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Over the last number of years several simulation methods have been introduced to study rare events
such as nucleation. In this paper we examine the crystal nucleation rate of hard spheres using three
such numerical techniques: molecular dynamics, forward flux sampling, and a Bennett–Chandler-
type theory where the nucleation barrier is determined using umbrella sampling simulations. The re-
sulting nucleation rates are compared with the experimental rates of Harland and van Megen [Phys.
Rev. E 55, 3054 (1997)], Sinn et al. [Prog. Colloid Polym. Sci. 118, 266 (2001)], Schätzel and
Ackerson [Phys. Rev. E 48, 3766 (1993)], and the predicted rates for monodisperse and 5% polydis-
perse hard spheres of Auer and Frenkel [Nature 409, 1020 (2001)]. When the rates are examined in
units of the long-time diffusion coefficient, we find agreement between all the theoretically predicted
nucleation rates, however, the experimental results display a markedly different behavior for low su-
persaturation. Additionally, we examined the precritical nuclei arising in the molecular dynamics,
forward flux sampling, and umbrella sampling simulations. The structure of the nuclei appears in-
dependent of the simulation method, and in all cases, the nuclei contains on average significantly
more face-centered-cubic ordered particles than hexagonal-close-packed ordered particles. © 2010
American Institute of Physics. [doi:10.1063/1.3506838]

I. INTRODUCTION

Nucleation processes are ubiquitous in both natural and
artificially-synthesized systems. However, the occurrence of
a nucleation event is often rare and difficult to examine both
experimentally and theoretically.

Colloidal systems are almost ideal model systems for
studying nucleation phenomena. Nucleation and the proceed-
ing crystallization in such systems often take place on ex-
perimentally accessible time scales, and due to the size of
the particles, they are accessible to a wide variety of scatter-
ing and imaging techniques, such as (confocal) microscopy,1

holography,2 and light and x-ray scattering. Additionally,
progress in particle synthesis,3 solvent manipulation, and the
application of external fields4 allows for significant control
over the interparticle interactions, allowing for the study of a
large variety of nucleation processes.

One such colloidal system is the experimental realiza-
tion of “hard” spheres comprised of sterically stabilized poly-
methylmethacrylate (PMMA) particles suspended in a liquid
mixture of decaline and carbon disulfide.5 Experimentally,
the phase behavior of such a system has been examined by
Pusey and van Megen6 and maps well onto the phase behav-
ior predicted for hard spheres. Specifically, when the effective
volume fraction of their system is scaled to reproduce the
freezing volume fraction of hard spheres (η = 0.495) the re-
sulting melting volume fraction is η = 0.545 ± 0.003 (Ref. 6)
which is in good agreement with that predicted for hard
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spheres.7 The nucleation rates have been measured using
light scattering by Harland and van Megen,5 Sinn et al.,8

Schätzel and Ackerson9 and predicted theoretically by Auer
and Frenkel.10

On the theoretical side, hard-sphere systems are one of
the simplest systems which can be applied to the study of col-
loidal and nanoparticle systems, and generally, toward the nu-
cleation process itself. As such, it is an ideal system to exam-
ine various computational methods for studying nucleation,
and comparing the results with experimental data. Such meth-
ods include, but are not limited to, molecular dynamics (MD)
simulations, umbrella sampling (US), forward flux sampling
(FFS), and transition path sampling (TPS). It is worth noting
here that Auer and Frenkel10 used umbrella sampling simula-
tions to study crystal nucleation of hard spheres and found a
significant difference between their predicted rates and the ex-
perimental rates of Refs. 5, 8, and 9. However, it was unclear
where this difference originated. In this paper, we compare the
nucleation rates for the hard-sphere system from MD, US, and
FFS simulations with the experimental results of Refs. 5, 8,
and 9. We demonstrate that the three simulation techniques
are consistent in their prediction of the nucleation rates, de-
spite the fact that they treat the dynamics differently. Thus,
we conclude that the difference between the experimental and
theoretical nucleation rates identified by Auer and Frenkel is
not due to the simulation method.

A nucleation event occurs when a statistical fluctuation
in a supersaturated liquid results in the formation of a crys-
tal nucleus large enough to grow out and continue crystalliz-
ing the surrounding fluid. In general, small crystal nuclei are

0021-9606/2010/133(24)/244115/15/$30.00 © 2010 American Institute of Physics133, 244115-1

Downloaded 03 Jan 2011 to 131.211.45.17. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions

http://dx.doi.org/10.1063/1.3506838
http://dx.doi.org/10.1063/1.3506838
http://dx.doi.org/10.1063/1.3506838
http://dx.doi.org/10.1063/1.3506838
mailto: L.C.Filion@uu.nl


244115-2 Filion et al. J. Chem. Phys. 133, 244115 (2010)

continuously being formed and melt back in a liquid. How-
ever, while most of these small nuclei will quickly melt, in
a supersaturated liquid a fraction of these nuclei will grow
out. Classical nucleation theory (CNT) is the simplest theory
available for describing this process. In CNT it is assumed
that the free energy for making a small nucleus is given by a
surface free-energy cost which is proportional to the surface
area of the nucleus and a bulk free-energy gain proportional
to its volume. More specifically, according to CNT the Gibbs
free-energy difference between a homogeneous bulk fluid and
a system containing a spherical nucleus of radius R is given
by

�G(R) = 4πγ R2 − 4
3π |�μ| ρs R3, (1)

where |�μ| is the difference in chemical potential between
the fluid and solid phases, ρs is the density of the solid, and γ

is the interfacial free energy of the fluid–solid interface. This
free-energy difference is usually referred to as the nucleation
barrier. From this expression, the radius of the critical clus-
ter is found to be R∗ = 2γ / |�μ| ρs and the barrier height is
�G∗ = 16πγ 3/3ρ2

s |�μ|2.
Umbrella sampling11, 12 is a method to examine the nu-

cleation process from which the nucleation barrier is easily
obtained. The predicted barrier can then be used in combina-
tion with kinetic Monte Carlo (KMC) or MD simulations to
determine the nucleation rate.10 In US an order parameter for
the system is chosen and configuration averages for sequential
values of the order parameter are taken. In order to facilitate
such averaging, the system is biased toward particular regions
in configuration space. The success of the method is expected
to depend largely on the choice of order parameter and bias-
ing potential. Note that the free-energy barrier is only defined
in equilibrium, and thus is only applicable to systems which
are in (quasi-) equilibrium.

Forward flux sampling13–15 is a method of studying rare
events, such as nucleation, in both equilibrium and non-
equilibrium systems. Using FFS, the transition rate constants
(e.g., the nucleation rate) for rare events can be determined
when brute force simulations are difficult or even not pos-
sible. In FFS, a reaction coordinate Q (similar to the order
parameter in US) is introduced which follows the rare event.
The transition rate between phase A and B is then expressed
as a product of the flux (�Aλ0 ) of trajectories crossing the
A state boundary, typically denoted λ0, and the probability
(P(λB |λ0)) that a trajectory which has crossed this boundary
will reach state B before returning to state A. Thus the transi-
tion rate constant is written as

kAB = �Aλ0 P(λB |λ0). (2)

Forward flux sampling facilitates the calculation of probabil-
ity P(λB |λ0) by breaking it up into a set of probabilities be-
tween sequential values of the reaction coordinate. Little in-
formation regarding the details of the nucleation process is
required in advance, and the choice of reaction coordinate is
expected to be less important than the order parameter in US.
Additionally, unlike US, FFS utilizes dynamical simulations

TABLE I. Packing fraction (η = πσ 3 N/6V ), reduced pressure (βpσ 3),
reduced chemical potential difference between the fluid and solid phases
(β |�μ|) and reduced number density of the solid phase ρs of the state points
studied in this paper. The chemical potential difference was determined us-
ing thermodynamic integration Ref. 17, and the equations of state for the fluid
and solid are from Refs. 18 and 19, respectively.

η βpσ 3 β |�μ| ρsσ
3

0.5214 15.0 0.34 1.107
0.5284 16.0 0.44 1.122
0.5316 16.4 0.48 1.128
0.5348 16.9 0.53 1.135
0.5352 17.0 0.54 1.136
0.5381 17.5 0.58 1.142
0.5414 18.0 0.63 1.148
0.5478 19.1 0.74 1.161
0.5572 20.8 0.90 1.178

and hence this technique does not assume that the system is
in (quasi-)equilibrium.

Molecular dynamics and Brownian dynamics (BD) sim-
ulations are ideal for studying the time evolution of systems,
and, when possible, they are the natural techniques to study
dynamical processes such as nucleation. Unfortunately, avail-
able computational time often limits the types of systems,
which can be effectively studied by these dynamical tech-
niques. Brownian dynamics simulations, which would be the
natural choice to use for colloidal systems, are very slow
due to the small time steps required to handle the steep po-
tential used to approximate the hard-sphere potential. Event
driven MD simulations are much more efficient to simulate
hard spheres and enable us to study spontaneous nucleation
of hard-sphere systems over a range of volume fractions. The
main difference between the two simulation methods regards
how they treat the short-time motion of the particles. Fortu-
nately, the nucleation rate is only dependent on the long-time
dynamics which are not sensitive to the details of the short-
time dynamics of the system.16

In this paper we study in detail the application of US
and FFS techniques to crystal nucleation of hard spheres,
and predict the associated nucleation rates. Combining these
nucleation rates with results from MD simulations, we make
predictions for the nucleation rates over a wide range of pack-
ing fractions η = 0.5214 − 0.5572, with corresponding pres-
sures and supersaturations shown in Table I. We compare
these theoretical nucleation rates with the rates measured ex-
perimentally by Refs. 5, 8, and 9.

This paper is organized as follows: in Sec. II we dis-
cuss the model, in Sec. III we describe and examine the
order parameter used to distinguish between solid-like and
fluidlike particles throughout this paper, in Sec. IV we cal-
culate essentially the “exact” nucleation rates using MD sim-
ulations, in Secs. V and VI we calculate the nucleation rates
of hard spheres using US and FFS respectively, and discuss
difficulties in the application of these techniques, in Sec. VII
we summarize the theoretical results and compare the pre-
dicted nucleation rates with the measured experimental rates
of Harland and van Megen,5 Sinn et al.,8 and Schätzel and
Ackerson9 and Sec. VIII contains our conclusions.
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II. MODEL

In this paper, we examine the nucleation rate between
spheres with diameter σ which interact via a hard-sphere pair
potential given by

βU H S(ri j ) =
{

0 ri j ≥ σ

∞ ri j < σ,
(3)

where ri j is the center-to-center distance between particles
i and j and β = 1/kB T with kB Boltzmann’s constant and
T the temperature. This is in contrast to several studies on
“hard” spheres where the hard-sphere potential is approxi-
mated by a slightly soft potential (e.g., Refs. 20 and 21) so
that Brownian dynamics simulations or traditional molecular
dynamics simulations (i.e., molecular dynamics which is not
event driven), which require a continuous potential, can be
used. We would like to emphasize this distinction here as the
hardness of the interaction has previously been shown to play
a significant role in nucleation rates.22, 23

III. ORDER PARAMETER

In this paper, an order parameter is used to differentiate
between liquid-like and solid-like particles and a cluster algo-
rithm is used to identify the solid clusters. We have chosen to
use the local bond-order parameter introduced by ten Wolde
et al. 24, 25 in the study of crystal nucleation in a Lennard-Jones
system. This order parameter has been used in many crystal
nucleation studies, including a previous study of hard-sphere
nucleation by Auer and Frenkel.10

In the calculation of the local bond order parameter a list
of “neighbors” is determined for each particle. The neighbors
of particle i include all particles within a radial distance rc of
particle i , and the total number of neighbors is denoted Nb(i).
A bond orientational order parameter ql,m(i) for each particle
is then defined as

ql,m(i) = 1

Nb(i)

Nb(i)∑
j=1

Yl,m(θi, j , φi, j ), (4)

where Yl,m(θ, φ) are the spherical harmonics, m ∈ [−l, l] and
θi, j and φi, j are the polar and azimuthal angles of the center-
of-mass distance vector ri j = r j − ri with ri the position vec-
tor of particle i . Solid-like particles are identified as particles
for which the number of connections per particle ξ (i) is at
least ξc and where

ξ (i) =
Nb(i)∑
j=1

H (dl(i, j) − dc), (5)

H is the Heaviside step function, dc is the dot-product cutoff,
and

dl (i, j) =
∑l

m=−l ql,m(i)q∗
l,m( j)(∑l

m=−l |ql,m(i)|2)1/2(∑l
m=−l |ql,m( j)|2)1/2 . (6)

A cluster contains all solid-like particles which have a solid-
like neighbor in the same cluster. Thus, each particle can be a
member of only a single cluster.
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FIG. 1. Top: A typical configuration of an equilibrated random-hexagonal-
close-packed (RHCP) crystal in coexistence with an equilibrated fluid. The
crystalline particles are labeled according to three different crystallinity cri-
teria: the red particles have ξ = 5 or 6 crystalline bonds, the green parti-
cles have ξ = 7 or 8 crystalline bonds and the blue particles have ξ ≥ 9
crystalline bonds. The fluidlike particles (ξ < 5) are denoted by dots. Bot-
tom: The density profile of particles with a minimum number of neigh-
bors ξ as labeled. Note that the dips in the density profile correspond to
HCP stacked layers. This implies that near the interface, the order param-
eter is slightly more sensitive to FCC ordered particles than to HCP ordered
particles.

The parameters contained in this algorithm include the
neighbor cutoff rc, the dot-product cutoff dc, the critical value
for the number of solid-like neighbors ξc, and the symme-
try index for the bond orientational order parameter l. The
solid nucleus of a hard-sphere crystal is expected to have
random hexagonal order, thus the symmetry index is chosen
to be 6 in all cases in this study. Note that this order pa-
rameter does not distinguish between FCC and HCP ordered
particles.

To investigate the effect of the choice of ξc, we ex-
amined the number of correlated bonds per particle at the
liquid–solid interface. To this end, we constructed a configu-
ration in the coexistence region in an elongated box by
attaching a box containing an equilibrated random-
hexagonal-close-packed (RHCP) crystal to a box containing
an equilibrated fluid. Note that the RHCP crystal was placed
in the box such that the hexagonal layers were parallel to the
interface. The new box was then equilibrated in an NPT MC
simulation. We then examined the density profile of solid-
like particles as determined by our order parameter using
rc = 1.4σ , dc = 0.7, and ξc = 5, 7, and 9. Figure 1 presents
the density profiles along with a typical configuration of
the RHCP crystal in coexistence with the fluid phase. As
shown in Fig. 1, for all values of ξc that we examined the
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order parameter appears to consistently identify the particles
belonging to the bulk fluid and solid regions. The solid-like
particles as defined by the order parameter are labeled
according to the number of solid-like neighbors while the
fluidlike particles are denoted by dots. The main difference
between these order parameters relates to distinguishing
between fluidlike and solid-like particles at the fluid–solid
interface. Unsurprisingly, the location of the interface seems
to shift in the direction of the bulk solid as ξc is increased. We
note that the dips in the density profile correspond to HCP
stacked layers, which are more pronounced for higher values
of ξc.

IV. MOLECULAR DYNAMICS

A. Nucleation rates

In MD simulations the equations of motion are inte-
grated to follow the time evolution of the system. Since the
hard-sphere potential is discontinuous the interactions only
take place when particles collide. Thus, the particles move in
straight lines (ballistic) until they encounter another particle
with which they perform an elastic collision.26 These colli-
sion events are identified and handled in order of occurrence
using an event driven simulation.

In theory, using an MD simulation to determine nucle-
ation rates is quite simple. Starting with an equilibrated fluid
configuration, an MD simulation is used to evolve the system
until the largest cluster in the system exceeds the critical nu-
cleus size. The MD time associated with such an event is then
measured and averaged over many initial configurations. The
nucleation rate is given by

k = 1

〈t〉V , (7)

where V is the volume of the system and 〈t〉 is the aver-
age time to form a critical nucleus. Measuring this time is
relatively easy for low supersaturations where the nucleation
times are relatively long compared to the nucleation event it-
self, which corresponds with a steep increase in the crystalline
fraction of the system. However, for high supersaturations
pinpointing the time of a nucleation event is more difficult.
Often many nuclei form immediately and the critical nucleus
sizes must be estimated from CNT or US simulations. Addi-
tionally, the precise details of the initial configuration can play
a role at high supersaturations since the equilibration time of
the fluid is of the same order of magnitude as the nucleation
time. Hence, for each individual MD simulation we used a
new initial configuration, which was created by quenching the
system very quickly.

For the results in this paper, we performed MD simula-
tions with up to 100 000 particles in a cubic box with peri-
odic boundary conditions in an N V E ensemble. Time was
measured in MD units σ

√
m/kB T . The order parameter was

measured every 10 time units and when the largest cluster ex-
ceeded the critical size by 100% we estimated the time τnucl at
which the critical nucleus was formed using stored previous

TABLE II. The average nucleation time, obtained from MD simulations,
to form a critical cluster that grew out and filled the box. The last column
contains the rate (k) in units of (6DL )/σ 5.

Volume fraction Average nucleation time Rate

(η) (t
√

kB T/(mσ 2)) [kσ 5/(6DL )]

0.5316 1 × 106 5 × 10−9

0.5348 1.7 × 104 3.6 × 10−7

0.5381 1.4 × 103 5.3 × 10−6

0.5414 2.0 × 102 4.3 × 10−5

0.5478 42 3.0 × 10−4

0.5572 10 2.4 × 10−3

configurations. We performed up to 20 runs for every density
and averaged the nucleation times.

The results are shown in Table II. The nucleation times
shown here are for a system of 2.0 × 104 particles and in
MD time units. Note that for η = 0.5381 we also checked
the effect of system size on the nucleation rate by perform-
ing MD simulations with 100 000 particles and did not find
a significant difference. To compare with other data we con-
verted the MD time units to units of σ 2/(6DL ) where DL is
the long-time diffusion coefficient measured in the same MD
simulations. We were not able to measure the long-time diffu-
sion coefficients for high densities because our measurements
were influenced by crystallization. We used the fit obtained
by Zaccarelli et al.27 who used polydisperse particles to pre-
vent crystallization. For η < 0.54, we find good agreement
between our data for DL and this fit.

V. UMBRELLA SAMPLING

A. Gibbs free-energy barriers

Umbrella sampling is a technique developed by Tor-
rie and Valleau to study systems where Boltzmann-weighted
sampling is inefficient.11 This method has been applied fre-
quently to study rare events, such as nucleation, 12 and specif-
ically has been applied in the past to study the nucleation of
hard spheres.10 In general, umbrella sampling is used to ex-
amine parts of configurational space, which are inaccessible
by traditional schemes, e.g., Metropolis Monte Carlo simula-
tions. Typically, a biasing potential is added to the true inter-
action potential causing the system to oversample a region of
configuration space. The biasing potential, however, is added
in a manner such that it is easy to “un”-bias the measurables.

In the case of nucleation, while it is simple to sam-
ple the fluid, crystalline clusters of larger sizes will be rare,
and as such, impossible to sample on reasonable time scales.
The typical biasing potential for studying nucleation is given
by24, 28

Ubias(n(rN )) = λ

2
(n(rN ) − nC )2, (8)

where λ is a coupling parameter, n(rN ) is the size of the
largest cluster associated with configuration rN , and nC is the
targeted cluster size. By choosing λ carefully, the simulation
will fluctuate around the part of configurational space with
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FIG. 2. Gibbs free-energy barriers β�G(n) as a function of cluster size n as
obtained from umbrella sampling simulations using varying critical number
of solid-like neighbors ξc as labeled at a reduced pressure of βpσ 3 = 17. For
ξc = 5, 7, and 9, the neighbor cutoff is rc = 1.4 and for ξc = 6, 8, and 10,
rc = 1.3. In all cases the dot product cutoff is dc = 0.7.

n(rN ) in the vicinity of nC . The expectation value of an ob-
servable A is then given by

〈A〉 = 〈A/W (n(rN ))〉bias

〈1/W (n(rN ))〉bias
, (9)

where

W (x) = e−βUbias(x). (10)

Using this scheme to measure the probability distribution
P(n) for clusters of size n, the Gibbs free-energy barrier can
be determined by29

β�G(n) = constant − ln(P(n)). (11)

Many more details on this method are given elsewhere.17, 29

For a pressure of βpσ 3 = 17, corresponding to a super-
saturation of β |�μ| = 0.54, we examine the effect of one of
the order parameter variables, namely ξc, on the prediction
of the nucleation barriers. The barriers predicted by US us-
ing ξc = 5, 6, 7, 8, 9, and 10 are shown in Fig. 2. Note that
the height of the barriers does not depend on ξc. In general,
for larger values of ξc more particles are identified as fluid as
compared with smaller values of ξc. This is consistent with the
differences between these order parameters as demonstrated
in Fig. 1. Thus, the radius measured in our simulation will de-
pend on the definition of the order parameter. However, from
classical nucleation theory [Eq. (1)], there exists a unique def-
inition of the liquid–solid interface and thus a unique radius
associated with CNT which we define as RCNT. To a first ap-
proximation, for each definition of the order parameter, this
radius (RCNT) differs from that measured by our simulation
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FIG. 3. Classical nucleation theory fits (thick lines) to the Gibbs free-energy
barriers obtained from umbrella sampling simulations using varying ξc as
labeled at a reduced pressure of βpσ 3 = 17. Note that the CNT radius (RCNT)
is related to the radius (R(ξc)) measured by umbrella sampling via R(ξc)
= RCNT + α(ξc), where α(ξc) is a constant that corrects for the different ways
the various order parameters identify the particles at the fluid–solid interface.
The fit parameters are given in Table III. We have shifted the barriers for
ξc = 6 − 9 by 5, 10, 15, and 20 kB T , respectively, for clarity.

(R(ξc)) by a constant which we denote as α(ξc), which is also
dependent on ξc. Thus, we fit the barriers corresponding to
ξc = 5, 6, 7, 8, and 9 using CNT where we have

R(ξc) = RCNT + α(ξc). (12)

Note that we have assumed that the cluster size n can be re-
lated to the cluster radius R(ξc) by

n(ξc) = 4π R(ξc)3ρs

3
. (13)

Only the top part of the free-energy barriers are expected
to fit to classical nucleation theory, so we take the top of
the barrier corresponding to the region where the difference
between β�G(n) and β�G(n∗) is approximately 5. Fitting
all barriers simultaneously for the interfacial free energy γ ,
the classical nucleation theory radius RCNT, and the various
α(ξc), we obtain the fits displayed in Fig. 3. From the var-
ious values of α, the associated critical CNT radius (R∗

CNT)
can be determined. We find R∗

CNT = 2.49σ . Additionally, we
find an interfacial free energy of βγ σ 2 = 0.76 which roughly
agrees with the results of Auer and Frenkel who obtained
βγ σ 2 = 0.699, 0.738, and 0.748 for pressures βpσ 3 = 15,

16, and 17, respectively.10 However, recent calculations by
Davidchack et al.,30 of the interfacial free energy at the fluid-
solid coexistence find βγ σ 2 = 0.574, 0.557, and 0.546 for
the crystal planes (100), (110), and (111), respectively. For
a spherical nucleus, the interfacial free energy is expected to

TABLE III. Numerical values for the parameters associated with the fits in Figs. 3 and 4 for classical nucleation theory and the adjusted classical nucleation
theory presented in this paper.

β |�μ| βγ σ 2 R∗
CNT α(5) α(6) α(7) α(8) α(9) c(5) c(6) c(7) c(8) c(9)

CNT 0.54 0.76 2.49 −0.425 −0.231 −0.000 0.139 0.380
ACNT 0.54 0.63 2.06 −0.879 −0.698 −0.464 −0.335 −0.076 7.80 8.56 8.84 8.87 8.34
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FIG. 4. Fits of an adjusted classical nucleation theory (ACNT) presented in
Sec. V A to the Gibbs free-energy barriers predicted using umbrella sampling
simulations and using varying ξc as labeled at a reduced pressure of βpσ 3

= 17. Note that the CNT radius (RCNT) is related to the radius measured
by umbrella sampling by R(ξc) = RCNT + α(ξc), where α(ξc) is a constant.
The fit parameters are given in Table III. We have shifted the barriers for
ξc = 6 − 9 by 5, 10, 15, and 20 kB T , respectively, for clarity.

be an average over the crystal planes and was found to be
βγ σ 2 = 0.559.30 Thus, our result for the interfacial free en-
ergy and that of Ref. 10 appear to be an overestimate.

There have been a number of papers discussing possible
corrections to CNT (e.g., Refs. 31 and 32). Recent work on
the 2D Ising model, a system where both the interfacial free
energy and supersaturation are known analytically, demon-
strated that in order to match a nucleation barrier obtained
from US to CNT, two correction terms were required, specifi-
cally a term proportional to log(N ) as well as a constant shift
in �G which we define as c.31 The US barrier is only ex-
pected to match CNT near the top of the barrier where the
log(N ) term is almost a constant. Thus, we propose fitting
the barrier to an adjusted expression for CNT (ACNT), by
adding a constant c to Eq. (1). Fitting the US barriers with
this proposed form for the Gibbs free-energy barrier, where
we assume c is a function of ξc, we obtain the fits displayed in
Fig. 4. In this case we find an interfacial free energy βγ σ 2

= 0.63, and the values for α(ξc) and c(ξc) are given in
Table III. We note that this fit is much better than the fits in
Fig. 3. The difference in the various c(ξc) is around 1kB T and
corresponds well to the difference in heights of the barriers.
More strikingly, the interfacial free energy predicted from this
proposed free-energy barrier is in much better agreement with
recent calculations of Davidchack et al.,30 than the interfacial
free energy we calculate using classical nucleation theory di-
rectly. For a more thorough examination on the interfacial free
energies of the hard-sphere model, see Ref. 35. We would like
to point out here that due to the simple form of the nucleation
barrier, it is difficult to be certain of any fit with more than one
fitting parameter, as there are many combinations of parame-
ters which fit almost equally well. In order to quantify the ac-
curacy of these fits, we have calculated the root mean square
of the residual for the two fits which we denote as σRMSR. In
the case of the CNT fit we find σRMSR = 0.50 while for the

TABLE IV. Nucleation rates k in units of 6DL/σ 5 with DL the long time
diffusion coefficient as a function of reduced pressure (βpσ 3) as predicted by
umbrella sampling. G ′′(n∗) is the second order derivative of the Gibbs free
energy at the critical nucleus size n∗.

βpσ 3 ξc n∗ β�G(n∗) β�G ′′(n∗) fn∗/6DL kσ 5/6DL

15 8 212 42.1 ± 0.2 −9.6 × 10−4 2150 1.4 × 10−17

16 8 112 27.5 ± 0.6 −1.6 × 10−3 1950 3.5 × 10−11

17 6 102 19.6 ± 0.3 −1.2 × 10−3 3980 1.7 × 10−7

17 8 72 20.0 ± 0.4 −2.0 × 10−3 2620 9.9 × 10−8

17 10 30 19.4 ± 0.7 −9.4 × 10−3 1760 2.5 × 10−7

ACNT fit we find σRMSR = 0.11 indicating that the ACNT fit
is much better than the CNT fit. Additionally, we examined
the ACNT fits for various interfacial free energies γ . Fixing
the interfacial free energy in the ACNT fit to the value found
by CNT (βγ σ 2 = 0.76), we find σRMSR = 0.27 and when we
use interfacial free energy at coexistence30 (βγ σ 2 = 0.559)
we find σRMSR = 0.18.

Using either expressions for the Gibbs free-energy bar-
rier, namely CNT and ACNT, we were unable to fit the bar-
rier corresponding to βpσ 3 = 17 and ξc = 10 simultaneously
with the other predicted barriers for the same pressure. We
speculate that our difficulty in fitting the barrier at ξc = 10
stems from an “over-biasing” of the system. Specifically, by
using ξc = 10 the biasing potential could cause the system
to sample more frequently more ordered clusters, and hence
change slightly the region of phase space available to the US
simulations. In general, the least biased systems would be ex-
pected to explore the largest region of phase space resulting in
the best results. It should be noted that, in fact, this problem
is simply an equilibration and measuring problem, but it does
emphasize the difficulty caused by using an overly strong bi-
asing potential.

In conclusion, with the exception of ξc = 10, the value of
ξc used in the order parameter did not appear to have an effect
on the nucleation barriers once the difference in their mea-
surements of the solid–liquid interface was taken into con-
sideration. Finally, for use in our nucleation rate calculations
(Sec. V B) we also determined the Gibbs free energy �G(n)
for reduced pressures βpσ 3 = 15 and 16 using umbrella sam-
pling simulations. We present the barrier heights in Table IV.

B. Umbrella sampling nucleation rates

The nucleation barriers as obtained from US simulations
can be used to determine the nucleation rates. The crystal
nucleation rate k is related to the free-energy barrier (�G(n))
by10

k = Ae−β�G(n∗), (14)

where

A ≈ ρ fn∗

√
|β�G ′′(n∗)|

2π
, (15)

n∗ is the number of particles in the critical nucleus, ρ is the
number density of the supersaturated fluid, fn∗ is the rate par-
ticles are attached to the critical cluster, and �G ′′ is the
second derivative of the Gibbs free-energy barrier. Auer
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TABLE V. Probabilities P(λi+1|λi ) for the first 8 interfaces at a pressure of βpσ 3 = 15, where the KMC simulations step size (�KMC) and the number of MC
steps between measuring the order parameter �tord are varied. The following interfaces were used: λ2 = 20, λ3 = 26, λ4 = 32, λ5 = 38, λ6 = 44, λ7 = 54,
λ8 = 65, and λ9 = 78. In all cases, 100 configurations were started in the fluid and reached the first interface, and at each interface, Ci = 10 copies of each
successful configuration were used.

�KMC 0.1 0.1 0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
�tord 2 2 2 2 2 2 1 1 1 10 10 10

P(λ2|λ1) 0.112 0.103 0.139 0.101 0.105 0.132 0.112 0.146 0.138 0.122 0.127 0.146
P(λ3|λ2) 0.096 0.117 0.090 0.104 0.093 0.112 0.115 0.097 0.079 0.103 0.081 0.080
P(λ4|λ3) 0.128 0.117 0.074 0.116 0.111 0.161 0.151 0.110 0.110 0.121 0.091 0.116
P(λ5|λ4) 0.180 0.159 0.082 0.156 0.115 0.241 0.209 0.189 0.173 0.121 0.073 0.150
P(λ6|λ5) 0.167 0.154 0.149 0.225 0.148 0.256 0.274 0.151 0.189 0.189 0.121 0.187
P(λ7|λ6) 0.071 0.074 0.060 0.128 0.093 0.118 0.121 0.052 0.092 0.169 0.077 0.064
P(λ8|λ7) 0.104 0.078 0.051 0.109 0.091 0.109 0.119 0.077 0.126 0.132 0.087 0.064
P(λ9|λ8) 0.100 0.100 0.105 0.083 0.075 0.089 0.101 0.081 0.129 0.101 0.109 0.068

P(λ9|λ1) 3 × 10−8 2 × 10−8 4 × 10−9 5 × 10−8 1 × 10−8 2 × 10−7 2 × 10−7 1 × 10−8 6 × 10−8 8 × 10−8 6 × 10−9 1 × 10−8

and Frenkel10 showed that the attachment rate fn∗ could be
related to the mean square deviation of the cluster size at the
top of the barrier by

fn∗ = 1

2

〈�n2(t)〉
t

. (16)

The mean square deviation (MSD) of the cluster size
�n2(t) = 〈(n(t) − n∗)2〉 can then be calculated by either
employing a kinetic Monte Carlo (KMC) simulation or a
MD simulation at the top of the barrier. For simplicity, in the
remainder of this paper the nucleation rate determined using
this method will be referred to as the umbrella sampling (US)
nucleation rate, although to calculate the nucleation rates both
US simulations and dynamical simulations (KMC or MD)
are necessary. Note that information on KMC simulations
can be found in, e.g., Refs. 33 and 34.

The mean square deviation, or variance, in the cluster
size appearing in Eq. (16) has both a short-time and long-
time behavior. At short times, fluctuations are due to particles
performing Brownian motion around their average positions
while the long-time behavior is caused by rearrangements of
particles required for the barrier crossings. The slope of the
variance is large at short times where only the fast rattling is
sampled. However, the longer the time the further the system
has diffused away from the critical cluster size at the top of the
nucleation barrier. Auer36 states that runs need to be selected
that remain at the top of the barrier. However, when this is
done the attachment rate is lower than when the average over
all runs is taken since it excludes the runs that move off the
barrier fast and have the largest attachment rate. This prob-
lem is analogous to determining the diffusion constant of a
particle performing a random walk. By only including walks
which remain in the vicinity of the origin, the measurement
is biased and excludes trajectories which quickly move away
from the origin. This results in an underestimation of the dif-
fusion constant, and similarly, in this case, an underestimation
of the attachment rate. Hence, in this paper we do not attempt
to prevent the trajectories from falling off the barrier and we
include all trajectories. In Fig. 5 we demonstrate how, start-
ing from a critical cluster, the size of the nucleus fluctuates as
a function of time and, in fact, can completely disappear or

double in size within 0.3τL where τL is the time that it takes a
particle to diffuse on average a distance equal to its diameter,
i.e., τL = σ 2/(6DL ).

The kinetic prefactor was determined using KMC sim-
ulations with 3000 particles in an N V T ensemble in a
cubic box with periodic boundary conditions. The initial con-
figurations were taken from US simulations in one of the win-
dows at the top of the barrier. We examined the results from
both Gaussian and uniformly distributed Monte Carlo steps
and found agreement within the statistical errors. For all the
simulations, the MC step size was between 0.01 and 0.1σ .
The variance of the cluster size for a typical system is shown
in Fig. 6. We observed a large variance in the attachment rates
calculated for different nuclei. Specifically, some nuclei have
attachment rates more than an order of magnitude higher than
other nuclei of similar size. The nuclei with low attachment
rates appeared to have a smoother surface than the nuclei with
a high attachment rate. In calculating the attachment rates we
used ten independent configurations on the top of the barrier
and followed ten trajectories from each.

Our results for the kinetic prefactors and nucleation
rates for pressures βpσ 3 = 15, 16, and 17 are reported in
Table IV.

 0

 50

 100

 150

 200

 0  5000  10000  15000  20000  25000  30000  35000

 0  0.05  0.1  0.15  0.2  0.25  0.3

C
lu

st
e
r 

si
ze

 (
n
)

Time t in MC cycles

Time t/τL

FIG. 5. The cluster size (n(t)) as a function of time in MC cycles for a ran-
dom selection of clusters that start at the top of the nucleation barrier.
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function of time t in MC cycles. The cluster size has been measured every
cycle and averaged over 100 cycles to reduce the short-time fluctuations. The
slope of this graph is twice the attachment rate [Eq. (16)].

VI. FORWARD FLUX SAMPLING

A. Method

The forward flux sampling method was introduced by
Allen et al.13 in 2005 to study rare events and has since been
applied to a wide variety of systems. Two review articles
(Refs. 37 and 38) on the subject have appeared recently and
provide a thorough overview of the method. In the present
paper, we discuss FFS as it pertains to the liquid to solid
nucleation process in hard spheres. In general, FFS follows
the progress of a reaction coordinate during a rare event. For
hard-sphere nucleation, a reasonable reaction coordinate (Q)
is the number of particles in the largest crystalline cluster in
the system (n). For the remainder of this paper, for all FFS
calculations, we take the reaction coordinate to be the order
parameter discussed in Sec. III with ξc = 8, rc = 1.3σ , and
dc = 0.7. In general, the reaction coordinate is used to divide
phase space by a sequence of interfaces (λ0, λ1, . . . λN ) asso-
ciated with increasing values n(rN ) such that the nucleation
process between any two interfaces can be examined. In our
case the liquid is composed of all states with n < λ0 and the
solid contains all states with n > λN . While the complete nu-
cleation event is rare, the interfaces are chosen such that the
part of the nucleation process between consecutive interfaces
is not rare, and can thus be thoroughly studied.

In the FFS methodology, the nucleation rate from the
fluid phase A to the solid phase B is given by

kAB = �Aλ0 P(λN |λ0) (17)

= �Aλ0

N−1∏
i=0

P(λi+1|λi ), (18)

where �Aλ0 is the steady-state flux of trajectories leaving the
A state and crossing the interface λ0 in a volume V , and
P(λi+1|λi ) is the probability that a configuration starting at
interface λi will reach interface λi+1 before it returns to the
fluid (A).

If we apply this method directly to a hard-sphere system
a number of difficulties arise. As shown in Fig. 5, on short
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FIG. 7. The cluster size as a function of time t in MC cycles for 4 random
trajectories at pressure βpσ 3 = 17 starting with a cluster size of n = 43 using
kinetic MC simulations with step size �KMC = 0.1σ and measuring the order
parameter every �tord = 5 MC steps.

times the size of a cluster measured by the order parameter
fluctuates wildly. The variance in the cluster size displays two
different types of behavior, short-time fluctuations related to
surface fluctuations of the cluster, and a longer time cluster
growth (Fig. 6). Thus, if we try to measure the flux �Aλ0 di-
rectly, we encounter difficulties due to these short-time sur-
face fluctuations. In theory, FFS should be able to handle these
types of fluctuations, however, they increase the amount of
statistics necessary to properly measure the flux and the first
probability window. In the second part of FFS calculations,
probabilities of the form P(λi+1|λi ) need to be determined.
In calculating these probabilities it is important to be able to
determine if a cluster has returned to the fluid (A). For pre-
critical clusters we find large fluctuations of the order param-
eter, as shown in Fig. 7, which can lead to a cluster being
misidentified as the fluid (A). Specifically, in this figure the
darkest trajectory (black) shows a cluster containing 43 par-
ticles that shrinks to 5 particles before it returns to 40, and
finally reaches a cluster size of 60 particles. Hence, if we had
set λ0 = 5, this trajectory would have been identified as melt-
ing back to the fluid phase (A). However, since the growth of
a cluster from size 5 to 60 is a rare event in our system, we
presume that this was simply a short-time fluctuation of the
cluster and not a “real” melting of the instantaneously mea-
sured cluster. For precritical clusters, these fluctuations result
in cluster sizes that are smaller than the cluster “really” is.
We suggest that these fluctuations are largely related to the
difficulty that this order parameter has in distinguishing be-
tween solid-like and fluidlike particles at the fluid–solid in-
terface. For larger clusters, where the surface to volume ra-
tio is small, this problem is minimal. However, for elongated
or rough precritical clusters, where the surface to volume ra-
tio is large, these surface fluctuations and rearrangements are
important, and can cause problems in measuring the order
parameter.

Thus, to try and address these problems, in this paper, we
apply forward flux sampling in a novel way. We regroup the
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TABLE VI. Nucleation rates predicted using forward flux sampling in units
of the long-time diffusion coefficient (Dl ). The probabilities P(λB |λ1), num-
ber of steps between the order parameter measurements �tord, and kinetic
MC step size �KMC are as in Tables VII, VIII, and IX. At each interface, Ci

copies of each successful configuration were used as displayed in Tables VII,
VIII, and IX.

βpσ 3 λ1 �̃Aλ1 /6DL P(λB |λ1) kσ 5/6DL

17 27 2.66 × 10−5 7.6 × 10−3 2.0 × 10−7

17 27 2.68 × 10−5 1.4 × 10−2 3.7 × 10−7

16 20 8.57 × 10−6 3.1 × 10−7 2.6 × 10−12

16 20 8.57 × 10−6 2.1 × 10−7 1.8 × 10−12

15 15 8.72 × 10−6 1.9 × 10−15 1.6 × 10−20

elements of the rate calculation such that

kAB = �̃Aλ1

N−1∏
i=1

P(λi+1|λi ), (19)

where

�̃Aλ1 = �Aλ0 P(λ1|λ0). (20)

We note that if λ1 is chosen such that it is a relatively rare
event for trajectories starting in A to reach λ1, then

�̃Aλ1 ≈ 1

〈tAλ1〉V
(21)

where 〈tAλ1〉 is the average time it takes a trajectory in A to
reach λ1.The approximation made here, in contrast to normal
FFS simulations, is that the time the system spends with an or-
der parameter greater than λ1 is negligible. Since even reach-
ing this interface is a rare event, this approximation should
have a minimal effect on the resulting rate. Additionally, in
this way we are relatively free to place the first interface (λ0)
anywhere under λ1.45 We choose to use λ0 = 1 to minimize
the effect of fluctuations, as seen in Fig. 7, on the probability
of reaching the following interface. Here we assume that any
crystalline order in a system with λ0 = 1 does not likely arise
from a fluctuation of a much larger cluster, but rather is very
close to the fluid, and is expected to fully melt and not grow
out to the next interface. In this manner we are able to start
several parallel trajectories from the fluid in order to measure
〈tAλ1〉, stopping whenever the trajectory first hits interface λ1.

In our implementation of FFS, we employ kinetic Monte
Carlo (KMC) simulations at fixed pressure to follow the tra-
jectories from the liquid to the solid. The KMC simulations
are characterized by two parameters, the maximum step size

TABLE VII. Probabilities P(λi+1|λi ) for the interfaces used in calculating
the nucleation rate for pressure βpσ 3 = 17 with step size �KMC = 0.1σ and
measuring the order parameter every �tord = 5 MC cycles.

Trial 1 Trial 2

i λi Ci−1 P(λi |λi−1) Ci−1 P(λi |λi−1)

2 43 10 0.137 10 0.157
3 60 10 0.272 10 0.312
4 90 10 0.350 10 0.414
5 150 2 0.594 2 0.691
6 250 2 0.988 2 0.988

TABLE VIII. Same as Table VII but for βpσ 3 = 16.

Trial 1 Trial 2

i λi Ci−1 P(λi |λi−1) Ci−1 P(λi |λi−1)

2 28 10 0.105 10 0.110
3 38 10 0.075 10 0.077
4 50 10 0.070 10 0.089
5 70 10 0.114 10 0.089
6 90 10 0.095 10 0.101
7 110 10 0.339 10 0.278
8 250 10 0.152 10 0.112
9 350 1 1.000 1 1.000

(�KMC) per attempt to move each particle, and the frequency
with which the order parameter (reaction coordinate) is mea-
sured �tord. However, during an FFS simulation, it is expected
that the order parameter is known at all times such that it is
possible to identify exactly when and if a given simulation
reaches an interface. Thus, it is possible that �tord introduces
an additional error into our measurement of the rate.

To examine the effects of (i) the approximation asso-
ciated with our method for calculating �̃Aλ1 , (ii) the short-
time fluctuations of the order parameter (which could be con-
sidered as an error in the measurement of the cluster size),
and (iii) the frequency of measuring the order parameter, we
examined the nucleation rate for a simple one-dimensional
model system in the presence of such features. Details of these
simulations are given in the Appendix. In this simple model
system, we find that none of these features have a large effect
on the rate. In fact, for most cases, the difference is too small
to see within our error bars.

B. Simulation details and results

All simulations were performed with 3000 particle in a
cubic box with periodic boundary conditions. Initial configu-
rations were produced using N PT MC simulations of a liquid
phase with a packing fraction of η ≈ 0.4 and then simulated
at a reduced pressure of βpσ 3 = 1000. The simulations were

TABLE IX. Same as Table VII but for βpσ 3 = 15 and with �tord = 2.

i λi Ci−1 P(λi |λi−1)

2 20 10 0.101
3 26 10 0.104
4 32 10 0.116
5 38 10 0.156
6 44 10 0.225
7 54 10 0.128
8 65 10 0.109
9 78 10 0.083

10 92 10 0.101
11 110 10 0.085
12 135 10 0.062
13 160 10 0.131
14 190 10 0.131
15 230 10 0.134
16 400 10 0.058
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FIG. 8. A comparison of the crystal nucleation rates of hard spheres as determined by the three methods described in this paper FFS, US, and MD with the
experimental results from Refs. 5, 8, and 9 and previous theoretical results from Ref. 10. The nucleation rates are in units of τL where where τL = σ 2/(6DL ).
Note that error bars have not been included in this plot but are discussed in the main text. Within these estimated error bars, all the simulated nucleation rates are
in agreement, while the experimentally obtained rates show a markedly different behavior, particularly for low supersaturations where the difference between
the simulations and experiments can be as large as 12 orders of magnitude.

ξc = 5 ξc = 7 ξc = 9

FIG. 9. Two typical snapshots (top and bottom) of the critical nuclei as obtained with US at a volume fraction η = 0.5355 using different values of the critical
number of crystalline bonds ξc = 5 (left), 7 (middle), and 9 (right) in the biasing potential. The clusters are analysed with three different crystalline order
parameters. The blue particles are found by all three cluster criteria, the green particles have ξ = 7 or 8 crystalline bonds and the red particles have only ξ = 5
or 6 crystalline bonds.
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FIG. 10. Snapshots of nuclei formed spontaneously during an MD simulation at a volume fraction of η = 0.537. The snapshots were taken just before the
nuclei grew. The color coding of the particles is the same as in Fig. 9.

stopped when the packing fraction associated with the pres-
sure of interest was reached. In this way the system volume
decreased rapidly to the target density. This initial configura-
tion was then relaxed using an N PT simulation at the pres-
sure of interest (βpσ 3 = 15, 16, 17). The relaxation consisted
of at least 10 000 MC cycles, after which the simulation con-
tinued until a measurement of the order parameter found no
crystalline particles in the system.

In order to determine the flux and the probabilities, 100
trajectories were started in the liquid and terminated when
n(rN ) = λ1. These trajectories were produced using KMC
simulations. The probability P(λ2|λ1) was then found by
making C1 copies of the configurations that reached λ1, and
following these configurations until they either reached λ2

or returned to the fluid. By taking different random number
seeds, the various copies of the same configurations follow
different trajectories. The fraction of successful trajectories
corresponds to the required probability. The successful trajec-
tories were then copied C2 times to determine P(λ3|λ2). The
remaining P(λi+1|λi )’s are calculated similarly.

To study the effect of the two KMC parameters, namely
�KMC and �tord, on the nucleation rates, we examined the first
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FIG. 11. A comparison of the three components of the radius of gyration ten-
sor as a function of cluster size n, as well as the sum of the three components,
for clusters produced using FFS, MD, and US simulations.

8 FFS windows for βpσ 3 = 15 for various values of the num-
ber of MC steps between the order parameter measurements
�tord and the maximum displacement �KMC for the KMC
simulations. The results are shown in Table V. As shown in
this table we do not find a significant effect on the rate from
either parameter. Thus, for numerical efficiency, unless other-
wise indicated, the rates in this section come from �tord = 5
MC cycles and �KMC = 0.2σ .

For pressures βpσ 3 = 16 and 17 we have performed two
separate FFS calculations to determine the nucleation rates,
and for pressure βpσ 3 = 15 we have the result from a sin-
gle FFS simulation. A summary of the results are given in
Table VI. A complete summary of the results for P(λi+1|λi )
for each simulation is given in Tables VII, VIII, and IX.

VII. SUMMARY AND DISCUSSION

A. Nucleation rates

In this section we examine hard-sphere nucleation rates
predicted using US simulations, MD simulations and FFS
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FIG. 12. Fraction of particles identified as either FCC or HCP respectively,
in the clusters produced via molecular dynamics (MD), forward flux sam-
pling (FFS), and umbrella sampling (US) simulations as a function of cluster
size n. All three methods agree and find the precritial clusters predominately
FCC.
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TABLE X. Nucleation rates for the one-dimensional potential given by Eq. (A1) and shown in Fig. 13 for �tord as indicated. For each �tord, we performed 10
independent FFS simulations. The average rate and associated standard deviation is also as indicated. In all cases, 100 configurations were started in the fluid,
and at each interface Ci = 10 copies of the successful configurations were used to calculate the proceeding probabilities. The interfaces were placed at λ0 = 0,
λ1 = 1.5, λ2 = 1.7, λ3 = 1.9, λ4 = 2.2, λ5 = 2.6, λ6 = 3.3, and λ7 = 4.0 and the flux was calculated using Eq. (21).

�tord 1 2 5 10 50

1.2723 × 10−12 1.0589 × 10−12 1.8075 × 10−12 1.5455 × 10−12 1.3835 × 10−12

1.3780 × 10−12 1.7217 × 10−12 1.3314 × 10−12 1.4461 × 10−12 1.0666 × 10−12

1.2364 × 10−12 1.2924 × 10−12 1.4847 × 10−12 1.1482 × 10−12 1.6134 × 10−12

1.6942 × 10−12 1.6422 × 10−12 1.9482 × 10−12 1.4383 × 10−12 1.7550 × 10−12

1.2662 × 10−12 1.2340 × 10−12 1.5692 × 10−12 1.6060 × 10−12 1.2908 × 10−12

1.6918 × 10−12 1.3530 × 10−12 1.6238 × 10−12 1.6244 × 10−12 1.4012 × 10−12

1.4646 × 10−12 1.1788 × 10−12 1.6928 × 10−12 1.0191 × 10−12 1.3403 × 10−12

1.6809 × 10−12 1.5860 × 10−12 1.1903 × 10−12 1.6227 × 10−12 1.0582 × 10−12

1.4602 × 10−12 1.7018 × 10−12 1.3191 × 10−12 1.3850 × 10−12 2.3732 × 10−12

1.7459 × 10−12 1.9154 × 10−12 1.5638 × 10−12 1.2378 × 10−12 1.2692 × 10−12

Avg. Rate 1.5 × 10−12 1.5 × 10−12 1.6 × 10−12 1.4 × 10−12 1.5 × 10−12

Std. Error 6.0 × 10−14 8.4 × 10−14 7.0 × 10−14 6.3 × 10−14 1.2 × 10−13

simulations together with the experimental results of Harland
and van Megen,5 Sinn et al.8 and Schätzel and Ackerson9

and the US simulations of monodisperse and 5% polydisperse
hard-spheres systems examined by Auer and Frenkel.10 The
experimental volume fractions have been scaled to yield the
coexistence densities of monodisperse hard spheres.16 Simi-
larly, we scale the polydisperse results of Auer and Frenkel
with the coexistence densities determined in Ref. 39. Inspired
by the recent work of Pusey et al.,16 we plot the nucleation
rates in units of the long-time diffusion coefficient. In exper-
iments with colloidal particles, the influence of the solvent
on the dynamics cannot be ignored. Specifically, the system
slows down due to hydrodynamic interactions when the den-
sity is increased. However, by presenting the nucleation rates
in terms of the long-time diffusion coefficient, we expect our
simulated nucleation rates from the hard-sphere model with-
out an explicit solvent to be in agreement with the experimen-
tal rates with a solvent. The time in experiments is typically
measured in units of D0, the free diffusion at low density. We
convert the short-time diffusion coefficient D0 to the long-

time diffusion coefficient DL using

DL (η)

D0
=

(
1 − η

0.58

)δ

. (22)

Harland and van Megen5 claim that δ = 2.6 gives a good fit
to their system and Sinn et al.8 use δ = 2.58. Since the sys-
tem that Schätzel and Ackerson9 examine is very similar to
the other two, we use δ = 2.6 to convert their nucleation rates
in terms of DL . We note that both δ = 2.58 and δ = 2.6 give
very similar results. The results for both the theoretical and
experimental rates in terms of τL = σ 2/6DL are shown in
Fig. 8. Note that for clarity reasons the error bars have not
been included in this plot. In general, the error bars of the sim-
ulated nucleation rates are largest for lower supersaturations
(i.e., lower volume fractions), as the barrier height is higher.
For the FFS and US simulations, the error for βpσ 3 = 15
(η = 0.5214) is between 2 and 3 orders of magnitude, and
for βpσ 3 = 17 (η = 0.5352) is approximately one to two or-
ders of magnitude. The MD results are quite accurate around

TABLE XI. Nucleation rates for the one-dimensional potential given by Eq. (A1) and shown in Fig. 13 where the order parameter is given by Eq. (A2) and
σGauss is as indicated. For each σGauss, we performed 10 independent FFS simulations. The average rate and associated standard deviation is also as indicated. In
all cases, 100 configurations were started in the fluid, and at each interface Ci = 10 copies of the successful configurations were used to calculate the proceeding
probabilities. The interfaces were placed at λ0 = 0, λ1 = 1.5, λ2 = 1.7, λ3 = 1.9, λ4 = 2.2, λ5 = 2.6, λ6 = 3.3, and λ7 = 4.0 and the flux was calculated using
Eq. (21).

σGauss 0.02 0.04 0.06 0.08 0.1

1.8623 × 10−12 1.7281 × 10−12 1.2630 × 10−12 1.0634 × 10−12 1.9158 × 10−12

1.7627 × 10−12 1.6090 × 10−12 1.6402 × 10−12 1.5655 × 10−12 1.8785 × 10−12

9.9796 × 10−13 1.6305 × 10−12 1.5799 × 10−12 1.6936 × 10−12 1.4937 × 10−12

1.3743 × 10−12 1.2261 × 10−12 1.8305 × 10−12 1.7733 × 10−12 1.1142 × 10−12

1.6917 × 10−12 1.8054 × 10−12 1.6191 × 10−12 1.8941 × 10−12 1.0402 × 10−12

1.1842 × 10−12 1.3337 × 10−12 1.3283 × 10−12 1.4039 × 10−12 7.0735 × 10−13

1.5289 × 10−12 8.6859 × 10−13 1.3129 × 10−12 2.7115 × 10−12 2.4711 × 10−12

1.8918 × 10−12 1.4325 × 10−12 1.3203 × 10−12 1.3792 × 10−12 1.6288 × 10−12

1.3144 × 10−12 1.2283 × 10−12 1.0459 × 10−12 1.7194 × 10−12 1.3764 × 10−12

1.6654 × 10−12 1.1236 × 10−12 1.2572 × 10−12 1.9631 × 10−12 1.8976 × 10−12

Avg. Rate 1.5 × 10−12 1.4 × 10−12 1.4 × 10−12 1.7 × 10−12 1.6 × 10−12

Std. Error 9.5 × 10−14 9.4 × 10−14 7.5 × 10−14 1.4 × 10−13 1.6 × 10−13
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FIG. 13. Toy model potential used to study forward flux sampling in the
presence of various types of measurement errors.

βpσ 3 = 17, however the error bars are larger for the higher
pressure MD results.

In Ref. 16, Pusey et al. showed that the nucleation rates
for various polydispersities (0%–6%) of hard spheres col-
lapsed onto the same curve when the rates were plotted in
units of the long-time diffusion coefficient. We find similar
results here. Both the monodisperse and polydisperse US re-
sults of Auer and Frenkel,10 in addition to our own US pre-
dictions of the nucleation rate, agree well within the expected
measurement error. Additionally, we find that the simulation
results of the US, FFS, and MD all agree. Whereas the simu-
lation results agree well with the experimental results for the
nucleation rate at high supersaturation there is still a signifi-
cant difference at low supersaturations. Unfortunately, the ori-
gin of this discrepancy remains unsolved.

However, on the experimental side, the nucleation rates
of Harland and van Megen5 are approximately 1–2 orders of
magnitude below the experiments of Sinn et al.8 and Schätzel
and Ackerson.9 This is unexpected due to the similarity be-
tween the experimental systems. The main difference between
these experiments is the size polydispersity of the particles:
5% in the case of Harland and van Megen,5 2.5% in the
case of Sinn et al.,8 and < 5% for Schätzel and Ackerson.9

However, as demonstrated by Pusey et al.,16 and now also in
Fig. 8, the nucleation rate when measured in long-time diffu-
sion coefficient units should not be effected by the polydis-
persity. Thus, this seems unlikely as an explanation.

B. Nuclei

To examine whether the structure and shape of the critical
clusters from US simulations depended on the precise thresh-
old values used for the crystalline order parameters, we com-
pared and analyzed the critical clusters obtained when three
different crystalline order parameters were used to bias the
US simulations, namely, ξc = 5, 7, and 9. Subsequently, we
analyzed these critical clusters using the three different order
parameters. In Fig. 9, two typical critical clusters from differ-
ent biasing order parameters are shown on the top and bottom

rows. The nucleus of the cluster, shown in blue, was identi-
fied by all three cluster criteria (ξc = 5, 7, and 9). The main
difference between the criteria is the location of the fluid-
solid interface as shown by the green and red particles. The
strictest order parameter finds only the more ordered center
whereas the loosest version detects the more disordered par-
ticles at the interface as well. In Fig. 10 we show some of
the nuclei obtained from MD simulations. These snapshots
were taken just before the nuclei grew out so they are not nec-
essarily precisely at the top of the nucleation barrier. They
appear very similar in roughness and aspect ratio to those
obtained from US simulations. We note here that this is not
meant to be a thorough study of the critical clusters, but rather
just a rough comparison to demonstrate, to a first approxima-
tion, the clusters formed by the three simulation techniques
are the same. A more thorough examination of the struc-
ture of the nuclei for high supersaturations can be found in
Ref. 42.

To further examine whether the choice of method influ-
enced the resulting clusters, particularly the presence of the
biasing potential in the US simulations and the choice of re-
action coordinate and interfaces in FFS, we calculated the ra-
dius of gyration tensor for each of the methods for pressure
βpσ 3 = 17 as a function of cluster size (see Fig. 11). There is
no indication that the clusters in any of the simulation meth-
ods differed substantially.

Additionally, we examined whether the simulation tech-
nique influenced the type of precritical nuclei that formed in
the simulations, i.e., FCC and HCP. To do this we used the or-
der parameter introduced by Ref. 41 which allows us to iden-
tify each particle in the cluster as either FCC-like or HCP-
like. The results for a wide range in nucleus size is shown in
Fig. 12. We find complete agreement between the three simu-
lation techniques. Specifically, in all cases we find that the nu-
cleus is composed of approximately 80% FCC-like particles.
This was unexpected as the free-energy difference between
the bulk FCC and HCP phases is about 0.001kBT per parti-
cle at melting43 and hence random-hexagonal-close-packing
order in the nuclei would be expected.44 Note that using our
order parameter this would appear as an approximately 50%
occurrence of FCC-like and HCP-like particles in the nucleus.
We speculate that this predominance of FCC-like particles in
the nuclei arises from surface effects.

VIII. CONCLUSIONS

In this paper, we have examined in detail three indepen-
dent simulation techniques for studying nucleation processes
and predicting nucleation rates, namely forward flux sam-
pling, umbrella sampling, and molecular dynamics. We have
shown that the three simulation techniques are completely
consistent in their prediction of the nucleation rates for hard
spheres over the large range of volume fractions studied,
despite the fact that they treat the dynamics differently. Addi-
tionally, in agreement with the recent work of Pusey et al.,16

we find that by measuring the nucleation rates in terms of the
long-time diffusion constant and scaling to the coexistence
density of monodisperse hard spheres, the 5% polydisperse
results of Auer and Frenkel10 also agree. On examining
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the critical clusters, we also do not find a difference in the nu-
clei formed using the three simulation techniques. Hence, we
conclude that the original prediction of Auer and Frenkel10 for
the nucleation rates in hard-sphere systems was indeed robust.

We have also compared our nucleation rates with previ-
ous experimental data, specifically, the nucleation rates pre-
dicted by Harland and van Megen,5 Sinn et al.8 and Schätzel
and Ackerson.9 As was found first by Auer and Frenkel,10

while the simulation results agree well with the experimen-
tal results for high supersaturations, there is a significant dif-
ference between the simulations and experiments for smaller
volume fractions. The agreement between the three theoret-
ical methods examined in this paper, namely molecular dy-
namics, umbrella sampling, and forward flux sampling, seems
to indicate that either there is a fundamental difference be-
tween the simulations and theory, which we are not taking
into account, such as some form of collective hydrodynamics
which are included in the experiments but not considered in
the theory or some difficulty in interpreting the experimen-
tal data. In either case, the origin of the huge discrepancy in
the theoretical and experimental nucleation rates remains a
mystery.
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APPENDIX: FFS IN THE PRESENCE OF
MEASUREMENT ERROR

As mentioned in Sec. VI of this paper, the FFS technique
assumes that the reaction coordinate is known exactly at all
times. However, for the hard-sphere system examined in this
paper, this is not possible due to the computational time re-
quired for measuring the order parameter. In applying the FFS
technique to hard spheres, two separate types of error are in-
troduced: (i) error associated with our inability to know the
value of the reaction coordinate at all times, and (ii) an error
in measuring the number of particles in a cluster for a given
configuration. Additionally, as discussed in Sec. VI, in this
paper we have applied FFS in a slightly novel manner. In this
appendix, we introduce a simple model to examine the effect
of this approximation and the effect such measurement errors
have on the nucleation rate predicted by forward flux sam-
pling.

To this end, we study the transition rate for a single Brow-
nian particle to surmount a one dimensional potential energy
barrier given by

βU (x) = 8x2 − 2x3. (A1)

A plot of the barrier is shown in Fig. 13. For this potential, we
consider the “liquid” state to be near x = 0 and the “solid”
phase to be near x = 4.

We first determine the “exact” nucleation rate using spon-
taneous simulations. To do this we perform a random walk

starting at x = 0 and determine the time it takes the ran-
dom walk to surmount the barrier. The rate is then given by
R = 1/〈t〉. Performing 40 such random walks we find the nu-
cleation rate to be 1.3 × 10−12. In all the calculations in this
section, we set the KMC step size equal to �K MC = 0.025.

Second, we explore the effect on the nucleation rate of
not knowing the value of the order parameter at all times. For
this purpose we have performed FFS simulations when the
order parameter was measured every �tord = 1, 2, 5, 10, 50
kinetic Monte Carlo steps. The results are shown in Table X.
The average nucleation rates predicted for all values of �tord

clearly are the same within error. Similarly, the standard er-
ror associated with �tord = 1, 2, 5, 10 are approximately the
same, and is only marginally larger for �tord = 50. Hence, we
conclude that the frequency of measuring the order parame-
ter does not significantly affect the predicted nucleation rate.
Additionally, these nucleation rates agree with the nucleation
rate predicted from spontaneous simulations, indicating that
of applying FFS as outlined in Sec. VI predicts the correct
nucleation rates.

Finally, we examine the effect that measurement error in
the cluster size has on the nucleation rate. For this purpose,
we apply a noise term to our order parameter such that

xm = xtrue + δ, (A2)

where xm is the value of the order parameter used in the FFS
simulation, xtrue is the true value of the order parameter, and
δ is taken from a Gaussian distribution with a mean of 0 and
a standard deviation σGauss. In Table XI we demonstrate the
effect on the predicted nucleation rate for various choices of
σGauss. The resulting nucleation rates are in good agreement
with the spontaneous results. For larger σGauss, e.g., σGauss

= 0.08 and 0.1, the standard error in the results is slightly
larger, however, the predicted nucleation rates are still correct.

In summary, we have examined the effect of the approx-
imation described by Eq. (21), as well as the effect of mea-
surement error in the order parameter and the measurement
frequency �tord of the order parameter. We do not find a sig-
nificant effect on the predicted nucleation rates. Thus, we con-
clude that FFS should be robust to the types of error we are
introducing when we apply the technique to hard spheres.

1A. D. Dinsmore, E. R. Weeks, V. Prasad, A. C. Levitt, and D. A. Weitz,
Appl. Opt. 40, 4152 (2001).

2S.-H. Lee, Y. Roichman, G.-R. Yi, S.-H. Kim, S.-M. Yang, A. van
Blaaderen, P. van Oostrum, and D. G. Grier, Opt. Express 15, 18275 (2007).

3S. C. Glotzer and M. J. Solomon, Nature Mater. 6, 557 (2007).
4A. Yethiraj and A. van Blaaderen, Nature 421, 513 (2003).
5J. L. Harland and W. van Megen, Phys. Rev. E 55, 3054 (1997).
6P. N. Pusey and W. van Megen, Nature 320, 340 (1986).
7W. G. Hoover and F. H. Ree, J. Chem. Phys. 49, 3609 (1968).
8C. Sinn, A. Heymann, A. Stipp, and T. Palberg, Prog. Colloid Polym. Sci.
118, 266 (2001).

9K. Schätzel and B. J. Ackerson, Phys. Rev. E 48, 3766 (1993).
10S. Auer and D. Frenkel, Nature 409, 1020 (2001).
11G. M. Torrie and J. P. Valleau, Chem. Phys. Lett. 28, 578 (1974).
12J. S. van Duijneveldt and D. Frenkel, J. Chem. Phys. 96, 4655 (1992).
13R. J. Allen, P. B. Warren, and P. R. ten Wolde, Phys. Rev. Lett 94, 018104

(2005).
14R. J. Allen, D. Frenkel, and P. R. ten Wolde, J. Chem. Phys. 124, 024102

(2006).
15R. J. Allen, D. Frenkel, and P. R. ten Wolde, J. Chem. Phys. 124, 194111

(2006).

Downloaded 03 Jan 2011 to 131.211.45.17. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions

http://dx.doi.org/10.1364/AO.40.004152
http://dx.doi.org/10.1364/OE.15.018275
http://dx.doi.org/10.1038/nmat1949
http://dx.doi.org/10.1038/nature01328
http://dx.doi.org/10.1103/PhysRevE.55.3054
http://dx.doi.org/10.1038/320340a0
http://dx.doi.org/10.1063/1.1670641
http://dx.doi.org/10.1007/3-540-45725-9_57
http://dx.doi.org/10.1103/PhysRevE.48.3766
http://dx.doi.org/10.1038/35059035
http://dx.doi.org/10.1016/0009-2614(74)80109-0
http://dx.doi.org/10.1063/1.462802
http://dx.doi.org/10.1103/PhysRevLett.94.018104
http://dx.doi.org/10.1063/1.2140273
http://dx.doi.org/10.1063/1.2198827


244115-15 Crystal nucleation of hard spheres J. Chem. Phys. 133, 244115 (2010)

16P. N. Pusey, E. Zaccarelli, C. Valeriani, E. Sanz, W. C. K. Poon, and M. E.
Cates, Philos. Trans. Roy. Soc. London, Ser. A 367, 4993 (2009).

17D. Frenkel and B. Smit, Understanding Molecular Simulation: From Algo-
rithms to Applications (Academic, San Diego, 1996).

18R. J. Speedy, J. Phys.: Condens. Matter 9, 8591 (1997).
19R. J. Speedy, J. Phys.: Condens. Matter 10, 4387 (1998).
20T. Kawasaki and H. Tanaka, Proc. Natl. Acad. Sc. U.S.A. 107, 14036

(2010).
21J. T. Padding and A. A. Louis, Phys. Rev. E 77, 011402 (2008).
22S. Auer, W. C. K. Poon, and D. Frenkel, Phys. Rev. E 67, 020401 (2003).
23S. Auer and D. Frenkel, J. Phys.: Condens. Matter 14, 7667 (2002).
24P. R. ten Wolde, M. J. Ruiz-Montero, and D. Frenkel, Faraday Discuss. 104,

93 (1996).
25P. R. ten Wolde, Ph.D. thesis, University of Amsterdam, 1998.
26B. J. Alder and T. E. Wainwright, J. Chem. Phys. 31, 459 (1959).
27E. Zaccarelli, C. Valeriani, E. Sanz, W. C. K. Poon, M. E. Cates, and P. N.

Pusey, Phys. Rev. Lett. 103, 135704 (2009).
28P. R. ten Wolde, M. J. Ruiz-Montero, and D. Frenkel, J. Chem. Phys. 104,

9932 (1996).
29S. Auer and D. Frenkel, J. Chem. Phys. 120, 3015 (2004).
30R. L. Davidchack, J. R. Morris, and B. B. Laird, J. Chem. Phys. 125,

094710 (2006).

31S. Ryu and W. Cai, Phys. Rev. E 81, 030601 (2010).
32I. J. Ford, Phys. Rev. E 56, 5615 (1997).
33B. Cichocki and K. Hinsen, Physica A 166, 473 (1990).
34E. Sanz and D. Marenduzzo, J. Chem. Phys. 132, 194102 (2010).
35A. Cacciuto, S. Auer, and D. Frenkel, J. Chem. Phys. 119, 7467 (2003).
36S. Auer, Ph.D. thesis, University of Amsterdam, 2002.
37R. J. Allen, C. Valeriani, and P. R. ten Wolde, J. Phys.: Cond. Matter 21,

463102 (2009).
38F. A. Escobedo, E. E. Borrero, and J. C. Araque, J. Phys.: Condens. Matter

21, 333101 (2009).
39M. Fasolo and P. Sollich, Phys. Rev. E 70, 041410 (2004).
40B. O’Malley and I. Snook, Phys. Rev. Lett. 90, 085701 (2003).
41W. Lechner and C. Dellago, J. Chem. Phys. 129, 114707 (2008).
42T. Schilling, H. J. Schöpe, M. Oettel, G. Opletal, and I. Snook, Phys. Rev.

Lett. 105, 025701 (2010).
43P. G. Bolhuis, D. Frenkel, S. Mau, and D. A. Huse, Nature 388, 235 (1997).
44S. Pronk and D. Frenkel, J. Chem. Phys. 110, 4589 (1999).
45While it does appear that Eq. (19) is completely independent of λ0,

this is not strictly correct as λ0 creates the border for state A and state
A is expected to be a metastable, equilibrated state. For the purposes
of this paper, the difference is insignificant as the average time for a
nucleation event is much longer than the relaxation time of the fluid.

Downloaded 03 Jan 2011 to 131.211.45.17. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions

http://dx.doi.org/10.1098/rsta.2009.0181
http://dx.doi.org/10.1088/0953-8984/9/41/006
http://dx.doi.org/10.1088/0953-8984/10/20/006
http://dx.doi.org/10.1073/pnas.1001040107
http://dx.doi.org/10.1103/PhysRevE.77.011402
http://dx.doi.org/10.1103/PhysRevE.67.020401
http://dx.doi.org/10.1088/0953-8984/14/33/308
http://dx.doi.org/10.1039/fd9960400093
http://dx.doi.org/10.1063/1.1730376
http://dx.doi.org/10.1103/PhysRevLett.103.135704
http://dx.doi.org/10.1063/1.471721
http://dx.doi.org/10.1063/1.1638740
http://dx.doi.org/10.1063/1.2338303
http://dx.doi.org/10.1103/PhysRevE.81.030601
http://dx.doi.org/10.1103/PhysRevE.56.5615
http://dx.doi.org/10.1016/0378-4371(90)90068-4
http://dx.doi.org/10.1063/1.3414827
http://dx.doi.org/10.1063/1.1607307
http://dx.doi.org/10.1088/0953-8984/21/46/463102
http://dx.doi.org/10.1088/0953-8984/21/33/333101
http://dx.doi.org/10.1103/PhysRevE.70.041410
http://dx.doi.org/10.1103/PhysRevLett.90.085701
http://dx.doi.org/10.1063/1.2977970
http://dx.doi.org/10.1103/PhysRevLett.105.025701
http://dx.doi.org/10.1103/PhysRevLett.105.025701
http://dx.doi.org/10.1038/40779
http://dx.doi.org/10.1063/1.478339

