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Various manifestations of structural crossover in the properties of a binary mixture of hard-
spheres are studied. For homogeneous mixtures that are sufficiently asymmetric, there is a
crossover line in the phase diagram such that for thermodynamic states that lie on one side, the
decay of the three bulk pair correlation functions is oscillatory with a common wavelength
approximately equal to the diameter of the smaller spheres, and for states on the other side,
the common wavelength is approximately the diameter of the bigger spheres. Using
density functional theory it is shown that structural crossover manifests itself in the
intermediate range decay of (i) the one-body density profiles of a hard-sphere mixture
adsorbed at planar walls, (ii) the effective (depletion) potential between two big hard-spheres
immersed in the same binary mixture, and (iii) the solvation force, or excess pressure, of the
same mixture confined between two planar hard walls. The structural crossover line is
determined exactly for a one-dimensional binary mixture of hard-rods and evidence is
presented, based on density functional theory calculations and Monte-Carlo simulations,
for structural crossover in homogeneous binary mixtures of hard-disks in two dimensions.
By considering a multicomponent mixture of hard-spheres, with an appropriate bimodal
distribution of diameters, it is argued that structural crossover should still occur in the
presence of polydispersity and that these results could be relevant to colloidal mixtures where
correlation functions can be measured using real-space techniques.
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1. Introduction

In 1969 Michael Fisher and Ben Widom [1] published
an elegant paper in which they conjectured that there
should be a line in the phase diagram of a simple one-
component fluid at which the character of the longest
range decay of the total pair correlation function h(r)
changes from monotonic to exponentially damped
oscillatory. Their conjecture, which was based on exact
results for certain one-dimensional models, pertains
to fluids which exhibit liquid-gas phase separation.
Although the Fisher–Widom (FW) line constitutes
a sharp, well-defined crossover line, in say the tempera-
ture-density plane, it does not imply any accompanying

non-analyticity in the free energy of the bulk fluid and
therefore no phase transition. The significance of the
FW line for the structure of wall–fluid and liquid–gas
interfaces and for the asymptotic decay of the solva-
tion force in a confined fluid was not appreciated until
much later [2–4]. Indeed the first attempt at calculating
the FW line using a realistic theory of liquids (for
a square-well model) was not reported until 1993 [2].
Subsequently there have been several investigations
of FW crossover for various types of fluids using a
variety of liquid state theories and the first computer
simulation determination of the FW line (for a
truncated Lennard-Jones fluid) was reported in 2000
[5]. In the present paper we follow the spirit of FW
in that we seek qualitative changes in the asymptotic
decay of correlation functions corresponding to dif-
ferent regions of the phase diagram. Unlike FW,*Corresponding author. Email: grodon@mf.mpg.de
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we focus on binary mixtures and investigate
changes in the wavelength of the oscillations in various
structural quantities; we are not concerned with cross-
over from monotonic to oscillatory decay rather
with crossover from asymptotic oscillatory decay with
one particular wavelength to decay with a different
wavelength.
In a recent paper [6], denoted I, we showed that for

sufficiently asymmetric binary mixtures of (additive)
hard-spheres there is a sharp structural crossover line in
the ð�b, �sÞ phase diagram at which the common
wavelength of the longest range oscillations in the
three bulk pair correlation functions hbbðrÞ, hssðrÞ and
hbsðrÞ changes discontinuously from approximately �b,
the diameter of the bigger species, to �s, the diameter
of the smaller species. �b and �s denote the packing
fractions of big and small spheres. We also showed,
using density functional theory (DFT) and Monte Carlo
simulation (MC), that structural crossover manifests
itself at intermediate range, not just at longest range.
It follows that crossover might be observed in real-space
measurements of the pair correlation functions in
colloidal mixtures.
Here we investigate what repercussions this new

crossover line might have for the structure of inhomo-
geneous hard-sphere mixtures. We also examine other
properties of mixtures seeking further manifestations
of structural crossover.
Our paper is arranged as follows. In subsection 2.1

we summarize the main features of the general theory of
the asymptotics of pair correlation functions in binary
mixtures and outline the nature of structural crossover
found in bulk fluids in paper I. Subsection 2.2 presents
DFT results for one-body density profiles, �i (z), i ¼ s, b,
of the mixture at two types of planar wall. These
demonstrate clearly that structural crossover is just
as easy to observe at wall–fluid interfaces as in bulk.
Indeed a single pole approximation for �i (z) is just as
effective as the corresponding approximation [6] for
the pair correlation functions hijðrÞ. In subsection 3.1 we
consider the effective depletion W(r) potential between
two big hard spheres immersed in the binary mixture.
Using a particle insertion method, based on Widom’s [7]
potential distribution theorem, combined with DFT
we show that the intermediate and long range behaviour
of W(r) provides a clear signature of crossover, i.e. the
wavelength of the oscillations in the depletion potential
exhibits the same variation with the thermodynamic
state point ð�b, �sÞ as is found in hijðrÞ. An equivalent
conclusion is reached in subsection 3.2 for the solvation
force fs (L) which arises when the binary hard-sphere
mixture is confined between two planar hard walls
separated by a distance L. The oscillations in this
thermodynamic quantity mimic closely those found in

hijðrÞ and in the wall–fluid density profiles �i (z).
Throughout we focus on a mixture with size ratio
q ¼ �s=�b ¼ 0:5. However, there is nothing special
about that particular choice for q as we pointed out in
paper I.

In section 4 we extend our analysis to the case
of polydisperse hard-sphere mixtures, bearing in mind
that polydispersity is always relevant in colloidal
systems. We calculate, using DFT, the density
profiles for a multicomponent mixture with a large,
but finite, number of species adsorbed at a hard wall.
The size distribution mimics a bimodal system. In spite
of the two maxima being very broad we find a clear
signature of crossover in the density profile of the
species whose diameter is equal to �max

b , the position of
the maximum in the size distribution of big spheres. We
return to homogeneous binary mixtures in section 5 and
investigate structural crossover in low dimensional
fluids. For one-dimensional hard-rod mixtures there
are exact results for the pair direct correlation functions
which allow us to determine exactly the relevant poles
of the Fourier transforms of hijðrÞ. We find crossover,
demonstrating that this phenomenon arises in an exactly
solvable model. The crossover line has a similar shape
to that found for the hard-sphere mixture with the same
size ratio.

Two-dimensional hard-disk mixtures are of particular
interest from an experimental point of view. Using
video microscopy one can measure accurately correla-
tion functions in colloidal suspensions that are confined
by light fields to two dimensions. This technique might
provide a means of testing the crossover scenario
experimentally. We perform DFT calculations and
Monte-Carlo simulations to verify that structural cross-
over also occurs for hard-disk mixtures in dimension
d¼ 2.

We conclude, in section 6, with a discussion of our
results and their possible relevance for other mixtures
and for experiment.

2. Asymptotic decay of correlation functions

In this section we recall some of the predictions of
the general theory of the asymptotics of correlation
functions laid out in [2–4]; a summary of the main
results is given in [8] which adopts a density func-
tional theory perspective from the outset. We consider
a binary mixture of big (b) and small (s) particles with
bulk (reservoir) densities �i and chemical potentials
�i, i ¼ s, b. Numerical results will be presented for
hard-sphere mixtures.
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2.1. Pair correlations in bulk mixtures

The nature of structural crossover of the total correla-
tion functions hijðrÞ ¼ gijðrÞ � 1, where gijðrÞ is the radial
distribution function, was studied in detail for homo-
geneous binary hard-sphere mixtures in paper I. The
analysis is based on calculating the leading-order poles
of ĥhijðkÞ, the Fourier transform of hijðrÞ.
In the bulk mixture hijðrÞ are related to the pair

direct correlation functions c
ð2Þ
ij ðrÞ via the Ornstein–

Zernike (OZ) equations

hijðr12Þ ¼ c
ð2Þ
ij ðr12Þ þ

X
k¼s, b

�k

Z
d3r3c

ð2Þ
ik ðr13Þhkjðr32Þ, ð1Þ

where rij ¼ jri � rjj.
If we suppose that the direct correlation functions

are known the OZ equations can be solved easily
in Fourier space. ĥhijðkÞ can be written as

ĥhijðkÞ ¼
N̂NijðkÞ

D̂DðkÞ
, ð2Þ

where the denominator common to all three equations
is given by

D̂DðkÞ ¼ ½1� �sĉc
ð2Þ
ss ðkÞ�½1� �bĉc

ð2Þ
bb ðkÞ� � �s�bĉc

ð2Þ
bs ðkÞ

2: ð3Þ

ĉc
ð2Þ
ij ðkÞ is the Fourier transform of c

ð2Þ
ij ðrÞ.

From the formal solution (2) one obtains an expres-
sion for the total correlation functions hijðrÞ in real
space by performing the inverse Fourier transform via
the residue theorem. We assume that the singularities
of ĥhijðkÞ are (simple) poles [2]. In order to determine
the asymptotic behaviour we must consider the
leading order pole (LOP) contribution to
rhijðrÞ ¼ ð2�Þ

�1P
n R

ij
n exp ðipnrÞ, where pn are the afore-

mentioned poles, given by the zeros of D̂DðkÞ. Rij
n is the

residue of kĥhijðkÞ corresponding to the pole pn. Poles
are either pure imaginary, p ¼ ia0, or occur as a
conjugate complex pair p ¼ �a1 þ ia0. The pole, or
pair of poles, with the smallest imaginary part a0
determines the slowest exponential decay and is termed
the LOP. This pole determines the ultimate, r!1,
decay of hijðrÞ. Note that in the case of complex poles
all three total correlation functions show a common
oscillatory asymptotic decay

r hijðrÞ � Aij exp ð�a0rÞ cos ða1r��ijÞ, r!1: ð4Þ

The imaginary and real parts of the LOP determine the
characteristic decay length a�10 and the wavelength of
oscillations 2�=a1, respectively. These length scales
are common for all pairs ij, whereas the phases �ij

and the amplitudes Aij are dependent on the indices ij.

As emphasized in I this observation is remarkable
when one considers a binary system where the sizes of
the two species are quite different. Clearly at high
concentrations of the small particles one would expect
the wavelength to be determined by the size of the
small particles whereas at low concentrations one
would expect that the wavelength of oscillations is set
by the size of the big particles. Explicit calculations,
based on DFT, show that the wavelength of the longest
ranged oscillations 2�=a1 changes discontinuously
at some sharp crossover line in the phase diagram
of binary hard-sphere mixtures [6]. In figure 1 the
crossover line is plotted for a hard-sphere mixture with
size ratio q ¼ �s=�b ¼ 0:5. �s and �b denote the hard-
sphere diameters and results are presented in terms of the
packing fractions �i ¼ ��i�

3
i =6, i ¼ s, b. �1 denotes the

pole with the longest wavelength 2�=a1 � �b, whereas �2
is that with the second longest wavelength 2�=a1 � �b=2.
There are higher-order poles �3, �4, etc. [6] but these
are not germane to figure 1. The genesis of the crossover
line is given in figure 2 of paper I where the trajectories
of poles are plotted. Note that close to a crossover
point the two poles �1 and �2 have similar imaginary
parts, a0 and ~aa0, and both contribute to the oscillatory
decay of the total correlation functions at inter-
mediate values of r, provided that the corresponding

0
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0 0.1 0.2 0.3 0.4 0.5
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LOP: π1

LOP: π2
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Figure 1. Crossover line for a binary hard-sphere mixture
with size ratio q¼ 0.5. On each side of the line the asymptotic
behaviour is dominated by different leading order poles (LOP)
labelled �1 and �2. For small values of the packing fraction
�s, �1 dominates and the wavelength of the oscillations in hijðrÞ
is ��b. On increasing �s at fixed �b the wavelength decreases
gradually until crossover occurs. Then �2 dominates and
the oscillations have a wavelength �0:5�b. Generally at the
crossover line the wavelength of the longest ranged oscillations
changes discontinuously by a factor of about q. These results
were obtained using the Percus–Yevick approximation for
the direct correlation functions ĉc

ð2Þ
ij ðkÞ—see I. Note that the

crossover line begins at the origin and we have truncated it
at �b ¼ 0:5.
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amplitudes, Aij and ~AAij, are similar in size, i.e. near
crossover we expect

r hijðrÞ � Aij exp ð�a0rÞ cos ða1r��ijÞ

þ ~AAij exp ð� ~aa0rÞ cos ð ~aa1r� ~��ijÞ ð5Þ

for large r. The first contribution corresponds to �1
with a1 � 2�=�b and the second to �2 with
~aa1 � 2�=ðq�bÞ. Crossover occurs when a0 ¼ ~aa0.
In I we investigated the decay of hijðrÞ at

intermediate range by performing DFT calculations
of the density profiles of both species in the presence
of a fixed (test) particle exerting an external potential
on the other particles in the fluid. Using both the
Rosenfeld [9] and White Bear version [10] of funda-
mental measure DFT we found that the crossover
behaviour predicted by the asymptotic (pole) analysis
manifests itself at intermediate separations as well as at
longest range, r!1. This is illustrated in figures 6
and 7 of I. Away from the crossover line the result
from the LOP approximation (4) provides an accurate
fit to the DFT results except for small separations,
r < 2�b, where many poles begin to contribute.
For state points close to the crossover line the two-
pole approximation (5) provides as good fit to the
DFT results as is achieved by equation (4) away from
the line; the presence of two oscillatory wavelengths
implied by equation (5) is manifest in the numerical

DFT data. This observation will be important
later when we consider manifestations of structural
crossover for inhomogeneous fluids.

We complete our summary of structural crossover
in homogeneous binary hard-sphere mixtures by
presenting, in figure 2, results for the real part, a1,
of the leading order poles calculated for a full range
of size ratios q. As in I, the poles were determined
by calculating the zeros of D̂DðkÞ in equation (3)
using the Percus–Yevick results for the pair direct
correlation functions. For the more symmetric mix-
tures, q0 0:7, the LOP is �1 for all packing fractions
so there is a continuous variation of a1 in this regime;
there is no crossover. For more asymmetric mix-
tures there are discontinuities in a1 and separate
branches appear in figure 2. For example, for q¼ 0.5
there is a gap between the branches corresponding to
�1 and �2, and crossover corresponds to jumping
between these branches as the packing fractions are
varied. As q is reduced further additional branches
appear and for q¼ 0.35 crossover can occur between
�1 and �2 and between �2 and �3 or directly between
�1 and �3. Similarly for q¼ 0.2 crossover can occur
between �1 and �4, �4 and �5 or directly between �1
and �5.

The origin of the crossover lines shown in figure 5
of I can be understood from this ‘master’ plot of the
poles. Note that for small size ratios q the Percus–
Yevick approximation becomes inaccurate. Moreover
for some small values of q some of the packing
fractions considered in the plot correspond to state
points that lie within the fluid–solid coexistence
region — see I.

2.2. Density profiles at a planar wall

Earlier treatments [2–4, 8] of the asymptotics of
correlation functions emphasized that, for fluids with
short-ranged interatomic potentials, the pole structure
given by the zeros of D̂DðkÞ in equation (3) determines
not only the decay of hijðrÞ in a bulk mixture but also
the decay of the one body density profiles at wall–fluid
and liquid–vapour interfaces. Given this observation
we should expect to find manifestations of structural
crossover in the properties of inhomogeneous mixtures
and we seek these in the present subsection.

Perhaps the most direct way of analysing the
asymptotic decay, z !1, of the density profiles,
�wiðzÞ, of a binary mixture adsorbed at a planar wall is
to start from the wall-particle OZ equations, i.e. we
consider a ternary mixture with species s, b plus a third
species whose density �3! 0. The third component,
whose diameter is �3, can be considered as a wall
that exerts an external potential on the mixture of
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a1sb
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increasing h

Figure 2. Real part a1 of the leading order poles calculated
for fixed size ratios q and various combinations of packing
fractions: generally � ¼ �s þ �b increases from left to right
up to a maximum of 0.5. For the less symmetric mixtures
with q90:65 separate branches �1, �2, etc. arise and there
are no leading order poles with values of a1 lying in the
gaps. Structural crossover corresponds to a ‘jump’ from a
value of a1 associated with one branch of poles to a value
associated with another—see text.
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s and b particles. The resulting OZ equations can be
expressed as

ĥhwiðkÞ ¼
NwiðkÞ

D̂DðkÞ
, ð6Þ

i ¼ s, b, where ĥhwiðkÞ denotes the Fourier transform
of hwiðrÞ, the wall–particle total correlation function
and the third species is now labelled w (wall).
Note that the form of (6) is valid for any value of
�3 and the repercussions for the density profiles hold
for a spherical wall, �3 <1, for which the wall–
particle total correlation function hwiðrÞ has spherical
symmetry, as well as for a planar one, �3!1, for
which we have planar symmetry for the total
correlation functions, hwiðzÞ. z is then the distance

from the planar wall and ĥhwiðkÞ is replaced by ~hhwiðkÞ,
the one-dimensional Fourier transform. The denomi-
nator D̂DðkÞ is common to both species i¼ s and
b particles and is identical to that appearing
in equation (3): it depends upon the pair direct
correlation functions of the bulk mixture of s and b
whose densities �s and �b are fixed by the reservoir far
from the wall. In the planar case the numerator NwiðkÞ
can be written in terms of the one-dimensional
Fourier transforms of the wall–particle direct correla-
tion functions cwiðzÞ which depend, of course, upon
the wall fluid potentials Vi

wðzÞ. Provided the latter
decay faster than correlation functions in the bulk
fluid the asymptotic decay of hwiðzÞ will be determined
by the zeros of D̂DðkÞ. Since bulk correlations decay as
exp ð�a0rÞ, where a0 is the imaginary part of the LOP,
this requires Vi

wðzÞ to decay faster than exp ð�a0zÞ.
In the calculations to be described below we shall
consider only hard walls or walls whose attractive
potential is of finite support.
The planar wall–particle density profile is given by

�wiðzÞ � �i½hwiðzÞ þ 1�, i ¼ s, b, and from equation (6) it
follows that the asymptotic decay is described by

�wiðzÞ � �i � Bw
i exp ð�a0zÞ cos ða1z��w

i Þ, z!1

ð7Þ

where �i denotes the bulk density of species i.
Although the decay length a�10 and wavelength 2�=a1
are the same for both species, the amplitude Bw

i and
phase �w

i depend on the species label and on the
choice of wall–fluid potentials. Clearly equation (7) is
the analogue of equation (4). Note that the additional
factor 1/r in the latter arises from taking a three-
dimensional rather than a one-dimensional Fourier
transform.
Equation (7) implies that if structural crossover

occurs in the correlation functions of a bulk mixture

one should observe equivalent behaviour in the one-
body density profiles of the same mixture, near the same
crossover state point, adsorbed at a planar wall.
We examine this prediction below.

There are alternative ways of deriving equation (7)
based on (i) a DFT approach [8], or (ii) analysis of
the exact integral equations for the density profiles in
planar geometry [11].

In our numerical calculations we consider the
binary hard-sphere mixture for which we reported the
crossover line in figure 1, namely with a size ratio
q¼ 0.5. We determined the density profiles �wiðzÞ using
Rosenfeld’s fundamental measures DFT [9], treating
the planar wall as an external potential for the fluid
mixture. Two types of wall–fluid potential were inves-
tigated. The first corresponds to a planar hard wall:

Vi
wðzÞ ¼

1, z < Ri

0, otherwise ,

�
ð8Þ

for i ¼ s, b. Here z denotes the centre of a hard
sphere, Rb ¼ �b=2 and Rs ¼ �s=2. In figure 3 we show
density profiles for the big spheres, �wbðzÞ, for a fixed
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Figure 3. Logarithm of density profiles �wbðzÞ of the
big species b of a binary hard-sphere mixture, with size
ratio q¼ 0.5, adsorbed at a planar hard wall. The bulk packing
fraction �b is fixed at 0.1. The solid lines refer to
DFT calculations and the dashed lines result from leading-
order asymptotics—see text. For a low packing fraction of the
small species �s ¼ 0:1 [curve (a)] the oscillations have a
wavelength of about �b, the diameter of the big spheres
whereas for a high packing fraction �s ¼ 0:15 [curve (c)]
the wavelength is about �s, the diameter of the small spheres.
In the vicinity of the crossover, curve (b) with �s ¼ 0:125,
interference effects are clearly evident. In (a) and (c)
a contribution from a single (dominant) pole, equation (7),
is used in the asymptotic expression whereas in curve (b)
the contributions of the two poles are included, equation (9).
The results in (b) and (c) are shifted vertically for clarity of
display.
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bulk (reservoir) packing fraction �b ¼ 0:1 and three
values of �s, the bulk packing fraction of the smaller
spheres. For �s ¼ 0:1, curve (a), the oscillations have
a wavelength of approximately �b whereas for
�s ¼ 0:15, curve (c), the wavelength is approximately
�s ¼ q�b. In curve (b), �s ¼ 0:125, the density profile
exhibits interference effects and two wavelengths
are clearly evident. This value of �s lies close to the
crossover value ��s ¼ 0:126 for this choice of �b—see
figure 1. Structural crossover manifests itself in a
very direct fashion. The other striking feature of
these results is that the oscillatory behaviour predicted
by leading-order asymptotics sets in at intermediate
distances, i.e. for z02:5�b. This is illustrated by
plotting alongside the DFT results the prediction from
equation (7), with a0 and a1 calculated from the zeros
of D̂DðkÞ in equation (3) corresponding to the appro-
priate bulk state point ð�b, �sÞ. As in subsection 2.1,
the input to D̂DðkÞ are the pair direct correlation
functions ĉc

ð2Þ
ij ðkÞ obtained from Percus–Yevick theory.

This is completely consistent with employing
the Rosenfeld DFT since in bulk the latter generates,
via functional differentiation, the Percus–Yevick c

ð2Þ
ij ðrÞ

[6, 9].
The dashed lines in curves (a) and (c) of figure 3

are results based on the single pole approximation,
equation (7), with the amplitude Bw

b and phase �w
b fitted

to the DFT results at intermediate z. The agreement
between the two sets of results for �wbðzÞ is excellent,
apart from the region very close to the wall where
many poles contribute. For curve (b), the state point
close to crossover, we utilize a two pole approximation,
equivalent to equation (5):

�wiðzÞ � �i � Bw
i exp ð�a0zÞ cos ða1z��w

i Þ

þ ~BBw
i exp ð� ~aa0zÞ cos ð ~aa1z� ~��w

i Þ, z!1 ð9Þ

i ¼ s, b. Once again a0, ~aa0, a1 and ~aa1 are obtained from
the zeros of D̂DðkÞ at the given state point and now two
amplitudes Bw

b and ~BBw
b and two phases �w

b and ~��w
b

are fitted to the DFT data at intermediate z. The
two-pole fit clearly provides an excellent description
in the crossover regime. Overall the quality of the
fits achieved by leading order asymptotics is no worse
than is achieved by the corresponding fits to the test
particle DFT results for hijðrÞ obtained for size ratio
q¼ 0.3—see figure 6 of paper I. The implication of this
observation is that the crossover features found in the
DFT results should be clearly visible in computer
simulations of hard wall–fluid density profiles which,
owing to statistical considerations, are limited to small
and intermediate z.

The second type of planar wall that we consider is
described by the wall–fluid potentials

�Vi
PAWðzÞ ¼

1, z < Ri

��þ
2�

�
ðz� RiÞ

�
�

�2
ðz� RiÞ

2,
Ri < z < �þ Ri

0, otherwise,

8>>>><
>>>>:

ð10Þ

where � ¼ ðkBT Þ
�1 and �>0 is a dimensionless

constant describing the depth of the attractive well,
i.e. �Vi

PAWðRiÞ ¼ ��. The range of the potential is given
by the length scale � and the form is chosen so that
the potential and its first derivative are zero at
z ¼ �þ Ri. In our calculations we set � ¼ 1:25�b and
� ¼ 1.

Including such an attractive component to the wall–
fluid potentials will modify the density profiles in the
vicinity of the wall but should not alter the fundamental
character of the long ranged decay; leading order
asymptotics are still given by equation (7), with a0 and
a1 determined by properties of the bulk mixture, and
crossover in the ultimate decay of the profiles will occur
at the same ��s . Of course, the amplitude and phase in
equation (7) will be altered. In figure 4 we show the
density profiles �wiðzÞ, i ¼ s, b, of the binary hard-sphere
mixture with q¼ 0.5 calculated for the bulk state point
�b ¼ 0:1, �s ¼ 0:1. Results for the hard wall, described
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Figure 4. DFT results for the density profiles �wiðzÞ of
the components i ¼ b, s of a hard-sphere mixture adsorbed
at the planar attractive wall, described by equation (10), com-
pared with the profiles at the planar hard wall, equation (8),
for the case �b ¼ 0:1, �s ¼ 0:1 and q¼ 0.5. The additional
short-ranged attraction of the wall ensures that the small
particles (s) exhibit a higher density at contact, �wsð�s=2Þ,
and for z close to the wall than they do at the hard wall.
For the short distance scale shown here the density profiles
clearly reflect the influence of the attraction.
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by equation (8), are compared with those for the
attractive wall, equation (10). It is energetically favour-
able to have a large number of particles in the attractive
well. Since small spheres can pack better close to the
wall than the larger ones it follows that the contact
value, �sð�s=2Þ, is considerably larger for small particles
at the attractive wall than is the case for the same species
at the hard wall. Figure 4 demonstrates that adding
an attractive piece to the hard wall potential has a
pronounced effect on the form of the density profiles
of both species. From figure 4 one cannot observe any
commonality of structure between the profiles of big
and small species or between profiles corresponding to
the two choices of wall–fluid potentials. Rather it is
necessary to study the density profiles at intermediate
and long range in order to observe such common
features. In figure 5 we plot the logarithm of the profile
of the big spheres for z up to 10�b, the limit of our
numerical accuracy. As was the case for the hard wall,
the asymptotic behaviour appears to set in at inter-
mediate distances, z0 3�b. Away from crossover, e.g. in
curve (a) with �s ¼ 0:075 and curve (d) with �s ¼ 0:15
the results for the two types of wall–fluid potential are
very close. For both types the wavelength of oscillations
is close to �b in (a) and close to �s in (d). Clearly the
asymptotic decay remains dictated by a single pole
contribution when the wall exerts some finite ranged

attraction on the fluid. For values of �s lying closer to
crossover the situation is somewhat more complex.
Curve (b) in figure 5, for �s ¼ 0:1, shows that the
attractive wall potential influences strongly the form of
the density profiles out to distances z � 7�b and the
asymptotic behaviour, characterized by the wavelength
�b, does not set in until larger z. For �s ¼ 0:125, curve
(c), there are clear differences between the results for the
two different wall potentials extending out to z � 10�b.
It would appear that for the attractive wall the
intermediate range behaviour of the profile is already
dominated by the length scale �s, although crossover
does not occur until the slightly larger value ��s ¼ 0:126.
Clearly the amplitudes entering the two-pole approxi-
mation (9) depend sensitively on the choice of wall–fluid
potential. Presumably for the attractive wall the
amplitude ~BBw

b corresponding to the pole with
~aa1 ¼ 2�=�s is much larger than Bw

b , that for the pole
with a1 ¼ 2�=�b whereas the imaginary part of the pole
a0 is slightly less than ~aa0.

Note that although we have focused on the profile
of the big species, our results for the small species
show equivalent features—as is implied by equations (7)
and (9). We have also investigated density profiles
for other size ratios q and we find similar manifestations
of crossover near the crossover point appropriate to the
given value of q. Overall the behaviour is equivalent
to that found for hbbðrÞ in paper I.

3. Depletion potentials and solvation forces

In this section we turn attention to the asymptotic decay
of two, closely related, properties of liquids. These are
(i) the depletion or solvent mediated potential, W(r),
which arises between two big particles immersed in a
solvent and (ii) the solvation force, fs(L), which is the
excess pressure arising from confining the solvent
between two planar walls. We present evidence for
structural crossover inW(r), at large particle separations
r, and in fs(L), at large wall separations L, when the
solvent is the binary hard-sphere mixture described in
earlier sections.

3.1. Depletion or solvent mediated potential

Consider two big particles of species 3 immersed in a
solvent. Upon integrating out the degrees of freedom of
the solvent atoms or molecules one obtains an effective
two-body potential

	eff33 ðrÞ � 	33ðrÞ þWðrÞ, ð11Þ

where 	33ðrÞ is the bare interaction between the solute
particles and W(r) is the solvent mediated potential
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Figure 5. As in figure 4 (q¼ 0.5, �b ¼ 0:1) but now we
plot the logarithm of the density profile �wbðzÞ of the big
species b over a much larger range of z. (a) �s ¼ 0:075,
(b) �s ¼ 0:1, (c) �s ¼ 0:125 (close to the crossover value) and
(d) �s ¼ 0:15. The full lines refer to results for the attractive
wall, equation (10), and the dashed lines to those for the
hard wall, equation (8). In (a) and (d) the pair of profiles
are very similar for z03�b, whereas in (b) the asymptotic
behaviour for the attractive wall does not appear to set in until
z07�b. In (c) it is difficult to resolve two distinct wavelengths
for the attractive wall. The curves are shifted vertically for
clarity of display.
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arising from solute–solvent and solvent–solvent interac-
tions. W(r) depends on the thermodynamic state of
the solvent. A well-known example is the case of two
hard spheres, modelling colloids, immersed in a sea
of ideal, non-interacting particles, modelling ‘ideal
polymer’. The exclusion of the ‘polymer’ from the
hard spheres gives rise to a depletion zone between the
spheres and the resulting W(r) is the celebrated deple-
tion potential introduced by Asakura and Oosawa
[12, 13] and by Vrij [14]. For the ideal solvent W(r) is
attractive and monotonically increasing with r up to
a certain finite separation beyond which it vanishes.
When the solvent is a hard sphere fluid and the
solute particles are again (big) hard spheres, W(r)
exhibits depletion driven attraction at small separations
and oscillatory decay at intermediate and long range.
The oscillations arise from the packing of the
small spheres that constitute the solvent and their
wavelength is determined by the diameter of the small
species [15].
Here we investigate the depletion potential when

the solvent is the binary mixture of s and b hard-
spheres. On intuitive grounds one might expect
the oscillatory structure in W(r) to reflect the form
of correlations in the bulk binary mixture and,
therefore, to show crossover behaviour. In order to
make this explicit we generalize the argument given
in [15] for a one-component solvent to a two-
component solvent. For a ternary mixture of species
s, b and 3 the Fourier transform of the total
correlation function ĥh33ðkÞ is given by an expression
equivalent to equation (2). In the limit where the
density of species 3 vanishes, �3! 0, the denominator
should reduce to that in equation (3), as was the
case for wall–particle correlations in equation (6),
so the asymptotic decay of h33ðrÞ will be determined
by the zeros of D̂DðkÞ at the appropriate state point.
In the same limit we have

h33ðrÞ þ 1 ¼ g33ðrÞ ¼ exp ½��	eff33 ðrÞ�: ð12Þ

It follows that for large r, where we can linearize the
exponential,

� �WðrÞ � h33ðrÞ �
A33

r
exp ð�a0rÞ

� cos ða1r��33Þ, r!1: ð13Þ

Note that we assume the bare potential 	33ðrÞ is of
shorter range than W(r). The same LOP that determines
the decay of hijðrÞ, i ¼ s, b, in the bulk mixture must
determine the decay of the depletion potential.
Of course, the amplitude A33 and phase �33 depend
upon the solute–solvent interactions.

In order to determine whether structural crossover
can be observed in the depletion potential we performed
calculations of W(r) using the particle insertion method
employed previously in DFT studies for one-component
hard-sphere solvents [15]. We first fix a single sphere of
diameter �3 at the origin and make this an external
potential for the fluid mixture of s and b hard spheres.
As discussed earlier, the density profiles of both s
and b particles, obtained using the Rosenfeld DFT,
display structural crossover as r!1. In a second
step, a second particle of species 3 is inserted into
the inhomogeneous mixture of s and b and input
from the three component DFT is used to calculate
W(r) [15]. The results shown in figure 6 refer to the hard-
sphere mixture with q¼ 0.5 and �b ¼ 0:1 considered
earlier. We set �3 ¼ 5�s. At short distances from contact
(h¼ 0 in figure 6, where h ¼ r� �3 is the separation
between the surfaces of the two big spheres of species 3)
the depletion potential is attractive whereas oscillatory
structure develops for larger distances. Results are
presented for the same three choices, �s ¼ 0:1,
�s ¼ 0:125 and �s ¼ 0:15, employed in figure 3. From
figure 6(a) we note that the width of the attractive
depletion well seems to be determined by the size of
the majority species in the mixture. Thus, for �s ¼ 0:1
the big spheres dominate and the width of the attractive
well is about 0:4�b. On the other hand for �s ¼ 0:15,
where the smaller species dominates, the attractive well
is deeper and narrower and the depletion potential
exhibits a pronounced potential maximum near
h ¼ 0:4�b.

In figure 6(b) we show the same data plotted as
ln j�WðhÞj in order to expose the nature of the
oscillatory decay. For �s ¼ 0:1 the wavelength is about
�b whereas for �s ¼ 0:15 this is about �s ¼ �b=2.
Interference is clearly visible for �s ¼ 0:125, very close
to the crossover value. The sequence of curves is
very similar to that displayed in figure 3 for the
density profiles at a hard planar wall. We confirmed
that the crossover mechanism is identical by plotting
(as dashed lines) alongside the DFT results those
obtained from the single pole approximation (13) in
which a0 and a1 refer to the LOP and are equal to the
values employed in figure 3. For �s ¼ 0:1 and 0.15,
i.e. curves (i) and (iii), the single pole approximation
gives an excellent account of the DFT results for
h03:5�b. Close to the crossover point, curve (ii) with
�s ¼ 0:125, two LOPs are required, i.e. we employ
the analogue of equation (5). As in figure 3, we
fit amplitudes and phases at intermediate separations.
By comparing figure 6(b) with figure 3 we see that
crossover is just as evident in the depletion potential as
in the density profiles at a planar wall. Note that
numerical noise sets into our results for h08�b.
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3.2. Solvation force

The solvation force is defined [16, 17] for a planar slit of
width L as

fsðLÞ � �
1

A

@�

@L

� �
f�ig,T,A

� p, ð14Þ

where � is the grand potential of the fluid mixture
and p is the pressure of a homogeneous mixture with
the (reservoir) chemical potentials f�ig, i ¼ s, b, and
temperature T. We consider the limit where the area of
the walls A!1. fs (L) is then the excess pressure
resulting from confining the mixture in the slit;
in the limit L!1, fsðLÞ ! 0. Here we consider only
fluid-fluid and wall–fluid contributions to the solvation
force, not the direct interaction between the walls [17].
In the asymptotic regime, L!1, one might expect the
decay of fs (L) to be determined by the properties of the
bulk mixture described by the given f�ig, T. However,
it is not immediately obvious that the thermo-
dynamic quantity fs (L) should decay in the same fashion
as the bulk pair correlation functions hijðrÞ, i.e. with the
same exponential decay length a�10 and wavelength
2�=a1.

There are several ways of establishing this result.
The most intuitive argument is to consider the ternary
mixture described in the previous subsection, with
�3! 0 and, in addition, to allow the diameter of
species 3 to become macroscopically large. The effective
potential between the macroscopic particles will
still decay as in equation (13). Attard and co-workers
[18, 19] placed this argument in the framework of
the wall–particle OZ equations (see subsection 2.2) and
showed that the decay of the excess interaction free
energy per unit area should be governed by the zeros
of D̂DðkÞ, provided that the interatomic forces are
sufficiently short-ranged. Such a result is also implicit
in earlier integral equation studies by D. Henderson and
co-workers [20].

For perfectly hard walls, equation (14) reduces to the
exact expression [21]

�fsðLÞ ¼
X
i¼b, s

½�i,Lð0
þÞ � �i,1ð0

þÞ�, ð15Þ

where �i,Lð0
þÞ denotes the one-body density of species

i at contact with a wall of the slit of width L and
�i,1ð0

þÞ is the same quantity for infinite wall separa-
tions. In this particular case there are additional
arguments [2] to support the contention that

fsðLÞ � F exp ð�a0LÞ cos ða1L��FÞ, L!1 ð16Þ

where F and �F are the amplitude and phase,
respectively. Both quantities depend on the wall–fluid
potentials.

In the following we study the binary hard sphere
mixture confined by two planar hard walls described
by the potential

Vi
slitðzÞ ¼

1, z � Ri and L� Ri � z
0, Ri < z < L� Ri,

�
ð17Þ
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Figure 6. Depletion potential W(h) between two hard-
spheres of diameter �3 ¼ 5�s immersed in a binary mixture
of hard spheres with diameters �s and �b ¼ 2�s, i.e. q¼ 0.5.
h ¼ r� �3 is the separation between the surfaces of the two
big spheres of species 3 at distance r. The packing fraction
of species b is �b ¼ 0:1. DFT results are shown in (a)
for three different values of �s. Increasing �s reduces the
width of the attractive well and increases its depth at contact
h¼ 0. In (b) we plot the logarithm of j�WðhÞj over a larger
range of separations. For �s ¼ 0:1 [curve (i)] the oscillations
have a wavelength of about �bwhereas for �s ¼ 0:15 [curve (iii)]
the wavelength is about �s. In curve (ii) �s ¼ 0:125, very close
to crossover, interference effects are evident. The solid lines
in (b) are the DFT results and the dashed lines result
from leading order asymptotics—see text. The results (ii) and
(iii) are shifted vertically for clarity of display. These results
demonstrate the same crossover behaviour as the density
profiles in figure 3.
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which is the generalization of equation (8). In our
calculations we use the external potential equation (17)
as input into the Rosenfeld fundamental measures DFT.
We obtain the contact values �i,Lð0

þÞ from the density
profiles �i,LðzÞ resulting from minimizing the grand
potential functional �½f�iðzÞg�. Note that the profiles
obtained from the DFT satisfy the contact value
theorem, i.e. the solvation force obtained from
equation (15) is consistent with that obtained from dif-
ferentiating w.r.t. L the equilibrium grand potential �
resulting from minimizing the functional. Considerable
computational effort is required to produce sufficient
values of the solvation force that we can have smooth
curves as a function of the separation L. In order to
investigate crossover behaviour we focused on the same
mixture with q¼ 0.5 and reservoir packing fraction
�b ¼ 0:1 and varied �s over a similar range to that
considered in earlier sections.
In figure 7 we plot the logarithm of j��3b fsðLÞj for

three values of �s. For a small packing fraction, curve (a)
�s ¼ 0:07, the oscillations in fs(L) have a wavelength
of about �b for L03:5�b. At a high packing fraction,
curve (c) �s ¼ 0:15, the wavelength of oscillations is
given by the diameter of the small spheres �s for L02�b.
At intermediate values of �s we observe interference
effects in the oscillatory decay. In curve (b), where
�s ¼ 0:11, the oscillations at small L have a wavelength
of about �s whereas at intermediate L interference
effects resulting from two distinct contributions are
apparent. Finally for large L, the oscillations have a

wavelength of about �b. Clearly confinement results in
the small spheres imposing their length scale on the
oscillations in fs (L) at small L and restricts interference
effects to larger L. Recall that the crossover value
for this choice of �b is �

�
s ¼ 0:126. Comparing the results

in figure 7 with the density profiles �wbðzÞ for a single
planar hard wall in figure 3 we find close similarities.
In particular, curves (b) and (c) in figure 7 provide
compelling evidence that crossover has occurred in
the form of oscillatory decay of fs (L) for packing
fractions between �s ¼ 0:11 and �s ¼ 0:15. Note that
there is some noise in the latter results for L09�b, the
limit of our numerical accuracy. For L < �b the space
between the walls is not accessible to the big spheres
resulting in a ‘spike’ in fs (L) at L ¼ �b.

It is important to recognize that there is no jump
in the solvation force, or its derivatives with respect to
state parameters (�s or �b) in the neighbourhood of
the crossover line. Near crossover two LOPs contribute
to fs (L), in the manner of equations (5) and (9), and
the real and imaginary parts of both poles vary
smoothly with state point.

4. Polydisperse hard-sphere mixtures

From an experimental point of view it is important
to keep in mind that systems of colloidal particles
with identical size (or shape) cannot be produced. It is
not possible to produce a perfect binary mixture; there
will always be a distribution of size ratios in even
the best bimodal situation. Here we examine the
influence of polydispersity on the structural crossover
which was clearly manifest for a mixture of hard-
spheres with a unique size ratio. The Rosenfeld DFT
can treat mixtures with an arbitrary number of different
components (species). However, we restrict considera-
tion to a finite number of different particle sizes and
replace each of the particle types big, b, and small, s, by
a 21-component hard-sphere mixture.

The size distributions are chosen to be binomial and
are shown in figure 8. In the case we consider the ratio
of diameters �max

s =�max
b , corresponding to the positions

of the two maxima, is 0.5. The sum of the packing
fractions,

P
i �b, i of the big particles is fixed at 0.1

while that of the smaller particles takes valuesP
i �s, i ¼ 0:1, 0.15, and 0.2 in order to compare with

the results from earlier sections. We treat rather broad
distributions in order to capture effects which might
arise in experimental situations. The width of both
distributions is 0.6 and there is a very small overlap—see
figure 8. Figure 9 shows the density profiles �wbðzÞ
of the species with diameter �max

b for polydisperse
hard-sphere mixtures adsorbed at a planar hard wall.
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Figure 7. Logarithm of the solvation force fs (L) calculated
from DFT for a binary hard-sphere mixture, with size ratio
q¼ 0.5 and �b ¼ 0:1, confined between two planar hard walls.
Upon increasing the packing fraction of the small particles
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effects can be observed at intermediate separations L for
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vertically for clarity of display.
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The Rosenfeld grand-potential functional is minimized
and the resulting Euler–Lagrange equations for the
profiles of the multi-component mixture are solved
imposing the boundary conditions that the reservoir
packing fractions are those given in figure 8. The
results for �wbðzÞ are very similar to those in figure 3 for
the binary hard-sphere mixture with size ratio q¼ 0.5.
In curve (a),

P
i �s, i ¼ 0:1, the wavelength of the

oscillatory decay is characterized by the big spheres
whose reservoir packing fraction �b, i is a maximum.
The small particles determine the wavelength of the
oscillations in curve (c),

P
i �s, i ¼ 0:2. Curve (b),P

i �s, i ¼ 0:15, clearly displays interference effects.
If we take the presence of the latter to signal crossover
then this is occurring for a larger (total) small sphere
packing fraction than is the case for the binary mixture,
where crossover occurs at ��s ¼ 0:126. This observa-
tion is consistent with results from paper I where
we found that for �b ¼ 0:1 the crossover value of �s
increases as q increases or decreases (see figure 5 of I),
i.e. the minimum value of the crossover packing fraction
occurs near q¼ 0.5. In the polydisperse mixture one
is sampling component pairs with size ratios different
from q¼ 0.5.

It is striking that for such broad distributions there
is still a clear signature of crossover in the density profile
and we shall return to this point in the discussion.

5. Structural crossover in one and two-dimensional

homogeneous fluids

All the results that we have presented so far refer
to three-dimensional hard-sphere mixtures. Moreover
these have been obtained by approximate methods,
i.e. via DFT or integral-equation approaches. In this
section we enquire whether structural crossover man-
ifests itself in lower dimensional fluid mixtures. There
are two distinct reasons for considering such systems.
In one dimension the pair direct correlation func-
tions c

ð2Þ
ij ðrÞ can be calculated exactly for a homogeneous

mixture of hard rods of different lengths which implies
that the poles of ĥhijðkÞ can be determined exactly.
The reason why two-dimensional systems are of interest
is that real-space experimental techniques for colloidal
fluids often restrict the determination of the pair
correlation functions to two dimensions [22–24].

5.1. One-dimensional mixtures of hard rods

One-dimensional hard-rod fluids occupy a special
position in the theory of liquids since many of their
equilibrium properties can be calculated exactly for
both homogeneous and inhomogeneous cases.
In particular the exact intrinsic free energy functional
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in a polydisperse hard-sphere mixture, with the particle
size distributions shown in figure 8, adsorbed at a planar
hard wall. The component b considered here refers to that
with � ¼ �max

b , the diameter corresponding to the maximum
packing fraction in the distribution of the bigger spheres.
For all three curves

P
i �b, i ¼ 0:1. In curve (a) the sum

of packing fractions of the smaller components
P

i �s, i ¼ 0:1
and the wavelength of oscillations is about �max

b . By
contrast, in curve (c), where

P
i �s, i ¼ 0:2, the wavelength is

about �max
b =2. In the intermediate case, curve (b), withP

i �s, i ¼ 0:15 we find interference effects. Results should be
compared with these in figure 3 for a binary mixture with
q¼ 0.5.
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and the sum of packing fractions of the bigger componentsP
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P

i �s, i
takes values 0.1, 0.15, or 0.2. Note that the ratio
�max
s =�max

b ¼ 0:5; where �max
s is the diameter of the component

with maximum packing fraction in the distribution of the
smaller spheres.
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is known for both the one component fluid [25] and
mixtures of hard rods [26]. For our present purposes it is
sufficient to note that Rosenfeld’s fundamental measure
DFT reproduces the exact functional when applied to
the one-dimensional inhomogeneous hard-rod system
[9, 27]. The pair direct correlation functions are given by
an expression equivalent to equation (11) in I but with
different weight functions and a different excess free
energy density ��. Their (one-dimensional) Fourier
transforms ~cc

ð2Þ
ij ðkÞ are given in [27].

We used these results to obtain the poles of ~hhijðkÞ.
These are given by the zeros of an expression equivalent
to that for D̂DðkÞ in equation (3) since the OZ equations
can still be written in the form of equation (2).
The pattern of poles is similar to that obtained for
hard-sphere mixtures in the Percus–Yevick approxi-
mation [6]. In figure 10 we plot the crossover line
calculated for size ratio q¼ 0.5. The packing fractions
are given by �i ¼ �i�i, i ¼ s, b, in one dimension; �i is
the length of the rod of species i. Crossover occurs from
the pole �1 to the pole �2 in a similar fashion to that
described in figures 1 and 2 for hard spheres. Moreover
the shape of the crossover line is reminiscent of that
in figure 1. Of course the line can extend to �b ¼ 1 since
there is no freezing transition in one dimension and the
maximum packing fraction is unity.
These results demonstrate that crossover occurs in an

exactly solvable model. In the vicinity of a crossover
point we find features in the total pair correlation
functions similar to those found in the three-dimen-
sional hard-sphere mixtures. Recall that for hard-rod

mixtures it is possible to calculate wall–fluid density
profiles and the solvation force exactly (to arbitrary
numerical precision) which allows one to ascertain
precisely the manifestation of structural crossover in
these quantities [28].

5.2. Two-dimensional mixtures of hard disks

Theories of liquids are, generally speaking, more
difficult to construct and implement in two dimensions
than in one or three dimensions. This is certainly
the case for the fundamental measure DFT that we have
used throughout this paper. Whereas in d¼ 1 the exact
functional for a hard-rod mixture [26, 27] is known
and in d¼ 3 very accurate versions of FMT for hard-
sphere mixtures [9, 10, 29] are available, some pre-
requisites for FMT-like functionals are not fulfilled
in d¼ 2 [27]. The starting point for FMT is the decon-
volution of the Mayer-f function [9], that describes
the interaction between two particles, into geometrical
weight functions. In even dimensions, however, this
deconvolution can be achieved only with an infinite
number of weight functions. Hence, in practice, the
deconvolution of the Mayer-f function in d¼ 2 can
be carried out only approximately [27]. For this reason
the FMT in d¼ 2 is generally less accurate than in d¼ 3,
however, there have been very few careful tests of
the theory for mixtures.

On the other hand, the study of correlation functions
in d¼ 2 is very interesting from an experimental point
of view. Recent improvements in techniques of video
microscopy enable accurate measurement of pair
correlation functions of colloidal suspensions to be
performed in real space [22–24]. In these experiments,
the colloids are restricted to move in a plane by the
use of light fields, i.e. the system is effectively two-
dimensional. Experiments with one-component colloidal
suspensions have demonstrated that the pair correlation
function can be measured very accurately at small
and intermediate separations and, in some cases, even
at fairly long range. An extension of such experiments
to binary colloidal mixtures should be straightforward.

In order to study the crossover behaviour of correla-
tion functions in d¼ 2 we performed DFT calcula-
tions and standard MC simulations in the canonical
ensemble for a binary mixture of hard disks with a size
ratio of q¼ 0.5. Within DFT we used the test-particle
approach, fixing a single big disk at the origin and
calculating the density profiles �i (r) of both compo-
nents, i ¼ s, b, in the external field exerted by the fixed
disk. From the density profiles, we determined the
correlation functions hbiðrÞ ¼ �iðrÞ=�i � 1. This is the
same procedure as in paper I, except now we employ
Rosenfeld’s d¼ 2 ‘interpolation’ form of the free
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Figure 10. Crossover line for a one-dimensional binary
hard-rod mixture with size ratio q¼ 0.5. On each side of
the line the asymptotic behaviour is dominated by different
leading-order poles �1 and �2. When �1 dominates the
wavelength of oscillations in hijðrÞ is ��b whereas when
�2 dominates it is�0:5�b. These results were obtained using the
exact result for ~cc ð2Þij ðrÞ to determine the poles. The dashed line
corresponds to total packing fraction � ¼ �b þ �s ¼ 1.
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energy functional [27]. Throughout the calculation and
simulation we kept the packing fraction of the big
disks constant at �b ¼ �b��

2
b=4 ¼ 0:3. We increased

the packing fraction of the small disks from a very
small value, �s ¼ 0:075, to a high value, �s ¼ 0:3. The
resulting total correlation functions hbbðrÞ obtained
from DFT, (a), and MC simulations, (b) are shown in
figure 11. The overall agreement between these two sets
of results is encouraging. We find for the lowest value of
�s that the wavelength of the decay of hbbðrÞ is set by �b,
the diameter of the big disks, and for the highest value of
�s that the wavelength is set by �s, the diameter of the
small disks. The DFT results for intermediate values of
�s show evidence of interference and indicate clearly that
crossover occurs near �s ¼ 0:1975. The MC results show
complex interference effects at the intermediate values of
�s. Although we did not determine the precise location
of the crossover line in d¼ 2, as we did in d¼ 1 and
d¼ 3, our results demonstrate that structural crossover
occurs in d¼ 2.
The fact that crossover is reflected in the oscillatory

behaviour for intermediate separation and can be seen
in MC data, which contain some statistical noise,
suggests that video microscopy in d¼ 2 should be
well suited to study various aspects of the decay of
correlation functions in colloidal mixtures.

6. Discussion

We have investigated the nature of structural crossover
in various properties of binary hard-sphere mixtures.
Whereas in paper I we focused only on the decay of pair
correlation functions, hijðrÞ, in homogeneous (bulk)
mixtures, here we consider manifestations of crossover
for the one-body density profiles, �i(z), of the mixture
adsorbed at planar walls, for the solvation force, fs (L),
and for the depletion potential, W(r), of the same
mixture. In all of these quantities we find a clear
signature of structural crossover, i.e. the wavelength
of the oscillatory decay changes from being approxi-
mately the diameter of the big species to approximately
that of the smaller species at some crossover point in
the (�b, �s) phase diagram. We argue that the precise
crossover point must be the same as that obtained from
analysing the leading-order poles of ĥhijðkÞ, as described
in I. Moreover, we show that leading-order asymptotics,
as described by a single-pole approximation such as
equations (7), (13) and (16) provides a remarkably
good description of oscillatory structure at intermediate
range as well as at longest range—provided one is not
too close to the crossover point, where a two-pole
approximation such as (9) is required. This conclusion,
which is equivalent to that ascertained in I for hijðrÞ,

is important for practical purposes. Experiments
or computer simulations are necessarily restricted to
small or intermediate length scales—one cannot probe
the ultimate decay of structural properties. For example,
if one were seeking evidence for structural crossover
in measurements of the solvation force for an asy-
mmetric binary mixture confined between the two mica
plates of the surface force apparatus [30] one would
have to probe plate separations on the scale of a few
particle diameters—as in figure 7. Similar remarks
pertain to experimental measurements [31, 32] of the
depletion potential between two very big colloidal
particles immersed in a binary mixture of big and
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Figure 11. Logarithm of the total correlation function
hbbðrÞ for a two-dimensional binary mixture of hard disks,
with size ratio q¼ 0.5, obtained from DFT (a) and MC
simulations (b). �b ¼ �b��

2
b=4 is fixed at 0.3 in all cases.

For the packing fraction of the small disks �s ¼ 0:075, the
oscillations have a wavelength of about �b whereas for
�s ¼ 0:30 the wavelength is about �s ¼ �b=2. Interference
effects are visible for intermediate values, especially for
�s ¼ 0:1975 in the DFT results (a), providing clear indication
of structural crossover. The results are shifted vertically for
clarity of display.
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small (hard-sphere) colloids. Crossover is already
apparent at intermediate length scales—see figure 6.
It is important to enquire whether the results we

obtain here for the idealised system of hard spheres
are relevant to real fluids, which could be atomic
mixtures or mixtures of two types of colloidal particles.
This issue was addressed in I for bulk mixtures and
the remarks are equally pertinent here. Assuming that
dispersion forces (power-law decay) play a minor role,
which could be engineered by suitable refractive index
matching in colloidal fluids, structural crossover should
occur for mixtures where the effective pair potentials
are softer than hard spheres, provided the effective
diameters are sufficiently different. Indeed the first
observation of such crossover was found [33] in the
binary Gaussian core mixture where the pair potentials
are very soft. Of course, the presence of attractive
interactions might force to larger distances the regime
where crossover effects can be observed in correla-
tion functions. This is the case for the binary
mixtures adsorbed at planar walls that exhibit attractive
wall–fluid potentials—see figure 5.
Our results for a simple model of polydisperse hard

spheres adsorbed at a planar hard wall warrant
further comment. We argue, in section 4, that for a
size distribution with two broad, weakly overlapping
maxima, structural crossover remains visible in the
density profile of the species b corresponding to the
maximum packing fraction of the bigger spheres—see
figure 9. At first sight this might appear surprising.
Consider first a distribution of big hard-sphere dia-
meters with a single maximum at �max

b . Provided the
number of diameters is finite, corresponding to a finite
number of species 
, the OZ equations can still be
written in the form of equation (2) but now generalized
to 
 components. Nevertheless, ĥhijðkÞ, with i, j ¼ 1, . . . , 
,
will have poles determined by the zeros of the
appropriate 
 component common denominator D̂DðkÞ.
There will be a LOP and the quantities a0 and a1 will
be uniquely determined. For a narrow distribution
these quantities will be close to those for a one-
component fluid with diameter �max

b at the same (total)
packing fraction. Similarly for a fluid with a distribution
of 
 small hard-sphere diameters, with a narrow peak
at �max

s , we expect the LOP to be close to that for the
one-component fluid with diameter �max

s . When we
consider the polydisperse 2
 component mixture,
corresponding to the bimodal situation of figure 8,
equation (2) remains valid and we should expect to
find that the LOPs, determined by the zeros of the 2

denominator, are not very different from those in
the binary mixture which corresponds to the size ratio
�max
s =�max

b . Although 
 might be large (we consider

¼ 21 in section 4), provided it is finite and the ratio

�max
s =�max

b remains sufficiently small, we do expect to
find crossover. Of course, as described in section 4,
the crossover need not occur at the same point in the
phase diagram as in the binary mixture.

We have not attempted to incorporate genuine
polydispersity, i.e. a continuous distribution of dia-
meters corresponding to an infinite number of species,
into our theoretical treatment. We leave this for
future study, noting that detailed DFT and Monte
Carlo studies [34, 35] have investigated the density
profiles of polydisperse hard spheres at a planar hard
wall. However, these studies employ a parent bulk
distribution (top hat or Schulz) that has a single
maximum and are not concerned with the intermediate
range oscillatory behaviour of the profiles. In experi-
mental samples, typical degrees of size polydispersity
are around 5%, which is less than the degree of
polydispersity considered here. Therefore we are con-
fident that the structural crossover can be observed in
experiments with colloidal mixtures.

Finally we return to our results for one-dimensional
hard rods (subsection 5.1). It is gratifying that
structural crossover occurs in an exact statistical
mechanical treatment and that the overall shape of the
crossover line follows that calculated for the binary
mixture of hard spheres. This attests to the generic
nature of the crossover mechanism. In both one- and
three-dimensional fluids with q ¼ 0:5 the line begins at
the origin of the (�b, �s) plane. (Note that our results
in figure 5 of I did not extend to very low packing
fractions.) For a very low concentration of small
particles crossover occurs rapidly on adding a small
amount of big particles. The form of the crossover
line in the limit �b! 1 for the hard-rod mixture in
figure 10 is somewhat more curious. If the crossover line
exists in this limit it must, of course, terminate at the
point �b ¼ 1, �s ¼ 0 since the total packing fraction
cannot exceed unity. Nevertheless, it is striking that for
a very large concentration of big rods, say �b ¼ 0:97,
adding a very small amount of small particles so that
the total packing fraction is about 0.98, leads to
crossover, i.e. the wavelength of the longest range of
oscillations in the correlation functions is then deter-
mined by the length of the small rods which are present
in only very small concentrations. We should note,
however, that as �b! 1 several poles begin to
contribute to hijðrÞ at long range; the imaginary parts
of the higher-order poles become comparable with a0,
the imaginary part of the LOP [28].

Michael Fisher and Ben Widom [1] pioneered
investigations of how the character of the asymptotic
decay of the pair correlation function should change
as one moves from one region of the phase diagram to
another. Their study is relevant to fluids in which there
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are both repulsive and attractive contributions to the
interparticle potential and the existence of the FW line
is intimately linked to the presence of liquid-gas, or
in the case of mixtures, fluid-fluid phase separation. The
structural crossover we describe here and in I arises
in fluid mixtures where the interparticle potentials are
purely repulsive; what is required is that the two species
are sufficiently different in size. As mentioned in the
introduction, FW based their study on exactly solvable
one-dimensional models. For reasons that will be
abundantly clear to the reader, we are grateful that
they did not consider mixtures!
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