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Using computer simulations, we study the isotropic-to-nematic nucleation in a fluid of colloidal hard

rods as well as in a mixture of colloidal rods and non-adsorbing polymer. In order to follow the

transformation of the system from the isotropic to the nematic phase, we use a new cluster criterion

that enables us to distinguish the nematic clusters from the isotropic fluid phase. Applying this criterion

in Monte Carlo simulations, we find two different regimes depending on the supersaturation. At low

supersaturation we find nucleation and growth, while at higher supersaturation spinodal

decomposition is observed. We determine the height of the nucleation barrier, and we study the

structure as well as the shape of the nematic clusters. We discuss our simulation results in the light of

classical nucleation theory.
I. Introduction

Nucleation is the process whereby a thermodynamically meta-

stable state evolves into a stable one, e.g. the freezing of under-

cooled water into ice, the condensation of a supersaturated

vapor into a liquid, or the formation of gaseous bubbles in an

superheated liquid phase. The framework with which

phenomena like these have been described traditionally is clas-

sical nucleation theory (CNT), which is based on the notion

that a thermal fluctuation spontaneously generates a small spher-

ical ‘‘droplet’’ of the thermodynamically stable phase into the

bulk of the metastable phase.1 This droplet is assumed to be

separated from the metastable bulk by a sharp step-like inter-

face. The tension of this interface gives rise to a tendency to

shrink the size of the droplet, and hence small droplets (with

their large surface-to-volume ratio) have a large probability to

dissolve. Only if the droplet exceeds a critical size, CNT predicts

a crossing of the free-energy barrier and the droplet can grow to

form the new stable bulk phase. In recent years, many new simu-

lation techniques have been developed to study nucleation, such

as umbrella-sampling,2–4 transition-path-sampling5–7 or forward-

flux-sampling methods.8–10 Substantial progress in our under-

standing of gas–liquid and fluid–solid nucleation of spherical

particles is due to these computer simulations,11–13 but also due

to density functional theory calculations.14–17For instance, recent

studies have shown that the structure of the critical nucleus at its

center may be completely different from the bulk phase to be

formed, and that its interface with the surrounding metastable

state may have a non-trivial density and structural profile that is

not at all sharp and step-like.11,12,14–17Moreover, very recent simu-

lation work indicates that thermal fluctuations allow for a whole

ensemble of transition states instead of a single critical nucleus.5

Nucleation is even more complicated, and interesting, in the

case of non-spherical particles. Due to the anisotropy of the
aSoft Condensed Matter, Debye Institute for NanoMaterials Science,
Utrecht University, Princetonplein 5, Utrecht, 3584 CC, The
Netherlands. E-mail: a.cuetos@phys.uu.nl
bInstitute for Theoretical Physics, Utrecht University, Leuvenlaan 4,
Utrecht, 3584 CE, The Netherlands

This journal is ª The Royal Society of Chemistry 2008
particles, these systems can also form liquid-crystalline phases,

which enriches the phase behaviour considerably. Recent exper-

iments with supersaturated suspensions of colloidal rods and

non-adsorbing polymer show a fascinating rich phenomenology

with novel and complex metastable structures like spindle-

shaped nematic droplets (‘‘tactoids’’), surface-induced smectic

phases on the surface of metastable nematic droplets, individual

smectic membranes winding off from tactoids as twisted ribbons,

etc.18 Another topic that has received a lot of interest is the exis-

tence or non-existence of isotropic-to-nematic (I–N) spinodal

decomposition in suspensions of rod-like particles. The existence

of spinodal decomposition was previously predicted by Onsager

for suspensions of hard rods with infinite aspect ratios.37 Using

small-angle light scattering Van Bruggen et al. found indeed

two different regimes in the I–N transformation in a fluid of

colloidal rods, depending on the supersaturation.19 These

authors characterized the transformation in the more dilute

systems as nucleation and growth, while spinodal decomposition

was observed in the more concentrated systems. Similar results

have been found recently in solutions of F-actin,20 or in disper-

sions of rod-like viruses under shear conditions.21,22 We note,

however, that in Ref. 21 and 22 the nucleation and growth

phenomena are found at high concentration while the spinodal

decomposition is found at low density. The reason for this is

that the initial state is a shear-induced nematic phase. Recent

experimental work on the structure of the clusters shows the

formation of ellipsoidal nematic tactoids with the rods oriented

in the direction of the long axis of the droplets.20,23,24

In contrast with experimental work, simulation studies on the

nucleation of anisotropic particles are more scarce and less

conclusive. The isotropic-to-solid transition has been explored

in systems of short hard rods by Schilling and Frenkel25,26 These

authors show that the growth of the crystal starts with the forma-

tion of a single crystalline layer with hexagonal order. Subse-

quently, the growth of the crystal is hampered by rods that align

parallel to the top and bottom surface of the crystallite, yielding

self-poisoning of the crystal nucleus. In addition, they calculated

the free energy as a function of cluster size, and found that the

system never crosses a nucleation barrier beyond which the
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crystallites would grow spontaneously. In Ref. 27, the isotropic–

nematic spinodal is investigated using Brownian dynamics

simulations in fluids of hard rods for various elongations.

In the present paper, we study the I–N transition in a fluid of

hard spherocylinders (HSC fluid) for two elongations. We find,

in agreement with experimental studies, two different regimes

depending on the supersaturation. At low supersaturation, we

observe nucleation and growth, while at high supersaturation,

spinodal decomposition is observed. We also find, in the nucle-

ation and growth regime, the formation of ellipsoidal nematic

clusters. We compare our simulation results with the predictions

of classical nucleation theory. A brief account of a part of this

work has already been published elsewhere.28 Moreover, we

study the I–N transformation in a system of colloidal hard

rods and non-absorbing polymers using an effective polymer-

mediated pair potential for the colloidal rods.29

This paper is organized as follows. In Section II, we describe

the model and the simulation techniques that we use. In Section

III, we discuss classical nucleation theory and we extend this

theory to nonspherical particles, i.e., we introduce an anisotropic

surface tension and we consider aspherical droplets. In Section

IV, we present the results, and we end with some concluding

remarks in Section V.

II. Model and simulation method

A. Models

We first consider a suspension of colloidal rods, modelled by

hard spherocylinders (HSC) with diameter s and length L.

This model has been studied extensively, and its equilibrium

bulk phase diagram is well known.30,31 We perform Monte Carlo

simulations of colloidal hard rods with elongations L* ¼ L/s ¼ 5

and L* ¼ 15. These systems show a phase transition from an

isotropic fluid phase to an orientationally ordered nematic

phase. For elongation L* ¼ 5 the transition occurs at pressure

P*
IN ¼ 1.117, where we define P* ¼ bPs3, b ¼ 1/kBT, kB is Boltz-

mann’s constant, and T the temperature, and at P*
IN ¼ 0.097 for

L*¼ 15.31 For L*¼ 5, the transition is weakly first order without

a clear density jump.31 For L* ¼ 15 the I–N transition is of first

order with a density jump of about 20%.

In addition, we consider a mixture of colloidal hard rods with

non-adsorbing polymers. Our interest in this mixture is triggered

by recent experiments on mixtures of rod-like viruses and non-

absorbing polymers, which show novel and intriguing nucleation

paths, including many new metastable structures.18 To study this

system we use the effective polymer-mediated pair potential

proposed recently for the rods.29 We refer the reader to Ref. 29

for more details on the derivation of this effective pair potential.

Here we only give a brief account.

Wemapthisbinarymixtureofhardrodswithnon-adsorbingpoly-

merontoaneffectiveone-component systemby integratingout the

degrees of freedom of the polymer in the partition function. We

employ the effective pair potential approximation to the effective

Hamiltonian.Theeffectivepairpotentialoftworodsreads

F(Rij;ûi,ûj) ¼ Frr(Rij;ûi,ûj) + Fdep(Rij;ûi,ûj) (1)

where Rij ¼ Ri � Rj with Ri the center-of-mass of spherocylin-

ders i, and where ûi denotes the orientation of rod i. The bare
758 | Soft Matter, 2008, 4, 757–767
rod–rod pair interaction Frr is modelled here as a hard interac-

tion, i.e., bFrr ¼N if two particles overlap and 0 otherwise, while

Fdep is a pairwise additive depletion potential. An explicit expres-

sion for Fdep can be found in Ref. 29. Hence, the effective pair

potential (1) consists of a repulsive part and an attractive part,

that both depend on the relative orientations of the two particles,

ûi and ûi, and on the center-of-mass distance vector Rij. The

attractive interaction between two rods is stronger for parallel

rods than for perpendicular rods.29

Phase diagrams of colloidal rods with L* ¼ 5, interacting with

such potentials, have been determined using computer simula-

tions. They display a stable isotropic, nematic, smectic, and

crystalline phase, depending on the rod-packing fraction and

polymer fugacity. Due to the attraction between the rods, the

I–N transition is stronger first order than that in a fluid of

pure hard rods with the same elongation. Below we study nucle-

ation for L* ¼ 5, a polymer fugacity zp ¼ 0.514 (corresponding

to a maximum attraction of about 1kBT for parallel rods), and

a radius of gyration of the polymer Rg ¼ 0.25s. The I–N transi-

tion is at a pressure P*
IN ¼ 0.86, and the density difference

between the two coexisting phases is about 5%.
B. Simulation Details

In order to follow the transition from the isotropic to the nematic

phase, we perform standard Monte Carlo simulations in the

isobaric–isothermal ensemble (MC-NPT), i.e., we fix the number

of particles N, the temperature T, and the pressure P* at values

higher than that at I–N bulk coexistence. To this end, we

compress a well-equilibrated configuration of the coexisting

bulk isotropic phase to the desired supersaturated pressure.

Subsequently, we perform successive simulations, monitoring

different order parameters that provide information about the

intermediate situations in the I–N transformation. In all our

simulations, we employ a rectangular simulation box with peri-

odic boundary conditions. Depending on the model and on the

elongation of the particles, different particle numbers have

been employed. We present simulations with N ¼ 8649, 4320,

and 2160 particles. More details are presented when we discuss

the results. In all our simulations, the acceptance ratio is kept

within 30–40% for the orientational and translational moves of

the particles, and within 20–30% for the attempts to change

the volume. Box volume changes are attempted by randomly

changing the length of one of the sides of the simulation box,

with the restriction that the box length remains larger than twice

the length of the rods in order to avoid multiple overlaps.

At low supersaturation, i.e., at pressures slightly higher than the

coexistence pressure, the free-energy barrier to nucleation is very

high. Hence, spontaneous fluctuations that would bring the

system to the top of the free-energy barrier, which are needed

for a spontaneous subsequent growth of the stable phase, is

very unlikely. In other words, nucleation is a rare event, or an

activated process for which the waiting time for it to occur is

much longer than the event itself. Events of such a nature are

intrinsically difficult to study with conventional simulation

methods, as most of the CPU time would be wasted on the long

waiting times between the nucleation events. It is therefore virtu-

ally impossible to observe in a standard MC-NPT simulation the

growth of a nematic cluster beyond its critical size and hence the
This journal is ª The Royal Society of Chemistry 2008



Fig. 1 Radial distribution function g(x) (top panel) and orientational

pair correlation function g2(x) (bottom panel) as a function of the

surface–surface distance x for an isotropic (solid line) and a nematic

(dashed line) phase near coexistence in a HSC fluid with L* ¼ 5.
spontaneous transition to the nematic phase. StandardMC-NPT

simulations are therefore only used to study spinodal decomposi-

tion and nucleation and growth at high supersaturations, i.e., at

state points that lie close to the spinodal curve or beyond.

In order to study rare events such as nucleation, many

simulation techniques have been developed, e.g., transition-

path-sampling techniques5,6,7 or forward-flux-sampling

methods.8,9,10 In this paper, we use umbrella sampling to study

the I–N nucleation.2,3,4 Umbrella-sampling methods have been

employed to compute the free-energy nucleation barrier within

the Bennett–Chandler approach and have been used to study

the gas–liquid32,33,34 and fluid–solid9,11,12,35 nucleation in fluids

of spherical particles.

This method allows us to bias the sampling to configurations

that contain clusters with a certain size. We use the number of

particles, say n, in the largest nematic cluster, as an order param-

eter. Following Ref. 32, we use a biasing potential W, which is

a harmonic function of the cluster size n:

bW(n(rN,ûN)) ¼ 1⁄2 kn[n(r
N,ûN) � n0]

2, (2)

where rN and ûN are the positions and orientations of allN parti-

cles in the simulation. The result of this biasing potential is that

a certain window of values of the order parameter will be

sampled. The constants kn and n0 determine the width and the

location of the window. By increasing the value of n0, we can

increase the size of the largest nematic cluster in our system,

which enables us to cross the nucleation barrier. In our simula-

tions, the values for kn lie in the range 0.1–0.15. As the computa-

tion of the size of the largest cluster is very time consuming, we

only apply the biasing potential after trajectories of ten MC

cycles without biasing potential, and we then accept this trajec-

tory with a statistical weight that does include the biasing poten-

tial. If we define the average number of clusters with n particles

by hNni, one can calculate the probability distribution P(n) ¼
hNni/N. We perform simulations with varying values for n0 span-

ning all values of n between the metastable isotropic and the

stable nematic phase. We can then determine the Gibbs free-

energy barrier for the formation of a nematic cluster of size n by:

DG(n) ¼ �kBTlnP(n). (3)

The cluster at the top of the nucleation barrier, where DG(n) is at

a maximum, is defined as the critical cluster. A cluster that

exceeds the critical size (a postcritical cluster), will spontaneously

grow and will form the stable nematic phase in order to minimize

the free energy, while most subcritical clusters will redissolve

spontaneously. Umbrella-sampling techniques allow us to calcu-

late the nucleation barrier, but also to stabilize critical, subcrit-

ical and postcritical cluster in order to study the internal

structure and the shape of these clusters.

For the calculation of the nucleation barrier, using umbrella

sampling, we need a criterion that can identify the nematic clus-

ters from the isotropic fluid phase. For the case of spherical

particles several cluster criteria have been defined to study gas–

liquid32 and fluid–solid12 transitions. For fluids of elongated

particles, Schilling and Frenkel25,26 have defined a cluster crite-

rion in order to study the isotropic–solid transition in a fluid

of hard spherocylinders with elongation L* ¼ 2. This criterion
This journal is ª The Royal Society of Chemistry 2008
assumes that two particles belong to the same cluster if the

surface-to-surface distance between the two particles is smaller

than 0.5s and the absolute value of the dot product of the two

unit vectors that define the orientations of the rods are larger

than 0.995. Using this cluster criterion for fluids of sufficiently

long, hard spherocylinders, which exhibit a stable nematic phase,

we were not able to distinguish the nematic phase from the

isotropic phase. We therefore developed a new cluster criterion.28

To this end, we study in more detail the structure of the coex-

isting isotropic and nematic phase of a HSC fluid with L* ¼ 5.

Fig. 1 shows that the radial distribution functions of the coexist-

ing isotropic and nematic phase are very similar, while the orien-

tational pair correlation functions differ considerably. To be

more specific, we find long-range orientational order in the

nematic phase, while there is only short-range orientational

order in the isotropic phase (for details on the calculation see

Ref. 30). The short-range orientational order that is present in

both the isotropic and nematic phase might be the reason that

the cluster criterion in Ref. 25 and 26 cannot be used to distin-

guish nematic clusters from the isotropic phase, as it only

considers neighboring particle pairs. In our cluster criterion,

we exploit the difference in orientational order at larger distances

for the isotropic and nematic phase. We first make a distinction

between particles that have a nematic-like and an isotropic-like

environment. Particle i is nematic-like if its local environment

has an orientational order significantly larger than in the

isotropic phase. The local environment of particle i is defined

by all particles j with a surface-to-surface distance xij # 1.5s,

i.e., such that it is not only defined by the nearest neighbors,

but also by the next-nearest neighbors, thereby taking advantage

of the long-ranged orientational order in the nematic phase. The

local orientational order of particle i is defined by:

SðiÞ ¼ 1

ni

Xni
j¼1

�
3

2

��ûj$ûi

��2�1

2

�
; (4)

where ûj is the unit orientation vector of particle j and ni the

number of particles with xij # 1.5s. We have adopted the cluster

criterion so that particle i is nematic-like if S(i) > K1, where K1 is
Soft Matter, 2008, 4, 757–767 | 759



a threshold value that has to be optimized for each model. After

identifying the nematic particles in the system, we determine the

nematic cluster with the criterion that two particles i and j belong

to the same cluster if xij < 0.5s and |ûi $ ûj| >K2, with K2 another

adjustable threshold value. We have optimized the threshold

values K1 and K2 using the criterion i) that for a nematic bulk

phase, a considerable fraction of the particles, say > 90%,

belongs to the nematic cluster, and ii) that for an isotropic

bulk phase, a tiny fraction of the particles, < 2% belongs to

nematic clusters. We have performed several trial runs to opti-

mize the threshold values and we have chosen K1 ¼ 0.4 and K2

¼ 0.85 for the HSC system, and K1 ¼ 0.6 and K2 ¼ 0.85 for

the rod–polymer mixture.

We performMC-NPT simulation of a HSC fluid with L* ¼ 15

at several state points in the isotropic and nematic phase in

a simulation box with 4320 particles. In Fig. 2, we show the

cluster size distribution hNni determined by our cluster criterion

for a low-density isotropic state, a high-density nematic state,

and for an isotropic and nematic phase at bulk coexistence.

Fig. 2 shows that there is a clear distinction in the cluster size

distributions of the isotropic and nematic phase. In the isotropic

states, we only find clusters with particle numbers n < 20. In the

nematic states, we observe clusters that are considerably larger in

size, while only a few smaller clusters, i.e., n < 10, are observed.

Hence, our cluster criterion enables us to distinguish the nematic

from the isotropic phase. We wish to make two remarks here.

First, we note that not all particles belong to a nematic cluster

in the nematic phase. This is because the orientational distribu-

tion function is not a Delta function, but resembles more

a Gaussian distribution with a non-zero probability to find parti-

cles with orientations deviating somewhat from the nematic

director.36,37,38 Secondly, we also find that the size of the nematic

cluster increases upon increasing the pressure, which is consistent

with the increase in nematic order upon increasing the density.

To analyze our simulation results, we employ order parame-

ters that are frequently used in liquid-crystal studies. For

example, we calculate the nematic order parameter S of the

whole system as well as of the nematic clusters. This nematic

order parameter is defined by the largest eigen value of the stan-

dard 3 � 3 nematic order parameter tensor. The corresponding

eigen vector defines the nematic director n, which denotes the
Fig. 2 Distribution of the number of particles n in the nematic clusters

in a HSC fluid with L* ¼ 15 for (a) a low-density isotropic state, P* ¼
0.075, (b) an isotropic state at bulk coexistence, P* ¼ 0.097, (c) a nematic

state at bulk coexistence, and (d) a high-density nematic state, P* ¼ 0.12.

Note the discontinuity in the horizontal axis. The total number of parti-

cles is 4320.
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preferred orientation of the particles. To study the structure of

the nematic clusters we calculate the density profile r*(z, r) as

a function of the distance from the center-of-mass of the cluster

in the direction parallel (z) and perpendicular (r) to the nematic

director of the cluster. We again make a distinction between

particles that have an isotropic-like and a nematic-like environ-

ment using the same criterion as defined before. We calculate

these density profiles for i) all particles that belong to the nematic

cluster according to our cluster criterion, ii) for all isotropic-like

(non-nematic-like) particles (particles with an isotropic-like envi-

ronment), and iii) for all isotropic-like and nematic-like particles

regardlessof their environment.Wealso calculate thenematic order

parameter profilesS(z, r) of all particles (nematic and isotropic) in

the system (not only in the nematic cluster). The nematic order

parameter profile is definedbyS(z,r)¼h3|ûi(z,r) $ n|2� 1i/2,where
n is the nematic director of the cluster.

III. Theory

We check the validity of CNT for liquid-crystalline transitions by

comparing its predictions with our simulation results. We focus

our attention on the I–N nucleation in a HSC fluid. Within stan-

dard CNT for spherical droplets,1 the Gibbs free-energy barrier

that separates the metastable parent phase from the stable final

phase is written as DG ¼ gA � |Dm|rV, where g is the surface

tension of the planar interface between the two coexisting phases,

A¼ 4pR2 is the surface area of the spherical nucleus (radius R) of

the new phase at density r, Dm < 0 is the chemical potential

difference between the phase inside the nucleus and that of the

supersaturated bulk phase, and V ¼ (4p/3)R3 is the volume of

the nucleus. For a given Dm and r, the radius Rcrit ¼ 2g/r|Dm| of

the critical nucleus follows from vDG/vR|Rcrit
¼ 0, and the resulting

nucleation barrier reads DGcrit ¼ (16p/3)g3/(r|Dm|)2.

For non-spherical particles such as rods, these expressions

need to be modified because i) the surface tension depends on

the relative angle of the interface normal q and the nematic

director n of the nematic phase, ii) the critical nucleus is not

expected to be a sphere, and iii) the free energy of a nematic

nucleus should include an elastic energy cost for a possible defor-

mation of the director field. Here we assume that the anisotropy

of the surface tension can be characterized by a single anisotropy

parameter u such that the tension reads g(1 + u(q $ n)2), where g

is the tension for the planar geometry q t n. We also assume

planar anchoring of the director field to the interface, i.e., u >

0. Next we assume that the nucleus has the shape of a uniaxial

ellipsoid of radii a, b, and b. Finally, we assume a homogeneous

director field and, hence, we ignore the elastic free-energy cost

for possible deformations of the director field. The generalization

of classical nucleation theory to this case can be written as:

DG ¼
ð
d2S g

�
1þ uðq$nÞ2

�
� jDmjrð4p=3Þab2; (5)

where the integral is over the surface of the ellipsoid. Introducing

a Cartesian coordinate system (x, y, z) with the z axis along the

long axis of the ellipsoid, such that the surface is described by

z2/a2 + (x2 + y2)/b2 ¼ 1, we can parameterize the surface in terms

of a polar and azimuthal angle q ˛ (0, p) and f ˛ (0, 2p),

respectively, as (x, y, z) ¼ (b(sinq)(sinf), b(sinq)(cosf),

a(cosq)). Standard manipulations reveal a surface normal given
This journal is ª The Royal Society of Chemistry 2008



Fig. 3 The aspect ratio a/b and the scaling functions A(u) and g(u) (see

text) as a function of the anisotropy parameter u of the surface tension.

For comparison, we also plot the initial slope for u / 0 given by 1 + u.
by q ¼ (a(sinq)(sinf), a(sinq)(cosf), b(cosq))/O(a2(sin2q) +

b2(cos2q)), and a surface area element d2S ¼ b(sinq)O(a2(sin2q) +

b2(cos2q))dqdf. If we now also assume that the nematic director

field inside the droplet is uniform along the long axis such that

n ¼ (0, 0, 1), we find:

q$n ¼ bðcosqÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2
�
sin2

q
�
þ b2

�
cos2q

�q : (6)

Introducing the eccentricity parameter e ¼ 1 � (b/a)2, such that

e¼ 0 for spheres and e¼ 1 for needle-shaped nuclei, we can write

eqn (5) as:

DG ¼ 4pga2f(e, u) � |Dm|r(4p/3)a3(1 � e), (7)

with

f ðe;uÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
1� e

p
ðI1ðeÞ þ uI2ðeÞÞ=2; (8)

where

I1ðeÞ ¼
ð1

�1

dx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ex2

q
¼

ffiffiffiffiffiffiffiffiffiffiffi
1� e

p
þ arcsin

ffiffiffi
e

p
ffiffiffi
e

p (9)

I2ðeÞ ¼
b2

a2

ð1

�1

dx
x2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ex2
p

¼
�
1� e

��arcsin ffiffiffi
e

p

e3=2
�

ffiffiffiffiffiffiffiffiffiffiffi
1� e

p

e

�
:

(10)

Eqn (7)–(10) express the nucleation barrier in terms of the vari-

ational eccentricity e. For a given supersaturation and radius a of

the droplet, the ‘‘equilibrium’’ eccentricity parameter e* of the

droplet minimizes DG such that e* is determined by:

vDG

ve

����
e�
¼ 0; (11)

which yields

2

3
f ðe�;uÞ þ ð1� e�Þvf ðe;uÞ

ve

����
e�
¼ 0: (12)

Interestingly, eqn (12) implies that e* is a universal function of u,

independent of e.g. the long radius a. This also implies that the

aspect ratio of the critical nucleus a/b ¼ 1/O(1 � e*) is indepen-

dent of supersaturation and cluster size. One also easily checks

that eqn (12) gives e* ¼ 0 if u ¼ 0, i.e. an isotropic surface

tension gives rise to a spherical droplet, as expected. For a given

supersaturation Dm, the critical long axis acrit of the critical

nucleus satisfies vDG/va|acrit ¼ 0, which yields

acrit ¼
2g

rjDmj
f ðe�Þ
1� e�

h
2g

rjDmjAðuÞ; (13)

where we defined the scaling function A(u) in terms of the equi-

librium eccentricity e* that satisfies eqn 12. Inserting acrit into

eqn (11) one obtains for the nucleation barrier

DGcrit ¼
16p

3

g3

ðrDmÞ2
f 3
�
e�
�

ð1� e�Þ2
h
16p

3

g3

ðrDmÞ2
gðuÞ; (14)
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which defines the scaling function g(u). The u-dependence of

a/b, A(u), and g(u) is shown in Fig. 3 for the u-regime of interest

here. All three functions reduce, in the limit u / 0, to 1 + u +

O(u2). Note that for u ¼ 0 all three functions are unity, such that

our expression for the critical radius acrit and the nucleation

barrier DGcrit reduce to the standard CNT expressions for spher-

ical droplets.

IV. Results and discussion

A. Hard-rod fluids

We present simulation results on the I–N transition in fluids of

hard spherocylinders (HSC fluid). Some of the results presented

here have already been published elsewhere.28 We compress

a well-equilibrated isotropic phase to a pressure beyond coexis-

tence and we monitor different order parameters during the

transformation. We first compress an isotropic fluid of N ¼
8640 particles with L* ¼ 5 at P* ¼ 1.27 using MC simulations

in the isobaric–isothermal ensemble. At this pressure, we find

that the isotropic phase transforms spontaneously into a nematic

phase. Upon compressing the isotropic phase, the density of the

system increases gradually and we are not able to find a state on

the metastable isotropic fluid branch. We find that phase separa-

tion sets in immediately after compressing as many small nematic

clusters are formed throughout the system according to our

cluster criterion (Fig. 4a). These clusters grow until they coalesce

to form an interconnected ‘labyrinth’ structure (Fig. 4b). The

nematic order parameter of this interconnected structure is small

as the orientations of the original clusters of this labyrinth struc-

ture are very different. Subsequently, the nematic order param-

eter of the labyrinth structure increases as the clusters reorient.

The immediate phase separation and the formation of a labyrinth

structure is typical for spinodal decomposition, as has also been

reported experimentally.19,20 At this supersaturation, the

isotropic phase is unstable. At lower supersaturations, one might

expect to find the nucleation and growth regime. However, we

were unable to find any metastable isotropic fluid phase or
Soft Matter, 2008, 4, 757–767 | 761



Fig. 4 Typical intermediate configurations in the I–N transformation of

a HSC fluid with L* ¼ 5 at P* ¼ 1.27. (a) Configuration at the initial

stage of the transition. Many small clusters are formed simultaneously

with number of particles n ¼ 462 (red), 115 (blue), 69 (pink), 60 (light

pink), 49 (light blue), 40 (orange), 34 (green) and 32 (light green). (b)

In a later stage of the transition, these clusters coalesce and form an

interconnected ‘labyrinth structure’.

Fig. 5 Evolution of the size of the biggest cluster n in the system (scale at

right), the nematic order parameter S of the biggest cluster and of the

total system (scale at left), for a HSC fluid with L* ¼ 15 at (a) P* ¼
0.125 in the spinodal decomposition regime, and (b) P* ¼ 0.105 in the

nucleation and growth regime.
nucleation and growth phenomenon for L* ¼ 5. This might be

explained by the weak first-order character of the transition

and the short metastable isotropic fluid branch.31

We also study the I–N transformation for a HSC fluid with

L* ¼ 15. Here the I–N transition is strongly first order.31 We first

compress the isotropic fluid phase of N ¼ 4320 particles beyond

coexistence to P* ¼ 0.125. At this supersaturation, the isotropic

phase is unstable and we observe spontaneous formation of the

nematic phase. We again find all the characteristics of spinodal

decomposition. Fig. 5a shows the size of the biggest cluster in

the system identified by our cluster criterion, the nematic order

parameter of this cluster, and the global nematic order param-

eter as a function of the number of MC cycles. In the initial stage

of phase separation, we find that many small nematic clusters

appear throughout the system with a high nematic order. After

about 1 � 105 MC cycles, the nematic clusters coalesce and

form an interconnected cluster: the nematic order parameter of

this cluster drops suddenly as the original clusters have different

orientations. Subsequently, the size and the nematic order of this

interconnected cluster grow gradually until the whole system is

transformed into the nematic phase. The observed phase-separa-

tion process has all the typical features of spinodal decomposi-

tion and is similar to the behavior described for L* ¼ 5.

Next we compress the system of L* ¼ 15 at a lower supersatu-

rated pressure of P* ¼ 0.105. We again observe that the isotro-

pic phase transforms spontaneously into the nematic phase.
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However, at this pressure, we observe all the characteristics of

nucleation and growth. Upon compressing the system, we find

that the system remains for a very long time in a metastable

isotropic fluid phase at a density r*¼ rs3¼ 0.0147, slightly above

the coexisting density of the isotropic fluid phase r*I ¼ 0.0144.

During the simulation, small nematic clusters are formed but

they also disappear. After a certain number ofMC cycles, a single

nematic cluster starts to grow. Fig. 5b shows that the size of this

single cluster grows gradually and that the nematic order of this

cluster remains nearly constant. It is evident from Fig. 5b that

the global nematic order parameter follows the growth of the

nematic cluster. The long period that the system stays in a meta-

stable isotropic fluid phase and the induction time before a single

cluster starts to grow is typical for nucleation and growth. Unfor-

tunately, we are not able to analyze the shape, size, and the struc-

ture of these nuclei, as the clusters dissolve or grow very quickly.

In summary, we find two different regimes in the I–N transi-

tion depending on the supersaturation. At high supersaturations

we observe spinodal decomposition, while at low supersatura-

tions we find nucleation and growth. At sufficiently low supersat-

uration P* < 0.105, spontaneous nucleation never occurred on

the timescales of our simulations. However, at these supersatura-

tions we employ umbrella-sampling techniques2–4 to study the

free-energy barrier for nucleation and the structure of the nuclei.

In the top panel of Fig. 6 we show the Gibbs free-energy barrier

for P* ¼ 0.101, 0.102, and 0.103. The top of the barrier deter-

mines the Gibbs free-energy of the critical cluster DGcrit and its

critical size ncrit. For P* ¼ 0.101 clusters with n > 145 start to

percolate and it is therefore impossible to calculate the barrier

height and the critical nucleus size. We note that the calculation

of this Gibbs free-energy curve took more than 4 months of CPU
This journal is ª The Royal Society of Chemistry 2008



Fig. 6 Top panel: Gibbs free energy of a HSC fluid with L* ¼ 15 as

a function of the nematic cluster size n at pressures P* ¼ 0.101, 0.102,

and 0.103. As a guide to the eye we have fitted the barrier with an 8th

degree polynomial. Bottom panel: typical configurations of clusters with

(a) n ¼ 20 particles, (b) n ¼ 70, (c) n ¼ 95 and, (d) n ¼ 120 at P* ¼ 0.102.

Fig. 7 Contour plots for the density profiles (top row) and nematic order para

of-mass of the cluster in the direction parallel (z* ¼ z/s) and perpendicular (

a critical cluster (n ¼ 95) and a postcritical cluster (n ¼ 120) at P* ¼ 0.102 i
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time on a desktop PC.We can conclude that for this pressure, the

height of the barrier is bDGcrit > 25 and ncrit > 145. For P* ¼
0.102, we find bDGcrit z 19.5 with ncrit z 95, while for P* ¼
0.103, bDGcrit z 16.0 with ncrit z 83. Typical configurations

of the clusters are shown in the bottom panel of Fig. 6.

We also employ the umbrella-sampling technique to study the

shape and structure of the cluster as a function of its size. In

Fig. 7, we show contour plots of the density profiles of the

nematic particles in the cluster r*(z, r), and contour plots of

the nematic order parameter profiles S(z, r) of all particles

(isotropic and nematic), as a function of the distance from the

center-of-mass of the cluster in the direction parallel (z) and

perpendicular (r) to the nematic director. We show profiles for

subcritical (n ¼ 20 and n ¼ 80), critical (n ¼ 95) and postcritical

clusters (n ¼ 120). Fig. 7 shows that there is no qualitative differ-

ence between subcritical, critical, and postcritical clusters. All

density profiles show that the shape of the nematic cluster is ellip-

soidal with the long axis in the direction of the nematic director.

The size of these clusters grows with the number of particles

inside the cluster. We observe large fluctuations in the shape of

the instantaneous clusters, and hence, the aspect ratio of the clus-

ters varies in the range zmax/rmax˛ [1.3, 2]. Inside the nematic clus-

ters, the density profiles of the nematic particles also show an

ellipsoidal symmetry, with a density decreasing gradually from

the center to the surface of the cluster. Similarly, we also find ellip-

soidal symmetric density profiles for the isotropic-like particles,

i.e., particles with an isotropic environment (not shown here).
meter profiles (bottom row) as a function of the distance from the center-

r* ¼ r/s) to the nematic director for subcritical clusters (n ¼ 20 and 80),

n a HSC fluid with L* ¼ 15.
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Fig. 8 Gibbs free-energy DG/kBT as a function of the long semi-axis a of

the cluster in units of the length L of the spherocylinder as obtained by

theory (solid line) and by simulation (symbols) for a HSC fluid with

L* ¼ 15 at P* ¼ 0.100, 0.101, and 0.102.
However, in this case, the density in the center of the cluster is close

to zero, and increases gradually from the center to the surface of

the cluster. If we consider all particles, the total density at the

cluster center has a value close to that of the corresponding bulk

nematic phase, and the density decreases slightly further away

from the cluster center. Far outside the nematic cluster, the density

has a value close to that of the bulk isotropic phase at the corre-

sponding pressure. We note that the density difference between

the isotropic and nematic is very small. Hence, the density differs

only slightly in and outside the nematic cluster.

In the bottom panel of Fig. 7, we present contour plots of the

nematic order parameter profiles S(z, r) of all particles. The

contour plots of the nematic order parameter profiles show

a similar behavior as that of the density profiles, i.e., an ellipsoidal

symmetry around the center of the cluster with a nematic order

parameter value decaying slowly from the center to the surface

of the cluster. The value of the nematic order parameter at the

center of the cluster isSz 0.8,which is consistentwith thenematic

order parameter of the corresponding bulk nematic phase. Note

that the nematic order parameter is still relatively high outside

the nematic cluster. The cluster is surrounded by a diffuse inter-

face with a width of about the length L of the rods in contrast to

a sharp step-like interface as assumed in CNT. The value of the

interfacial width agreeswell with previous simulation and theoret-

ical studies on the isotropic–nematic planar interface.39–44 It is

worth mentioning that a looser cluster criterion, i.e., lower values

for the threshold values K1 and K2, would detect the diffuse

nematic layer, yielding larger sizes for the clusters. The similarities

of the shape, aspect ratio, and ellipsoidal symmetry of S(z, r) and

r*(z, r) suggest a homogeneous nematic director field inside the

cluster, which is not deformed near the surface of the cluster.

Finally, we compare the above simulation results for the HSC

fluid with L* ¼ 15 with the predictions obtained from the gener-

alized classical nucleation theory as described in Section III. We

first note that the present theory is based on the two assumptions

that i) the clusters have an uniaxial ellipsoidal shape, and ii) the

nematic director field is homogeneous such that elastic free-

energy contributions due to deformations of the director field

can be ignored. Our simulations are indeed in good agreement

with these assumptions, thereby justifying the Gibbs free-energy

expression in eqn (11) a posteriori. Minimizing this Gibbs free

energy with respect to the eccentricity of the cluster, we found

that a/b is a universal function of u, independent of cluster size

and supersaturation. In the limit u / 0, the aspect ratio obeys

a/bz 1 + u. Using gz 0.161kBT/LD and uz 0.65, as predicted

by Onsager theory for the planar isotropic–nematic inter-

face,39,44,45 and inserting these numbers into eqn (12), we find

a/b z 1.61. This value should be compared with our simulation

result that a/b ¼ zmax/rmax ˛ [1.3, 2], i.e. the theory is consistent

with the simulation result. Similar results were obtained recently

in a theoretical study based on a minimization of the free energy

of a macroscopic nematic droplet.46,47 Because of a competition

between the interfacial tension, the anchoring strength, and

bulk elasticity, this theory predicts different morphologies of

nematic tactoids as a function of a dimensionless elastic stiffness

k h K/gV1/3 and u, where K denotes the Frank elastic constant,

and V the volume of the droplet. Using again K and u from

Onsager theory,39,44,45,48 we find k [1 with V equal to the size

of our clusters. For these values, the theory predicts
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homogeneous spheroidal (ellipsoidal) droplets with an aspect

ratio of 1 + u x 1.65. Our simulation results are in good agree-

ment with these theoretical predictions.

In addition, we calculate the theoretical Gibbs free-energy

barrier as a function of the long semi-axis a of the cluster. In

Fig. 8, we compare the theoretical predictions for the Gibbs

free-energy barrier with our simulation results. We find that

the theoretical predictions for both the long semi-axis as well

as the barrier height are of the same order as those obtained in

the simulations. However, a is underestimated systematically in

the simulations compared to CNT, which is probably due to

the strict cluster criterion that we had to use in our umbrella

sampling in order to be able to distinguish the nematic clusters

from the isotropic phase. Above, we already mentioned that

a more detailed investigation of the structure of the nematic clus-

ters in our simulations shows that the clusters are surrounded by

a diffuse nematic layer with a width of about the length L of the

rods. A simple way to take into account the diffuse interface is by

simply adding about half the interfacial width (x 0.5L) to the

long semi-axis a, i.e., the free-energy barriers for nucleation are

shifted in horizontal direction by about 0.5 in Fig. 8. Employing

this horizontal shift of the free-energy barriers, we now find

reasonable agreement between theory and simulations. Finally,

we note that a more accurate value for the surface tension g

has been obtained recently by simulations of a HSC fluid with

L* ¼ 15.49 We check that the theoretical predictions did not

change considerably by using this value for g. For consistency,

we use the values from Onsager theory for u, g, and K in our

calculations. In conclusion, our simulations agree qualitatively

with the theoretical prediction of our generalization of CNT to

anisotropic particles, where we assume a homogeneous director

field and clusters of ellipsoidal shape.

B. Binary mixture of hard rods and polymers

We now focus on the I–N transition in a binary mixture of

colloidal hard rods and non-adsorbing polymer. The addition
This journal is ª The Royal Society of Chemistry 2008



Fig. 9 Evolution of the size of the biggest cluster n in the system (scale at

right), the nematic order parameter S of the biggest cluster and of the

total system (scale at left) for a mixture of rods and polymers represented

by an effective pair potential with L* ¼ 5, radius of gyration of the poly-

mer Rg ¼ 0.25s, and polymer fugacity zp ¼ 0.514 at P* ¼ 1.2. The inset

shows a typical configuration of the labyrinth structure observed in the

spinodal decomposition regime.

Fig. 10 Gibbs free energy DG/kBT as a function of the nematic cluster

size n of a rod–polymer mixture represented by an effective pair potential

for the rods with L* ¼ 5, radius of gyration Rg ¼ 0.25s, and polymer

fugacity zp ¼ 0.514 at pressure P* ¼ 0.90 and 0.91. As a guide to the

eye we have fitted the barrier with an 8th degree polynomial.
of polymer to a suspension of rods, induces an effective polymer-

mediated attraction between the rods, which we model by an

effective pair potential.29 This pair potential depends on the rela-

tive orientation of the rods and the center-of-mass distance

vector. Surprisingly, our results on the I–N nucleation is hardly

affected by the attractive interactions.

We study the I–N transition for a system of hard spherocylin-

ders with L* ¼ 5, polymer fugacity zp ¼ 0.514, and polymer

radius of gyration Rg ¼ 0.25s. First, we quench a well-equili-

brated isotropic configuration to a pressure beyond bulk coexis-

tence. In Fig. 9, we show the evolution of the size of the biggest

cluster n in the system, the nematic order parameter S of the

biggest cluster, and of the total system for a relatively large

supersaturation of P* ¼ 1.20. We find an I–N transformation

that is similar to the spinodal decomposition case that we also

found in the largely supersaturated hard-rod fluids: In the early

stage of the transition, many clusters appear simultaneously.

These clusters start to coalesce and form an interconnected ‘laby-

rinth’ structure. As the original clusters have different orienta-

tions, the system-spanning interconnected cluster has a lower

nematic order parameter than the original ones. The inset of

Fig. 9 shows a typical configuration of the percolating intercon-

nected cluster. Subsequently, the nematic order of this cluster

increases as the original clusters reorient. At the same time, the

size of the cluster grows by addition of new particles to the cluster,

until the whole system is transformed into the nematic phase.

At lower supersaturation, we were unable to find a sponta-

neous transition from the isotropic to the nematic phase within

the time of our simulations. In this regime, we use again

umbrella-sampling techniques to study the free-energy barrier

for nucleation and the structure of the nuclei. In Fig. 10, we

show the Gibbs free-energy barrier for a rod–polymer mixture

at supersaturations P* ¼ 0.90 and 0.91. At the lowest supersat-

uration of these, P* ¼ 0.90, we are not able to find the maximum

of the barrier as the biggest nematic cluster starts to percolate.

We can only conclude here that the height of the barrier is DGcrit

> 25kBT and ncrit > 250 for P* ¼ 0.90. For P* ¼ 0.91, we find

DGcrit z 14kBT and ncrit z 110.
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For P* ¼ 0.91, we analyze the structure of the clusters for

different cluster sizes. Contour plots of the density and nematic

order parameter profiles are shown in Fig. 11. In the top panel of

Fig.11, we present contour plots of the density profiles of the

nematic particles in the cluster r*(z, r) for cluster sizes: n ¼ 60

and n ¼ 90 (subcritical), n ¼ 110 (critical), and n ¼ 130 (postcrit-

ical). In the bottom panel, we show contour plots of the nematic

order parameter profiles S(z, r) of all the particles for the same

cluster sizes as displayed for the density profiles. Again, we

find that all density profiles of the nematic particles in the cluster

are ellipsoidal in symmetry, as also found for the HSC fluids.

However, the shape of the clusters seems to be more rectangular

for the rod–polymer mixtures. The density at the center of the

cluster is higher than far away from the cluster and has a value

close to that of the corresponding bulk nematic phase. The

aspect ratio of the clusters vary in the range zmax/rmax ˛ [1.3,

1.8]. As in the case of the HSC fluid, we again observe significant

fluctuations in the aspect ratio of the instantaneous clusters. The

contour plots of the nematic order parameter profiles present

a similar behavior, an ellipsoidal symmetry with values close to

the corresponding nematic bulk phase in the center of the

nucleus and a value close to the isotropic phase far away from

the center of the cluster. The similarities of the shape, aspect

ratio, and symmetry of S(z, r) and r*(z, r) suggest again a homo-

geneous director field in the cluster, without significant director

distortions and anchoring to the cluster surface.

Fig. 11 shows clearly that there are no qualitative difference

between subcritical, critical, and postcritical clusters, as was also

found for the HSC fluid with L* ¼ 15. We conclude, that the

shape, aspect ratio, symmetry, and director field are independent

of cluster size for the systems and conditions considered here.
V. Summary and conclusions

In this paper, we have used computer simulations to study the

isotropic–nematic transformation for two different types of

systems of rods: i) fluids of colloidal hard rods of lengths L* ¼ 5

and 15, and ii) a binary mixture of hard rods with non-absorbing

polymer represented by an effective one-component system of

attracting rods. In our study we have found, for both type of

systems, two regimes depending on the supersaturation. At high

supersaturation of the isotropic phase, the transition to the
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Fig. 11 Contour plots of the density profiles (top row) and nematic order parameter profiles (bottom row) as a function of the distance from the center-

of-mass of the cluster in the direction parallel (z*¼ z/s) and perpendicular (r*¼ r/s) to the nematic director for a cluster size n¼ 60 and n¼ 90 (subcrit-

ical), n ¼ 110 (critical), and n ¼ 130 (postcritical) at P* ¼ 0.91 in a mixture of rods with L* ¼ 5 and polymers with radius of gyration Rg ¼ 0.25s, and at

polymer fugacity zp ¼ 0.514.
nematic phase occurs due to the formation of many small

nematic clusters. These droplets coalesce and form an irregular

and ‘labyrinth’ structure that grows until the whole system is

transformed into the nematic phase. This type of coarsening

strongly resembles that of spinodal decomposition. The existence

of spinodal decomposition has been predicted theoretically by

Onsager,37 and has been studied experimentally in Ref. 19. In

Ref. 27, the IN spinodals for pure hard rods were pinpointed

by a vanishing collective rotational diffusion coefficient. For

attractive rods, spinodal demixing is probably governed by

rotational and translational diffusion. It would therefore be

interesting to investigate the spinodal decomposition kinetics

using our effective polymer-mediated attractive rod–rod interac-

tions in Brownian dynamics simulations.

At lower supersaturation the mechanism is different: first, the

system stays for a long period of time in the metastable isotropic

fluid state. After a certain induction time, a single cluster starts to

grow until the whole system is transformed into the nematic

phase. These characteristics are typical for nucleation and

growth. When the transition is due to nucleation and growth,

the systemhas to overcome aGibbs free-energy barrier. The struc-

ture of the nuclei observed in the nucleation and growth regime

are very similar for both the hard-rod fluids and the rod–polymer

mixture, at least for the parameters studied here. They both show

nuclei with an ellipsoidal shape with an aspect ratio 1.3 < a/b < 2,

and a uniform nematic director field inside the cluster.
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Our results are in accordance with experimental observations

of both phenomena in solutions of boehmite rods,19 F-actin,24

clay rods,23 and on mixtures of rod-like viruses and polymer.18,22

Our simulations show, however, that the critical cluster size is

many times smaller than the experimentally observed tactoids.

This suggests that the ‘long-lived and stable’ tactoids that are

observed experimentally are post-critical and are in a late stage

of the phase separation, i.e., the tactoidal growth regime. We

hope that our findings stimulate new experiments on the nucle-

ation process at an early stage of the phase separation.

We have also discussed our results in the light of classical

nucleation theory (CNT). We modified the standard CNT to

non-spherical nuclei and anisotropic surface tensions. We

assume a homogeneous nematic director field, thereby ignoring

the free-energy cost for elastic deformations. We also assume

an ellipsoidal shape for the nuclei. We find that our simulation

results agree qualitatively with the predictions obtained from

the generalized CNT. The aspect ratio of the nuclei and the

barrier height are reasonably well predicted. In order to compare

the size of the critical cluster, we have to realize that our cluster

criterion is very strict and that the simulated clusters are sur-

rounded by a diffuse interface with an interfacial width of the

order of the length of the rods. Simply adding half the interfacial

width to the semi-axis of the droplets gives, however, reasonable

agreement between the free-energy barriers as obtained from

simulations and theory. It is worth noting that the long semi-axis
This journal is ª The Royal Society of Chemistry 2008



of the critical droplets is of the same order of magnitude as the

interfacial width, i.e. critical nucleus is actually not at all

a bulk nematic state. We therefore feel that there is an urgent

need to improve the CNT of these systems by taking into

account the diffuse character of the interface, i.e., to allow for

an inhomogeneous density profile inside the clusters.

Finally, we note that our new cluster criterion opens up

a whole new field in which the kinetics of many other phase tran-

sitions of anisotropic particles can be studied, including transi-

tions in molecular fluids and in systems of attractive rods, for

which recent experiments show intriguing phenomena such as

surface-induced smectic phases on nematic tactoids, smectic

membranes winding off from tactoids as twisted ribbons, and

melting of lamellar phases.18,50 The study of the isotropic–

smectic transition of short hard rods is in progress and will be

reported elsewhere. In future work, we plan to investigate the

isotropic-to-smectic transition in mixtures of hard rods and poly-

mers at higher polymer concentrations, using the simulation

techniques presented here. We hope that our study will shed light

on the transient structures found experimentally.18
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