time depends strongly on the packing
of the system. The presence of periodic permanent barriers
with a height that increases with increasing density are in-
trinsically associated to the layered structure of the smectic
phase and determine the hopping-type layer-to-layer diffu-
sion. As detected in out-of-equilibrium colloidal systems,
such as supercooled liquids, we found that in a given time
interval some particles displace longer distances than the av-
erage, giving rise to a remarkable heterogeneous dynamics
which results in significant deviations from Gaussian behav-
ior. We quantified these heterogeneities by computing (1) the
non-Gaussian parameter a, (¢), which significantly deviates
from zero at high volume fractions; (2) the self-part of the
van Hove functions, whose long tails give clear evidence of
the presence of fast particles even at short times; (3) the
mean-square displacement, which exhibits a plateau quanti-
fying the average lifetime of the transient cages; and (4) the
self-part of the intermediate scattering function, which char-
acterizes the relaxation decay of the system. In the complete
range of stability of the smectic phase, we observed a very
slow interlayer structural relaxation which spans over four
time decades from the N-Sm to the Sm-K transition. We note
that caging as well as the permanent barrier both contribute
to the non-Gaussian dynamics [29]. The in-layer relaxation
dynamics is very fast but does not show an exponential de-
cay at long times as it would be expected for simple liquids.
The observed stretched-exponential decay corresponds to
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that of a low-density supercooled liquid where the cage ef-
fect is not sufficiently strong to yield a cage-trapping plateau.

We observed qualitative agreement with the dynamics of
freely-rotating hard rods [12], but we do find some quantita-
tive deviations in the non-Gaussian behavior, mainly, caused
by the huge differences in the height of the potential-energy
barriers. To be specific, the height of the barrier for aligned
rods tends to zero at the continuous N-Sm transition, while it
remains finite in the case of the first order N-Sm transition of
freely rotating rods, which changes the dynamics signifi-
cantly. Strings of clusters which exhibit cooperative motion
have been found in systems of freely rotating hard rods [12],
and we expect that they should be observed also when the
orientational degrees of freedom are frozen out. Other tran-
sient heterogeneities, which alter the order of the smectic
structure, may arise from localized defects, such as stacking
faults and dislocations. The small size of our system and the
periodic boundary conditions prevent the formation of de-
fects. However, one could indeed expect that some types of
structural defects, such as screw dislocations, facilitate the
layer-to-layer diffusion by allowing for barrier-free nematic-
like “fast tracks” through the smectic layers [26].
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