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The elastic properties of micrometer-sized hollow colloidal particles obtained by emulsion templating are
probed by nanoindentation measurements in which point forces are applied to solvent-filled particles supported
on a flat substrate. We show that the shells respond linearly up to forces of 7–21 nN, where the indentation
becomes of the order of the shell thickness �20–40 nm�. In the linear region, the particle deformation is
reversible. The measured Young’s modulus ��200 MPa� is comparable to values for stiff rubbers or soft
polymers. At larger applied force, we observe a crossover into a nonlinear regime, where the shells assume a
buckled shape. Here, the force increases approximately as the square root of the indentation, in agreement with
the theory of elasticity of thin shells. We also observe permanent deformation of the shells after probing them
repetitively beyond the linear regime. Finally, the measured elastic properties of the shells nicely explain their
spontaneous buckling in solution and due to drying.
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I. INTRODUCTION

The importance of microcapsule systems for life-science
applications in medicine, cosmetics, or the food industry has
continuously increased. In general, microcapsules are used
for controlled encapsulation and release of various agents. In
view of the many diverse applications, there are also very
different materials to be encapsulated and the requirements
for these capsules vary drastically.

The physicochemical properties of polyelectrolyte
multilayer capsules have been intensively investigated �1–7�;
likewise biological capsules, such as virus capsids and cells,
have been the subject of many studies as well �8–12�. Addi-
tionally, microcapsules have received significant attention
from a theoretical point of view �13–18�. For many applica-
tions, the most important properties of a capsule are its wall
permeability, adhesion, and mechanical behavior. In this
work, we will focus on their mechanical properties, which
are relevant for the elucidation of the deformation and adhe-
sion behavior.

There have been several recent attempts to study the me-
chanical properties of various types of shells, and several
techniques have been proposed. In general, we can distin-
guish between methods that use osmotic pressure effects to
exert forces on the microcapsules �1,4,5�, and methods that
rely on the micromanipulation of individual capsules. Al-
though the last category is technically more demanding,
there is better control over the applied forces, a greater range
of forces that can be tested, and the possibility to vary them
in situ. Due to these advantages, atomic force microscopy

has become a widely used technique to study the deforma-
tion of microcapsules �2,3,7,10,11,19�.

The hollow colloidal particles we investigate consist of a
cross-linked network of siloxane and silica. They are formed
chemically using low molecular weight polydimethylsilox-
ane �oil� droplets as templates. The initial oil droplets can be
removed easily by dissolution, as described in our previous
work �20,21�. The resulting solvent-filled shells are highly
monodisperse and their shell thickness can be varied over a
considerable range. We have investigated the elastic proper-
ties of these thin-shelled particles using atomic force micros-
copy �AFM�. This method allows us to determine how hol-
low shells respond to applied point forces, the types of
deformation that appear, and permits us to extract their ma-
terial properties. In this system, we have been able to observe
the crossover from the regime of linear to that of nonlinear
deformation. This takes place when the indentation becomes
of the order of the shell thickness. In contrast to earlier work,
in which a large spherical probe was used �1–3,7�, a point
force �i.e., AFM tip� allows for easier comparison of our
result with existing analytical theory. Moreover, the buckled
shell develops a symmetric, circular dimple instead of an
asymmetric, wrinkled depression. Contrary to the sudden
failure that is seen in viral shells at high applied forces
�11,12�, buckling of our shells is always smooth and continu-
ous.

While the indentation experiments were all done on
solvent-filled shells, buckling can also be induced by differ-
ent methods, for instance when the templating oil droplet is
removed by dissolution or evaporation. Using the measured
elastic properties of the shells, we can attribute this buckling
due to capillary forces that arise when the encapsulated liq-
uid escapes the shell through pores of a few nanometers in
size �22�.

*Author to whom correspondence should be addressed.
a.imhof@uu.nl

PHYSICAL REVIEW E 78, 051401 �2008�

1539-3755/2008/78�5�/051401�8� ©2008 The American Physical Society051401-1

http://dx.doi.org/10.1103/PhysRevE.78.051401


II. MATERIALS AND METHODS

A. Sample preparation

1. Samples for indentation experiments

The hollow shells used in the AFM experiments were pre-
pared by an emulsion templating technique in which
surfactant-stabilized emulsion droplets were incorporated in
solid silica/siloxane shells, followed by removal of the core.
This procedure is described in detail in Ref. �23�. In brief, an
emulsion was prepared from 2% v/v dimethyldiethoxysilane
�DMDES�, 2% v/v concentrated ammonia �25%�, and
0.002% w/w Triton X-100 surfactant. After 20 h, 0.02 M
tetraethoxysilane �TEOS� was added. By taking samples af-
ter 3, 5, and 7 h and interrupting shell growth, we obtained
three different sets of hollow silica/siloxane shells having the
same core size but a different shell thickness. The particles
were then washed several times with ethanol to remove the
oil from the core, after which they were transferred to dem-
ineralized water. The size of the core and thickness of the
shell, as well as size polydispersity, were measured with
static light scattering �SLS� prior to the AFM experiments
�20�.

The samples used for AFM were prepared as follows: a
droplet of 40 �L of the dispersion of shells in water was
deposited on a glass slide �0.15 mm thickness and 22 mm
diameter� mounted on the piezo holder. After deposition, the
excess dispersion was gently removed with a Pasteur pipette,
keeping the surface wet, and replaced by demineralized wa-
ter. In order to attach the shells firmly to the surface, the
glass slides were first coated with 3-aminopropyl-
triethoxysilane �APS� by keeping them for 1.5 h in a solution
containing 170 mL ethanol, 4.5 mL of a 25% ammonia so-
lution, and 23.5 mL APS, after which they were dried under
nitrogen.

2. Samples for buckling experiments

To determine the buckling threshold in solution, we pre-
pared larger polydimethylsiloxane �PDMS� droplets from 2%
v/v DMDES and 2% v/v ammonia �in 25 mL total volume�,
with radii of 540, 650, and 690 nm, respectively. We added
TEOS �0.018 M� 24 h after the emulsion preparation. We
took samples at different times during shell growth �after 2.5,
7, 25, and 49 h, respectively� and we measured the shell
thickness with static light scattering. The suspensions were
then mixed with equal volumes of ethanol in order to induce
buckling. All the observations discussed in Sec. III refer to
samples for which we used 50% ethanol by volume.

B. Characterization

1. Atomic force microscopy

The indentation measurements were performed with an
AFM �Nanotec, Madrid� operated in “jumping mode” in liq-
uid �10,24�. In this mode, imaging is achieved by a succes-
sion of force-distance �FZ� curves to low maximal force
��0.2 nN�, executed in several milliseconds in a raster scan-
ning fashion. Lateral displacements occur only when the tip
is not in contact with the sample, thereby minimizing shear

forces. A complete description of the apparatus and the mea-
surement procedure can be found in Ref. �24�. The maximal
applied force is well defined because each individual ap-
proach is stopped at the cantilever deflection corresponding
to the set force. FZ curves were recorded by measuring can-
tilever deflection �force� as a function of the vertical position
of the Z-piezo to which the sample was mounted. The rela-
tion between the voltage output and the force was deter-
mined by making FZ measurements on the glass substrate
surface next to the shells. FZ curves of the particles were
recorded after positioning the AFM tip above the center of
individual shells, which was located by stopping the cantile-
ver in the middle of a topographical scan of a shell. The tip
position was then fine-tuned by making a profile scan and by
redirecting the tip to the middle of the shell cross section
with an estimated deviation of less than about 5 nm. The FZ
curves were recorded in slow mode ��1 s�, in sequences of
three successive curves. The experiments were performed in
liquid �water� to investigate the shells in an undeformed
state. The silicon cantilevers �OMCL-RC800PSA, Olympus,
Tokyo� had nominal spring constants of 0.05, 0.1, 0.39, and
0.76 N /m, respectively. The spring constant of each batch is
always calibrated before the experiments by means of the
resonant frequency using the procedure described in Ref.
�25�. The measured spring constants within a batch vary
within 15–20 %. In addition, we determine tip radii for a
batch of tips typically using viral particles with known size
as calibration objects. The tip radii of the cantilevers used
were �20 nm, in agreement with the value reported by the
manufacturer.

2. Transmission optical microscopy

The buckled shells in solution were observed using a
Leica confocal scanning microscope, type TCS-SP2 operated
in transmission mode, using glass capillaries �0.1�2.0 mm�
filled with the suspension.

3. Scanning electron microscopy (SEM)

SEM was used to study the deformation of the dried
shells. The micrographs were obtained with a Philips XL 30
FEG scanning electron microscope and the samples were
prepared by drying a drop of concentrated particle suspen-
sion on a glass slide.

III. RESULTS

A. Study of the buckling threshold

The microcapsules studied are prepared by synthesizing
low molecular weight PDMS oil droplets, followed by a step
that coats them with a thin shell of cross-linked siloxane and
silica. The oil can then be removed so that spherical, solvent-
filled shells remain. We distinguished in Ref. �20� three types
of hollow particles depending on the shape they assume after
drying them in air from an ethanol solution. We concluded
that the main factor that influences particle behavior is the
relative shell thickness d /R �21�. While shells with d /R
�0.3 remain spherical, those with a lower value consistently
buckle to form hemispherical caps. Figure 1�a� is an illustra-
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tion of these particles. Shells with d /R�0.05 assume a more
crumpled shape.

Interestingly, buckling could also be induced in solution
by mixing suspensions of thin oil-filled shells in water with
equal volumes of ethanol. Surprisingly, we observed that the
shells all deformed permanently into a bowl-like shape, as
shown in �Fig. 1�b��. Since the particles in water never
showed any such deformation, the buckling must occur due
to the presence of ethanol. Being a good solvent for PDMS
ethanol-dissolves the low molecular weight PDMS into the
exterior medium, now consisting of an ethanol-water mix-
ture. Using optical microscopy, we determined the percent-
age of buckled shells observed in suspensions of varying
d /R. The results are presented in Fig. 2, each point corre-
sponding to 40–80 objects. The relative thickness below
which buckling occurs can thus be estimated at
�d /R�c,solution=0.17. Buckling of shells is expected to depend
on the elastic properties of the material, most notably on
Young’s modulus. To measure this modulus, we performed
AFM nanoindentation experiments.

B. Indentation experiments

AFM measurements were performed on different samples
consisting of suspensions of hollow shells �filled with water�
in water. An overview of the samples used in these experi-
ments is given in Table I. They were all made with the same
templating oil droplets but with different encapsulation
thicknesses.

Imaging of the shells was first performed at low reso-
lution and low maximal force ��0.2 nN� to determine their
position. An example is shown in Fig. 3. The broad slopes
seen around the particles are due to the convolution of the
objects with the pyramidal shape of the tip. High-resolution
scans of individual shells showed that most of them were
intact �except for a small number of shells already deformed
due to partial drying during sample preparation� and they
were firmly attached to the glass surface. After individual
objects had been imaged, indentation measurements were
performed, following the procedure described in the experi-
mental section.

In Fig. 4, three successive FZ curves on a single shell
from sample Sa are shown. They were measured in the di-
rection of approach �“forward”�. For all measurements on the
Sa sample, cantilevers with a spring constant of 0.05 N /m
were used. Typically the Sa shells responded linearly to
forces up to 6�1 nN �n=12 shells measured�. The indenta-
tion at this point is about 18 nm. We define the limit of
linearity as the point where the derivative of the force-
distance curve starts to deviate more than 10% from its value
at the lowest forces.

The maximum force applied for this sample was �11 nN.
At this force, the shells were indented by 31�4 nm �n
=12�, which represents about 6% of their total height. The
shells still recover their initial shape after such deformation,

TABLE I. Size and polydispersity of particles used in AFM
experiments, as determined by SLS; Rc, core radius; d, shell thick-
ness; �, polydispersity in the total size; and R, average radius of the
particle �R=Rc+d /2�.

Sample Rc �nm� d �nm� � �%� d /R

Sa 265 17.5 9 0.06

Sb 265 27.5 9 0.09

Sc 265 37.5 9 0.12

FIG. 1. �a� SEM image of hollow shells that buckled as a result
of drying from ethanol; �b� transmission optical micrograph of a
suspension of oil-filled colloidal silica/siloxane shells that buckled
after ethanol had been added to the aqueous suspension. Scale bars
are 5 �m.

FIG. 2. Proportion of oil-filled shells in water retaining their
spherical shape after an equal volume of ethanol had been added.
The symbols represent the three different samples used in the ex-
periment, with different core radius of the droplets used for encap-
sulation. Buckling suddenly occurs below a relative shell thickness
�d /R�c�0.17.

FIG. 3. Low-resolution AFM images of shells from sample Sc in
water �scan area, 5 �m�5 �m, 128�128 pixels�: �a� direct topo-
graphic image; �b� the same image in 3D representation. A col-
lapsed particle can be seen on the right of the images.
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and images taken immediately after indentation showed no
evidence of damage. However, we did detect a slight perma-
nent softening of the objects after the first FZ curve as can be
seen by the decrease in the slope of the FZ curves �see Fig.
4�. This may be due to some plasticity of the shells in regions
of high curvature. Therefore, to determine the elastic re-
sponse of a shell, we always use the linear part of the first
forward FZ curve �FZ1�.

The second sample �Sb, Table I� was measured using
slightly stiffer cantilevers �0.1 N /m�. Figure 5 shows an ex-
ample of a particle from this sample. At forces beyond
10�2 nN �n=8�, or indentation of �16 nm, deviations from
linearity were observed with the slope of the FZ curves de-
creasing. The maximum force applied on these particles was
�25 nN and the deformation of these shells at this force was
�67 nm �about 12% of the total diameter�. When indented
so deeply, the shells were permanently deformed into an ex-
tensively buckled shape, as can be seen in Fig. 5.

The third sample �Sc, Table I� was measured using two
different cantilever types, with spring constants of 0.39 and
0.76 N /m, which allowed us to apply maximum forces of
�50 and �60 nN, respectively. The shells showed the same
behavior in both cases: they responded linearly up to forces
of 17�3 nN �n=15�, or indentation 14 nm, after which sig-
nificant deviations from linearity were observed. A typical
example of indentation of a shell from sample Sc is pre-
sented in Fig. 6. In this particular case, as a result of the
applied force �using the 0.76 N /m cantilever�, the maximum
indentation achieved was �110 nm ��18% of the total di-
ameter�. As can be seen from Fig. 6�c�, this indentation re-
sulted in a large permanent deformation, which explains the
very different elastic response in the second and third FZ
measurements.

Experiments performed on many shells from sample Sc,
with both cantilevers, revealed a peculiar two-population dis-
tribution of particles. The objects in these populations ap-
peared to respond slightly differently when the same forces

were applied. This is illustrated in Fig. 7, in which we show
two different objects from sample Sc, before and after we
applied the same maximum force ��58 nN�. The maximum
indentation achieved was �85 nm for object 1, and
�131 nm for object 2. Object 1 is clearly stiffer. Moreover,
its linear regime extends to slightly larger forces compared to
object 2. By measuring the height of the objects before in-
dentation, we found a difference of �10% between the
height of the softer and stiffer objects. Therefore, the differ-
ence in stiffness probably stems from size bidispersity of the
sample. In the analysis of the elastic response of the shells,
we therefore treated sample Sc as two distinct populations,
Sc1 and Sc2.

IV. DISCUSSION

A. Indentation experiments

The theory of elasticity of thin shells predicts a linear
elastic response for the indentation of a homogeneous spheri-
cal shell up to an indentation magnitude ��z� on the order of
the shell thickness �d� �16,26�, in which case the applied
force �F� is

FIG. 4. Typical FZ indentation curves measured on a single
shell from sample Sa. Distance represents the vertical z-piezo dis-
placement. The leftmost dashed curve shows the cantilever on the
glass surface. The glass curve was shifted along the z axis to match
the tip-sample contact point of the shell allowing direct readout of
the indentation of the shell resulting from the applied point force.

FIG. 5. �a� FZ indentation curves measured on a single shell
from sample Sb; the leftmost dashed curve shows the FZ on the
glass substrate. AFM images of the same particle are shown in �b�
before indentation, �c� after the first FZ series, �d� after the second
FZ series, and �e� after the third FZ series. The scan area is
1.3 �m�1.3 �m.
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F �
Ed2

R
�z , �1�

where E is Young’s modulus and R is the average radius of
the shell �Rc+d /2�. The linear response we obtained for our
shells, up to forces of several nN and at indentations �z
�d, indicates that they behave indeed as expected for such
objects. Beyond this regime, nonlinear buckling is predicted
because of the coupling between in-plane compression and
out-of-plane bending. In this case, a circular cap is inverted
leading to a buckled shape such as seen in Figs. 5�c� and
5�d�. Most of the elastic energy is then stored as bending
energy in the circular “bending strip,” the radius of which
grows with the indentation. Moreover, the magnitude of the
applied point force is predicted to be �16,27�

F �
Ed5/2

R
��z�1/2 �2�

for deformations larger than the shell thickness. This agrees
well with deviations from linearity observed in our measure-
ments in the last part of the FZ curves.

Calculations have shown that deviations from thin shell
theory begin to become noticeable only when d /R exceeds
about 1 /10 �28�. We therefore expect this theory to hold for
our samples.

In the case of deformation of a closed capsule, the ques-
tion of their permeability or volume conservation must also
be considered �29�. The volume of an impermeable shell
filled with an incompressible fluid is constrained. This leads
to an additional restoring force arising from the shell’s
stretching to keep its volume constrained while the spherical
capsule is deformed. This contribution to the force is propor-
tional to the third power of the indentation �29�,

Fvolume �
2�

3

Ed

R2 E��z�3. �3�

Being of higher order, it should not affect the slope of the
linear part of the FZ curves. Furthermore, this result predicts
a steepening of the FZ curves with indentation, which was
not observed in our experiments. On the contrary, we found a
downward curvature of the FZ curves. This indicates that on
the time scale of the indentation ��1 s�, the shells must be
fully permeable to the solvent.

Focusing on the regime of linear deformation now, we
conclude that the elastic response can be described by that of
a thin spherical shell undergoing small deformations, Eq. �1�.
The shell’s spring constant can be related to Young’s modu-
lus, E, of the shell material,

F = kshell�z , �4�

where the spring constant is known analytically �30,31�,

kshell =
2E

�3�1 − 	2�
d2

R
. �5�

Here 	 is the Poisson ratio. Spring constants of shells can be
obtained from the slopes of the linear parts of the forward FZ
curves. The shell’s spring constant �kshell� is then related to

FIG. 6. �a� Forward FZ indentation curves performed on a shell
from sample Sc �population 1�. The AFM images show this shell �b�
before and �c� after the FZ series. The scan area is 1.7 �m
�1.7 �m.

FIG. 7. �a� First forward FZ indentation curves performed on the
objects 1 and 2 indicated in the AFM images. �b� Direct topographic
image of shells from sample Sc in water before indentation. �c� The
same image in 3D representation. �d� AFM image of the objects
after the FZ series. �e� The same image in 3D representation.
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the effective spring constant keff �the slope of the FZ curve�,
and the cantilever spring constant kc by �11�

kshell =
kckeff

kc − keff
. �6�

Mean values of the spring constant distributions for each
sample measured are shown in Table II, and plotted in the
histograms in Fig. 8. The values obtained for the spring con-
stants clearly show an increase of the object stiffness with
increasing shell thickness.

With Eq. �5�, the measured kshell, and the values of d and
R obtained from Table I, we can estimate Young’s modulus
of the material making up the shells. Reasonably assuming
that the shell consists of the same material in all three
samples, we obtain a Young’s modulus of 200�40 MPa �n
=37� overall. We assumed a Poisson ratio of 0.3, but the
result depends very little on it. Considering that the density
of the shell material is �1000 kg /m3 �32�, our value for
Young’s modulus indicates that our shells are made of a ma-
terial that is somewhere at the boundary between a stiff rub-
ber and soft polymer �33�. This is not unexpected, consider-
ing that the shell is in fact a densely cross-linked organo-
silica network of silicate and dimethylsiloxane units �21�.
Several factors are responsible for the considerable spread in
the E values. First, the polydispersity in particle size �deter-
mined by light scattering� contributes to the spread in spring
constants determined experimentally. Moreover, the size of
the particle core was determined right before the encapsula-

tion step and was used to determine the final size and poly-
dispersity of the core-shell particles. Therefore, there is an
uncertainty in the shell thickness that arises from the poly-
dispersity of the core. This will show up in the E values, in
which the shell thickness is present as d2. Furthermore, the
numerical prefactor in Eq. �5� depends slightly �about 10%�
on d /R, and therefore also affects the E values �31�. Finally,
we assume the same material for the shells in each case, but
the pores can be distributed differently over the shell for
different shell thickness and could lead to differences in
Young’s modulus.

The nonlinear deformation of indented particles is best
seen in a plot of F versus the indentation �z. We calculated
the indentation for each measurement by subtracting the z in
the substrate measurement from the z in the sample measure-
ment. We then averaged the resulting curves over all �about
10� measured particles in a sample. The resulting plot shown
in Fig. 9 confirms the scaling of the force with d2 /R, albeit
with a considerable spread in the data. At large indentations,
the force increases approximately as ��z�1/2, as indeed Eq.
�2� predicts. The crossover into this regime is smooth and
continuous and takes place when the indentation approaches
the shell thickness and the shell bends inward and forms the
bending strip. This crossover has not been observed before,
possibly due to the very high force resolution needed or the
use of a large spherical bead as the indenter �1,7� constrain-
ing the size of the bending strip. We do not observe the
expected systematic increase in �z at crossover when the
shell is made thicker. It is possible that this effect is obscured
by our use of cantilever tips with radii of curvature �about
20 nm� that are themselves on the order of the shell thick-
ness. The effect of tip size and shape on the crossover is hard
to predict, but should no longer affect the scaling in Eq. �2�
once the bending strip has grown larger, as is seen in Fig. 9.

B. Buckling threshold

The results of the indentation measurements shed light on
the buckling of solvent-filled shells when they are dried or, in

TABLE II. Spring constants �kshell, with standard deviation and
number of particles measured� for samples Sa, Sb, and the two
populations found in sample Sc, and the indentation up to which the
shells still respond linearly to the applied force ��zlin�.

Sample kshell �N/m� �zlin �nm�

Sa 0.33�0.04�n=14� 18

Sb 0.57�0.08�n=8� 16

Sc1 1.04�0.10�n=6� 13

Sc2 1.50�0.10�n=9� 16

FIG. 8. Histograms of measured spring constants. The drawn
lines are Gaussian fits.

FIG. 9. Plot showing FR /d2 vs indentation averaged over all
measured particles in a sample. Down triangles, sample Sa; up tri-
angles, sample Sb; circles and squares, sample Sc measured with
0.39 and 0.76 N /m cantilevers, respectively. The dashed lines have
slopes of 1 and 1 /2, respectively.
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the case of oil-filled shells, when the oil is extracted with a
good solvent such as ethanol. Both times buckling takes
place at a critical, though different, d /R.

This type of buckling can be explained by considering the
same arguments used in the literature for buckling of spheri-
cal porous shells �17,34�. As the solvent enclosed by the
shells begins to leave through pores in the shell, solvent-air
�respectively oil-solvent� menisci in those pores grow hol-
low. This causes, for each pore, a global inward capillary
force. At a larger scale, the effect is similar to an external
effective pressure that reaches a maximal value of

peff =
4


a
, �7�

where 
 is the interfacial tension and a is the typical diam-
eter of the pores. For a spherical geometry, the occurrence of
buckling of thin shells is predicted by elasticity theory to
happen at a critical pressure of �26,27�

pc =
2E

�3�1 − 	2�
� d

R
	2

. �8�

When effective pressure is realized through evaporation, this
pressure cannot easily be varied, as it is fixed by the solvent
and the porosity of the shell. However, we can tune the mac-
roscopic geometry in order to determine the critical relative
shell thickness �d /R�c below which buckling occurs. From
Eqs. �7� and �8�, the latter is expected to scale as

� d

R
	

c
= �2�3�1 − 	2��1/2� 


aE
	1/2

. �9�

According to the diagram presented in Ref. �21�, the rela-
tive thickness below which deformation occurs as a result of
drying is �d /Rt�c,air�0.3. Considering that for ethanol 

=22.4 mN /m at 20 °C, we obtain from Eq. �9� the value
aE=0.82 J /m2. With the measured Young’s modulus of E
�200 MPa, the pore size can be approximated as a�4 nm.
This value is in good agreement with the permeability ex-
periments presented in Ref. �21�, from which we concluded
that the diameter of the pores should be at least 1.1 nm to
allow the dye molecule fluorescein isothiocyanate �FITC� to
pass. On the other hand, pores had to be smaller than about
10 nm because they could not be resolved with transmission
electron microscopy and AFM.

Alternatively, buckling could be induced in solution by
mixing suspensions of thin oil-filled thin shells in water with
equal volumes of ethanol, as shown in Fig. 1�b�. In this case,
we should expect that there is an interface between the re-
maining oil and the water/ethanol solvent in the pores. When
the inner oil now dissolves into the external medium, one
expects that a capillary pressure acts in the same way as
during drying, and Eq. �9� is expected to remain valid with 


now representing the oil/solvent interfacial tension. The rela-
tive thickness below which buckling occurred was
�d /R�c,solution=0.17. With the value of aE determined above,
we may then propose a value of 
oil/water+ethanol=7 mN /m for
the interfacial tension between the oil and a 50 /50 water/
ethanol mixture. This is consistent with the value 
oil/water
=14 mN /m determined for the same type of synthesized
PDMS in water �35�. The addition of ethanol is expected to
lower this value. Also, it is possible that the value of E is
slightly modified because in this experiment the shell is in
contact with a different solvent than in the drying experiment
�ethanol plus water instead of just ethanol�.

Finally, from these data we can also estimate the magni-
tude of the effective pressure acting on the particles when the
inner oil dissolves into the external medium,

peff =
4
oil/water+ethanol

a
� 7 MPa. �10�

This corresponds to an osmotic pressure of a solution �as-
sumed ideal� of 2.8 M concentration, which is quite signifi-
cant and may even be increased by a judicious choice of the
organic solvent.

V. CONCLUSIONS

We determined experimentally the elastic properties of
micrometer-sized hollow silica/siloxane shells in a liquid and
found that the deformation of these shells is well described
by the elastic theory of thin shells. We investigated the re-
sponse of the particles to an applied point force and found
that the shells showed a perfect linear response and no per-
manent deformation when indented with depths approxi-
mately equal to the shell thickness. Above this value, the
force increased with the square root of the indentation. At
these forces, the shells suffered irreversible buckling leading
to a dimpled shape. From the linear response, we determined
the spring constant and found that the shells become stiffer
for larger relative shell thicknesses, in agreement with find-
ings from our previous work �20,21�. From the spring con-
stant, we extracted Young’s modulus of our shells
�200�40 MPa�. This value, together with the considerations
concerning the density of the shell material, indicates that we
are dealing with a material with elastic properties, some-
where between those of a soft polymer and a stiff rubber.
Finally, the determined Young’s modulus explains the buck-
ling of the shells, both as a result of drying in air and in
ethanol solution.
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