
INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER

J. Phys.: Condens. Matter 17 (2005) S3507–S3514 doi:10.1088/0953-8984/17/45/041

Entropic wetting in colloidal suspensions

Marjolein Dijkstra1 and René van Roij2
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Abstract
We study the adsorption and wetting behaviour of colloidal hard spheres and
colloidal rod-like particles at a planar hard wall using computer simulations.
Our results show complete wetting by the hard-sphere crystal at the wall–fluid
interface, and complete wetting by the nematic phase of the hard-rod fluid at
the wall–isotropic fluid interface. In addition, we investigated the effect of
polymer-mediated effective interactions on the wetting behaviour of colloidal
spheres. The many-body character of the effective colloidal interactions yields
an adsorption behaviour that differs enormously from those found for pairwise
simple fluids; e.g., far from the triple point, we find three layering transitions
in the partial wetting regime prior to a transition to complete wetting by the
colloidal liquid.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Athermal hard-core fluids have attracted much attention over the years as their phase behaviour
is driven by entropy alone. Of course, from thermodynamics we know that a bulk phase
transition occurs in a system at constant volume and temperature T if this results in lowering
the Helmholtz free energy F = E − T S with E the energy and S the entropy. In most
systems, a phase transition occurs because it results in a lowering of E and, at the same time,
an increase of −T S. However, if we consider athermal systems, i.e., fluids consisting of
hard-core interactions, then a phase transition can only occur if this results in an increase
of the entropy S. The field of entropy-driven phase transitions was pioneered by Onsager
in the 1940s, when he showed that a fluid of infinitely thin hard rod-like particles exhibits
an isotropic–nematic (IN) phase transition upon increasing the density sufficiently [1]. In
addition, computer simulations in 1957 showed a well-defined freezing transition in a fluid
of pure hard spheres at a packing fraction well below close packing [2]. These developments
showed that purely entropic (packing) effects arising from short-ranged steric repulsions are
sufficient to drive phase transitions in the bulk. At first sight, a phase transition towards a more
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structurally ordered phase (configurationally ordered crystal phase or orientationally ordered
nematic phase) seems at odds with our intuitive interpretation that the entropy is a measure
for the disorder of a system. However, the loss of configurational or orientational entropy
can be more than compensated by the increase in entropy that results from the increase in
free volume available for each particle. Already many other theoretical/simulation studies,
and experimental studies on sterically stabilized colloidal particles have proven that entropy-
driven phase transitions can occur in many systems.

By contrast the adsorption and wetting behaviour of hard-core fluids near a hard surface
is poorly understood. One can enquire, for instance, whether there is complete wetting or
partial wetting for hard spheres and for hard rod-like particles. The wetting behaviour of
simple fluids is well studied now and it is well known that two scenarios are possible for a
liquid droplet in equilibrium with its vapour at a solid substrate. Either the droplet may spread
over the surface and form a macroscopically thick liquid film—this corresponds to complete
wetting—or partial wetting will occur and a droplet with a certain non-vanishing contact angle
will form at the substrate. A thick liquid film is stabilized by the energy of cohesion between
the particles and between the particles and the substrate. An interesting question is whether
complete wetting or the formation of macroscopically thick films at substrates can be driven
by entropy alone. In this paper, we show evidence for complete wetting by hard spheres, by
hard rods, and by the colloidal liquid phase of an athermal colloid–polymer mixture at the
planar hard-wall interface. Parts of this work have been published elsewhere [3–6].

2. Colloidal hard spheres

A contentious issue, which has received much attention, is whether or not there is complete
wetting by the hard-sphere crystal at a smooth hard wall. The discussion was instigated in
1992 by Courtemanche and Van Swol, whose molecular dynamics simulations of hard spheres
confined between two hard walls showed spontaneous formation of crystalline layers near
the wall [7] at a normal pressure below the saturated bulk freezing pressure. The authors
concluded that there is complete wetting by the hard-sphere crystal, also called prefreezing, at
the wall–fluid interface. However, these findings are disputed as their simulation results for the
prefreezing are metastable with respect to capillary freezing: confinement-induced freezing
of the whole fluid should occur rather than the formation of only a few crystalline layers at the
wall (see [3] and references therein).

In principle, the complete wetting scenario could be confirmed by calculating the contact
angle θ , defined by cos θ = (γwf − γws)/γfs, where γwf , γws, and γfs are, respectively, the
interfacial tension of the wall–fluid phase at a bulk density ρb = ρf , the wall–crystal interface
atρb = ρs, and the solid–fluid interface at bulk coexistence. The densities of the coexisting bulk
fluid and bulk solid phase of hard spheres are ρfσ

3 = 0.943 and ρsσ
3 = 1.041, respectively [2].

A vanishing contact angle corresponds to complete wetting of the wall–fluid interface by
the crystal phase. However, using the interfacial tensions from simulations [8, 9], we find
cos θ = 1.02 ± 0.37. Hence, the simulation results are not sufficiently accurate for drawing
any definite conclusions.

In order to investigate the adsorption and, in particular, the wetting properties of a fluid,
it is important to study a bulk fluid in contact with a single wall. This single-wall system
is difficult to treat in simulations, since the fluid in contact with the wall at z = 0 cannot be
treated with periodic boundary conditions in the z-direction. In many simulations of adsorption
phenomena, the fluid is confined between two identical walls located at z = 0 and z = Lz .
However, small values of Lz can lead to finite size or capillary effects and these may hinder
the observation of the single-wall phenomena of interest. In the case of hard spheres, we take
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Figure 1. Density profiles ρ(z)σ 3 of hard spheres with diameter σ between two planar hard walls
at separation Lz = 43.5σ , at bulk densities (a) ρbσ

3 = 0.925, (b) 0.935, and (c) 1.041, along with
typical colloidal configurations.

advantage of the competition between capillary effects and single-wall (wetting) phenomena
in planar slits. By making a systematic study of the effect of plate separation, we are able to
distinguish a regime where complete wetting of the hard-sphere crystal appears to occur, which
is a single-wall phenomenon (i.e. independent of plate separation), from the phenomenon of
capillary freezing, which depends on plate separation.

We perform extensive Monte Carlo simulations of pure hard spheres with a diameter σ

confined between two planar hard walls at different wall separations Lz . We perform our
simulations in the canonical ensemble. We perform simulations at different bulk densities
ρb < ρf . Figure 1 shows typical computer configurations along with the corresponding
density profiles ρ(z)σ 3 for Lz = 43.5σ at varying bulk densities ρb. Figure 1(a) shows the
density profile of a fluid with ρbσ

3 = 0.925, while the density profile in figure 1(b) indicates
the formation of crystalline layers at the wall. The density profile in the central region of
the slit is flat and can be associated with a bulk fluid at ρbσ

3 = 0.935. We observe that the
thickness of the portion of the film with crystalline ordering increases with increasing ρb. The
growth of the thickness of the crystalline film can be observed by calculating the adsorption
� = ∫ Lz

0 (ρ(z) − ρb) for varying ρb. Figure 2 shows � as a function of ρb for four values of
Lz . We find that the adsorption curves consist of three regimes. (i) At ρbσ

3 � 0.925 we find
that � is close to the empirical fit for the adsorption of a fluid of hard spheres obtained in [10].
(ii) For ρbσ

3 � 0.925, the adsorption deviates from this fit due to the formation of crystalline
layers at the wall. We observe that � increases logarithmically as ρb increases. We clearly see
that all the adsorption curves in figure 2 lie close to each other in this regime. Figure 2 also
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Figure 2. The adsorption �σ 2 of a fluid of hard spheres in a planar slit versus (ρf −ρb)/ρf for wall
separations Lz/σ = 21.8 (◦), 43.5 ( ), 65.21 (�), 86.91 (•). For ρbσ

3 < 0.925, the adsorption
is close to the empirical fit [10]. The vertical rise in � found at large ρb corresponds to capillary
freezing. For intermediate ρb the thickness of the wetting crystalline film grows logarithmically.
The inset shows the capillary freezing density ρc as a function of L−1

z , obtained from the vertical rise
of �. The dashed straight line is the prediction for capillary freezing using the Kelvin equation (1).

shows that the formation of crystalline layers and the logarithmic growth of the film thickness
both start at (ρf − ρb)/ρf � 0.017, i.e. 98.3% of bulk crystallization independent of the plate
separation, and can hence be interpreted as a single-wall phenomenon. (iii) At large ρb, we
find a vertical rise in the adsorption, which we associate with capillary freezing induced by
the presence of two walls. The bulk density ρc at which this jump occurs increases with wall
separation and approaches ρf from below. In the inset, we plot ρc as a function of L−1

z . We see
that ρc decreases significantly with decreasing Lz . In the limit Lz → ∞ the capillary freezing
density ρc approaches bulk freezing ρf linearly in L−1

z . This linear limiting behaviour can be
derived from the Kelvin equation, which reads

β(µcoex − µc) = 2β(γwf − γws)

(ρs − ρf )Lz
(1)

where µcoex and µc are the chemical potentials at bulk coexistence and at capillary freezing,
respectively. Using the Carnahan–Starling expression for the chemical potential of the bulk
fluid and using ρsσ

3 = 1.041, and the interfacial tensions obtained from simulations [8],
i.e. βγwfσ

2 = −3.80±0.18, and βγwsσ
2 = −4.37±0.10, we find (ρf −ρc)σ

3 = 0.2051σ/Lz,
denoted by the dashed line in the inset. For Lz/σ = 43.5, 65.21 we find that the capillary
freezing is predicted accurately by the Kelvin equation.

In conclusion, we provide strong evidence for complete wetting by the hard-sphere crystal
of the wall–fluid interface as our simulations show the formation of crystalline layers at the
wall at 98.3% of bulk crystallization and the logarithmic growth of the crystalline film, which
are both independent of plate separation (single-wall phenomenon) and well separated from
capillary freezing that does depend on plate separation. For more details, we refer the reader
to [3].

3. Colloidal hard rods

We also study the adsorption and wetting behaviour of a fluid of hard spherocylinders
with a length-to-diameter ratio L/D = 15 at a planar hard wall. This model exhibits a
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Figure 3. Density and order parameter profiles of a hard-spherocylinder fluid in contact with a
single hard wall located at z = 0. The dimensionless bulk density cb = (L + D)2 Dρb far from
the wall is (a) 1.169, (b) 2.855, (c) 3.379, (d) 3.633, and (e) 3.663. The total density is c(z), the
nematic order parameter is s(z), and the biaxial order parameter is �(z).

first-order transition from an isotropic to a nematic phase in the bulk. The coexistence
densities are determined by Gibbs ensemble simulations and read cI = 3.675 ± 0.003 and
cN = 4.300 ± 0.003, where we define the dimensionless density c = (L + D)2 Dρ with ρ the
number density. In order to study the wetting behaviour, we developed a Monte Carlo method
for simulating fluids in contact with a single wall. A fluid is simulated under the condition that
the density far from the wall reaches a bulk density cb by imposing a penalty function which
suppresses large deviations from cb [5].

Using this method, we measure the density profile and the nematic and biaxial order
parameter profiles for varying bulk densities cb < cI. The density and order parameter profiles
are shown in figure 3 for five different values of cb. We discuss first the results for cb = 1.169.
Figure 3 shows that the density profile c(z) is at a minimum at z = 0, indicating a depletion
of particles close to the wall. c(z) increases with z and reaches a maximum at z = L/2 where
there is a kink in c(z). For higher z, c(z) decreases and reaches the bulk value at z � L.
Turning to the nematic order parameter profile s(z) in figure 3, we find that s(z = 0) = −0.5
at the wall as the rods have to align with the wall, and increases to 0 for larger z, with a kink
at z = L/2. The biaxial order parameter profile �(z) = 0 for all z. Thus, we find a uniaxial
distribution close to the wall, as s(z) < 0 and �(z) = 0, and an isotropic distribution for
z > L, as s(z) = 0 and �(z) = 0. For larger values of cb, we find non-zero values for �(z)
close to the wall, corresponding to a biaxial distribution of the rods. The uniaxial–biaxial (UB)
transition is estimated to be at about cUB = 2.80 ± 0.05 or cUB/cI = 0.76. Thus, for cb < cUB

we find uniaxial symmetry for all z, whereas biaxiality sets in when cb > cUB.
If we increase cb beyond cUB, we clearly observe from the density and the order parameter

profiles that a film with in-plane nematic ordering has increasing thickness for increasing cb.
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Figure 4. Snapshots of the hard-spherocylinder fluid for varying bulk densities cb: (a) 1.169,
(b) 2.855, (c) 3.379, and (d) 3.663. Each left-hand side figure shows a snapshot of the fluid in the
xy-plane taken from the wall at z = 0 looking into the fluid, while each right-hand side shows the
fluid in the xz-plane with the hard wall on the left.

In addition, we find that the adsorption � increases logarithmically as a function of (cI −cb)/cI.
The simulations lend strong support for complete orientational wetting in the limit cb → cI.

More visual information about the ordering at the hard wall is shown in figure 4 where
we show snapshots for cb = 1.169, 2.855, 3.379, and 3.633. The left-hand side of each figure
shows a snapshot of the fluid in the xy-plane taken from the hard wall at z = 0, while the
right-hand side shows the fluid in the xz-plane. For cb = 1.169 we clearly observe a uniaxial
distribution, while at cb = 2.855 some small degree of biaxiality has set in. At cb = 3.379 and
3.633 we observe that the in-plane nematic film grows steadily, reaching a thickness of about
4(L + D) for cb = 3.633.

In summary, we find a transition from a uniaxial to a biaxial surface phase, followed, at
larger bulk densities, by the formation of a thick nematic film, with the director parallel to
the wall, at the wall–isotropic fluid interface. As the density far from the wall cb approaches
the value at bulk isotropic–nematic coexistence cI, the thickness of the nematic film increases
logarithmically. The overall adsorption and wetting behaviour is in qualitative agreement with
the theoretical prediction for the Zwanzig model [4, 11].
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Figure 5. Colloid density profiles ηc(z) for reservoir polymer packing fraction ηr
p = 1.05 near

a hard wall at z = 0 (left). Upon approach to gas saturation, the adsorption �σ 2
c diverges

logarithmically (see the inset), i.e. complete wetting. A typical colloid configuration of a colloid–
polymer mixture showing the formation of a thick colloidal liquid film at the colloidal gas–wall
interface (right). The polymer coils are not shown.

4. Colloid–polymer mixtures

In this section, we study the effect of non-adsorbing polymer on the wetting behaviour of
sterically stabilized colloidal spheres. These mixtures can be regarded as one-component
systems of hard-sphere colloids with polymer-induced effective interactions of which the
strength and the range can be tuned independently by varying the polymer fugacity zp and
the size ratio q = σp/σc, respectively. Here σp is twice the polymer radius of gyration and σc

the colloidal hard-core diameter. For sufficiently large q the bulk phase diagram of a colloid–
polymer mixture exhibits, at sufficiently high zp, a two-phase region where a colloid-dilute
(‘gas’) and a colloid-dense (‘liquid’) phase coexist [12–14]. This is similar to the gas–liquid
coexistence in simple fluids with zp playing the role of inverse temperature. However, the
cohesion that stabilizes the colloidal liquid phase is not provided by dispersion forces, but by
depletion forces generated by the gain of free volume (entropy) for the polymers upon colloidal
crowding [15, 16]. Another difference with simple fluids is that the pairwise additivity of the
effective interactions breaks down qualitatively in this q-regime, i.e. interactions of three and
more bodies are non-negligible. The simplest model that catches the essence of polymer-
induced depletion interactions between colloidal hard spheres is the Asakura–Oosawa (AO)
model [16]. In this model the polymers are described as non-interacting interpenetrating
spheres as regards their mutual interactions, while the colloid–polymer pair interaction is
hard-sphere-like such that their distance of closest approach is σcp ≡ (σc + σp)/2.

By first integrating out the degrees of freedom of the polymer coils in the partition
function of the AO model, we derive a formal expression for the exact effective Hamiltonian
of the colloids, i.e., it incorporates all the effective many-body interactions [6, 14]. We then
develop a novel Monte Carlo scheme for the exact effective Hamiltonian [6]. Employing a
grand canonical version of this scheme, we study the wetting and layering phenomena near
a planar hard wall for q = 1 at fixed polymer fugacity (fixed reservoir polymer packing
fraction ηr

p).
We measure the colloid density profile ηc(z) at fixed ηr

p. We use the technique of [5] to
impose a flat average profile far away at the wall.

In figure 5, we show the profiles ηc(z) in the vicinity of the hard wall for ηr
p = 1.05

at several bulk densities ηb
c < ηsat

c , the saturated colloid gas density. The insets show the
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corresponding dimensionless adsorption �σ 2
c as a function of the undersaturation ln(ηsat

c −ηb
c).

The formation of a thick liquid film and the logarithmic divergence of �σ 2
c with ηc → ηsat

c
are strongly indicative of complete wetting for ηr

p = 1.05. For ηr,c
p � ηr

p � 1.05 with ηr,c
p the

reservoir polymer packing fraction at the critical point, we also find complete wetting of the
colloidal liquid at the wall–gas interface. However, for ηr

p � 1.10, the adsorption �σ 2
c remains

finite for ηb
c → ηsat

c , implying partial wetting. This implies that the wetting transition occurs
at ηr,w

p with 1.05 < ηr,w
p < 1.10.

Surprisingly, however, we did find off-coexistence jumps δ�σ 2
c in �σ 2

c in three separate
regimes ηr

p > ηr,w
p , i.e. in the partial wetting regime. The jumps can be associated,

following [17], with layering transitions. We have no detailed understanding of the mechanism
behind these layering transitions, which take place in the partial wetting regime far from the
triple point, and not, as in simple fluids, in the complete wetting regime close to the triple point.

In conclusion, we find that the many-body character of the polymer-mediated effective
interactions between the colloids yields adsorption phenomena that differ enormously from
pairwise simple fluids, e.g. we find three layering transitions in the partial wetting regime, yet
well away from the bulk triple point.
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