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We study by computer simulations the stability of various crystal structures in a binary mixture of
large and small spheres interacting either with a hard sphere or a screened-Coulomb potential. In the
case of hard-core systems, we consider structures that have atomic prototypes CrB, �CuTi, �IrV,
HgBr2, AuTe2, Ag2Se and the Laves phases �MgCu2, MgNi2, and MgZn2� as well as a structure with
space group symmetry 74. By utilizing Monte Carlo simulations to calculate Gibbs free energies, we
determine composition versus pressure and constant volume phase diagrams for diameter ratios of
q=0.74, 0.76, 0.8, 0.82, 0.84, and 0.85 for the small and large spheres. For diameter ratios 0.76
�q�0.84, we find the Laves phases to be stable with respect to the other crystal structures that we
considered and the fluid mixture. By extrapolating to the thermodynamic limit, we show that the
MgZn2 structure is the most stable one of the Laves structures. We also calculate phase diagrams for
equally and oppositely charged spheres for size ratio of 0.73 taking into consideration the Laves
phases and CsCl. In the case of equally charged spheres, we find a pocket of stable Laves phases,
while in the case of oppositely charged spheres, Laves phases are found to be metastable with
respect to the CsCl and fluid phases. © 2009 American Institute of Physics.
�DOI: 10.1063/1.3182724�

I. INTRODUCTION

Hard spheres are interesting model systems due to their
extreme simplicity and yet complex behavior that includes
freezing into solid phases and glass formation. While the
stable solid structure of pure hard spheres is always the face-
centered-cubic �fcc� crystal phase1 with a maximum packing
fraction of �0.741, the number of stable crystal structures is
increased enormously when one considers binary mixtures of
large and small hard spheres. The first experimental observa-
tions of binary crystal structures of hard-sphere-like particles
were made by Sanders2 in natural gem opals. Later, other
authors3–5 observed binary crystals with the large �L� and
small �S� spheres arranged in LS2 �atomic analog AlB2� and
LS13 �atomic analog NaZn13� structure. It has since been
shown that both of these structures are stabilized by entropy
alone.6 The AlB2 structure is stable at diameter ratios 0.42
�q�0.59 for the small and large spheres and the NaZn13

structure is stable at 0.54�q�0.61.7–9

The space filling of hard spheres has been used as a
starting point for various theoretical studies regarding the
phase behavior of binary hard-sphere systems6,8–10 and to
explain experimental observations in binary mixtures of col-
loids with approximately hard interactions.4,5 At infinite pres-
sures the crystal structure with the highest close packed den-
sity will be stable. However, at lower pressures the stability
of a structure is determined by the free energy, which for
hard spheres reduces to a purely entropic contribution. It is
often asserted in such systems that the free volume per par-

ticle is inversely related to the packing fraction of a crystal-
line structure and that the entropy is proportional to the free
volume. While this argument is incomplete, as evidenced by
the stability of the NaZn13 which has a maximum packing
fraction of 0.738 which is lower than for pure fcc, it has been
used successfully by various authors to determine which can-
didate crystalline structures to examine using full free energy
calculations.6,8–10

Recently, we proposed, based on Gibbs free energy cal-
culations, that LS2 Laves crystal structures with atomic ana-
logs MgCu2, MgNi2, and MgZn2 are stable in the range of
0.76�q�0.84.11 All three Laves structures have the same
maximum packing fraction, ��0.710 at q�0.816. How-
ever, more recently, we examined the packing of binary crys-
tal structures in more detail and a number of additional crys-
tal structures have been identified which pack at least as well
as the Laves phases for the size ratios in question.12 These
structures were identified through the combined use of a ge-
netic algorithm �GA� and Monte Carlo �MC� simulations.12

We briefly sketch the method here, but we would like to refer
the reader to Ref. 12 for a more detailed description. We used
a GA to locate the energy minima of a fictitious “almost”
hard-sphere potential for a certain size ratio and stoichiom-
etry and subsequently, we employed the lowest-energy struc-
tures as candidate structures for the best-packed crystal struc-
tures for binary hard-sphere mixtures. The optimized
structure for the fictitious potential generally does not corre-
spond with the best-packed structure for the hard-sphere
mixtures at the same size ratio. We therefore replaced the
fictitious potential with a true hard-sphere interaction, ex-a�Electronic mail: l.c.filion@uu.nl.
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panded the unit cell until all overlaps are removed, and then
used a MC pressure annealing simulation to compress the
resulting structure to the best packing. The fictitious potential
was used to avoid convergence problems which emerge
when the packing fraction is used as a fitness function for a
GA. Since the packing fraction depends only on the volume
of the unit cell and not on the basis vectors, a GA encounters
severe convergence problems when it is used as the fitness
function.

In the size ratio of interest for this paper, namely, sphere
diameter ratios between 0.74 and 0.85 the AB structures
which packed best have atomic prototypes CrB, CsCl, and
�CuTi, while the AB2 structures included HgBr2, AuTe2,
Ag2Se, and a structure with the space group symmetry 74
with Wyckoff positions e and f occupied, which we call
S74.12 In this paper we use Gibbs free energy calculations to
compare the stability of these various new phases, with the
Laves structures and present composition versus pressure
and constant volume phase diagrams for binary mixtures of
hard spheres for size ratios q=0.74, 0.76, 0.8, 0.82, 0.84, and
0.85. The only stable crystal structures we find on this inter-
val are the Laves phases, with a stability range of 0.76�q
�0.84. Moreover, we find that MgZn2 is the most stable of
the Laves structures in the thermodynamic limit where the
number of particles is taken to infinity. The Laves structures
are shown in Figs. 1�a�–1�c�, and as can be seen, they differ
only in the way the hexagonal layers formed by the doublets
of large �red� spheres are packed: In the MgCu2 structure in
Fig. 1�a�, this packing is AABBCC, in the MgZn2 structure
in Fig. 1�b� AABB, and in the MgNi2 structure in Fig. 1�c�
AABBAACC. These different packings can be compared to

the ABC and AB packings of hexagonal planes in fcc and
hexagonal-close-packed �hcp� crystals, respectively.

In addition, we present phase diagrams for binary mix-
tures of charged spheres for size ratio q=0.73, where the
particles interact via screened-Coulomb interactions and are
either equally or oppositely charged. In this case we only
examine the stability of CsCl and the Laves phases. In the
equally charged system we find regions of stability for both
the Laves phases as well as CsCl, while in the oppositely
charged case we find only CsCl. The work on charged col-
loids is interesting as it connects with the experimental ob-
servations of the Laves structures MgCu2 and MgZn2 in mix-
tures of large and small charged colloids3,13,14 and also with
recent work on binary mixtures of oppositely charged
nanoparticles.15

To calculate the stability of the phases, both for the hard-
core interactions and the charged systems, we calculate the
Gibbs free energy using MC simulations. Typically, MC free
energy calculations consist of two steps: one first calculates
the Helmholtz free energy of a crystal at a single density
using the Einstein crystal �or Frenkel–Ladd� method and
then combines this with a fitted equation of state from, e.g.,
constant pressure simulations to give the free energy in the
whole density range. This approach is followed in this paper.
In addition, we use a similar approach to calculate the free
energy of a fluid phase for the charged system with screened-
Coulomb interactions. The advantage of the MC free energy
calculations compared to the theoretical approaches is that
the results are more accurate since there are no approxima-
tions and the error only comes from the statistical noise and
the finite system size. This allows us to determine the free
energy differences between the three Laves structures that all
have the same maximum packing fraction, and where the
applicability of approaches based on free volume arguments
can be doubted. Such an approach is followed in the cell
theory by Cottin and Monson.9,16 In this theory, the free vol-
ume, i.e., the configurational integral, of each sphere is
sampled using MC simulations with the surrounding spheres
frozen at their lattice sites. The individual sphere partition
functions are then combined to give the total partition func-
tion and hence the free energy. While this approach has been
shown to give good agreement with MC simulations,17–19 it
can miss subtle free energy differences such as the difference
between the Laves phases.

This paper is organized as follows. In Sec. II, we intro-
duce the methods used to calculate the phase diagrams. In
Secs. III A and III B we present the phase diagrams for bi-
nary mixtures of hard spheres and screened-Coulomb par-
ticles, respectively. We end with conclusions in Sec. IV.

II. METHODS

We consider a binary mixture of NL large spheres with
diameter � and NS small spheres with diameter q� where q
�1. In the case of binary hard-sphere mixtures, the pair
potential in units of kBT between two hard spheres is given
by

FIG. 1. The Laves phases and CsCl. The large spheres are dark �red� and the
small spheres are light �yellow�. �a� MgCu2, �b� MgZn2, �c� MgNi2, �d�
CsCl, �e� fcc of large spheres, and �f� fcc of small spheres.
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with r the center of mass difference between spheres i and j
and �i the diameter of particle i. For the binary mixtures of
charged spheres, the pair potential is taken to be the
screened-Coulomb interaction and a hard-sphere potential as
given by the DLVO theory,20,21
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with the prefactor

	ij =
ZiZj exp�
��i + � j�/2�
�1 + 
�i/2��1 + 
� j/2�

�B

�
, �3�

where Zi and Zj are the numbers of electron charges e on
particle species i and j, �B=e2 /�kBT is the Bjerrum length of
the solvent with dielectric constant �, and 
 the inverse De-
bye screening length.

The phase diagrams are determined using common tan-
gent constructions on Gibbs free energy data. The Gibbs free
energy G is given by G=F+ PV, where F is the Helmholtz
free energy, P the pressure, and V the volume. In the case of
the binary hard-sphere fluid and the pure face-centered-cubic
�fcc� hard-sphere crystal, the Gibbs free energies G are ob-
tained from the analytical functions given in the
literature.22,23 In order to obtain the Gibbs free energy of the
remaining crystalline phases of hard spheres and the fcc and
fluid phases of charged spheres, the Helmholtz free energy F
was calculated using MC simulations and combined with the
equation of state �P versus �� data. Below we describe this
procedure in more detail.

The Helmholtz free energies of the solid phases are cal-
culated with the Frenkel–Ladd method24,25 using MC simu-
lations in the canonical ensemble where the number of par-
ticles N, volume V, and temperature T are fixed. In the
Frenkel–Ladd method, one starts from an Einstein crystal
where the particles are tied to their ideal lattice positions by
harmonic springs. Then, the springs are slowly removed and
one recovers the original interactions. The auxiliary potential
energy function that includes the harmonic springs is given
by

U��rN� = U�rN� + kBT���
i=1

N

�ri − r0,i�2/�2, �4�

where r0,i is the lattice position of particle i, � is a dimen-
sionless spring constant, and �� �0,1� is a coupling param-
eter. For the hard-sphere system, U�rN� in Eq. �4� is given by
a sum of hard-core potentials �1�, and for the charged system,
by a sum of screened-Coulomb and hard-core interactions
�2�. At �=0, we recover the system of interest with the origi-
nal interactions, while at �=1, once the spring constant � is
chosen large enough, the particles do not “feel” each other
and the system reduces to an Einstein crystal with Madelung
energy U�r0

N� �the potential energy of a crystal with all par-

ticles at their lattice positions�. The Helmholtz free energy is
obtained from24–26

F�N,V,T� = FEin
CM�N,V,T,�� + FCM�N,V,T�

−
�kBT

�2 �
0

1

d��
i=1

N

�ri − r0,i�2��
CM, �5�

where the ensemble average ¯ ��
CM is calculated with the

Boltzmann factor exp�−U� /kBT� for a crystal with fixed cen-
ter of mass. In Eq. �5�, the free energy of an Einstein crystal
with fixed center of mass is given by

FEin
CM�N,V,T,�� = U�r0

N� +
3�N − 1�

2
kBT ln��2

��2� , �6�

where  is the de Broglie wavelength, and the term

FCM�N,V,T� = kBT ln� 3

VN1/2� �7�

corrects for the fixed center of mass. As noted in Ref. 24, it
is useful to rewrite the integral in Eq. �5� as

�
ln c

ln��+c�

��� + c��
i=1

N

�ri − r0,i�2/�2��
CMd�ln��� + c�� , �8�

where

c =
kBT

�i=1
N �ri − r0,i�2/�2�0

CM . �9�

The integral in Eq. �8� is evaluated numerically using a
Gauss–Legendre quadrature27 with 10–20 integration points.

The Helmholtz free energy of a binary fluid of charged
spheres can be calculated in a similar manner.24 The main
difference is that in this case the reference state is a binary
hard-sphere fluid. For the fluid phase, one uses an auxiliary
potential energy function,

U��rN� = UHS�rN� + �U�rN� , �10�

where �� �0,1� is a coupling parameter and U�rN� is the
sum of screened-Coulomb interactions. At �=1, we recover
the charged system of interest, while at �=0, the system
reduces to a binary hard-sphere fluid. The Helmholtz free
energy is given by

F�N,V,T� = FHS�N,V,T� + �
0

1

U�rN���d� , �11�

where FHS is the free energy of a binary hard-sphere fluid.22

Again, the numerical integration in Eq. �11� is performed
using a Gauss–Legendre quadrature.27

We calculated Gibbs free energies by first calculating the
Helmholtz free energy at a reference state with packing frac-
tion �r, and then we use equation of state �P versus �� data
obtained from constant pressure simulations �where the num-
ber of particles NL and NS, pressure P, and temperature T are
constant� to calculate the Gibbs free energy at all densities.
We define the packing fraction �=�N /V with
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� =
�

6
�3��1 − x� + xq3� , �12�

where x=NS / �NL+NS� is the composition and N=NL+NS.
Employing the equation of state P���� for ��� ��r ,��, the
Gibbs free energy at � is obtained from

G���
NkBT

=
F��r�
NkBT

+
P���V
NkBT

+
�

kBT
�

�r

� P����
����2 d��. �13�

Equation �13� assumes that the reference packing fraction �r

is within the packing fraction range scanned in the constant
pressure simulations. In order to evaluate the integral in Eq.
�13�, the equation of state data were fitted by analytical func-
tions. For the solid phases, the fitting was done using

PV

NkBT
= �

i=−1

n

ai����i, �14�

where ����=�cp /�−1 and �cp is the maximum packing frac-
tion of the solid.8 The series was typically truncated at n=3
for the hard-sphere solids and at n=6 or 7 for the solids with
screened-Coulomb interactions. For the fluid phase, we used
either a simple density expansion,

PV

NkBT
= 1 + �

i=1

n

ai�
i, �15�

or a Padé approximation,

PV

NkBT
= 1 +

�i=1
m ai�

i

1 + �i=1
n bi�

i . �16�

Typical values for truncation of the series were n=5–7 for
Eq. �15� and m=6–9 and n=2 for the Padé approximation
�16�. We performed additional Helmholtz free energy calcu-
lations to check that the fitting procedure and the subsequent
integration in Eq. �13� produce accurate results.

The ensemble averages for the Helmholtz free energy
calculations were obtained from MC simulations that con-
sisted of 20 000–100 000 equilibration steps �trials to dis-
place each particle once� and 20 000–200 000 sampling
steps. In the constant pressure simulations, we used 200 000
equilibration steps and 400 000 sampling steps.

The solid free energies calculated using the above pro-
cedure have a system-size dependence that scales as 1 /N.26

While in many cases this system-size dependence only has
an insignificant effect on the phase behavior, it is an impor-
tant factor in determining the relative stability of solids that
have the same packing efficiency and similar structure, and
that therefore can be expected to have nearly equal free en-
ergies, as is the case for the fcc and hcp solids.1 Not surpris-
ingly the free energies of the three Laves phases MgCu2,
MgZn2, and MgNi2 turned out to be very close to each other.
In order to remove the system-size dependency, we used the
method introduced in Ref. 26 where one performs free en-
ergy calculations for increasing N and extrapolates to the N
→� limit.

III. RESULTS

A. Binary mixtures of hard spheres

We determine the phase diagrams for size ratios q
=0.74, 0.76, 0.80, 0.82, 0.84, and 0.85 by calculating the
Gibbs free energy for CrB, �CuTi, �IrV, HgBr2, AuTe2,
AgSe2, S74, and the Laves phases. We employ analytical
expressions22,23 for the fluid and the fcc phase. Figures 2–7
show the phase diagrams in the composition x=NS / �NL

+NS�-reduced pressure p= P�3 /kBT plane. The constant
pressure representation follows directly from the common
tangent constructions and is the most natural one from a
theoretical point of view as this representation can be used
e.g., in nucleation studies. In order to compare our results
with experimental data, we convert the phase diagram to the
corresponding �S−�L representation. In Figs. 8–13 we show
the phase diagrams for the corresponding �S−�L plane. The
only stable solid phases we find for this size ratio are the
Laves phases and the pure fcc phases. In the phase diagrams,
“fccL” and “fccS” denote the fcc crystals of pure large and
pure small spheres, respectively. The common features in all
the phase diagrams are the stable fluid phase at low pressure,
a phase coexistence between a fcc crystal of large spheres
and the fluid �“fccL+fluid”� at elevated pressure for x�2 /3,
and a phase coexistence between a fcc crystal of small
spheres and the fluid �“fluid+fccS”� at elevated pressure and
x�2 /3. At very high pressure, we find a coexistence be-
tween fcc crystals of pure large and pure small spheres
�“fccL+fccS”�. From Figs. 3–6 we see that the Laves phases
are stable at size ratios 0.76�q�0.84 in the intermediate
pressure range between the fcc-fluid coexistence region and
the fcc-fcc coexistence. The stable regions of Laves phases
consist of a small pocket where the Laves phases coexist
with a fluid phase at low pressure followed by larger coex-
istence regions of fcc and Laves phases at higher pressure.
Figures 3–6 show that the Laves phases become stable at p

0 0.2 0.4 0.6 0.8 1
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x

p

fccL + fccS

fluid + fccL

fluid

fluid + fccS

FIG. 2. Phase diagram of binary hard-sphere mixtures in the composition
x=NS / �NL+NS�-reduced pressure p= P�3 /kBT plane with size ratio q
=0.74. Labels “fccL+fluid” and “fluid+fccS” denote coexistence regions
between a fcc crystal of large �l� or small �s� spheres and a fluid and
“fccL+fccS” denotes a coexistence region between fcc crystals of large and
small spheres.

064902-4 Hynninen, Filion, and Dijkstra J. Chem. Phys. 131, 064902 �2009�

Downloaded 02 Sep 2009 to 131.211.45.154. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



�25 for all size ratios 0.76�q�0.84. We also see that when
q increases from 0.82 to 0.84, the region of stable Laves
phases first shrinks and then disappears at q=0.85. Similar
behavior is observed at lower size ratios when q decreases
from 0.8 to 0.76 and 0.74.

Figure 14 plots the excess Helmholtz free energy per
particle Fex /NkBT plus ln�N� /N as a function of 1 /N at q
=0.82 and �=0.6 for the Laves phases MgCu2, MgNi2, and
MgZn2. The Helmholtz free energy calculations were per-
formed in a cubic or nearly cubic box. Details of the calcu-
lations can be found in Table I. Note that the number of
production MC cycles, nprod, is reduced as the system size is
increased without noticeable effect on the accuracy. This can
be done because in large systems spatial averaging replaces
some of the time averaging. In Fig. 14, the solid lines are
linear fits to the data points. As shown in Ref. 26,

Fex /NkBT+ln�N� /N is a linear function of 1 /N and the inter-
cept at 1 /N=0 gives the excess free energy of the infinite
bulk system. Analyzing the intercept values, we find that
MgZn2 has the lowest bulk free energy per particle at
7.436kBT, followed by MgNi2 at 7.438kBT, and MgCu2 at
7.439kBT. That is, the free energy difference between the
three Laves phases is on the order of 10−3kBT per particle.
Due to the small free energy difference, one expects to ob-
serve in experiments a mixture of all three Laves phases
similar to the experimental observation of the random-
hexagonal-close-packed �rhcp� crystals of pure hard spheres,
which can be seen as a mixture of fcc and hcp crystals. It is
interesting to note that the Laves phases have been observed
in binary silicious opal with a diameter ratio of 0.76,28 in
agreement with our predictions.
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fccL + fccS

Laves + fccL
Laves + fccS

fluid +Laves

fluid + fccSfluid + fccL

fluid

FIG. 3. Phase diagram of binary hard-sphere mixtures in the composition
x=NS / �NL+NS�-reduced pressure p= P�3 /kBT plane with size ratio q
=0.76. The labels are the same as in Fig. 2, and additionally “fccL+Laves,”
“Laves+fccS,” and “Laves+fluid” denote the coexistence regions between
the Laves phase and a fcc crystal of large �l� or small �s� spheres or a fluid.
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FIG. 4. Phase diagram of binary hard-sphere mixtures in the composition
x=NS / �NL+NS�-reduced pressure p= P�3 /kBT plane with size ratio q=0.8.
The labels are the same as in Fig. 3.
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FIG. 5. Phase diagram of binary hard-sphere mixtures in the composition
x=NS / �NL+NS�-reduced pressure p= P�3 /kBT plane with size ratio q
=0.82. The labels are the same as in Fig. 3.
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FIG. 6. Phase diagram of binary hard-sphere mixtures in the composition
x=NS / �NL+NS�-reduced pressure p= P�3 /kBT plane with size ratio q
=0.84. The labels are the same as in Fig. 3.
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B. Binary mixtures of screened-Coulomb particles

In contrast to binary hard-sphere mixtures, no analytical
formula exists for the Gibbs free energy of the fluid mixture,
CsCl, the Laves phases, and fcc phases of screened-Coulomb
particles. Therefore, the Gibbs free energies of all these
phases were calculated numerically using the methods pre-
sented in Sec. II. The free energies of the fluid mixture were
calculated at compositions x=0, 0.05, 0.12, 0.2, 0.4, 0.6, 0.8,
0.95, and 1.0, and the free energies at the intermediate com-
positions were obtained by interpolation using a fifth order
polynomial.

Figures 15 and 17 show phase diagrams of binary mix-
tures of screened-Coulomb particles with size ratio q=0.73,
inverse Debye screening length 
�=6, and Bjerrum length
�B /�=0.0051. In Fig. 15, the particles are equally charged

with ZL=ZS=50, while in Fig. 17, the particles are oppositely
charged with ZL=−2ZS=−70. These parameter choices are
made such that the absolute value of the large-small coupling
parameter is �	LS��12.76 in both systems. We note here that
the system is always charge neutral due to the presence of
small ions �taken into account via the inverse screening
length 
� and so the colloid charges do not have to be chosen
stoichiometrically. We note that all pair interactions in the
system of Fig. 15 are repulsive and that the large and small
spheres attract each other in the system displayed in Fig. 17.

Like the phase diagrams presented for the hard-sphere
mixtures in Sec. III A, the low pressure region of the phase
diagram in Fig. 15 consists of stable fluid and fcc-fluid co-
existence regions. At elevated pressure �45� p�60�, a
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FIG. 7. Phase diagram of binary hard-sphere mixtures in the composition
x=NS / �NL+NS�-reduced pressure p= P�3 /kBT plane with size ratio q
=0.85. The labels are the same as in Fig. 2.
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FIG. 8. Phase diagram of binary hard-sphere mixtures in the �S−�L repre-
sentation with size ratio q=0.74. The labels are the same as in Fig. 2.
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sentation with size ratio q=0.76. The labels are the same as in Fig. 3.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

η
L

η S

fccL + fccS

Laves + fccS

Laves + fccL

Laves + fccL + fccS

fluid + fccLfluid

fluid
+ fccS

fluid + Laves

fluid +Laves + fccS

FIG. 10. Phase diagram of binary hard-sphere mixtures in the �S−�L rep-
resentation with size ratio q=0.80. The labels are the same as in Fig. 3.
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stable Laves phase appears in three pockets of the coexist-
ence with fccL, CsCl, and fluid phases. At high pressure
�60� p�70�, we find fcc-CsCl coexistence. Finally, at p
=172 �not shown in the figure�, CsCl crystal becomes meta-
stable with respect to the coexistence of fcc crystals of pure
large and small spheres. As shown in Fig. 16, the zero tem-
perature enthalpy �H=UM + PV where UM is the Madelung
energy� favors the CsCl structure over the FCC structure
over a large range of pressures �45� p�207� explaining
why the CsCl structure is stable for this weakly repulsive
interaction. The observation of stable Laves phases in a sys-
tem of screened-Coulomb particles at a size ratio below the
size-ratio range where Laves phases are stable for hard-

sphere mixtures is in agreement with experiments on charged
colloids where MgCu2 and MgZn2 structures were observed
at size ratios of 0.59–0.71.3,13,14

In the phase diagram of the oppositely charged spheres
in Fig. 17, the Laves phases are not stable and the phase
diagram is dominated by CsCl-fluid and CsCl-fcc coexist-
ence regions. However, this should not be taken as a general
result that applies to all systems with oppositely charged
spheres as we expect to see stable Laves phases when the
strength of the attraction is lowered and the system becomes
more hard-sphere-like. This limit corresponds to the experi-
ments on oppositely charged nanoparticle suspensions where
MgZn2 and MgNi2 structures have been observed.15 Addi-
tionally, the presence of CsCl is consistent with previous
studies of oppositely charged colloidal systems.29–31 The ob-
servation of the stable CsCl structure for both a weakly re-
pulsive and oppositely charged systems likely explains why
CsCl has been seen in supposedly “hard” interacting colloi-
dal systems.32
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resentation with size ratio q=0.82. The labels are the same as in Fig. 3.
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FIG. 12. Phase diagram of binary hard-sphere mixtures in the �S−�L rep-
resentation with size ratio q=0.84. The labels are the same as in Fig. 3.
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IV. CONCLUSIONS

We have presented phase diagrams in the composition x
versus pressure p and in the �S−�L representation for binary
hard-sphere mixtures of large and small hard spheres for size
ratios q=0.74, 0.76, 0.8, 0.82, 0.84, and 0.85. The phase
diagrams are based on Gibbs free energy data calculated us-
ing thermodynamic integration techniques and constant pres-
sure MC simulations. We showed that the Laves structures,
MgCu2, MgZn2, and MgNi2, are stabilized by entropy alone
and that they are stable with respect to fluid mixtures, binary
CsCl, CrB, �CuTi, �IrV, HgBr2, AuTe2, Ag2Se, S74, and
single component fcc crystal structures at size-ratio range of
0.76�q�0.84. By extrapolating our free energy data to the
infinite system limit, we showed that the free energy differ-
ence between the three Laves phases is small, on the order of
10−3kBT per particle, and that the MgZn2 crystal has the low-
est free energy followed by MgNi2 and MgCu2.

In addition to the binary hard-sphere mixtures, we cal-
culated the full phase diagram of a binary mixture of charged
spheres interacting via screened-Coulomb potentials, where
the size ratio was q=0.73 and the spheres were equally
charged �ZL=ZS� or oppositely charged such that large ones
have double the charge of the small ones �ZL=−2ZS�. For the
equally charged spheres, we find stable pockets of the Laves
phases, indicating that soft repulsion shifts the stability range
of Laves phases to lower size ratios q. The last observation is
in agreement with experiments on charged colloids where
Laves structures MgCu2 and MgZn2 were reported in the
size-ratio range of 0.59–0.71.3,13,14 We also find that soft re-
pulsion greatly favors the CsCl phase over Laves phases,
thus making the stable pockets of Laves phases smaller. For
the system of oppositely charged spheres, the Laves phases
are metastable with respect to CsCl and fluid phases. We
expect that the Laves phases are stable for a system of op-
positely charged colloids once the strength of the attraction is
lowered and the system becomes more hard-sphere-like.
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TABLE I. System sizes and simulation details used to calculate the excess
Helmholtz free energies in Fig. 14 for q=0.82 and �=0.6. neq and nprod are
the numbers of MC cycles in the equilibration and production runs, respec-
tively, and the error estimate is given by the standard deviation of four
independent runs.

Phase N neq�103 nprod�103 Fex /NkBT �

MgCu2 216 40 800 7.3957 0.0010
MgCu2 648 40 300 7.4230 0.0010
MgCu2 1080 20 100 7.4286 0.0010
MgCu2 2592 20 20 7.4347 0.0010
MgCu2 5760 20 20 7.4361 0.0010
MgZn2 288 40 800 7.4028 0.0003
MgZn2 1080 20 100 7.4257 0.0010
MgZn2 2304 20 20 7.4315 0.0010
MgZn2 4800 20 20 7.4327 0.0004
MgNi2 288 40 800 7.4043 0.0004
MgNi2 1440 40 100 7.4304 0.0010
MgNi2 2304 20 20 7.4327 0.0020
MgNi2 5760 20 20 7.4351 0.0005
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