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We study effective colloidal interactions in de-ionized colloidal mixtures through sedimentation-diffusion
equilibrium. We derive a coarse-grained effective model �EM� and compare its density profiles with those of
the computationally much more expensive primitive model �PM� of colloids and counterions in gravity. The
EM, which contains not only standard pairwise screened-Coulomb interactions, but also explicit many-body
effects by means of a so-called volume term, can quantitatively account for all observed sedimentation phe-
nomena such as lifting of colloids to high altitudes, segregation into layers in mixtures, and floating of heavy
colloids on top of lighter ones. Without the volume term there is no quantitative agreement between the PM
and EM, even in the present high-temperature limit of interest, showing that de-ionized colloidal suspensions
cannot be described by a pairwise Yukawa model.
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Sedimentation of suspended colloidal particles in Earth’s
gravity field is often a nuisance that is to be avoided, e.g., by
careful density matching the colloidal particles with the sol-
vent or by sending samples to outer space �1�. However, it
has also become clear over the last decade or so that the
study of the colloidal density profile ��z� �with z the vertical
height� in sedimentation-diffusion equilibrium can efficiently
give quantitative information about the �osmotic� pressure
���� of a bulk colloidal suspension at density � and hence
about the effective colloidal interactions �2–4�. In pioneering
studies it was shown that this scheme, which is based on
hydrostatic equilibrium, can quantitatively reproduce the
known equation of state of hard spheres in the fluid phase
�2,3�, and recent extensions show that this method also
works for hard-sphere crystals and for sticky spheres �4�. In
this paper we exploit the close relationship between effective
colloidal interactions and sedimentation-diffusion equilib-
rium for the case of �mixtures of� index-matched charged
colloidal spheres suspended in a dielectric solvent with
monovalent salt ions, as, e.g., studied experimentally in Refs.
�5,6�. Sedimentation of charged colloids has turned out to be
interesting in its own right, given the rich phenomenology
that was found for such systems during the last few years—
e.g., the existence �in a conducting medium� of a macro-
scopic electric field that pushes the colloids up to relatively
large heights �5–8� and the “colloidal Brazil nut effect” such
that the heavier colloids can float on top of a layer of lighter
ones �9–11�. In the regime of relatively high salt concentra-
tions, where the ionic strength is dominated by the back-
ground electrolyte, these sedimentation phenomena have
been explained by two different types of models: �i� by the
multicomponent primitive model �PM� of mesoscopic
charged colloids with subnanometer-sized cations and anions
in a continuum solvent �7,9� and �ii� by the Yukawa model
�YM� of colloids interacting solely by a pairwise repulsive
screened-Coulomb potential �8,10,12�. Advantages of the
YM are that both colloid-colloid correlations and colloid-ion
correlations �the “double layer”� are taken into account in the
hydrostatic equilibrium calculations �8,10� and that larger
systems can be simulated due to the absence of explicit ions.

We will show that the state of affairs is quite different at
vanishingly low ionic strength: our direct simulations of the
PM in gravity are not in agreement with our simulations and
calculations of the YM. Given the close relationship between
sedimentation profiles and the equation of state of bulk sys-
tems �2–4�, this disagreement between the PM and he YM
actually points to the breakdown of the YM in de-ionized
bulk suspensions. We attribute this to many-body effects that
become relevant at low salinity due to the long Debye length
�which sets the interaction range in the YM�. Instead of try-
ing to improve the YM by extending it with triplet and
higher-order potentials, such as, e.g., in Refs. �13�, we focus
here on the high-temperature linear screening regime and
derive an explicit expression for the effective interaction
Hamiltonian W of the form W=W1+W2. This effective
model �EM� is found to consist of the pairwise YM Hamil-
tonian W2 and a so-called volume term W1 that does not
depend on colloidal coordinates, but nontrivially on the col-
loid densities �14�. We will show that the EM in gravity is in
quantitative agreement with the PM, thereby showing that
the nonpairwise many-body effects can be captured effi-
ciently and accurately by the volume terms.

Let us consider an n-component suspension of colloidal
species i=1, . . . ,n with charges Zie, radii ai, and buoyant
masses mi, confined between the bottom of a macroscopic
sample cell at z=0 and the meniscus of the solvent at z=H.
The colloidal chemical potentials �i are such that the average
packing fraction �̄i=�0

Hdz �i�z� /H of each species i is fixed,
with �i�z�= �4� /3�ai

3�i�z� the packing fraction of species i at
height z. The solvent is a continuum with dielectric constant
� at temperature T, such that its Bjerrum length reads �B
=e2 / ��kBT�. Here e is the elementary charge and kB the Bolt-
zmann constant. The system is globally charge neutral due to
monovalent, massless, and pointlike counterions. The gravi-
tational potential that acts on the colloids is migz�kBTz /Li
for species i, with Li the gravitational length. The interaction
potential between any pair of particles �colloids and counte-
rions� is a sum of hard-core repulsions and �unscreened�
Coulombic interactions 	r−1, with r the center-to-center
distance.
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In an earlier publication �11� we presented some direct
Monte Carlo �MC� simulations of this PM in gravity. Such
simulations are computationally extremely expensive and
slow due to the large number of counterions per colloid and
due to the long range of the Coulomb interactions. It would
therefore be convenient if one could model the system as a
colloids-only system by coarse-graining the ionic degrees of
freedom, of course without losing quantitative agreement
with the PM results. Following the local-density approxima-
tion that underlies hydrostatic equilibrium �15�, the equilib-
rium packing fraction profiles �i�z� should satisfy

kBT ln �i�z� + �i,ex„�1�z�, . . . ,�n�z�… + migz = �i, �1�

where the effective colloidal interactions enter through the
excess �over ideal� chemical potentials �i,ex��1 , . . . ,�n� of
species i=1, . . . ,n in a colloidal bulk mixture. Note that Eq.
�1� is equivalent, for n=1, to the hydrostatic equilibrium
condition d��z� /dz=−mg��z� �15�. In order to be able to
solve the n local equations �1� an explicit form is needed for
�i,ex��1 , . . . ,�n�, which we obtain here by a tedious but
straightforward generalization of the linear-screening theory
of Ref. �16� from the one-component case n=1 to the mul-
ticomponent case of arbitrary n
1.

The first step in this scheme consists of considering an
arbitrary nonoverlapping fixed configuration of N1 , . . . ,Nn
colloids of species i in a bulk volume V, in osmotic contact
with a neutral reservoir of monovalent ions at a density
2�s—at the end of the calculation we will consider �s→0 in
order to describe the de-ionized limit. The ionic density pro-
files ���r�=�s exp��
�r�� and the electrostatic potential
kBT
�r� /e in the electrolyte in between the colloids follow
from the Poisson-Boltzmann �PB� equation �2
�r�
=�2 sinh 
�r�, where �= �8��B�s�1/2 is the reservoir’s in-
verse Debye screening length. By linearizing the PB equa-
tion about a self-consistent average potential 
̄, the PB equa-
tion can be solved and analytic expressions for 
�r� and
���r� follow as in Ref. �16�; one also finds for the so-called

Donnan potential 
̄=arc sinh��c / �2�s�� with the counterion
density �c=�i=1

n Zi�i. The effective colloid Hamiltonian fol-
lows as W=W1��1 , . . . ,�n ,�c ,V�+W2��1 , . . . ,�n ,�c ; �R	�
with the so-called volume term W1, which is independent of
the colloidal coordinates, and the pairwise additive term W2
of effective colloidal potentials of the screened-Coulomb
form vij�r�=Zi

�Zj
�kBT�B exp�−�̄r� /r between a pair of spe-

cies i and j at separation r�ai+aj. Here Zi
�

=Zi exp��̄ai� / �1+ �̄ai� and �̄=�
cosh 
̄. In the limit �s→0
one finds �̄=
4��B�c—i.e., only the counterions contribute
to the screening—and W1=Vw1 with

w1

kBT
= �c�ln

�c

�s
− 1� −

1

2�
i=1

n

�i� Zi
2�̄�B

1 + �̄ai

+ Zi� , �2�

where we recognize the ideal-gas entropy of the counterions
and the self-energy of the colloids. Note that Eq. �2� reduces,
for n=1, to the results of Ref. �16�. With the explicit analytic
form of the effective Hamiltonian W=W1+W2 at hand we
can take the next step in the calculation of �i,ex. We calculate
the excess free energy Fex=W1+Vf2 of the colloids-only sys-

tem, with Vf2��1 , . . . ,�n� the excess free energy of the pair-
wise Yukawa fluid with Hamiltonian W2. This is done here
using the Gibbs-Bogolyubov �GB� inequality, with a refer-
ence hard-sphere mixture with variational hard-core diam-
eters di for species i, such that f2��1 , . . . ,�n� is the minimum
of

fHS��x	� + 2��
i,j

n

�i� j

dij

�

dr r2gij�r;�x	�vij�r� , �3�

where xi= �� /6��idi
3 is the variational packing fraction of

species i, fHS is the hard-sphere mixture free-energy density
as given in Ref. �17�, dij = �di+dj� /2, and gij�r� are the refer-
ence hard-sphere radial distribution functions treated within
the Percus-Yevick approximation. Note that expression �3� is
explicitly known analytically �17� and its minimization with
respect to the variational diameters was performed
numerically.

The final step in the calculation of �i,ex stems from the
thermodynamic identity �i,ex=�Fex /�Ni. This can be rewrit-
ten as �i,ex=��w1+ f2� /��i and can be calculated numerically
using Eqs. �2� and �3�. Hence we can solve the hydrostatic
equilibrium conditions �1� numerically on a z grid. More-
over, we not only used the EM described by W=W1+W2 as
an intermediate step in the calculation of �i,ex, but we also
perform direct MC simulations of the EM in Earth’s gravita-
tional field. In such MC calculations we actually test the
accuracy of the variational GB procedure. The MC simula-
tions using the EM are at least 10 times faster than those of
the equivalent PM for the values considered in this paper,
because of the absence of explicit ions. By comparing col-
loidal profiles of the PM and EM one tests in fact the accu-
racy of our expressions for W. One should be aware, how-
ever, of a potential problem in MC simulations of the
inhomogeneous EM, since both W1 and the screening param-
eter �̄ of the pair potentials of W2 depend on the colloidal
densities, for which we take local densities in slices of a
thickness H /NH with typically NH=200 in the calculations
presented below. Thus MC trial moves in which colloids are
displaced from one slice to another involve acceptance prob-
abilities that take both the positional change and the density
change into account.

In order to reduce the parameter space we consider equal-
sized colloids with a common diameter 2ai=2a�� for i
=1, . . . ,n, a Bjerrum length �B=0.004�, and a sample height
H=100�. The computational details of our PM simulations
are given in Ref. �11�. Our EM and YM simulations are
based on systems with about 1000–2000 colloids, equili-
brated for about 106 MC cycles while averages are taken
over 5�105 cycles �where 1 cycle contains on average 1
trial move for each particle�.

In Fig. 1 we consider a one-component case n=1. We find
excellent agreement between PM simulations, EM simula-
tions, and EM calculations based on the hydrostatic equilib-
rium condition �1�, except perhaps close to the walls at z
=0 and z=H, where the local density approximation fails to
describe the structure. Interestingly �1�z� is different �dotted
curves� for the YM; i.e., the EM with its volume terms is
qualitatively different from the YM. In fact, one checks that
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the volume terms contain a net repulsive contribution here,
as the actual profiles extend to higher altitudes than the pair-
wise ones. This can be traced back to the counterion ideal-
gas contribution in Eq. �2�, which is entirely omitted in the
YM.

In Fig. 2 we also show quantitative agreement between
direct PM simulations, EM simulations, and EM calculations
based on hydrostatic equilibrium, but now for density pro-

files of a two-component system, n=2. Figures 2�a�, 2�c�,
and 2�d� show a clear layering effect, in �a� the lighter ones
are on top of the heavier ones, in �c� and �d� the order of the
layers is reversed �“colloidal Brazil nut effect”�, and �b�
shows the crossover between these two regimes. Ignoring the
volume terms in these systems yields profiles �not shown�
that deviate from the actual ones in a fashion similar to that
in Fig. 1, again pointing to the importance of w1. This can be
further quantified by considering the mean height hi
=�0

Hdz �i�z�z / �H�̄i� of species i, as shown as a function of
Z2 /Z1 in Fig. 3 for the parameters of Fig. 2. Figure 3 shows
quantitative agreement between PM simulations �squares�,
EM simulations �circles�, and EM hydrostatic equilibrium
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FIG. 4. Sedimentation profiles of a de-ionized equimolar three-
component colloidal system with average packing fractions �̄i

=0.0031, charges Zi=50,20,10, and gravitational lengths Li /�
=4,6 ,6 for the three species i=1,2 ,3, respectively, as obtained
from PM simulations �noisy curves� and EM simulations �dashed
curves� and pairwise Yukawa simulations without volume term
�dot-dashed curves�.
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FIG. 1. Packing fraction profiles �1�z� for de-ionized monodis-
perse suspensions of colloidal spheres with diameter �, gravita-
tional length L1=10�, charge Z1=10, and sample height H=100�,
for average packing fractions �̄1=0.055 �a�, 0.099 �b�, and 0.128
�c�. The PM simulations �noisy curves, taken from �11��, the EM
simulations �dashed curves�, and the EM calculations based on hy-
drostatic equilibrium �solid curves� are all in good agreement, while
the YM calculations �dotted curves� clearly differ. This indicates the
importance of the volume term in the EM.
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FIG. 2. Sedimentation profiles for a de-ionized binary mixture
of equal-sized colloids with diameter �, gravitational lengths L1

=10� and L2=5�, average packing fractions �̄1= �̄2=0.0144, and
colloidal charges Z1=10 and �a� Z2=10, �b�Z2=20, �c� Z2=30, and
�d� Z2=40. There is quantitative agreement, in all cases, between
the PM simulations �noisy curves�, EM simulations �dashed
curves�, and EM calculations based on hydrostatic equilibrium
�solid curves�.
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FIG. 3. Mean height hi �see text� as a function of the colloidal
charge ratio Z2 /Z1 for binary mixtures with the parameters given in
Fig. 2, showing mutual quantitative agreement between PM simu-
lations �squares�, EM simulations �circles�, and EM calculations
�solid curves�. The mean height of the YM from simulation
�crosses� and hydrostatic equilibrium calculations �dashed curves�
cannot account for the PM results.
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calculations �solid curves�, while the pairwise YM calcula-
tions �dotted lines� and YM simulations �crosses� largely de-
viate from the other three curves. The mutual deviation be-
tween the calculations and the simulations of the YM is to be
attributed to the approximate nature of the GB procedure that
underlies the calculations. Clearly, Fig. 3 points to the im-
portance of the volume term and to the accuracy with which
the PM results are reproduced by the EM, in the present
parameter regime at least.

Finally, in order to put the EM to a further test we con-
sider a three-component mixture. The results, shown in Fig.
4, not only show both layering with increasing mass per
charge �	ZiLi� from bottom to top, but also the heavier spe-
cies 1 floating on top of the lighter species 2 and 3. For these
phenomena we find again good agreement between our �pre-
viously published �11�� PM simulations �noisy curves� and
the EM simulations and calculations �dashed and solid
curves, respectively� based on W=W1+W2 derived above.
Simulations of the pairwise YM �dot-dashed curves� are very
accurate for species 3, but substantially off again for species
1 and 2.

In summary, we have explicitly shown that sedimentation-
diffusion equilibrium and effective colloidal interactions in
de-ionized suspensions cannot be described by the pairwise
Yukawa model for the colloids, not even in the high-
temperature limit of interest here. The effective model de-

rived here, however, is in quantitative agreement with primi-
tive model simulations. The main difference between the YM
and EM is the inclusion of ionic entropy and colloidal self-
energy in the latter—these terms can be ignored at high salt,
but turn out to be crucial in de-ionized systems as we show
here explicitly. In other words, the EM is an accurate ex-
trapolation of the YM at high salt to the de-ionized regime.
The EM that we derived here is based on a linear screening
theory and should break down for Zi�B /ai�5 because then
nonlinear screening effects such as charge renormalization
become important �18–20�. The parameters considered in
this study are safely in the linear �high-temperature� regime
since in all cases �B /ai�0.01 and Zi�100. So although the
presently formulated EM has its restrictions as regards the
regime of applicability, it is certainly capable of explaining
many-body effects in charged colloids. Moreover, the EM
simulations have great computational advantages over those
of the PM, since it can reduce the simulation time from
months to days.
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