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We study the phase behavior of a mixture of colloidal hard rods with a length-to-diameter ratio of
L/o.=5 and nonadsorbing ideal polymer. We map our binary mixture onto an effective
one-component system by integrating out the degrees of freedom of the polymer coils. We derive a
formal expression for the exact effective Hamiltonian of the colloidal rods, i.e., it includes all
effective many-body interactions and it is related to the exact free volume available for the polymer.
We determine numerically on a grid the free volume available for the ideal polymer coils “on the
fly” for each colloidal rod configuration during our Monte Carlo simulations. This allows us to go
beyond first-order perturbation theory, which employs the pure hard-rod system as reference state.
We perform free energy calculations for the isotropic, nematic, smectic, and crystal phase using
thermodynamic integration and common tangent constructions are used at fixed polymer fugacities
to map out the phase diagram. The phase behavior is determined for size ratios g=0,/0,.=0.15, 0.5,
and 1, where o, is the diameter of the polymer coils. The phase diagrams based on the full effective
Hamiltonian are compared with those obtained from first-order perturbation theory, from
simulations using the effective pair potential approximation to the effective Hamiltonian, and with
those based on an empiric effective depletion potential for the rods. We find that the many-body
character of the effective interactions stabilizes the nematic and smectic phases for large ¢, while the
effective pair potential description overestimates the attractive interactions and favors, hence, a

broad isotropic-crystal coexistence. © 2006 American Institute of Physics.

[DOLI: 10.1063/1.2202853]

I. INTRODUCTION

The addition of nonadsorbing polymer to a suspension of
colloidal rods can be used to purify the rods' or to modify
the effective interactions between the rodlike particles.2 The
presence of polymer leads to an effective attraction between
the rods due to the so-called depletion effect.’ The range of
this attraction is equal to the radius of gyration of the poly-
mer coils and the strength of the attraction is proportional to
the fugacity of the polymers.S’4

For spherical colloids, a particularly simple model for
colloid-polymer mixtures was proposed by Vrij,4 which is
often referred to as the Asakura-Oosawa-Vrij (AO) model. In
this model, the colloids are modeled as hard spheres with
diameter o, while the polymer coils with diameter o, are
assumed to be ideal and noninteracting. Moreover, the poly-
mer coils are excluded by a center-of-mass distance of (o,
+0,)/2 from the colloids. In this simple model colloid-
polymer mixture, Vrij showed the existence of a spinodal
instability. Moreover, the effective two-body or Asakura-
Oosawa depletion potential can be calculated analytically for
this highly idealized model. Gast et al. calculated phase dia-
grams using this effective pair potential in first-order thermo-
dynamic perturbation theory and employing the hard-sphere
system as a reference state.” They found that the addition of
polymer can give broad fluid-solid coexistence regions, but
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also stable fluid-fluid and colloidal gas-liquid-solid coexist-
ence, for sufficiently large polymer coils. Similar phase dia-
grams were determined by Lekkerkerker et al. using the so-
called free-volume approach6 and by Meijer and Frenkel
using computer simulations with lattice polymers.7’8 Re-
cently, another approach was followed in Refs. 9-13, which
is based on a mapping of the binary mixture onto an effective
one-component system. A formal expression for the effective
colloid Hamiltonian can be derived by integrating out for-
mally the degrees of freedom of the polymer coils in the
partition function.'*”" This effective Hamiltonian consists of
zero-body, one-body, two-body, and higher-body terms,
where the two-body (pairwise-additive) term is precisely that
given by the ésakura-Oosawa depletion potential. For size
ratios ¢<<2/y3-1=0.1547, three- and higher-body terms
are zero and the mapping onto an effective Hamiltonian trun-
cated at the effective pair potential level is exact. Full phase
diagrams using the two-body (Asakura-Oosawa pair poten-
tial) approximation to this effective Hamiltonian were deter-
mined by computer simulations."> For higher size ratios,
however, three- and higher-body effective interactions are
not necessarily small. We therefore developed an efficient
Monte Carlo simulation scheme for the AO model, based on
the exact or full effective colloid Hamiltonian, i.e., it in-
cludes all the effective many-body interactions.'*" Employ-
ing this scheme, we are able to study the full phase diagram
and we found that the effective many-body interactions can
significantly alter the phase behavior of colloid-polymer
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mixtures. In conclusion, the AO model is well studied and
well understood by now for colloidal hard spheres. This
should be contrasted to the case of nonspherical particles.

The effect of nonadsorbing polymer on the isotropic-
nematic transition of rodlike colloids was investigated by
Lekkerkerker et al.® using the perturbation theory. The free
volume accessible to the polymers was calculated using the
scaled particle theory. Simulations of mixtures of colloidal
hard rods with polymer are, however, less advanced. Ap-
proximate phase diagrams are determined for hard sphero-
cylinders and ideal polymer using thermodynamic perturba-
tion theory and measuring the free volume available for the
polymer in a pure hard-spherocylinder system in
simulations.'® The isotropic-isotropic coexistence was, how-
ever, determined by performing Gibbs ensemble simulations
of the true binary colloidal rod-polymer mixture.'® As there
is no general expression for the effective polymer-mediated
pair potential for two rods with arbitrary orientations and
positions, Bolhuis ef al. used a generalized square-well po-
tential to draw some qualitative conclusions on the phase
behavior of short-ranged attractive rods.'® The crystal phase
was, however, not included in this study.

In the present paper, we describe simulations of mixtures
of colloidal hard rods and ideal polymer using the exact ef-
fective one-component Hamiltonian, i.e., it includes all the
effective many-body interactions. We therefore extended our
Monte Carlo simulation scheme'>" for the effective colloid
Hamiltonian to rodlike particles. Employing this scheme, we
are able to study the full phase diagram for arbitrary values
of g. We compare our simulation results with those obtained
from thermodynamic perturbation theory using the hard-
spherocylinder system as reference state. In addition, we
compare the phase diagrams with those obtained from simu-
lations using the effective pair potential approximation to the
effective Hamiltionian. This allows us to estimate the impor-
tance of the effective many-body interactions. We also pro-
pose a new two-parameter effective pair potential to approxi-
mate the volume of two overlapping depletion zones.

The paper is organized as follows. In Sec. II, we describe
the model and present an explicit expression for the effective
one-component Hamiltonian by integrating out the degrees
of freedom of the polymer coils in the partition function. We
also introduce the two-parameter effective pair potential to
approximate the depletion pair potential, i.e., the volume of
two overlapping depletion zones. In Sec. III we describe the
simulation scheme based on the exact or full effective colloid
Hamiltonian. In Sec. IV we present phase diagrams based on
(i) the exact effective Hamiltonian, (ii) the exact effective
Hamiltonian but using first-order perturbation theory, (iii) the
effective pair potential approximation to the effective Hamil-
tionian, and (iv) an empiric effective depletion potential for
the rods. We end with some concluding remarks.

II. MODEL
A. Effective Hamiltonian

A simple model for a mixture of sterically stabilized col-
loidal particles and nonadsorbing polymer is the so-called
AO model.>* In this model, the colloids are treated as hard
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particles, while the noninteracting polymer coils are treated
as point particles, which are excluded from the surface of the
colloids by a distance equal to the radius of gyration of the
polymer R,. The diameter of the polymer coils is 0,=2R,.
The colloids are represented by hard spherocylinders, which
consist of cylinders of diameter o, and length L with semi-
spherical caps at both ends with diameter o,.. The pair poten-

tials in this model are given by

R’d)l’w _ m (7R Rt thad | C

¢cc( ij ]) 0 otherwise,

) 0 fOr dm(R,—l'§6)z)<O-C /2

¢c‘p(Ri BRIE ;) = i j !
0 otherwise,

d)pp(rij) = O»

where o.,=0.+0,, R;;=R;—R; with R, and R, the center-of-
masses of the spherocylinders and d,,(R;;; @;, ®;) denotes the
minimum distance between the central axes of the two
spherocylinders with orientations ®; and @;, d,,(R;~=r;; ;)
the minimum distance between the spherocylinder axis and
the polymer center-of-mass at r; in the case of colloid-
polymer interactions, and rij:|r,-—rj| the distance between
the two polymer center-of-masses.

The total Hamiltonian of a mixture of N, colloidal rods
and N, ideal polymer coils in a volume V and at temperature
T reads H=H_..+H,+H,, where Hcc=2§¥j¢cc(RiJ-;d)i,c€)j),
H,,=3}3 ¢, (Ri—r;; @), and H,,=32.¢h,,(r;;)=0.

In this paper, we map the rod-polymer mixture with in-
teraction Hamiltonian H onto an effective one-component
colloid system interacting with the effective Hamiltonian
H', Here we briefly sketch the derivation of a formal ex-
pression for the effective Hamiltonian for colloidal particles
that possess orientational degrees of freedom, obtained by
integrating out the degrees of freedom of the polymer coils
in the partition function. For more details, we refer the reader
to Refs. 9-13.

We fix the number of colloidal rods N, and the fugacity
zpzA;3 exp(Bu,,) of the polymer coils, where A, denotes the
thermal wavelength of species v=c,p, u, the chemical po-
tential of the reservoir of polymer coils, and B=1/kgT the

inverse temperature. The thermodynamic potential
F(N.,V,z,,T) of this system can be written as
1
exp[~ BF] = ——=5Tr, exp[~ BH"], (1)

3N,
N AN

where H*'=H_ .+ and the trace Tr, is short for the integrals
over the coordinates and the orientations of the rods
JvdRMe [ d@Me. Because of the ideal character of the polymer-
polymer interactions in the AO model, B} simplifies to

N{‘
_BQ:ZPJ dr exp —,32 (rbcp(Ri_r;é)i) =2,V (2)
Vv i=1

where V;=V/({R:®}:z,) is the volume available for polymer,
which depends on the static configuration of N, colloidal
rods with positions {R;} and orientations {@;};
i=1,2,...,N.. Nonvanishing contributions to V; stem from
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those positions r that are outside any of the N, depletion
zones. Once V/, and thus H, are known for each colloidal
rod configuration, the thermodynamics and the phase behav-
ior of the mixture can be determined. We first show that V/,
and hence, the polymer-induced colloid interactions €} can
be split into zero-body, one-body, two-body, etc., contribu-
tions. To this end, we expand Vf in terms of the colloid-
polymer Mayer function f(R;—r;®;), which for the present
model equals ~1 for 0<d,,(R;~r;®;) <o,,/2, and 0 other-
wise, with d,,(R;—r;®;) the minimum distance between the
spherocylinder axis and position r. We arrive at

NC
Vf:fdrH [1+f(R;,-1;0,)]

NL‘ NC
=V + 2 VIR:6) + 2 VPR R; 0,) + -

i<j

NC
+ 2 VIR LRGG )+, (3)

k; iy’ s
i< <y,

where the zero-body contribution V}O) is equal to the volume
of the system V. For k=1, we find

k
wp:fdrn R, ~rid,). ()
m=1

m

The one-body contribution can be interpreted as the volume
that is excluded for a polymer coil by a single rod. The
two-body term is the overlap volume of two depletion zones
of two colloidal rods. Introducing n=n(r) E—Eﬁfl f(R,;
-r;®;), the number of simultaneously overlapping depletion
layers in r, one finds the identity

N,

c

> V}")(Ril,

i< <y

_ n(r)!
Ry)=(- l)kfn?kdr(n(r)—k)!k!'
(5)

All k" =k terms in Eq. (3) can be summed to obtain (for the
present Mayer function only)

N(‘
V=31 2 VOR LR, 6 @)

ikr; i i

ek | i<<ip
(_ )k k-1
=k =1

The terms V' s V(l) are irrelevant offsets that do not influence
the thermodynamic properties of the bulk mixture."! Setting
V}3+) equal to zero, the pairwise additivity approximation is
recovered.

B. Effective pair potential description

In the case of spherical colloids, it can be shown explic-
itly that for sufficiently small polymer coils, the three-body
and higher-body terms are identially zero, and that the map-
ping onto an effective Hamiltonian truncated at the effective
pair potential level is exact. Hence, the pairwise additivity

approximation to the effective Hamiltonian, i.e., Vl(f”:O

b}
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proves to be a reasonable approximation to predict the phase
behavior of the AO model for polymer coils that are small
compared to the size of the colloids. For spherical colloids,
the effective pair potential is given by the Asakura-Oosawa
depletion potential,3 which is known analytically, while S
can only be evaluated numelrically.13 In the case of colloidal
rods, the overlap volume of two infinitely long cylindrical
depletion zones can be calculated exac:tly.”’18 However, no
analytic expression exists for the overlap volume of two
depletion zones of finite spherocylinders with arbitrary ori-
entations and positions and, hence, V}z) can only be calcu-
lated numerically. The numerical evaluation of V}z) is almost
as expensive as V" that includes all the effective many-
body interactions. It is therefore useful to have a good model
pair potential that is mathematically simple and fits reason-
ably well the exact overlap volume of two depletion zones.
Bolhuis ef al.'® approached this problem by using a general-
ized square-well potential, which provides qualitatively cor-
rect phase diagrams, when the size of the polymer is small
compared to the diameter of the rods. It lacks, however,
quantitative agreement with the exact overlap volume of the
depletion zones of two spherocylinders, thereby overestimat-
ing significantly the attraction (especially at larger distances).

Here we propose a two-parameter pairwise additive
depletion potential Beye(R;;, ®;, ®;) to approximate the ex-
act overlap volume of the depletion zones of two spherocyl-
inders  Voyerap(Rjj, @;,@;), and hence By, (R;j, @y, @;)
=2,V =2, Vovertap(R;j» @;, @;). We start with the assump-
tion that the overlap volume of the depletion zones can be
fitted by the overlap of two axially symmetric anisotropic
Gaussian functions. The overlap integral of two Gaussian
distributions can be calculated exactly to give19

2 DA A2

bacep(Ryj, @, @) = &(;, @j)e_Rff/(r(R‘f’ @), (7)
where ﬁij is the unit vector in the direction of the center-of-
mass distance of two rods, Ri_]-E|Ri—R,~ .&(@;,@;) is the
angle-dependent strength parameter given by &(a@;,®))
=go(1-x*(@;- ®;)*)~""2, with the parameter y determined by
the anisotropy of the particles, and O'(ﬁij, @;,®;) is the angle-
dependent range parameter. Various modifications of these
single site potentials with angle-dependent strength and
range parameters exist’®? tailored to fit the wide range of
anisotropic interactions.

Here we construct a modified single site potential that
fits reasonably well the exact overlap volume of the deple-
tion zones. The first modification is to replace the center-to-
center distance R;; in (7) to the minimum distance x
=d,(R;;;®;,®;)/ o, between the spherocylinder axes to-
gether with a replacement of the angle-dependent range pa-

rameter O'(ﬁij;d)i,d)j) by simply the isotropic interaction
range o, such that the range of the potential at the mini-
mum distance is independent of the orientation. The second
modification is to replace the Gaussian potential in Eq. (7) by
a more realistic expression. The first option is to use the
volume excluded by two spheres, which fits accurately the
interaction of perpendicular cylinders, or parallel ellipsoids.
Moreover this choice is convenient for an extrapolation from

hard rods to hard spheres using a Parsons approach. As this
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FIG. 1. A schematic sketch of the interaction lengths for two spherocylin-
ders with a length-to-diameter ratio L/¢,. and nonadsorbing polymer coils
with diameter o, The positions and the orientations of the spherocylinders
are denoted by R;, R;, ;, and @;. The interaction length is defined as the
length of that part of the cylinder axis of the spherocylinder for which there
are points on the axis of the other spherocylinder within a distance o,
Moreover, the interaction length should also satisfy a second constraint,
which can be determined as follows. Take the shortest distance from the two
end points of one spherocylinder axis to the other spherocylinder axis. This
yields two points on the central axis of the other spherocylinder (or an
extension thereof). The interaction length should lie in between these two
points. The interaction lengths x and N are denoted by the thick lines.

paper is focused on the liquid crystalline behavior of elon-
gated rods, we use here the overlap volume of two parallel
cylinders with diameter o, per unit length at a minimum
distance x,

fx)= —Se[arccos(x) —xv1=x7]. (8)

In addition, we define a new strength parameter, which is a
function of @&; and @; as well as on R;;. To this end, we
replace the anisotropy parameter x in &(R;;;®;,®;) by an
angle- and distance-dependent anisotropy parameter
X(Rij;(f)i,é)j), which is used to ensure that the overlap vol-
ume remains constant when two nonparallel cylinders slide
along each other, and changes when two nearly parallel rods
shift along each other. To achieve this, we introduce the con-
cept of interaction length, which can be interpreted as the
length of the spherocylinder that is felt by the other sphero-
cylinder. We illustrate this in Fig. 1. This length is defined as
the length of that part of the central axis of the spherocylin-
der for which there are points on the axis of the other sphero-
cylinder within a distance o, i.e., that part of the cylinder
that lies within the other spherocylinder with a length-to-
diameter ratio L/20,,. The anisotropy parameter is now
based not on the actual length and diameter of the sphero-
cylinder, but rather on the interaction length of the two
spherocylinders, say, N and u. For large polymer diameters,
however, it is possible that when two aligned spherocylinders
shift along each other, they still feel each other by the full
length of the cylinder axis even for considerable shifts. We
correct this by the following constraint. We take the shortest
distance from the two end points of one spherocylinder axis
to the other spherocylinder axis. This yields two points on
the central axis of the other spherocylinder (or an extension
thereof). Our second constraint is that the interaction length
lies between these two points.

The anisotropy parameter for two identical ellipsoids
was calculated by Berne and Pechukas."” Here, we use a
simple multiplication of the square root of the anisotropy
parameter of an ellipsoid with major and minor axes A
+0, and o, times the square root of the anisotropy param-
eter of an ellipsoid with major and minor axes u+o,, and

Ocp-
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X(Rij;‘?)i’d)j) = XZ()\»,U«)
- (g)\ + Ucp)z - (a-cp)2 (é/‘l’ + a-cp)2 - (Ucp)z
(g}\ + Ucp)2 + (a-cp)2 (é/’l’ + Ucp)2 + (O-Cp)z )

)

Moreover, we introduce the fitting parameter ¢ to correct for
the difference in overlap volumes of ellipsoids and of
spherocylinders. This anisotropy parameter yields the correct
results for identical rods and vanishes in the case when only
the spherocylinder cap interacts with the cylinder, i.e., when
M or N\ equals zero.

Finally, our modified two-parameter depletion pair po-
tential that approximates the exact overlap volume of two
depletion zones reads

2 )
£007, arccos(x)—xv1 - x?

/ N N b
2 L= X (@;- @)

with x*(\, u) given by (9). The two fitting parameters &, and
& can be determined independently from each other. To this
end, we employed a fit of [drrexp(z,Voyerap)=Jdrrexp(
~Bdgep) for a pair of spherocylinders that are perpendicular
to each other and for two spherocylinders that are parallel.
The exact overlap volume of two depletion zones Ve, €an
be calculated analytically in a few cases or otherwise nu-
merically. We like to stress that for spherocylinders of fixed
diameter o, and polymer size o, £ is rather independent of
the spherocylinder length L, which justifies the use of the
interaction length. Figure 2 shows the good agreement be-
tween the exact overlap volume with the two-parameter
depletion pair potential (10) for a system of colloidal hard
rods with L/o.=5 and nonadsorbing polymer coils with di-
ameter o, and g=0,/0,=0.5. The values of the fitting pa-
rameters are displayed in Table I for the size ratios employed
in this work.

Paep(Ryj, @, @) = (10)

lll. SIMULATIONS

In Sec. II we derived the effective Hamiltonian of the
colloids by integrating out the degrees of freedom of the
polymer coils in the partition function. The key quantity in
the effective Hamiltonian is the available volume V; for the
polymer coils which depends on the instantaneous colloid
positions {R;} and orientations {&,}. We calculate V; numeri-
cally on a smart grid, which allows us to employ the full
effective Hamiltonian or to employ the pairwise additivity
assumption for the effective Hamiltonian by setting V}3+)=O.
As already noted in Refs. 12 and 13, the standard Metropolis
algorithm in Monte Carlo simulations is based on the accep-
tance probability min(1,exp[-BAHT]), with AHT the
change of H° due to a displacement of a single colloidal rod
at position R; — R with orientation &, — @&;. The only con-
tributions to AV, and hence to AH®T occurs inside the two
spherocylinders with length-to-diameter ratio L/ o, centered
about R, with orientation @; and about R] with orientation
;. We mesh these two spherocylinders by a uniform grid
with typically (0.8—1.8) X 10° grid points. It is convenient to
use the coordinate frame of the spherocylinder, in which the
central axis of the spherocylinder coincides with the z axis.
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FIG. 2. The negative of the exact overlap volume of two depletion zones
~Viovertap (plusses) and the approximate effective pair potential (solid lines)
for two spherocylinders with L/o.=5, and 0,/0,=0.5 as a function of a
center-of-mass displacement in the r direction. (a) Parallel spherocylinders
oriented in the z direction for a fixed shift of the center of mass of the
second spherocylinder in the z direction. The curves from bottom to top
denote a shift of z/0,=0,1,2,3,4,5. (b) Two spherocylinders with zero z
shift, the second one rotated about the line through the center of masses by
0=0, arccos(12/13), /2 from bottom to top.

Subsequently, all the other spherocylinders, whose depletion
zones overlap with the depletion zone of this spherocylinder,
are transformed to this coordinate frame. We also correct for
the grid points that belong to both grids of the spherocylin-
ders.

We performed NVT Monte Carlo simulations of the iso-
tropic and nematic phase using 762 particles in a cubic box.
For the smectic and crystal phases, we employed 462 and
240 particles, respectively. In addition, we allowed for box
shape fluctuations during our simulations of the smectic and
crystal phases, while the total volume of the system was kept
fixed. Equilibration is checked by monitoring the free vol-
ume accessible for the polymers. In order to determine the
phase diagram of the effective one-component system, we
first calculate the thermodynamic potential F, defined in Eq.
(1), as a function of N,.,V,z,. The polymer fugacity z, is

TABLE I. The values of the fitting parameters &, and ¢ of the two-parameter
depletion potential for a system of colloidal hard rods with a length-to-
diameter ratio L/o.=5 and nonadsorbing polymer coils with diameter o,
and varying diameter ratios =0,/ 0.

q £0/2 &
0.15 0.277 089 4.144 77
0.50 0.546 528 2.747 85
1.00 0.875 059 2.293 93
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FIG. 3. Phase diagrams for a mixture of hard spherocylinders with
L/o.=5 and nonadsorbing polymer coils with a diameter o,,. The size ratio
q=0,/0.=0.15. (a) Phase diagram based on the full effective Hamiltonian,
i.e., including all effective many-body interactions, thermodynamic integra-
tion (—), first-order perturbation theory (- - -), and (b) phase diagram based
on the effective pair potential approximation to the effective Hamiltonian,
ie., Mﬁ”:o (—), and using the two-parameter effective depletion potential

(10) (--).

related to the reservoir packing fraction 7/;5 WU;ZP/ 6. We
use thermodynamic integration to relate the free energy
F(7.,z,) of the effective system to that of a reference system
of pure hard rods at the same colloidal rod packing fraction
n.=ma (1+3/2La,)N,/6V.

BF(7,.2,) = BF(7,.0) - f T a vz, (11)
0

The free energies for the reference system of pure hard
spherocylinders are determined from the equation-of-state
data obtained from simulations of Ref. 23. The thermody-
namic integration is based on typically 20-30 points in the
(7:.z,) plane for each phase. Once the free energies are
known for each phase as a function of 7. and z,, we can
determine the densities of the coexisting phases by equating
the pressures and chemical potentials in both phases.

IV. RESULTS AND DISCUSSION

The procedure described above was used to determine
the phase behavior of mixtures consisting of colloidal hard
rods with a length-to-diameter ratio L/o.=5 and nonadsorb-
ing polymer coils with a radius of gyration R,=a,/2. We
mapped out the phase diagram for diameter ratios g=0,/ 0,
=0.15, 0.5, and 1. Fig. 3 shows the phase diagrams for ¢
=0.15 in the (7., 177,) plane. In Fig. 3(a), we present the re-
sulting phase diagram based on the full effective many-body
Hamiltonian. The binodals are shown by the solid lines. In
this representation, the tie lines connecting coexisting state
points are horizontal. The phase diagrams show thermody-
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FIG. 4. Same as in Fig. 3, but for ¢=0.5.

namically stable regions of the isotropic (/), nematic (N),
smectic-A (Sm), and crystalline (K) phases. At 7,=0, we
recover the I-N, N-Sm, Sm-K transition of the pure hard-rod
system. Increasing 77[’,, we observe an enormous broadening
of the Sm-K coexistence region, while the /-N and N-Sm
coexistence region broadens only slightly. We also find that
the smectic phase becomes metastable with respect to the
nematic phase for 7]; higher than the N-Sm-K triple point,
resulting in a broad N-K coexistence region. At slightly
higher 7]1’], the phase diagram shows an /-N-K triple point and
an /-K coexistence, which widens upon increasing 77[’,. For
comparison, we also plot the phase diagram based on first-
order perturbation theory (dashed lines), where we assume
that the available free volume for the polymer does not de-
pend on the polymer fugacity, ie., we set VA7,,z,)
=V{(7.,0). We observe that in first-order perturbation theory
all the binodals and triple points are slightly shifted to lower
polymer reservoir packing fractions compared to the exact
phase diagrams. For this size ratio the mapping of the binary
mixture onto an effective one-component system with only
effective pair potentials, i.e., VJ(fJ'):O, is exact. In Fig. 3(b),
we compare the phase diagram based on the effective pair
potential description to the effective Hamiltonian (solid
lines) with the one based on the two-parameter effective
depletion potential (10) (dashed lines). Figure 3(b) shows
that employing the effective depletion potential yields a shift
of the binodals to lower polymer reservoir packing fractions,
but the overall agreement is reasonable.

In Fig. 4, we present the phase diagrams for g=0.5. We
now observe a broadening of both the N-Sm and the Sm-K
coexistence region upon increasing 77;. At sufficiently high
7][’), an I-N-Sm triple point and subsequently, a broad /-Sm
coexistence region appears. At slightly higher 7];, we find a
I-Sm-K triple point and a broad I-K coexistence region,
which widens even further upon increasing 77;. The first-
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FIG. 5. Same as in Fig. 3, but for g=1.

order perturbation theory (dashed lines) results again in a
shift of all binodals towards lower polymer reservoir packing
fractions. For ¢=0.5, the effective three- and higher-body
many-body interactions are not identical to zero, and Fig.
4(b) shows the phase diagram based on the effective pair
potential approximation to the effective Hamiltonian (solid
lines), i.e., V}3+)=0. We find that neglecting the effective
many-body interactions results in a shift of the broad I-K
coexistence region to lower 77;, and it widens the /I-N coex-
istence region. Figure 4(b) also shows the phase diagram
based on the two-parameter effective depletion potential (10)
(dashed lines). Again, we find that employing the effective
depletion potentials results in a shift of the binodals to lower
polymer reservoir packing fractions.

In Fig. 5, we present the phase diagrams for g=1. We
now observe a slight widening of the N-Sm and the Sm-K
coexistence region upon increasing 7];. Moreover, we find at
sufficiently high 1]1’,, an /-1 coexistence region ending in a
critical point. For polymer packing fraction higher than the
critical point a phase separation occurs in an isotropic “gas”
phase which is dilute in colloidal rods and an isotropic “lig-
uid” phase which is dense in rods. Upon increasing 7];, an
I-I-N triple point is found and the liquid phase becomes
metastable with respect to the nematic phase. A broad I-N
coexistence region is observed for 7]1’, higher than the I-I-N
triple point. Upon increasing 171’,, we observe successively an
I-N-Sm triple point, a broad /-Sm coexistence, an /-Sm-K
triple point, and finally, a broad I-K coexistence region. First-
order perturbation theory (dashed lines) shows an overall
shift of all binodals, triple points, and the critical point to-
wards lower polymer reservoir packing fractions. Figure 4(b)
shows the phase diagram based on the effective pair potential
approximation to the effective Hamiltonian (solid line). We
find that the main effect of the many-body interactions is that
the /-1 demixing transition is enhanced and that the binodals
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FIG. 6. Typical configuration of a mixture of colloidal hard rods with
L/o.=5 and nonadsorbing polymer (not visible) with ¢=0.5 well inside the
broad isotropic-crystal coexistence region at a colloidal rod packing fraction
7.=0.0884 and a polymer reservoir packing fraction 7,=0.26 using the
semi-empiric potential (10).

are shifted to higher 7][’,. Moreover, we find that the nematic
and smectic phases are stabilized by the many-body interac-
tions, resulting in broad /-N and I-Sm coexistence regions.
Figure 4(b) also shows the phase diagram based on the two-
parameter effective depletion potential (10) (dashed lines).
Again, we find that employing the effective depletion poten-
tial results in a shift of the binodals to lower polymer reser-
voir packing fractions.

In summary, we find that the phase diagram for large
polymer coils displays an isotropic “gas-liquid” phase sepa-
ration ending in a critical point and an /-I-N triple point.
Moreover, the phase diagram shows /-N-Sm and /-Sm-K
triple points and broad coexistence of I-N, I-Sm, and I-K
phases. For smaller polymer coils, we find that the polymer
reservoir packing fractions of the /-N-Sm triple point moves
to higher values and consequently, we only find broad I-K
coexistence regions. Reducing the polymer coils even fur-
ther, we observe an /-N-K and a N-Sm-K triple point. The
topologies of these phase diagrams as a function of g are
consistent with the first-order perturbation theory calcula-
tions in Ref. 16. In addition, we find that the two-parameter
depletion potential yields reasonable agreement with the ex-
act phase diagrams, in particular, at small g. This potential
can be used in nucleation studies where the simulations
based on the exact effective Hamiltonian is computationally
too expensive. Very recent experiments on mixtures of fd
virus particles and dextran (nonadsorbing polymer) by Dogic
and Fraden showed different kinetic pathways of the forma-
tion of the smectic or crystal phase as a function of the exact
dextran concentration.”* At low polymer concentrations, they
observe the nucleation of colloidal membranes that consist of
a single layer of rods, which can coalesce laterally. At higher
polymer concentrations, the membranes can stack on top of
each other to form long thin filaments. Figures 6 and 7 show
typical configurations of a mixture of colloidal hard rods
with L/o,=5 and nonadsorbing polymer (not visible) with a
diameter ratio g=0.5 well inside the broad isotropic-crystal
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FIG. 7. Same as Fig. 6, but at 7,=0.32.

coexistence region at 7.=0.0884, 771’,=O.26 and at 7.
=0.0884, 77;=0.32, respectively, using the semi-empiric po-
tential (10). In Fig. 6, we find the formation of single mem-
branes, while Fig. 7 shows the formation of long filaments.
These results are in agreement with these experimental find-
ings. Note that we ignored completely in our “integrating out
procedure” the possibility of gel formation at very high poly-
mer concentrations. In order to take this into account, one
should resort to more detailed and expensive simulations of
the true binary mixture that includes a realistic description of
the polymers. The formation of filaments was studied theo-
retically by Frenkel and Schilling.25 The nucleation of the
crystal phase in a pure fluid of hard rods (7,=0) with
L/o.=2 was investigated in an earlier simulation study.26
This work shows that in the earliest stages of nucleation, a
colloidal crystalline membrane is formed, but nucleation
growth is then hampered by the fact that the top and bottom
surfaces of this crystallite are preferentially covered by rods
that align parallel to the surface; the surface poisons itself.?
For the length-to-diameter ratio considered in this work, i.e.,
L/o.=5, we find a sequence of I-N, N-Sm, and Sm-K tran-
sitions upon increasing the density at 77;=0, in contrast with
a direct transition from the isotropic fluid to the crystalline
phase for L/o.=2. Preliminary nucleation studies of a pure
fluid of hard rods with L/o.=5 show the nucleation and
growth of the nematic phase in a supersaturated isotropic
phase without any self—poisoning.27 As the nematic (smectic)
phase is orientationally ordered, we do not expect self-
poisoning in the case of the smectic (crystal) nucleation for
L/o.=5. More detailed nucleation studies of mixtures of col-
loidal rods with polymer-mediated effective attractions will
be the future work.
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