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In the wake of previous studies on the rattling-and-jumping diffusion in smectic liquid crystal
phases of colloidal rods, we analyze here for the first time the heterogeneous dynamics in columnar
phases. More specifically, we perform computer simulations to investigate the relaxation dynamics
of a binary mixture of perfectly aligned hard spherocylinders. We detect that the columnar
arrangement of the system produces free-energy barriers that the particles should overcome to jump
from one column to another, thus determining a hopping-type diffusion. This phenomenon accounts
for the non-Gaussian intercolumn diffusion and shows a two-step structural relaxation that is
remarkably analogous to that of out-of-equilibrium glass-forming systems and gels. Surprisingly
enough, slight deviations from the behavior of simple liquids due to transient cages is also observed
in the direction perpendicular to this plane, where the system is usually referred to as liquidlike.
© 2010 American Institute of Physics. �doi:10.1063/1.3505150�

I. INTRODUCTION

Liquid crystals �LCs� are phases of matter in which the
anisotropy of the particles determines under specific condi-
tions a partial spontaneous breaking of the spatial symme-
tries of the system, thus manifesting features in between the
crystalline solid and the isotropic liquid phase. The notion
that entropic effects alone are sufficient to drive the self-
assembly of ordered liquid crystal phases is well established
in colloid science.1–5 Model systems of hard particles consti-
tute the natural choice to describe the phase and aggregation
behavior of most colloidal systems, as the main interactions
established between their particles have a repulsive, steric
origin. As a consequence, a hard-particle fluid does not have
internal energy and minimizing its free energy is equivalent
to maximizing its entropy.

In his seminal work, Onsager showed that mere hard-
core repulsions between infinitely thin rigid cylinders are
able to determine an entropy-driven phase transition from the
isotropic to the nematic phase, and hence the existence of a
spontaneous orientational order.1 The evolution of simulation
techniques in the past decades allowed to investigate the
more realistic case of rods with finite size, showing that by
varying the length-to-diameter ratio one-�smectic�, two-
�columnar�, and three-�crystal� dimensional translational or-
dered phases can be encountered.6,7 Further more accurate
studies showed that for a monodisperse system of both
aligned8 and freely rotating9 hard spherocylinders the colum-
nar phase happens to be metastable with respect to the smec-
tic phase for each value of the length-to-diameter ratio. The
complexity of the phase behavior of linear particles becomes
even more pronounced by proceeding from monodisperse
systems to mixtures.10–14 In particular, size polydispersity in-

troduces a sensible change in the phase behavior of rodlike
particles as their packing is not as effective as that of mono-
disperse rods. In fact, it was observed that in a system of
hard spherocylinders the formation of smectic layers can be
inhibited by introducing a length bidispersity, in such a way
that the columnar phase can become thermodynamically
stable.10,11 Entropy-driven columnar phase transitions have
been observed in monodisperse systems of disklike particles,
such as cut spheres or oblate spherocylinders.15–18 As far as
rodlike particles are concerned, theoretical studies indicated
that the columnar order can be observed not only in bidis-
perse mixtures but also in more realistic polydisperse sys-
tems of parallel cylinders.19 Polydispersity is not the only
element that favors the stabilization of the columnar phase in
a system of rods, as was shown in Ref. 20 where a monodis-
perse system of soft-core rods was considered. On the other
hand, the effect of rod flexibility in stabilizing the columnar
phase is still under debate.21–24

With the improvement in understanding and describing
the static and thermodynamic properties of LCs, the interest
toward the dynamics correspondingly increased. In particu-
lar, most of the studies in this direction were devoted to
analyze the anisotropy of the diffusion by the measurement
of the self-diffusion coefficients in different mesophases.25–28

For lyotropic LCs, these results found good overall agree-
ment with experiments based on techniques such as fluores-
cence recovery after photobleaching.29–32 On the other hand,
only few studies focused on the analysis of the dynamical
phenomena at the single-particle level, where fluorescence
microscopy was applied to investigate the LC phases in col-
loidal suspensions of the fd virus.33,34 This approach allowed
to observe for the first time the mechanism of interlayer dif-
fusion, or permeation, which characterizes the dynamics of
the system in the smectic phase.34 In fact, the layered struc-
ture of smectic LCs, which determines an effective periodic
mean-field potential, influences the motion in the direction
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perpendicular to the smectic layers with the appearance of
jumps of the order of the rod length. As a result of this
quasiquantized diffusion at intermediate time intervals, one
can distinguish between “slow” particles, which rattle around
the center of a column, and “fast” particles, which jump to
another column. This heterogeneous dynamics accounts for
deviations from Gaussianity in the diffusion, a phenomenon
that is also well known in homogeneous complex fluids such
as supercooled liquids35,36 and gels.37,38 In the light of these
results, a theoretical approach based on dynamic density
functional theory using the second virial approximation fo-
cused on the role played by the local fluid structure of the
system, which competes with the permanent barriers due to
the smectic structure, thus increasing even more the analo-
gies with fluids close to a dynamical arrest transition.39,40

Simulations on aligned41 and freely rotating42,43 hard sphero-
cylinders qualitatively confirmed both these studies and
pointed out the effect of dynamical heterogeneities on the
structural relaxation of the system, which deviates from the
exponential decay expected for simple fluids. Furthermore,
in Refs. 42 and 43 it was shown that the heterogeneous dy-
namics in the smectic phase of hard spherocylinders is
tightly related to cooperative motion of particles through the
smectic layers.

Following this line of research and motivated by a recent
experiment on the fd virus,44 we investigate in this paper the
dynamics of a binary mixture of rodlike particles that exhib-
its a stable columnar liquid crystal phase. Using Monte Carlo
�MC� simulations, we are able to study for the first time the
dynamical heterogeneities that arise from the columnar struc-
ture and their effect on the diffusion and on the long-time
structural relaxation of the system. Furthermore, we measure
the height of the intercolumn energetic barriers and compare
our results with the simulation data available for the smectic
phase.41–43 Conventional MC dynamics has been extensively
applied to study the origin of nonexponential relaxation of
glass-forming liquids.45–49 MC and molecular dynamics
�MD� simulations of Lennard-Jones fluids50 showed that the
particle dynamics at large time scales are the same, but are
different at small time scales, as the stochastic motion of
particles cannot be detected by the deterministic approach of
MD simulations.

The paper is organized as follows. In Sec. II, we intro-
duce the model, the simulation details and the physical prop-
erties that were measured in order to describe the dynamics
of the system. The results of these measurements, which con-
firm the presence of dynamical heterogeneities also in the
columnar phase and are in general agreement with the obser-
vations in the smectic phase, are discussed in Sec. III,
whereas in Sec. IV we illustrate our conclusions.

II. MODEL AND SIMULATIONS

We study a system containing N=1600 perfectly aligned
hard spherocylinders with aspect ratio L�=L /D, where L and
D are, respectively, the length and diameter of a cylindrical
body capped by two hemispheres with diameter D. The
phase diagram of a monodisperse system containing such
rodlike particles shows stable nematic, smectic, and crystal

phases, but lacks a stable columnar phase in the range 0
�L���.8 Stroobants studied the phase behavior of bidis-
perse systems of hard rods and found that the bidispersity
can favor and stabilize columnar order over smectic order.10

Therefore, to prevent the formation of smectic layers, we
investigate a binary mixture of hard spherocylinders with the
same diameter D �used as our unit of length�, but different
lengths L1

� and L2
�, with L1

��L2
�. In this model, the rotational

degrees of freedom are frozen out and hence the particles are
forced to be aligned along a common nematic director ori-
ented along the z axis. The relative concentration of the two
species is set in such a way that the binary mixture is kept at
its equivalence point, where the volume fractions of each
component are the same. The phase diagram at fixed L2

�

=1.0 displays a region of stability of the columnar phase that
increases with L1

� and disappears at L1
��1.6, where a

nematic-smectic transition is observed.10 Here we study a
columnar ordered binary mixture of rods with L1

�=2.1 and
L2

�=1.0, and relative concentrations x1=N1 /N=0.375 and
x2=N2 /N=0.625, respectively. For lower pressures, this co-
lumnar phase transforms into a nematic phase, while for
higher pressures it freezes into a crystal phase.

We performed standard MC simulations in a rectangular
box of volume V with periodic boundary conditions. To
equilibrate the columnar phase, we performed runs in the
isobaric-isothermal �NPT� ensemble, where the particle
moves were accepted according to the Metropolis
algorithm,51 that is if no particle overlap was detected. Each
MC cycle consisted of N attempts to displace a randomly
selected particle, plus an attempt to modify the box volume
with independent changes of the three box sides. The system
was considered to be in equilibrium when the volume
reached a stationary value within the statistical fluctuations.
We run simulations at several reduced pressures P�=�PD3,
where �=1 /kBT, kB is the Boltzmann’s constant and T the
absolute temperature. In particular, we equilibrated a nematic
phase at P�=2.5 �packing fraction �=N�x1v1+x2v2� /V
=0.470 with vi �i=1,2� the single particle volume� that is
very close to the nematic-columnar transition, and three dif-
ferent columnar phases at P�=3.0 ��=0.535�, 3.5 ��
=0.563�, and 4.0 ��=0.580�. In all these cases, our starting
configuration consisted of a highly packed columnar struc-
ture with the rods randomly located along the z direction, and
hexagonally ordered in the xy plane. The minimum number
of MC cycles needed for an equilibration run was 5�105,
and was followed by a production run of 2�106 MC cycles
in the canonical �NVT� ensemble to simulate the relaxation
dynamics and evaluate all the physical properties of interest.
In this case, the box volume was kept fixed to prevent un-
physical collective moves that do not properly mimic the
Brownian dynamics of the particles. It was proved that in rod
suspensions the contribution of hydrodynamics can at first
approximation be neglected with respect to steric effects,
which result in excluded volume interactions.52 Under these
conditions, the MC approach offers an important tool to
study the dynamics of colloids, since, in spite of its intrinsi-
cally nondynamical nature, it is able to reproduce the Brown-
ian diffusion typical of such kind of systems.53 To pursue this
goal, one must set a small enough maximum MC displace-
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ment, typically of the order of one-tenth of the shortest di-
mension of the particle. The optimal value of the mean par-
ticle displacement is strictly linked to the acceptance rate and
hence to the CPU time per simulation run. If the displace-
ment chosen is too small, the system would need longer runs
to properly explore the configurational space. The same ef-
fect is expected with too big displacements, as most of the
particle moves would cause overlaps and therefore would be
rejected. However, any reasonable and convenient choice of
the average step size should not affect the dynamics at long
time scales. We tested that, apart from an overall scaling, this
was the case. The maximum displacement was fixed to give
an acceptance rate of roughly 50% per move. Furthermore,
to take into account the nonspherical shape of the particles,
the maximum MC displacement was set in such a way that at
short times it reproduces the anisotropic diffusion of a single
colloidal rod. More specifically, this means that the ratio be-
tween the maximum MC displacement in the xy plane
	xmax=	ymax and in the z direction 	zmax must be set as

	xmax

	zmax
=

	ymax

	zmax
=�D�

D�

, �1�

where we denoted with D� and D� the short-time self-
diffusion coefficients of the rod in the direction parallel and
perpendicular to its long axis, respectively. To give an esti-
mate for the ratio D� /D�, which solely depends on the ge-
ometry of the particle, we referred to the semiempirical ex-
pression derived in Ref. 54. In that work the authors used a
numerical approach to evaluate the translational self-
diffusion coefficients of a cylindrical particle for different
values of the length-to-diameter ratio p, finding a good over-
all agreement with experimental data in the range 2� p
�30.55 A least-square quadratic fitting in p−1 of the data
allowed the authors to give an expression for the transverse
and longitudinal self-diffusion coefficients as functions of
the parameter p. Since here we consider spherocylinders, we
evaluated the ratio D� /D� by setting p= �L+D� /D, arguing
that possible deviations given by the noncylindrical shape of
the particles were irrelevant. According to the above-
mentioned expression, the ratio between the maximum MC
displacement perpendicular and parallel to the z axis was set
to 0.92 for particles of species 1 and 0.94 for those of species
2. Moreover, since the transverse section of the particles is
the same for the two species, we set the same maximum MC
displacement along the z axis for the two components. Once
the short-time self-diffusion coefficients are known, it is pos-
sible to introduce a time scale defined by 
=D2 /Dtr, where
the total translational diffusion coefficient Dtr= ��D�	
+2�D�	� /3 is evaluated in terms of the longitudinal and
transverse short-time diffusion coefficients averaged over the
two species.41

In order to analyze the heterogeneous diffusion and the
structural relaxation of the system, the following physical
properties were calculated: �i� the transverse mean-field po-
tential, �ii� the self-part of the van Hove function �SVHF�,
�iii� the distinct part of the van Hove function �DVHF�, �iv�

the mean square displacement �MSD�, �v� the non-Gaussian
parameter �NGP�, and �vi� the self-part of the intermediate
scattering function �SISF�.

A. Transverse mean-field potential

In a liquid crystal phase characterized by columnar order
the translational invariance is spontaneously broken in the
plane perpendicular to the nematic director. This gives rise to
a nonhomogeneous �relative� probability �i�x ,y� of finding a
particle of species i=1,2 at position �x ,y� in the plane per-
pendicular to the nematic director. The effective energetic
barrier that tends to confine the particle inside a column is
given by the mean-field potential Ui�x ,y� defined as34

�i�x,y� � exp
−
Ui�x,y�

kBT
� , �2�

where the proportionality constant is chosen in such a way
that the minima of the potential are set to zero.

B. Self-part of the van Hove function

The heterogeneous dynamics and hopping-type intercol-
umn diffusion can be quantitatively described by the SVHF
�Ref. 56�

Gs�r,t� =
1

N�

j=1

N


�r − r j�t + t0� + r j�t0��� , �3�

which measures the probability distribution for a particle dis-
placement r in a time interval t. Since the present system is
characterized by a translational symmetry along the nematic
director, it is natural to separately study the diffusion along
the z axis and in the xy plane. This can be done by partially
integrating the SVHF on the xy plane to get its longitudinal
component

Gs
��z,t� =

1

N�

j=1

N


�z − zj�t + t0� + zj�t0��� , �4�

and along the z axis to get its transverse component, which
can be further averaged over the azimuthal angle of r

Gs
��R,t� =

1

N�

j=1

N


�R − R j�t + t0� + R j�t0���
2�

. �5�

In the above equations �R j�t� ,zj�t�� is the position of
particle j at time t, 
 is the Dirac delta, �¯ 	 stands for an
ensemble average, and the index 2� indicates an additional
average over the polar angle, which defines the bidimen-
sional vector R= �x ,y� with modulus R= �R�. It should be
noticed that for freely diffusive particles, these functions are
described by a Gaussian.

C. Distinct part of the van Hove function

A description of the influence of the surrounding par-
ticles background on the single particle diffusion is given by
the DVHF, which is the probability distribution on the rela-
tive position r of two different particles at different times
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Gd�r,t� =
1

N� 

j�i=1

N


�r − r j�t + t0� + ri�t0��� . �6�

In order to separately study the caging regime related to the
local fluid structure in the direction longitudinal and trans-
verse to the nematic director, we actually measured the
DVHF partially integrated over the size occupied by the
spherocylinder in the xy plane and along the z axis, defined,
respectively, by

Gd
� �z,t� = ��D2

4
�−1�

0

D/2

RdR�
0

2�

d�Gd�r,t� , �7�

Gd
��R,t� = �2�L�−1�

−L/2

L/2

dz�
0

2�

d�Gd�r,t� , �8�

where we set L=min�L1 ,L2� and � is the azimuthal angle of
r in the xy plane.

D. Non-Gaussian parameter

The deviations of the diffusion from Gaussian behavior
can be estimated by the NGP, defined as57

�2�t� =
�	r4�t�	

�1 + 2/d��	r2�t�	2 − 1, �9�

where 	r�t� is the displacement of a particle during a time
interval t. The parameter d corresponds to the number of
dimensions considered, so that d=1 for the linear diffusion
longitudinal to the nematic director ��2,z�t�� and d=2 for the
planar transverse diffusion ��2,xy�t��. As pointed out in Ref.
46, when treating mixtures one should be careful in not tak-
ing into account trivial non-Gaussianity due to a size-
dependent particle mobility. In order to describe the dynami-
cal heterogeneities exclusively related to the permanent
barriers of the LC phase, one has to calculate the NGP �2

�i� as
separately defined in Eq. �9� for each species i=1,2 and then
perform an average weighted over the concentrations xi, i.e.,

��2�t�	 = x1�2
�1��t� + x2�2

�2��t� . �10�

With these definitions heterogeneous diffusion can be de-
tected when the NGP deviates from zero value.

E. Self-part of the intermediate scattering function

The structural relaxation of the system is conveniently
described by measuring the self-part of the intermediate scat-
tering function

Fs�k,t� =
1

N�

j=1

N

exp�ik · �r j�t + t0� − r j�t0���� , �11�

which describes the density autocorrelations decay in the re-
ciprocal space. Since most of the relevant structural informa-
tion is contained at the first peak k� of the structure factor,
we can focus on the transverse and longitudinal relaxations
by evaluating this function at �kx

� ,ky
� ,0� and �0,0 ,kz

��,
respectively, so that Fs,xy�t�=Fs��kx

� ,ky
� ,0� , t� and Fs,z�t�

=Fs��0,0 ,kz
�� , t�.

III. RESULTS

When the difference in length between the two compo-
nents of a binary system of aligned hard spherocylinders is
sufficiently high, the system undergoes a transition from a
nematic to a columnar phase by increasing the pressure. The
structure of the columnar phase is characterized by the de-
velopment of a hexagonal order in the plane perpendicular to
the nematic director.10 This is the case for our parameter
choice L1

�=2.1 and L2
�=1.0 as illustrated in Fig. 1, where two

typical configurations in the nematic �P�=2.5� and in the
columnar phase �P�=4.0� are compared.

The development of a long-range translational order al-
lows to interpret the diffusion as the motion of a single par-
ticle subject to a periodic mean-field potential U�x ,y� as de-

FIG. 1. Side and top views of two typical configurations in the nematic
�P�=2.5, left figure� and in the columnar phase �P�=4.0, right figure� of a
binary mixture of perfectly aligned hard spherocylinders with length-to-
diameter ratios L1

�=2.1 and L2
�=1.0 and relative concentrations x1=0.375

and x2=0.625.
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fined in Eq. �2�. This approach was applied in experiments34

and simulations41–43 to characterize the hopping-type diffu-
sion in smectic liquid crystals along the nematic director.
These authors found that the free-energy cost for the layer-
to-layer diffusion is in the order of few kBT per particle,
mostly depending on the packing of the system, but also on
the anisotropy and rotational degrees of freedom of the rods.
Since the system studied here is composed of two species,
the mean-field potential was separately evaluated for each
component and is shown in Fig. 2 for several pressures. The
minima of the potential correspond to the lattice positions,
and the height of the energetic barriers gives a quantitative
description of the energetic demand associated to a column-
to-column jump. In order to estimate the height of the ener-
getic barriers for each species as a function of pressure, we
report in Fig. 3 a transverse section of the energy landscapes
in Fig. 2. Following the procedure in Ref. 41, the experimen-
tal points in Fig. 3 were fitted with a function

U�R� = 

k=1

n

Uk
sin��R

h
��2k

, �12�

with Uk and h fit parameters and n=5. As expected, the
height of the potential barrier increases with the packing
fraction and with the particle anisotropy, as already observed
in Ref. 42. At significant packing fractions we detect that the

energetic barriers appear higher for long rods. In particular,
at P�=3.5 and 4.0 the column-to-column jumps become so
rare that the associated statistics is too poor to furnish a
precise estimate of the barrier height. In other words, the
long rods are constrained to rattle in their cage, the jump to a
neighboring column being too demanding. This is due to the
fact that at high packing fraction no MC configuration
showed a long rod in the region between the columns, with
the result that the mean-field potential was characterized by
an unphysical divergence. Furthermore, one should notice
that the typical height of the barriers, which is close to and
even higher than 10kBT, is significantly higher than in the
smectic phase.41–43 This can be seen by comparing our data
at P�=3.5 ��=0.563� with those in Ref. 41 for the smectic
phase of a system of aligned hard spherocylinders with L�

=5.0 at pressure P�=5.0 ��=0.563�. In the latter the height
of the energy barrier reaches a value close to 8kBT, which is
expected to be even lower for shorter rods, as noticed in
Ref. 42.

The effect of the periodic mean-field potential can be
further appreciated in Fig. 4, where we show a typical tra-
jectory projected on the xy plane of a long and a short par-
ticle at P�=3.0. The difference with the Gaussian diffusion
typical of a simple liquid where the particle trajectories re-

FIG. 2. Mean-field effective potential U�x ,y� in units of kBT in the bulk
columnar phase of a binary mixture of perfectly aligned hard spherocylin-
ders at P�=3.0, P�=3.5, and P�=4.0 �from top to bottom�. The images on
the left correspond to the long rods �species 1�, whereas those on the right to
the short ones �species 2�. In order to ease the visualization, the black lines
at the top of each graph identify the isopotential points in the xy plane with
increments of 3kBT.

0

2

4

6

8

-1 -0.5 0 0.5 1

U
2(
x,
y)
(k
B
T)

R / D

(a)

(b)

0

2

4

6

8

10

12

14

U
1(
x,
y)
(k
B
T)

(a)

(b)

FIG. 3. Transverse section of the mean-field effective potential in Fig. 2 for
a binary mixture of long �a� and short �b� hard spherocylinders at P�=3.0
���, P�=3.5 ��� and P�=4.0 ���. The solid lines are fits �see text�.
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FIG. 4. A typical trajectory projected on the xy plane of a long �red line� and
short �green line� rod in the columnar phase at P�=3.0 after an interval of
time 	t=380
.
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semble the behavior of a random walker is evident. In this
case, the dynamics of the system is characterized by a
hopping-type diffusion, in which each particle tends to rattle
around the center of a column until it finds suitable condi-
tions to overcome the energetic barrier and jump to another
column in quasiquantized steps. The spread in the total dis-
placement between the two species is due to the higher bar-
riers felt by the long rods, which significantly inhibit the
intercolumn diffusion. This behavior is observed in the
whole range of pressures considered here, and its effects on
the long-time relaxation dynamics of the system are crucial.
More specifically, the long rods are expected to sample the
configurational space on a time scale that might be signifi-
cantly longer than that needed for the small ones. As a con-
sequence, the decay of the correlation functions is strongly
affected by the slow diffusion of the long particles, as we
show later on.

In order to quantitatively study the distribution of dis-
placements of the particles at different pressures and after
different time intervals, we report in Figs. 5 and 6 the self-
part of the van Hove function in its transverse and longitu-

dinal components, respectively. The comparison between the
behavior of the transverse SVHF in the nematic �Fig. 5�a��
and in the columnar �Figs. 5�b�–5�d�� phase reveals a drastic
change in the dynamics. The SVHF in the nematic phase is a
monotonic function that broadens with time. By entering the
columnar phase, one observes the appearance of peaks that
correspond to the positions of the hexagonal lattice in the xy
plane. As expected, after a fixed time interval, the number
and height of the peaks depend on the packing fraction of the
system, so that by increasing the pressure, the number of
peaks decreases due to higher energetic barriers. These re-
sults confirm what was already observed for the smectic
phase in experiments,34 simulation,42 and theory,39 i.e., the
partial translational symmetry breaking in a liquid crystal
gives rise to a non-Gaussian quasiquantized diffusion related
to a hopping-type dynamics.

In Ref. 39 it was shown that in order to accurately de-
scribe the dynamics of a liquid crystal system, it is not suf-
ficient to take into account the permanent barriers due to the
long-range structure, but also the transient caging effect
given by the surrounding particles. In this sense, the local
fluid structure can affect the diffusion by determining dy-
namical heterogeneities that make the system deviate from
Gaussianity. A careful analysis on the longitudinal compo-
nent of the SVHF in Fig. 6 shows that this is indeed the case
for the present columnar system. In fact, if along the z axis
the diffusion was Gaussian, it would be possible to fit the
points in Fig. 6 with a single Gaussian function. On the
contrary, by performing this fit on different intervals on the z
axis, i.e., in the region near the origin �solid curve in figure�
and the tails �dashed curve�, one can observe that two differ-
ent curves are obtained. Although in the present system the
deviations between the two curves are small, this behavior
manifests interesting resemblances with the heterogeneous
dynamics of some amorphous systems, such as supercooled
liquids and gels, where the two-Gaussian fitting is used to
distinguish between slow and fast particles.58,59 In this sense,
one can affirm that in the longitudinal direction, the diffusion
can be regarded as that of a dilute supercooled liquid more
than a normal liquid. The effect described so far should not
be considered as strictly due to the columnar structure of the
system, since analogous deviations are also observed in Fig.
6�a� for the nematic phase. Instead, the high packing fraction
causes these small discrepancies from Gaussian diffusion.

A description of the transient caging regime due to the
nearest-neighbor �solvation� shell around each particle can
be given in terms of the distinct part of the van Hove func-
tion defined in Eqs. �7� and �8� and reported in Fig. 7 for
t /
=0.02, 2, and 20. According to the definition given in Eq.
�6�, at time t=0, the DVHF coincides with the pair distribu-
tion function, and it is thus characterized by a region around
the origin where its value is equal to zero due to the excluded
volume interaction. On the other hand, in the limit t→� the
DVHF is expected to be a constant in a translationally ho-
mogeneous system due to the decay of the positional corre-
lations; this is not the case in presence of translational order,
since the mutual position of two particles at different times is
influenced by the permanent long-range structure of the
whole system. At t /
=0.02, a region around the origin where
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the DVHF is close to zero suggests that each particle is still
rattling around its initial position. Beyond this region, a se-
ries of peaks indicate the preferential positions of the par-
ticles with respect to the one placed at the origin at the initial
time. In the nematic phase at t /
=0.02, one can recognize in
both the transverse �Fig. 7�a�� and longitudinal �Fig. 7�e��
components the liquidlike structure of the system, where the
lack of long-range order is testified by the rapid decay of the
peaks by moving away from the origin. One should also
notice the speed at which the gap region around the origin is
filled, giving rise to a DVHF almost constant already at t /

=2. Therefore, during this time interval, a given particle i
can escape the trapping cage formed by its nearest neighbors
j, and the space originally occupied by i will be filled by one
of the j particles. The situation appreciably changes when we
pass to the columnar phase, where the long-range modula-
tions in the transverse component of the DVHF �Figs.
7�b�–7�d�� indicate the presence of a permanent structure. On
the other hand, the longitudinal component �Figs. 7�f�–7�h��
does not display any dramatic change in shape, but from its
time evolution one can observe that the time a particle needs
to leave its initial position considerably increases. In fact,
whereas the relaxation times of the longitudinal DVHF in the
three systems manifesting columnar order are comparable
�Figs. 7�f�–7�h��, one can notice a faster relaxation in the
nematic phase �Fig. 7�e��, which cannot be due to the differ-
ence in packing fraction exclusively. This seems to suggest
that the inhomogeneous structure and the resulting dynamics
in the transverse plane appreciably affect the dynamics in the
longitudinal direction. We argue that the higher in-plane mo-
bility of the nematic phase with respect to the columnar af-
fects the mobility along the nematic director albeit only

slightly. This is coherent with the results of Ref. 39, where a
coupling between transverse and longitudinal diffusion in the
smectic phase was pointed out.

An alternative way to analyze dynamical heterogeneities
is to look for deviations from linearity of the mean square
displacement. The effect of local cage trapping in systems
close to dynamical arrest and the presence of permanent
long-range inhomogeneities as in liquid crystals manifest
themselves in a region at intermediate times where the dy-
namics is strongly subdiffusive. In Fig. 8 we show the MSD
both in the xy plane and in the z direction. In the plane
perpendicular to the nematic director �Fig. 8�a�� one can ap-
preciate the almost linear trend of the MSD in the nematic
phase, whereas by increasing the pressure and going to the
columnar phase a plateau region appears, manifesting the
development of a heterogeneous dynamics. These deviations
from linearity are tightly related to the non-Gaussian behav-
ior of the self-part of the van Hove function, and can be
quantitatively estimated by the non-Gaussian parameter de-
fined in Eq. �9�. In Fig. 9, we report the NGP in the xy plane
averaged over the species concentrations as described in Eq.
�10�. This parameter remains close to zero in the nematic
phase, while it displays a peak at intermediate times in the
columnar phase indicating deviations from Gaussianity. On
the other hand, along the z direction �not shown here� the
NGP does not significantly deviate from zero. The choice of
calculating the NGP for the whole system by averaging over
the value it assumes for the two species separately allows to
take into account just the effects related to the long-range
structure of the system. For the sake of completeness, we
show in the inset of Fig. 9, a comparison between the NGP at
P�=3.0 for each species, their weighted average, and that
corresponding to the whole system. As expected, the opera-
tion of average does not significantly affect the position of
the peak but only decreases the peak height, suggesting that
in this way the non-Gaussianity due to particle size differ-
ence is subtracted. One should notice that this particular
treatment is not necessary for the rest of the physical prop-
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erties measured in this paper, since with the exception of the
NGP they result to be linear in the particle species, i.e., their
value for the system as a whole corresponds to a weighted
average over the species.

The dynamic inhomogeneities as captured by both the
MSD and the NGP allow to identify three different time
intervals. At short times, the MSD follows the usual linear
trend and the NGP maintains a value close to zero, which
means that particles freely diffuse since they do not feel yet
the trapping cage due to the surrounding particles. At inter-
mediate times the MSD becomes strongly subdiffusive and
the NGP is characterized by a monotonic growth, thus mean-
ing that the free diffusion is inhibited by the columnar struc-
ture of the fluid. At this stage, one can distinguish between
particles that still rattle around the position of their column
and others that succeeded in overcoming the energetic barrier
and jumped to another column. The end of the subdiffusive
plateau and the return to the linear trend of the MSD roughly
correspond to the peak of the NGP, which starts monotoni-
cally decreasing to zero indicating the end of the caging re-
gime, i.e., most of the particles succeeded in leaving their
initial column. A deeper inspection on the pressure depen-
dence of the NGP shows that the degree of non-Gaussianity,
i.e., the height of the peak, and the duration of the caging
regime, i.e., the position of the peak increase with packing
fraction. This fact can be explained by considering that the
cage escape is related to a rearrangement of the surrounding
particles, which becomes slower at higher packing fraction
as it involves more of them. Furthermore, the small devia-
tions from linearity in the MSD in the direction parallel to
the nematic director confirm the presence of a weakly het-
erogeneous dynamics, as already pointed out by analyzing
the self-part of the van Hove function in this direction.

Finally, the structural relaxation of the system is ana-
lyzed in terms of the self-part of the intermediate scattering
function defined in Eq. �11�. Whereas along the z direction,
the relaxation is characterized by a single step decay at each
pressure �Fig. 10�b��, a plateau region, which characterizes

the relaxation in the xy plane at intermediate times, develops
in the columnar phase. This plateau, whose value increases
with pressure, indicates the time extension of the cage re-
gime and is expected to divide a short-time decay
��-relaxation� from a long-time one ��-relaxation�. As pre-
viously observed in recent work on smectic liquid
crystals41–43 and in out-of-equilibrium supercooled liquids,47

the SISF decays likely to zero at long times, indicating the
loss of density autocorrelations. This kind of behavior was
described for the smectic phase in Refs. 41–43, where the
�-relaxation decay was fitted by a stretched exponential
function of the form exp��t / tr��� with ��0.6 and tr the char-
acteristic relaxation time. In the present simulations we did
not observe any �-relaxation as the relaxation time of the
systems probably exceeds our simulation time. On the other
hand, from the data available, a close accordance with the
features of the structural relaxation of the smectic phase can
be observed. In particular, the �-relaxation in the xy plane is
reasonably described by an exponential decay, as expected
for simple liquids, due to the lack of interactions of the par-
ticles with the nearest neighbors at small times. Also, the
relaxation along the z axis accurately resembles the relax-
ation of the smectic phase inside the smectic layers. In fact,
in both these cases, the SISF weakly depends on the pressure
and it is characterized by an exponential decay at small
times, which eventually becomes a stretched exponential
with ��0.6. In this sense, we can confirm what the authors
observed in Ref. 41, i.e., the relaxation of a liquid crystal in
the direction�s� in which the system is homogeneous is closer
to that of a low-density supercooled liquid than a simple
liquid where an exponential relaxation is to be expected in-
stead.

IV. CONCLUSIONS

In summary, we used Monte Carlo simulations to ana-
lyze for the first time the presence of dynamical heterogene-
ities in a columnar liquid crystal of perfectly aligned hard
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spherocylinders. The long-range hexagonal order in the plane
perpendicular to the nematic director determines an effective
mean-field potential, whose effect is to maintain particles
inside a column preventing them to occupy a position in
between the columns. In analogy with previous analyses on
the smectic phase, the height of the energetic barriers of this
effective potential increases with the packing fraction and the
particle anisotropy. As a consequence, in the xy plane, the
dynamics of a rod is characterized by a quasiquantized be-
havior in which particles rattle around the position of the
column and jump to another column only when the configu-
ration of the surrounding particles allows it.

The rattling-and-jumping dynamics in the in-plane evo-
lution of the system gives rise to three different time re-
gimes. At very short times, the particles diffuse almost freely
because they do not feel yet the presence of the trapping cage
formed by their surrounding nearest neighbors. At this stage,
the behavior of the system is that typical of a simple fluid
characterized by a Gaussian distribution of displacements, a
linear mean square displacement, and a fast exponential
structural relaxation. A second stage starts when particles
begin experiencing the cage due to the long-range structure
of the system, in such a way that the diffusion results to be
inhibited and only occasionally a column-to-column jump
takes place and is made possible by the instantaneous con-
figuration of the system. As a result, the mean square dis-
placement as well as the self-intermediate scattering function
develops a plateau, which testifies the slowing down of the
dynamics and whose time extension increases with packing
fraction. On the other hand, the distribution of displacements
shows marked deviations from Gaussianity due to the ap-
pearance of peaks that correspond to the lattice positions in
the plane. Nonetheless, after longer time intervals, the num-
ber of fast particles, which succeeded in overcoming the en-
ergetic barrier, increases with respect to the slow ones. Con-
sequently, when most of the particles succeeded in leaving
their initial column, a second diffusive regime starts, indicat-
ing the end of the cage regime.

We observed interesting analogies with the dynamics in
smectic phases by considering the in-column dynamics. In
fact, along the direction defined by the nematic director the
system does not develop any long-range order, and it is thus
expected to behave like a liquid. On the other hand, we no-
ticed interesting, although slight, deviations from Gaussian-
ity diffusion both in the distribution of displacements and in
the mean square displacement. As far as the structural relax-
ation is concerned, this fact is testified by a self-intermediate
scattering function well approximated by a stretched-
exponential, as it happens in dense liquids. In this sense, we
confirm previous studies on the smectic phase, that is, along
the direction in which a liquid crystal does not develop any
long-range order the dynamics is similar to a dense liquid.
These results are to be compared with recent experiments on
the columnar phase of a suspension of fd virus particles,44

where huge discrepancies from Gaussianity were observed
along the nematic director. We argue that the higher length-
to-diameter ratio, the flexibility or the charge of the rods
could account for a more pronounced non-Gaussian diffusive
behavior than what was observed in the present study.
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