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We study the phase behavior of hard and soft spheres with a fixed dipole moment using Monte Carlo
simulations. The spheres interact via a pair potential that is a sum of a hard-core Yukawa �or screened-
Coulomb� repulsion and a dipole-dipole interaction. The system can be used to model colloids in an external
electric or magnetic field. Two cases are considered: �i� colloids without charge �or dipolar hard spheres� and
�ii� colloids with charge �or dipolar soft spheres�. The phase diagram of dipolar hard spheres shows fluid,
face-centered-cubic �fcc�, hexagonal-close-packed �hcp�, and body-centered-tetragonal �bct� phases. The phase
diagram of dipolar soft spheres shows, in addition to the above mentioned phases, a body-centered-
orthorhombic �bco� phase, and is in agreement with the experimental phase diagram �Nature �London� 421,
513 �2003��. In both cases, the fluid phase is inhomogeneous but we find no evidence of a gas-liquid phase
separation. The validity of the dipole approximation is verified by a multipole moment expansion.
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I. INTRODUCTION

Colloidal particles in an external electric or magnetic field
whose dielectric constant or magnetic susceptibility is differ-
ent from that of the solvent, acquire a �electric or magnetic�
dipole moment parallel to the field. The behavior of the col-
loids is governed by the dipole-dipole interaction, whose
strength can be tuned by the magnitude of the field. Due to
their unique shearing properties, such suspensions are called
electrorheological �ER� and magnetorheological �MR� fluids.
ER/MR fluids have potential use in industrial applications as
hydraulic valves, clutches, brakes �1�, and displays �2�.
Moreover, the possibility to tune the crystal structure of these
suspensions by an external field, makes these suspensions
appealing for photonic applications �3–5�.

The equilibrium structure of these fluids has been the sub-
ject of many experimental �3,4,6–8�, theoretical �9–15�, and
simulation studies �16–20�. In an early theoretical study, Tao
et al. proposed that above a certain critical field strength the
system experiences a phase transition to a solid structure �9�.
In Ref. �10�, Tao and Sun studied the crystal structure of the
solid phase and found that, of the structures that they con-
sidered, a body-centered-tetragonal �bct� structure was the
one with the lowest energy. The bct structure predicted by
Tao and Sun has been observed both by computer simula-
tions �16,18,19� and by experiments �3,4,6,7�.

In our earlier work �21�, we determined the phase diagram
of two dipolar systems: �i� colloids without charge �or dipo-
lar hard-spheres� and �ii� colloids with a charge Ze=300e
and inverse Debye screening length �in units of the colloid
diameter �� of ��=10 �dipolar soft-spheres�. The phase dia-
gram of dipolar hard spheres shows fluid, face-centered-
cubic �fcc�, hexagonal-close-packed �hcp�, and bct phases.
The phase diagram of dipolar soft spheres shows, in addition
to the above mentioned phases, a body-centered-
orthorhombic �bco� phase. As we showed, the phase diagram
of dipolar soft spheres is in good agreement with the experi-
mental phase diagram in Ref. �3�. We were able to explain
the appearance of a body-centered-orthorhombic �bco� phase
based on simple arguments. Furthermore, our calculations

proposed hexagonal-close-packed �hcp� crystal as the high-
density stable phase in systems with dipolar interactions. In
this paper, we give a more detailed description of the simu-
lations in Ref. �21�. Also, we discuss the multipole moment
expansion method that was used in Ref. �21� to verify the
energy difference between the fcc and hcp phases. Finally,
we briefly study the structure of the fluid phase.

This paper is organized as follows. In Sec. II we describe
the model and the methods used in the simulations. In Sec.
III we present the results. In Sec. IV we conclude.

II. MODEL AND METHODS

We use a dipole approximation to describe the pair poten-
tial between two dielectric or magnetic particles. Figure 1�a�
illustrates the situation and shows two particles with diam-
eter � that are separated by a vector r. The vector r forms an
angle � with the z axis, which is parallel to an external elec-
tric �E� or magnetic �H� field. In the case of an electric field,
the particles and the solvent have a dielectric constant of �p
and �s, respectively, whereas in the case of a magnetic field,
the particles and the solvent have a magnetic susceptibility of

FIG. 1. Dipole-dipole interactions. �a� Two particles with diam-
eter � connected by a vector r. The vector r forms an angle � with
the z axis. The external electric �E� or magnetic �H� field is parallel
to the z axis. In the case of an electric field, the particles have a
dielectric constant �p and the solvent �s. In the case of a magnetic
field, the particles have a magnetic susceptibility �p and the solvent
�s. �b� The dipole-dipole interaction favors configurations where
the dipoles �denoted by the white arrows� are oriented head-to-toe.

PHYSICAL REVIEW E 72, 051402 �2005�

1539-3755/2005/72�5�/051402�10�/$23.00 ©2005 The American Physical Society051402-1

http://dx.doi.org/10.1103/PhysRevE.72.051402


�p and �s, respectively. The external field induces a �electric
or magnetic� dipole moment on the particles, which is paral-
lel to the field direction �the z axis�. The dipole-dipole inter-
action is given by

udip�r�
kBT

=
�

2
��

r
�3

�1 − 3 cos2 �� , �1�

where kB is the Boltzmann constant and T is the temperature.
In the case of electric dipoles, the prefactor � is given by

� =
��3	2�s�Eloc�2

8kBT
, �2�

where Eloc is the local electric field, which is a sum of the
external field E and the field induced by the other dipoles
Edip �10,17,22�, i.e., Eloc=E+Edip. In Eq. �2�, 	= ��p

−�s� / ��p+2�s� is the polarizability of the particles. In the
case of magnetic dipoles, � is given entirely symmetrically,
and it is written as

� =
��3	2�s�Hloc�2

8kBT
, �3�

where 	= ��p−�s� / ��p+2�s� and Hloc=H+Hdip is the local
magnetic field �23�.

For charged colloids, we supplement the dipole-dipole in-
teraction in Eq. �1� with a soft repulsion caused by like-
charge repulsion. According to the Derjaguin-Landau-
Verwey-Overbeek �DLVO� theory �24,25�, the pair
interaction between two charged colloids is given by a repul-
sive Yukawa �or screened Coulombic� plus the hard core
potential as

uY�r�
kBT

= ��
exp�− ��r − ���

r/�
, r 
 � ,

� , r � � ,
	 �4�

where

� =
Z2

�1 + ��/2�2


B

�
�5�

is a constant prefactor depending on the colloidal charge
number Z, the Debye screening length �−1, and the Bjerrum
length 
B=e2 /�skBT of the solvent. Since we are interested in
modeling systems where the Van der Waals attraction is very
small due to refractive index matching, we have neglected it
in Eq. �4�. The phase behavior of repulsive Yukawa particles
is well known from earlier studies �26–30�, where it has been
shown that, depending on the density, prefactor �, and
screening length �−1, the system exhibits fluid, body-
centered-cubic �bcc�, and face-centered-cubic �fcc� phases.

Using the pair potentials in Eqs. �1� and �4�, we perform
Monte Carlo �MC� simulations in the canonical ensemble
�NVT�, where we fix the number of particles N, the volume
V, and the temperature T �31�. The simulation box is periodic
in all three directions. Typical number of particles in our
simulations is N=144–288, and cubic, or nearly cubic, simu-
lation boxes are used. Because of the long-range nature of
the dipolar interactions, we use the Ewald summation
method to evaluate the potential in Eq. �1� �31,32�. Both the

Yukawa and the dipolar potential are truncated at half of the
shortest box side length. The width of the Gaussian distribu-
tion, the tunable parameter in the Ewald sum, is optimized
according to the analytical estimates given in Ref. �33�.

In our simulations, we consider the fluid, bcc, bct, bco,
fcc, and hcp phases. The body-centered �bcc, bct, and bco�
structures are aligned such that the particles form strings par-
allel to the z axis �the field direction�, see Fig. 2�a�. The
body-centered box side lengths are given in the x, y, and z
axis directions by a, b, and c, respectively. Shown in Fig.
2�b� are the bco and bct structures viewed along the z axis.
As can be seen from Fig. 2�b�, the bco and bct structures can
be constructed by placing strings of particles into two inter-
penetrating rectangular �a�b� lattices. The particles in the
strings are displaced by c /2 in the z direction. The bco struc-
ture can be thought of as an asymmetric version of the bct
structure. The maximum packing of the bct structure is ob-
tained when a=b= �
6/2�� and c=�, corresponding to a
packing fraction �=��3N /6V=2� /9�0.698. Note that, the
bcc phase has a=b=c. The fcc and hcp structures are de-
picted in Figs. 2�c� and 2�d�, respectively. Both fcc and hcp
are oriented with the �111� plane perpendicular to the z axis.

The phase behavior was studied by MC simulation runs
and by Helmholtz free energy calculations. We used the MC
simulation runs to obtain a rough estimate of the phase be-
havior, after which the more accurate free energy calcula-
tions were performed to check the result and to determine the
phase boundaries more exactly. Phase coexistence regions
were determined by a common tangent construction from
Helmholtz free energies that were calculated using thermo-
dynamic integration methods. We used the 
-integration
method for the fluid phase and the Frenkel-Ladd method for

FIG. 2. �a� Body-centered structure in three dimensions, whose
conventional unit cell is a�b�c. The field is along the z axis. The
white arrows show the direction of the field-induced dipole mo-
ments. The bct structure corresponds to a=b�c, and the bco to a
�b, c�a, and c�b. �b� Top-view of the body-centered structure
that can be constructed by placing strings of particles shifted by c /2
into two interpenetrating rectangular lattices. �c�, �d� The hcp and
fcc structures shown in side and top views. The hcp structure has
AB stacking of the hexagonal planes; the fcc ABC.

A.-P. HYNNINEN AND M. DIJKSTRA PHYSICAL REVIEW E 72, 051402 �2005�

051402-2



the solid phase �31,34�. As a reference state, we used the
hard-sphere fluid for the fluid phase and the noninteracting
Einstein crystal for the solid phase. The numerical integra-
tion was done with a Gaussian quadrature using 10 �or in
some cases 20� integration points. The statistical averages
needed in the free energy calculations were calculated from
MC simulation runs that consisted of 10 000–200 000 MC
steps �trial moves per particle�, and that were first equili-
brated with the same �or similar� number of MC steps.

Due to the dipole-dipole interaction, compression along
the z axis lowers the energy of all our crystal phases. There-
fore, in order to get reliable results, we need to optimize the
z axis side length. For the bct, fcc, and hcp phases, we cal-
culated the free energies for various z axis side lengths and
used the minimum value to determine the phase boundaries.
In the case of soft repulsions, the bco unit box symmetry,
given by c and the ratio a /b, was determined by varying a /b
and c to find the minimum of the Madelung energy �energy
of an ideal crystal per particle�. If the minimum state had
strings in touching configurations �c=��, we set c=1.01� to
ensure that efficient MC sampling of the system is still pos-
sible. For some systems, also other choices such as c
=1.04� and c=1.005� were tried, but in general, the results
did not depend strongly on the choice of c.

III. RESULTS

A. Phase diagrams

Our model presented in Sec. II can be described by four
independent dimensionless parameters: the packing fraction
�, the strength of the dipolar interaction �, the colloidal
charge Z, and the inverse screening length ��. We fix the
colloidal charge Z and study the phase behavior in a constant
�� plane, i.e., our phase diagrams are plotted in the �� ,��
representation.

In Fig. 3, we show the phase diagram of the dipolar hard
spheres �i.e., �=0� in the �� ,�� representation. At zero dipole
moment strength ��=0�, the well-known hard-sphere fluid-
fcc coexistence with the coexisting phases at �fluid=0.494
and at �fcc=0.545 is recovered. At ��0, the fluid-fcc coex-
istence switches to fluid-hcp coexistence. Increasing the di-
pole moment strength from �=0 to �=6.5 does not change
the fluid-hcp coexistence much. At ��6.5, the bct phase is
the stable crystalline phase at low densities, while the hcp
phase is, due to more efficient packing, still the stable phase
at packing fractions ��0.57. At the dipole moment strength
��8.0, the system phase separates into a �string� fluid phase
and a bct phase. Figure 4�a� shows a snapshot of the string
fluid phase, where the view is along the z axis �i.e., parallel
with the field� and we observe strings that look similar to
individual particles or small clusters of particles. The strings
can be seen in the inset of Fig. 4�a�, which shows the same
snapshot but viewed such that the z axis is horizontal. The
statepoint of the snapshot in Fig. 4�a�, and the other snap-
shots in Fig. 4, are denoted by the letters �a�, �b�, �c�, and �d�
in Fig. 3. The fluid-bct phase coexistence region broadens
with increasing dipole moment strength and at �=13.1, the
fluid phase has turned into a very low density gas phase �or

void�. Figure 4�b� shows a snapshot of an MC simulation
well inside the gas-bct phase coexistence region at ��=13.1,
�=0.4�. For comparison, a snapshot of a stable bct phase
with the same � is shown in Fig. 4�c�.

At ��13.1, the gas-bct coexistence broadens further and,
at ��38, the bct phase has packing fraction �bct=0.66 close

FIG. 3. The phase diagram of dipolar hard-sphere particles in
the �dipole moment strength �, packing fraction �� representation.
The circles denote points where the phase boundary was determined
and the grey areas denote coexistence regions �where tie lines are
vertical�. The letters �a�, �b�, �c�, and �d� mark the state points where
the snapshots shown in Fig. 4 are taken.

FIG. 4. Snapshots of the dipolar hard-sphere systems in �a�
string fluid phase at ��=8.0, �=0.01�, �b� gas-bct coexistence phase
at ��=13.1, �=0.4�, �c� stable bct phase at ��=13.1, �=0.5�, and
�d� gas-bct coexistence phase at ��=26.1, �=0.3�. See Fig. 3 for the
locations of the snapshots in the phase diagram.
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to the maximum packing. Snapshot Fig. 4�d� illustrates the
gas-bct phase separation at high dipole moment strength ��
=26.1�. We expect at higher dipole moment strengths �i.e.,
��38�, a very broad gas-bct coexistence between a void
�low density gas phase� with packing fraction ��0.0 and a
bct phase at the maximum packing �=0.698. As can be seen
from Fig. 3, the stability of the hcp phase is reduced when
the dipole moment strength is increased, and beyond ��25
the hcp phase is stable only above the maximum bct packing.

The ground-state ��=�� phase behavior of dipolar hard
spheres has been studied in Ref. �20�, where the authors
found a gas-bct coexistence at �� �0,0.698�, a stable high-
density bco phase at �� �0.698,0.724�, a bco-hcp coexist-
ence at �� �0.698,0.740�, and a stable hcp phase at �
=0.740. This sequence of phases and in particular, the pres-
ence of the bco phase, should also be present in our dipolar
hard sphere phase diagram at ��40, but we did not extend
our simulations to high enough � to observe it. The reason
for this is that at very high values of �, the simulations are
hampered by sampling problems as the displacement moves
become difficult due to strong dipole-dipole interactions.
Note that for dipolar soft spheres �which are discussed next�
it is possible to reach higher � because the soft repulsion
compensates partly for the dipolar interaction.

Next, we consider the case where the particles, in addition
to the dipole-dipole interaction, interact via the Yukawa re-
pulsion in Eq. �4� with parameters ��=10.0 and Z=300. For
a solvent with Bjerrum length 
B /�=0.005, these parameters
correspond to a contact value �=12.54. The phase diagram
for this dipolar soft sphere system is shown in Fig. 5. At zero

electric field, the phase diagram in Fig. 5 shows a fluid-fcc
phase coexistence with the two phases at packing fractions
�fluid=0.31 and �fcc=0.32. At ��0, the fcc phase is replaced
by the hcp phase. As is seen from Fig. 5, even a small
amount of electric field ���4� is sufficient to suppress the
stability region of the hcp phase considerably and to replace
it by a bco phase, which is stable at low densities for 4��
�10. In the phase diagram in Fig. 5, at ��17, the bct phase
emerges as the stable low-density crystal. Further increase of
the dipole moment strength from ��17 reduces the signifi-
cance of the soft repulsion relative to the dipolar attraction,
therefore increasing the region of the stable bct phase. Fi-
nally, at ��67, the bco phase vanishes completely. Increas-
ing the dipole moment strength reduces the stability region
of the hcp phase and, at ��100, the hcp phase is only stable
at packing fractions higher than the maximum body-centered
packing.

The phase diagram in Fig. 5 shows that the fluid-bct co-
existence region, starting at ��38, broadens quickly with
increasing dipole moment strength �. At ��67, the fluid
phase in coexistence with the bct phase consists of strings of
particles �string fluid phase�, while the fluid phase is ex-
tremely dilute, i.e., ��0, for ��100. At ��180, we expect
that the coexisting bct phase reaches the maximum packing
��0.698.

In Fig. 6, we plot a reproduction of the experimental
phase diagram of Ref. �3�. We have renamed some of the
phases in the experimental phase diagram. Firstly, we call the
space-filling tetragonal �sft� phase of Ref. �3� bct. Secondly,
the non-space-filling bct phase of Ref. �3�, which consist of
small bct crystallites with voids, corresponds to our gas-bct
coexistence. Experimentally, one observes a micro phase
separation instead of a macroscopic phase separation, which
depends strongly on the kinetics and dynamics of the phase
separation and on how fast the electric field is switched on.
For comparison with Fig. 6, the upper horizontal axis in Fig.
5 gives the �root mean square� electric field strength Er.m.s..
The � to Er.m.s. conversion is done using

Er.m.s. = 2

�1 − 	
�

6
�

�	�

 kBT�

�s�
3�

, �6�

where we used parameter values that correspond to the ex-
perimental system of Ref. �3�: 	=−0.105, T=300 K, �s

FIG. 5. The phase diagram of dipolar soft sphere particles with
Yukawa parameters ��=10.0 and Z=300 �that with 
B /�=0.005
correspond to a contact value �=12.54� in the �dipole moment
strength �, packing fraction �� representation. The circles denote
points where the phase boundary was determined and the grey area
denotes the coexistence region �where tie lines are vertical�. The
upper horizontal axis gives an estimate of the root-mean-square
external electric field, see text for details.

FIG. 6. A reproduction of the experimental phase diagram in
Ref. �3�.
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=5.6, and �=2 �m. For the derivation of Eq. �6�, see, e.g.,
Refs. �10,17,22�. We have assumed a cubic lattice, for which
the local field is given by Eloc=E / �1−	� /6� �10�. As can be
checked from Figs. 5 and 6, the external electric field
strength Er.m.s. has the same order of magnitude in both phase
diagrams. Our phase diagram for dipolar soft spheres in Fig.
5 shows a remarkable structural agreement with the experi-
mental phase diagram in Fig. 6. Both phase diagrams show,
at low electric field strength, the same sequence of fluid, bct,
and bco phases upon increasing �, and at high electric fields,
phase separation between a gas �void� and a bct phase. The
main difference between the two phase diagrams is the bcc
phase, which is seen experimentally at zero electric field but
which is not present in the theoretical phase diagram. This
dissimilarity is due to the different Z and � in the experi-
ments and the simulations. More exact determination of
these parameters would require further characterization of
the experimental conditions.

B. Stability of bco phase

In this section, we explain how the soft repulsion give rise
to the bco phase. Note that, we mean the bco phase in the
phase diagram in Fig. 5, not the high-density bco phase dis-
cussed earlier, which, according to Ref. �20�, appears at very
high � in the dipolar hard sphere phase diagram in Fig. 3.

The emergence of the bco phase is most easily explained
as follows. Due to dipolar interactions, the particles form
strings in the z direction. If two strings are close to each
other, it is favorable to shift one string by c /2 in the z direc-
tion with respect to the other string, as the dipole-dipole
interaction favors configurations with small angles �, see Eq.
�1�. Consequently, two kind of strings, say A and B, are
obtained. In Fig. 2�b�, A strings are black and B strings are
grey. The interactions between the strings are such that simi-
lar strings �A-A and B-B� repel each other more than dissimi-
lar strings �A-B�. This is why the bct is stable: it minimizes
the A-B distance. Soft Yukawa repulsion of A-A strings and
A-B strings are very similar �A-B being slightly weaker�, and
it favors configurations where all neighboring strings have
almost equal distances. This is achieved by increasing the
ratio a /b. Hence, the bco phase. Note that in a hexagonal
state �which is the ground state if all strings are similar� all
nearest neighbors distances are equal and a /b=
3�1.73.

In order to make the above description more quantitative,
we calculated the Madelung energies for a bco crystal at a
fixed � as a function of a /b. Figure 7 shows the change in
Madelung energy

�UM�a/b� = UM�a/b� − UM�1� �7�

of a bco crystal �with c=�� at packing fractions �=0.27, 0.4,
and 0.5. At �=0.27, the minimum of the Madelung energy is
at a /b=1 and, therefore, the ground state is bct. At �=0.4
and 0.5, the minimum is at a /b�1.4, meaning that the
ground state is bco. Next, we split the Madelung energy into
Yukawa and dipolar parts as

�UM�a/b� = �UM
Y �a/b� + �UM

dip�a/b� . �8�

Figure 8 shows the Yukawa ��UM
Y �a /b�� part of the Made-

lung energy and the inset the dipolar part ��UM
dip�a /b��. As

can be seen from Fig. 8, the dipolar part �UM
dip�a /b�, in-

creases monotonically with a /b, while �UM
Y �a /b� has a

minimum at a /b�1.5. Thus, the bco phase is stabilized by
soft repulsion.

C. Multipole moment expansion

The reason why the hcp phase is more stable than the fcc
phase is due to the difference between the Madelung energies
of the two structures: The hcp structure with the orientation

FIG. 7. The change in the Madelung energy �see Eq. �7�� of bco
crystals as a function of the asymmetry parameter a /b for dipolar
soft spheres with ��=10.0, Z=300 �corresponding to �=12.54 with

B /�=0.005� and �=37.5. The dotted line shows the result for
packing fraction �=0.27, the full line for �=0.4, and the dashed
line for �=0.5.

FIG. 8. Yukawa �or the soft repulsion� part of the change in the
Madelung energy of bco crystals as a function of the asymmetry
parameter a /b. The dotted line shows the result for packing fraction
�=0.27, the full line for �=0.4, and the dashed line for �=0.5. In
order to enable a comparison, the results have been shifted by
wY�1� to have the same value at a /b=1. The inset shows the dipolar
part of the Madelung energy.
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shown in Fig. 2�c� has a Madelung energy UM�hcp�=
−0.37066�4� �as in Refs. �7,17��, while the fcc structure
�whose energy is independent of the orientation� has a Made-
lung energy UM�fcc�=−0.37024�4� �as in Refs. �10,17��.
Although the Madelung energy difference between hcp and
fcc is small, 1.7��10−3kBT per particle, so is their zero-field
free energy difference: For hard spheres �35�, the free energy
per particle of the fcc is about 1�10−3kBT lower than that of
the hcp. Therefore, for dipolar hard spheres, the hcp is ex-
pected to be stable for ��1, which is consistent with Fig. 3.

In order to check that the Madelung energy difference
between the fcc and hcp crystals is a real effect and not an
artifact of the dipole approximation, we calculated the differ-
ence using the multipole moment expansion method of Ref.
�36�. The total Coulomb energy per particle is given by

u = −
2�a3

3�kBT
�E�2�eff, �9�

where a=� /2 is the radius of the particles constituting the
structure, � is the volume fraction, and E is the applied elec-
tric field. The method in Ref. �36� allows one to calculate the
effective dielectric constant �eff with any number of multi-
poles. In the following we briefly describe the method. For
more details we refer the reader to the original article �36�.
We consider �max+1 spheres with a dielectric constant �p in
one unit cell embedded in a solvent with a dielectric constant
�s. According to Ref. �36�, The effective dielectric constant
�eff is given by

�eff = �s�1 − F�s�� , �10�

where

F�s� =
�

�max + 1 

u=1

umax �
�=0

�max Uu,�10�2

s − su
. �11�

In Eq. �11�, Uu,�10 is the ��, l=1, m=0� component of the uth
eigenvector of matrix �= ���lm,��l�m��, su is the corresponding
eigenvalue, s=1/ �1−�p /�s� is a material parameter, and � is
the index of the sphere in the unit cell. Note that �max=1 for
hcp and �max=0 for Bravais lattices such as fcc and bct. The
index m= �−l , . . . , l� and l= �1, . . . , lmax�. The elements of the
matrix � are defined as

��lm,��l�m� = 

�=0

�max



R

�̂lm,l�m��R + R�� , �12�

where the summation goes over all lattice points R, R� is the
displacement of the �th sphere with respect to the origin, and

�̂lm,l�m��R� = sl�� dr3��r� � �lm
* �r� · ��l�m��r + R� .

�13�

In Eq. �13�, ��r� is the characteristic function of the particles,
having value 1 inside the sphere and 0 outside, �lm

* denotes
the complex conjugate of �lm, and

�lm�r� = f l�r�Yl
m��,�� , �14�

f l�r� = �
�r/a�l


la
, for r � a ,

1

�r/a�l+1
la
, for r � a ,	 �15�

where Yl
m�� ,�� are the spherical harmonics and the spherical

coordinate system is defined as �37�

rx = r cos���sin��� ,

ry = r sin���sin��� ,

rz = r cos��� , �16�

where �� �0,�� and �� �0,2��. We define the relationship
between the spherical harmonics and the associated Leg-
endre polynomials as

Yl
m��,�� =
2l + 1

4�

�l − m�!
�l + m�!

Pl
m�cos ��eim�, �17�

where the Condon-Shortley phase �−1�m is included in the
Legendre polynomials �unlike in Ref. �36��. After evaluating
the integrals in Eq. �13�, we obtain

�̂lm,l�m��0� =
l

2l + 1
�ll��mm�,

�̂lm,l�m��R� =
 ll�

�2l + 1��2l� + 1�
Blm,l�m�S�R� , �18�

where

Blm,l�m� = �− 1�l�+m
4�
 �l + l� + m� − m�!�l + l� + m − m��!
�2l + 2l� + 1��l + m�!�l − m�!�l� + m��!�l� − m��!

, �19�

and

S�R� =
Yl+l�

m�−m��,��

Rl+l�+1
. �20�
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In Eq. �18�, �ll� and �mm� are discrete Kronecker delta func-
tions. As noted in Ref. �36�, the summation in Eq. �12� is
only conditionally convergent for l+ l��2 as it involves
terms which decay slower than 1/R3. Therefore, we used the
Ewald method to evaluate the sums with l+ l��4 �Note that
in Ref. �36�, the Ewald method was used for l+ l��6.� The
Ewald sums are given in the Appendix. Once the matrix
elements ��lm,��l�m� are determined from Eq. �12�, the eigen-
vectors Uu and the eigenvalues su can be solved easily. The
calculation was implemented with MATHEMATICA®. We
tested our program by calculating the dielectric constants for
the bct, fcc, hcp, and bcc crystals, and compared the results
with the numerical values given in Ref. �36�. In order to
obtain the same accuracy as in Ref. �36�, 20–27 multipole
contributions �i.e., lmax=20–27� were included in the calcu-
lation.

In Fig. 9, we plot the difference between the effective
dielectric constants of the hcp and fcc crystals at packing
fraction ��0.72948 as a function of the ratio �p /�s. The
grey line plots the result of the dipole approximation where
lmax=1, and the black lines plots the result of the exact cal-
culation where lmax=27. As can be seen from Fig. 9, the hcp
crystal has a higher effective dielectric constant than the fcc
crystal for �p /�s�0, which results, according to Eq. �9�, in a
lower energy than fcc. Figure 9 also shows that in the region
where �p /�s�1, the contribution from the multipole mo-
ments favors the hcp phase even more than what is expected
based on the dipole approximation alone. Note that the ex-
periments in Ref. �3� are in this region as they have �p /�s
�0.7. In the region where �p /�s�1, the multipole moments
decrease the energy difference between hcp and fcc crystals.

D. Fluid phase

In both hard and soft dipolar systems, we observed a
highly inhomogeneous fluid phase: The MC simulations
showed large local density fluctuations in the fluid phase,
reminiscent of a gas-liquid phase separation. However, no
spinodal instability was found. An example of a Helmholtz
free energy �F� curve is shown in Fig. 10, where we plot

F /V as a function of � for the dipolar hard sphere fluid at
dipole moment strength �=8.0. This system has an inhomo-
geneous fluid phase at ��0.3, as can be seen from Fig. 4�a�
that shows a snapshot of the system at �=0.01. However, as
Fig. 10 shows, the free energy density curve is convex, and
therefore, no gas-liquid phase separation is possible. On the
other hand, the free energy density F /V is almost linear with
�. This means that the compressibility, which is proportional
to the second derivative of F /V with respect to �, is very
small. The small compressibility explains the appearance of
an inhomogeneous fluid phase.

IV. CONCLUSIONS

We have determined the phase diagrams of dipolar hard
and soft spheres using Monte Carlo simulations. Two sys-
tems were considered: �i� colloids without charge �or dipolar
hard spheres� and �ii� colloids with charge Ze=300e and in-
verse Debye screening length of ��=10 �dipolar soft
spheres�. The simulations correspond to dielectric �or mag-
netic� particles in an external electric �or magnetic� field. The
phase diagrams were plotted as a function of the dipole mo-
ment strength � and the packing fraction �. In the phase
diagram of dipolar hard spheres, we found stable regions of
�string-� fluid, fcc, hcp, and bct phases, and regions of fluid-
hcp and fluid-bct coexistence. In the phase diagram of soft
spheres, we found all the above phases and also a stable
region of the asymmetric bco phase. The stability of the bco
phase was explained based on simple Madelung energy con-
siderations. We found the hcp phase as the new stable phase
in the high packing fraction region. In this region, the hcp
phase is more stable than the fcc phase, because of its lower
Madelung energy, and more stable than the bct phase, be-
cause of its higher entropy. We showed that the hcp phase
has a lower Madelung energy than the fcc phase even when
one goes beyond the dipole approximation and performs the

FIG. 9. The difference in the effective dielectric constants of the
hcp and fcc crystals at packing fraction ��0.72948 as a function of
the ratio �p /�s. The grey and black lines are the results of the dipole
approximation and the exact calculation, respectively. FIG. 10. The Helmholtz free energy per volume F /VkBT as a

function of � for dipolar hard sphere fluid with �=8.0. In the main
figure, a linear fit to the first four data points has been subtracted.
The inset shows the original free energy data. The lines are guide to
the eye.
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full calculation which includes all multipole moments. Our
results show that bulk hcp, bct, and bco crystals, can be
stabilized and therefore realized experimentally by applying
an external electric or magnetic field. It is important to re-
member that these crystal phases are unstable in the absence
of a field. Finally, in both systems, we observed an inhomo-
geneous fluid phase. However, we did not find any evidence
for a gas-liquid phase instability. Our free energy calcula-

tions showed that the free energy density vs packing fraction
is close to linear, indicating a small compressibility, which
explains why the fluid phase appears inhomogeneous.
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APPENDIX: EWALD SUMS

In this appendix, we essentially repeat the Appendix D of
Ref. �36�. This is done partly because the original article
contains some typos. Essentially, the summations in Eq. �12�
are of the form



R

YL
M��,��

�R + r�L+1 , �A1�

where L= l+ l� and M =m�−m. As noted in Ref. �36�, the
summation in Eq. �A1� can be related to summations over
the following tensors, which are obtained by successive dif-
ferentiations with respect to r

T0 =
1

�R + r�
, �A2�

Ti
1 = −

�R + r�i

�R + r�3
, �A3�

Tij
2 =

3�R + r�i�R + r� j

�R + r�5
−

�ij

�R + r�3
, �A4�

Tijk
3 = −

15�R + r�i�R + r� j�R + r�k

�R + r�7
+

3

�R + r�5
��ij�R + r�k

+ �ik�R + r� j + � jk�R + r�i� , �A5�

and

Tijkn
4 =

105�R + r�i�R + r� j�R + r�k�R + r�n

�R + r�9

−
15

�R + r�7
��in�R + r� j�R + r�k + � jn�R + r�i�R + r�k

+ �kn�R + r�i�R + r� j�

−
15�R + r�n

�R + r�7
��ij�R + r�k + �ik�R + r� j + � jk�R + r�i�

TABLE I. The relation between the tensors �A4�–�A6� and the
terms in the sum in Eq. �A1�. Here L= l+ l� and M =m�−m.

L M
1

�R + r�L+1YL
M��,��

2 2 
 5

96�
�Txx

2 − Tyy
2 + 2iTxy

2 �

2 1 −
 5

24�
�Txz

2 + iTyz
2 �

2 0
1

2

 5

4�
Tzz

2

3 3
1

120

35

�
�Txxx

3 − 3Txyy
3 + i�3Txxy

3 − Tyyy
3 ��

3 2
1

60

105

2�
�Tyyz

3 − Txxz
3 − 2iTxyz

3 �

3 1
1

24

21

�
�Tzzx

3 + iTzzy
3 �

3 0 −
1

12

 7

�
Tzzz

3

4 4
1

16
70�
�Txxxx

4 − 6Txxyy
4 + Tyyyy

4 + 4i�Txxxy
4 − Txyyy

4 ��

4 3
−

1

8
35�
�Txxxz

4 − 3Txyyz
4 + i�3Txxyz

4 − Tyyyz
4 ��

4 2
1

8
10�
�Txxzz

4 − Tyyzz
4 + 2iTxyzz

4 �

4 1
−

1

8
5�
�Tzzzx

4 + iTzzzy
4 �

4 0
1

16
�
Tzzzz

4
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+
3

�R + r�5
��ij�kn + �ik� jn + � jk�in� , �A6�

where �R+r�i is the ith �=�x ,y ,z�� component of the vector
R+r. The relation between the tensors in Eqs. �A4�–�A6�
with the terms YL

M�� ,�� / �R+r�L+1 in the sum �A1� are given
in Table I. Note that, as L= l+ l�
2, we do not list terms
with L�2. Thus, Table I can be used to convert the sums in
Eq. �A1� to sums over the tensors. The advantage of this is
that the tensor sums can be evaluated using the Ewald sum-

mation as shown in the following. The zeroth order tensor
sum is given by

T̃0 = 

R

T0 = 

R

erfc���R + r��
�R + r�

+ 

G

4�

vG2 exp�− G2/4�2�

�exp�− iG · r� , �A7�

where G is the reciprocal vector of R, v is the unit cell
volume, and � is a free parameter that is chosen to optimize
convergence. Separating out the divergent part of Eq. �A7�
and taking successive derivatives with respect to ri, we
obtain

T̃ij
2 = − 


G�0

4�

vG2GiGj exp�− G2/4�2�exp�− iG · r� + 

R
�erfc���R + r�� + �4�3�R + r�3

3
�
+

2��R + r�

�

�exp�− �2�R + r�2��Tij
2

+ 

R

4�3

3
�
�ij exp�− �2�R + r�2� , �A8�

T̃ijk
3 = i 


G�0

4�

vG2GiGjGk exp�− G2/4�2�exp�− iG · r� + 

R
�erfc���R + r�� + �4�3�R + r�3

3
�
+

2��R + r�

�

�exp�− �2�R + r�2��Tijk
3

− 

R

8�5


�

�R + r�i�R + r� j�R + r�k

�R + r�2
exp�− �2�R + r�2� , �A9�

and

T̃ijkn
4 = 


G�0

4�

vG2GiGjGkGn exp�− G2/4�2�exp�− iG · r� + 

R
�erfc���R + r�� + �4�3�R + r�3

3
�
+

2��R + r�

�

�
�exp�− �2�R + r�2��Tijkn

4 − 

R

8�5

3
�
�R + r�n�R + r�3Tijk

3 exp�− �2�R + r�2� − 

R

8�5


�

exp�− �2�R + r�2�
�R + r�2

���in�R + r� j�R + r�k + � jn�R + r�i�R + r�k + �kn�R + r�i�R + r� j − 2�R + r�i�R + r� j�R + r�k�R + r�n��2 +
1

�R + r�2�� .

�A10�

For r=0, the sums over R in Eqs. �A8�–�A10� should be
restricted by the constraint R�0. In this case, the sums over
the tensors are given by



R�0

Tij
2 = T̃ij

2 �R � 0� +
4�3

3
�
�ij , �A11�



R�0

Tijk
3 = T̃ijk

3 �R � 0� , �A12�

and



R�0

Tijkn
4 = T̃ijkn

4 �R � 0� −
8�5

5
�
��ij�kn + �ik� jn + � jk�in� .

�A13�
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