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Abstract
Using the Asakura–Oosawa–Vrij model for mixtures of hard sphere colloids
and non-adsorbing polymer coils, an analytic formula for the interfacial free
energy of the fluid mixture in contact with a hard wall is obtained within a scaled-
particle treatment. The results compare well with explicit density functional
calculations for the binary mixture. We also give expressions for the wall
tension of the mixture when polymers interact via a simple stepfunction pair
potential, and for the case of contact with a polymer-coated wall, which we take
to be hard for the colloids but penetrable for the polymers. On the gas side of
the fluid–fluid demixing binodal we confirm the wetting transition at the hard
wall and predict complete drying of the polymer-coated wall on the liquid side
of the binodal.

Mixtures of sterically-stabilized colloidal particles and non-adsorbing globular polymers
suspended in an organic solvent are valuable soft matter systems to study demixing phase
transitions and wetting phenomena at walls; for a recent review see [1]. Controlling the
wetting behaviour is mandatory for tailoring wall coatings with intriguing applications like self-
cleaning surfaces [2]. Experimental investigations of well-characterized model systems have
provided direct insight into the bulk phase diagram [1], the fluid–fluid surface tension (i.e. the
interfacial free energy between colloidal liquid and colloidal gas phases) [3–6], and the wetting
behaviour of walls [6–9]. In order to capture the key features of the microscopic interactions, the
Asakura–Oosawa–Vrij (AO) model [10, 11] of hard sphere colloids and ideal polymer spheres
has become a widely-used reference system. Recently, studies based on density functional
theory (DFT) [12–16] and computer simulations [17–19] have been performed in order to
explore the bulk phase diagram [13, 17, 18] (validating the accuracy of the celebrated free-
volume theory [20]), the wetting and layering behaviour at a hard wall [14, 15, 17, 21], the
surface tension between colloidal liquid and gas phases [12, 14, 15, 19, 21, 22], and capillary
condensation in a slit pore [16]. The basic features are in agreement with experimental results
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and some deviations in the fluid demixing binodal can be improved by approximating realistic
polymer–polymer interactions [18] in a simple way [23]. The physical key quantities dictating
wetting and drying behaviour at walls, when the bulk is at or near fluid–fluid coexistence, are
the interface tensions between wall and liquid,γwl, and between wall and gas,γwg, as well as the
surface tension of the (free) liquid–gas interface,γlg. Those enter directly into Young’s equation
for the contact angle θ at which the gas–liquid interface hits the wall [24], γlg cos θ = γwg−γwl.
Despite the rapidly growing number of experimental [6–9] and theoretical [14, 15, 17, 21]
papers on wetting phenomena of colloid–polymer mixtures, investigations of the tension of
polymers at surfaces of colloidal particles [25], and geometrical analysis of depletion near
walls [21], neither γwg and γwl nor the wall–fluid tension away from coexistence, γwf , have
been addressed directly.

In this letter, we present an analytical expression for γwf of the AO model at a hard wall
using ideas from scaled particle theory (SPT) originally developed in [26–30] and successfully
tested [31, 32] for hard sphere mixtures. The key idea is to consider a ternary system of colloids,
polymers and a dummy component of large size and vanishing concentration that is equivalent
to a planar wall. The bulk free energy F of the ternary mixture is required as an input, and a
systematic expansion allows us to determine γwf . Evaluating γwf at the gas (liquid) branch of
the binodal yields an estimate for γwg (γwl). We take F from (straightforward generalizations)
of free-volume theory [20], and DFT [23], the latter including polymer–polymer interactions
in a simple way. We find that polymer non-ideality significantly increases γwf compared to the
case of ideal polymers at the same statepoint. We also consider the effect of polymer chains
that are grafted to a substrate [9], and take this composite to exert a hard core repulsion on the
colloids, but to be fully penetrable for the polymers. In all cases, analytical expressions for
γwf are presented and found to compare well with the results from explicit DFT calculations
for the binary AO model. Comparing γwl − γwg to DFT results for γlg allows us to confirm the
wetting transition at the hard wall on the gas branch [14, 15], and to predict complete drying
of the polymer-coated wall everywhere on the liquid branch of the fluid demixing binodal.
Our results for γwf can be tested against those from computer simulations (see, for example,
[19] for an investigation of γlg and comparison to DFT results). The wall tension that we
are concerned with is that which solely arises due to the presence of the mesoscopic particles
and the suspended polymer chains. In a real mixture, there will also be a strong contribution
to the tension due to the molecular solvent; we guess that this makes measuring the osmotic
contribution a challenge. To the best of our knowledge interfacial tensions of non-additive
mixtures have not been considered before with SPT [33].

The theoretical model [10, 11, 23] consists of hard sphere colloids (species c) and polymer
spheres (species p) with diameters σc and σp and particle numbers Nc and Np, respectively,
within a volume V . The particles interact via pairwise potentials given as a function of
the centre–centre distance r as ucc(r) = ∞ if r < σc and zero otherwise, ucp(r) = ∞ if
r < (σc + σp)/2 and zero otherwise, upp(r) = ε if r < σp and zero otherwise. Control
parameters are the size ratio q = σp/σc, and a scaled energy, βε, where β = 1/(kBT ), kB is
the Boltzmann constant and T is the temperature. For βε = 0 the polymers are ideal and we
are dealing with the AO model; for βε → ∞ the binary hard sphere mixture is recovered.
Two different cases for the dummy component (species d) are considered. In the first case
of the hard wall, the dummy is similar to a (large) colloid, hence its interaction with species
i = c, p is udi = ∞ if r < (σd + σi )/2 and zero otherwise. In the second case of the polymer-
coated wall the dummy behaves like a (large) polymer and hence interacts with colloids as
udc(r) = ∞ if r < (σd +σc)/2 and zero otherwise; the interaction with polymers is udp(r) = ε

if r < (σd + σp)/2 and zero otherwise, and we will restrict ourselves to βε = 0 below.
Number densities for species i = c, p, d are ρi = Ni /V ; packing fractions are denoted by
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ηi = πσ 3
i ρi/6. In general, s = σd/σc is a further control parameter for the ternary mixture; for

the present purpose we are interested only in s → ∞, such that we can expand the (Helmholtz)
free energy F for the ternary mixture to linear order in the surface of the dummy particles,
πσ 2

d ρdV , as

F/V = (1 − ηd) f (ηc, ηp, q) + πσ 2
d ρdγwf(ηc, ηp, q), (1)

where f is the free energy per volume of the binary colloid–polymer mixture, and the factor
1−ηd corrects for the finite volume that the dummies occupy. Once F (and f = limρd→0 F/V )
is known, equation (1) provides a means to determine γwf .4

In our first case we use F as obtained from free volume theory [20], where the dummy is
a hard sphere, to obtain the hard wall–fluid interface tension of the AO model (βε = 0),

βγwf = βγhs + ρp
σp

2
[1 + (1 + 3q + q2)τ + (3q + 4q2)τ 2 + 3q2τ 3], (2)

where τ = ηc/(1 − ηc) and βσ 2
c γhs = 3ηc(2 + ηc)/[2π(1 − ηc)

2] is the interface tension
of pure hard spheres and a hard wall according to scaled particle theory [27]. Clearly,
our result for the AO model recovers γhs for ηp = 0. In the case ηc = 0, equation (2)
yields βγwf = σpρp/2, which is exact for the ideal gas of polymers at the hard wall.
Different conventions for γwf exist; including the work to displace the particle centres over
a distance of one radius (as for example in [27]) yields the tension γwf − ∑

i=c,p Pσi /2,
where the bulk pressure is β P = β Phs + ρp(1 − ρcα

′/α), with the hard sphere contribution
β Phs = 6ηc(1+ηc +η2

c)/[πσ 3
c (1−ηc)

3], and the term involving the free volume fraction α [20]
and α′ = ∂α/∂ρc is−ρcα

′/α = (1+3q+3q2+q3)τ+(3q+12q2+7q3)τ 2+(9q2+15q3)τ 3+9q3τ 4.
It is interesting to note that γwf given through (2) shares linearity in ρp with the bulk excess
(over ideal) free energy, Fexc, for the AO model from free-volume theory [20]. Recall that
Fexc is related to the SPT result for the excess free energy of binary hard spheres through
linearization of the latter with respect to the density of one of the components (becoming
the polymer); see [13] for further discussion and the relation to DFT. Remarkably, the same
property holds for the tension. Linearizing the result of γwf for binary hard sphere mixtures
(given in equation (3.9) of [29] and reformulated in Rosenfeld form in equation (26) of [32])
in one of the packing fractions yields equation (2). For the step-function interaction between
polymers, a free energy for the ternary mixture (where the dummies act like colloids) is given
using the framework of [23]. We obtain for the hard wall-tension γwf + �γwf , where γwf is
given in (2) and up to cubic order5 in βε:

�γwfσ
2
c = 3η2

p

2πq2

[
βε − (βε)2

2

]
(1 + τ )2(5 + 12qτ + 2q2τ + 9q2τ 2) +

η2
p(βε)3

4πq2
(1 + τ )2

× [5 + 12qτ + 2q2τ + 9q2τ 2 + 12ηp(1 + τ )(4 + 9qτ + q2τ + 6q2τ 2)]. (3)

In the second case, we apply the same procedure as above to a ternary AO model with
a dummy polymer species (with βε = 0), in order to obtain γwf of a wall that acts as a big
polymer, i.e. it is penetrable to the polymers but impenetrable to the colloids. Carrying out the
analysis reveals that in this case simply γwf = γhs, being independent of the polymer density.

As benchmarks we have carried out numerical DFT calculations using the theory of [13],
which is specifically tailored for the AO model. The planar walls are described by external

4 Note that similar to the hard sphere case [32], the geometrical DFT for the binary colloid–polymer mixture [13, 23]
yields γwf = ∂
/∂n(i)

2 as the tension of a planar wall that behaves like species i , where 
 is the free energy density

and n(i)
2 is the surface weighted density of species i .

5 Nonperturbative results can be obtained numerically from constructing the bulk free energy from numerical solution
of the 0d problem; see [23].
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Figure 1. The hard wall–fluid interface tension γ̃wf = βσ 2
c γwf of the AO model for size ratio

q = σp/σc = 0.6 as a function of the colloid packing fraction ηc and for increasing polymer
reservoir packing fractions ηr

p = 0, 0.2, 0.4, 0.5, 0.6, 0.7, 0.8 (from bottom to top). The results
from SPT (full curves) are compared to those of numerical DFT calculations (dashed curves). The
gap in the top four curves corresponds to fluid phase coexistence. Also shown is the DFT result for
the polymer-coated wall for ηr

p = 0.4 (dotted curve); the corresponding SPT result is equal to γhs
(lowest full curve). The inset shows the fluid part of the phase diagram for q = 0.6 as a function
of ηc and ηr

p; indicated are the binodal (thick curve), spinodal (dotted curve), critical point and
(horizontal) tielines connecting coexisting states.

potentials ui(z) acting on species i = c, p, where z is the distance from the wall, and
ui (z) = limσd→∞ udi (z − σd). Inhomogeneous colloid and polymer density profiles as a
function of z are obtained through iteration. The wall tension γwf is calculated via evaluating
the grand potential functional for these solutions and subtracting the bulk contribution −PV
where V is the volume with z > 0 and also subtracting −βρpV− in the case of the polymer-
coated wall, where V− is the volume with z < 0; see for example [15] for more details.

We first consider the case of the hard wall; see figure 1 for γwf as a function of ηc for
different values of ηr

p, being the packing fraction of polymers in a reservoir of pure polymer
that is in chemical equilibrium with the system. In the pure hard sphere case, ηr

p = 0, the
SPT result, (2), is equal to the accurate hard sphere result [27], whereas the DFT reduces to
the also accurate Rosenfeld hard sphere functional. Both agree well [32], the DFT giving
slightly smaller values for γwf for high ηc. Increasing ηr

p at constant ηc significantly increases
γwf . Recall that for ηc = 0 equation (2) becomes exact, and indeed both approaches give this
limiting value. The behaviour for small ηc > 0 is qualitatively correct in the SPT treatment, but
quantitatively significantly stronger in DFT. The latter takes the depletion attraction between
wall and colloid mediated by the polymer [34] correctly into account, which we expect not to
be the case in the SPT. Increasing ηc at constant ηr

p reduces ηp in the system, and the hard sphere
result is approached smoothly. γwf is non-monotonic and goes through a minimum located at
an intermediate value of ηc, provided ηr

p is large enough, in the SPT ηr
p > 1/(2 + q) (=0.384

for q = 0.6). The gap for results above the critical point, ηr
p > ηr,crit

p ≈ 0.494, indicates
fluid–fluid phase coexistence. No apparent anomaly occurs in the analytic result either at the
binodal or at the spinodal. Generally the agreement between results from SPT and DFT is
good. In the case of the polymer-coated wall the SPT result for γwf is for all ηr

p identical to
γhs, hence the polymers are predicted to have no effect on the interface tension. To test this
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Figure 2. The hard wall–fluid interface tension γ̃wf = βσ 2
c γwf of the AO model for size ratio

q = 0.6 as a function of ηc along dilution lines, ηp = κηc, for κ/κcrit = 0, 0.2, 1, 5 (right to
left), where κcrit = ηcrit

p /ηcrit
c = 0.9599 is the slope of the dilution line through the critical point.

Compared are results from SPT (full curves) and DFT calculations (dashed curves) for statepoints
in the single-phase region and ending at the binodal (indicated by stars). Also shown are results
from SPT for the case of interacting polymers for βε = 0.5 (dotted curves) and for binary hard
spheres (chain curves) for the same densities and size ratio. The inset shows the phase diagram as a
function of ηc and ηp with the binodals for the AO model (thick full curve) and for the interacting-
polymer case (q = 0.6; βε = 0.5) (dotted curves), as well as the corresponding critical points
(filled dots) and dilution lines (straight lines).

we compare for one fugacity, ηr
p = 0.4, with the DFT result for γwf , which takes the polymers

explicitly into account. Indeed, it deviates little from the hard-sphere DFT result, mainly for
intermediate values of ηc.

We next follow dilution lines, which are experimentally convenient paths in the phase
diagram obtained by keeping the total colloid and polymer mass (inside a cuvette) constant;
adding solvent then decreases both ηc and ηp while keeping the ratio κ = ηp/ηc = constant. In
figure 2 γwf is plotted for different values of κ as a function of ηc in the one-phase region. The
hard sphere result for κ = 0 serves as a reference. Following dilution lines at κ > 0 leads to
a much stronger increase of γwf with ηc, clearly an effect of the added polymer. The increase
becomes stronger for steeper dilution lines, i.e. upon increasing κ . The comparison between
SPT and DFT results is somewhat better than in figure 1 (where more extreme statepoints
were considered). It is interesting to compare these results with those for two other models.
The first is the binary hard sphere mixture (obtained by replacing the polymers with hard
spheres) of size ratio q = 0.6 and the same packing fractions; see figure 2 for the results. The
SPT result for the binary hard sphere mixture [29], known to deviate only little from explicit
DFT calculations [32], indicates significantly larger tension than the AO model at the same
statepoint, clearly due to stronger packing effects. Secondly, we plot the result for polymers
interacting with a stepfunction pair potential, equations (2) and (3). This model possesses an
additional energy scale that governs the strength of the polymer–polymer interaction. Already
for the very moderate value of βε = 0.5 (where we expect the cubic order expression given
in (3) to be accurate) we find a significant increase of γwf over the ideal (AO) case. Moreover,
along each dilution line larger values of ηc can be reached inside the one-phase region, as the
binodal for the case of non-ideal polymers is shifted towards higher ηc and ηp, hence demixing
is suppressed (see the inset in figure 2 and [23] for further background).
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Figure 3. Hard wall–fluid interface tensions of the AO model for size ratio q = 0.6 at fluid–fluid
coexistence as a function of the difference in coexisting colloid packing fractions, ηl

c − η
g
c . Shown

are the results from SPT (full curves) and from numerical DFT calculations (dashed curves) for
γ̃wg = βσ 2

c γwg and γ̃wl = βσ 2
c γwg. Marked are the positions of the first, second and third layering

transition and the wetting transition (vertical arrows, from right to left, taken from [14]) that appear
on the gas branch of the binodal [14]. The DFT result for γ̃wg in the complete wetting regime
(between the origin and the leftmost arrow) is obtained as γ̃wl + γ̃lg. Note the jump in the DFT
result for γ̃wg at the first layering transition (rightmost arrow). The inset shows the analytic result
for the difference γ̃wg − γ̃wl and the DFT result for the interface tension of the free liquid–gas
interface, γ̃lg = βσ 2

c γwl [14]; the crossing point indicates the result for the wetting transition
within this treatment.

At bulk fluid–fluid coexistence a dense colloidal liquid with packing fractions ηl
c and ηl

p

coexists with a dilute colloidal gas with packing fractions η
g
c and η

g
p. Evaluating the respective

expressions for the wall fluid tension yields γwg = γwf(η
g
c , η

g
p) and γwl = γwf(η

l
c, η

l
p); see

figure 3 for results for the AO model at a hard wall obtained from equation (2). The agreement
with the results from DFT on the liquid side is again very good, but on the gas side deviations
are larger due to crowding of colloids at the wall; any layering transitions [14] are not captured
by the SPT. At the first layering transition [14, 15] we observe a kink in the DFT result for
γwg. We expect the second and third layering transitions (with smaller jumps in the adsorption)
to have similar anomalies, but have not been able to resolve them with the current numerical
accuracy. Also the precise location of the transition from partial to complete wetting, where
γlg = γwg − γwl, is not observable in this way. Comparing our SPT result for γwg − γwl with
the DFT result for γlg [14], we find that close to the critical point γwg − γwl > γlg, indicating
complete wetting, and further away from the critical point γwg − γwl < γlg, indicating partial
wetting. Despite the simplicity of the SPT, this is qualitatively in accordance with full DFT
calculations (analysing the behaviour of the inhomogeneous colloid density profile at the
wall) [14, 15]. The location of the wetting transition obtained by setting γlg = γwg − γwl, is
ηl

c − η
g
c = 0.41, ηr

p = 0.87, whereas the DFT result is ηl
c − η

g
c = 0.276, ηr

p = 0.596 [14, 15].
Carrying out a similar analysis for the case of the polymer-coated wall (see figure 4)

reveals a larger discrepancy between the SPT and DFT results, especially on the liquid side of
the binodal. The SPT result for γwl − γwg does not cross γlg from DFT, indicating complete
drying everywhere on the liquid branch of the binodal. Indeed drying has been observed
experimentally at a polymer-coated substrate [8]. It turns out that the DFT results for γwg + γlg

and γwl (not shown in figure 4) are practically equal on the scale of the plot. The colloid
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Figure 4. The same as figure 3 but for the polymer-coated wall. Note the different vertical scale
compared to figure 3. Within the DFT we obtain γ̃wl as γ̃wl = γ̃wg + γ̃lg. The inset shows that
γ̃wl − γ̃wg > γ̃lg, hence complete drying on the liquid branch of the binodal, compatible with results
from full DFT calculations.

density profiles show a clear layer of gas density close to the wall (which is not treated within
the SPT). For one statepoint, ηr

p = 1, far away from the critical point, we have checked within
the DFT that the adsorption �c = ∫ ∞

0 dz (ρc(z)−ρc(∞)) ∝ ln(ηc/η
l
c −1) over more than two

decades, 10−4 < ηc/η
l
c − 1 < 10−2, indicating complete drying. The current binary mixture

adsorbed at a wall that does not generate an effective depletion interaction is closely related to
simple fluids at a hard wall, where complete drying is found everywhere on the liquid branch
of the binodal [35].

In conclusion, we have derived analytical expressions for the wall tension of a colloid–
polymer mixture using a scaled particle approach. Both the Asakura–Oosawa model near a
hard and a polymer-coated wall (the latter being penetrable for the polymers) as well as the
case of interacting polymers at a hard wall are considered. Results are tested against explicit
DFT calculations and good overall agreement is found. Applied to the fluid demixing binodal,
our data confirm the wetting transition at the hard wall [14, 15]. Wetting at a hard wall was
observed experimentally [7–9], and also a transition was claimed [8, 9]. The previously found
layering transition [14, 15] manifests itself as a tiny kink in the interfacial tension. We predict
complete drying near a polymer-coated wall; this was also reported in experiments [9]. Future
work could be devoted to exploring the interfacial tensions by direct computer simulation via
integrating the anisotropy of the pressure tensor [36], by thermodynamic integration [31] or,
possibly, by using grand-canonical configurational-bias Monte Carlo [19] in order to test our
predictions. It would also be interesting to study patterned surfaces [37] and structured walls
which for example drastically influence the flow through microfluidic devices [38].
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