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Sedimentation profiles of charged colloids:
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Abstract. – We present Molecular Dynamics simulations and Poisson-Boltzmann theory of
sedimentation equilibrium of suspensions of charged colloids, treated at the level of the primitive
model, including the co- and counterions (microions) explicitly. The simulations provide the
first direct confirmation of the theoretical low-salt predictions of i) a macroscopic separation of
colloidal and microionic charge, ii) an almost homogeneous electric field in the suspension, iii) a
highly non-barometric colloid density distribution. These effects, which cannot be explained
within the usual effective one-component picture, should be measurable experimentally.

Introduction. – Colloidal suspensions are multi-component fluids that consist of meso-
scopic colloidal particles in a molecular solvent, often with additional components such as
ions, polymers, etc. Despite this multicomponent character, it is common practice to view
a colloidal suspension as an effective one-component system of colloidal particles [1, 2]. In
this letter we study sedimentation of suspensions of charged colloids in the Earth’s gravity
field, and show that the resulting equilibrium density profile can only be understood in terms
of macroscopic charge separation of colloids and salt ions, i.e. the effective one-component
description breaks down.

Colloidal suspensions exhibit sedimentation in the Earth’s gravity field when the buoyant
mass m of the colloidal particles is non-vanishing [3, 4]. The equilibrium colloid density ρ(z)
at height z follows, within a one-component picture, from the competition between minimal
energy (all colloids at z = 0, i.e. at the bottom) and maximum entropy (a homogeneous dis-
tribution in the available volume). For a dilute suspension at temperature T , the equilibrium
density profile satisfies the well-known barometric height distribution

ρ(z) = ρ0 exp[−z/L], (1)

with L = kBT/mg the gravitational length in terms of the Boltzmann constant kB and the
gravitational acceleration g [5]. The normalization constant ρ0, which is the number density
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at z = 0, follows from the total number N = A
∫ H

0
dzρ(z) of colloids in the system, where A

is the planar area and H the height of the sample. Of course, the colloidal interactions affect
the competition between potential energy and entropy, and hence change the functional form
of ρ(z), but one would expect that L sets the length scale for the sedimentation equilibrium in
dilute suspensions. Typically, L is of the order of µm-mm for colloids, unless density matching
has taken place by special preparation of the sample.

There is, however, both theoretical [6–10] and experimental [11] evidence that L is not
necessarily the relevant length scale in suspensions of highly charged colloids at low ionic
strength. The reason is that the usual competition between potential (gravitational) energy
and colloid entropy is enriched by two additional free-energy contributions in such systems,
i) the entropy of the microscopic ions (which favors the cations and anions to be homoge-
neously distributed in the sample), and ii) the electrostatic energy (which favors local charge
neutrality). At low enough concentrations of salt these two contributions are in conflict with
eq. (1) when L � H: in order to satisfy local charge neutrality the counterion distribution
must, in the absence of an appreciable number of coions, also be of the form (1), i.e. the
counterion distribution will be extremely inhomogeneous on the length scale of the sample
size H. (At sufficiently high-salt concentrations the relative ion fractionation is much smaller.)
How does the system resolve this conflict? Theoretical treatments of this problem have so far
all been based on Poisson-Boltzmann (mean-field) theory, which predicts that the system sets
up an almost homogeneous macroscopic electric field in the suspension (i.e. in a conducting
medium!), such that the colloids are lifted to heights of order QL, with Q > 0 the colloidal
charge number that can easily be 102–104 experimentally. In order to assess the possibility of
experimental observation of this intriguing phenomenon, important questions are whether or
not the predictions are i) robust with respect to approximations of the theory (which ignores
fluctuations, correlations, and hard-core excluded-volume effects), and ii) quantitatively reli-
able. In this letter we present, for the first time, the results of a computer simulation study
of this system, and put the mean-field theory, in particular the version of ref. [10], to the test
directly. We briefly present the theory first for completeness. For more details, the reader is
referred to ref. [10].

Theory. – We consider a suspension of N colloidal spheres of charge Qe (with e the
proton charge, Q > 0) and gravitational length L, in a structureless solvent with dielectric
constant ε at temperature T , in osmotic contact with a salt reservoir with a concentration 2ρs

of monovalent cations and anions. The ions are massless, and their (yet unknown) average
equilibrium density profile in the suspension can be written as a Boltzmann distribution
ρ±(z) = ρs exp[∓φ(z)] [10]. Here φ(z) is the yet unknown dimensionless electrostatic (Donnan)
potential, which follows with the equilibrium colloid density profile ρ(z) from the combined
Boltzmann distribution and Poisson-Boltzmann equation,{

ρ(z) = ρ0 exp[−z/L−Qφ(z)],
φ′′(z) = −4πλB

(
Qρ(z) − 2ρs sinhφ(z)

)
,

(2)

subject to the boundary conditions φ′(0) = φ′(H) = 0. Here λB = e2/εkBT is the Bjerrum
length, and a prime denotes differentiation with respect to z [10]. Below, we solve this set of
equations numerically for the parameters of the simulation. However, this set of equations,
or variations thereof, was already studied in refs. [6,7,9,10], and was found to have solutions
φ(z) linear in z in a macroscopically large volume provided the ion concentration is so low
that 2ρs � Q2ρ(z). In the salt-free case, the resulting electric field is such that the electric
force on a colloidal particle is mgQ/(Q+ 1), which with a gravitational force of −mg yields a
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net force −mg/(Q+1), i.e. as if the mass were reduced by a factor Q+1. Hence the colloidal
distribution is much more homogeneous than predicted by the barometric law (1), and the
typical height of the sediment is now (Q + 1)L instead of L [6, 7, 9, 10]. In the limit of high
salt, 2ρs � Q2ρ(z), the barometric law (1) is recovered.

We wish to stress that the present theoretical description is entirely of mean-field nature,
and disregards any of the correlations, i.e. correlations are not even accounted for on the
Debye-Hückel level. For a homogeneous system of charged particles (which is obtained here
when m = 0) this level of approximation leads trivially to an ideal-gas mixture in a spatially
constant Donnan potential, but in the gravity-induced inhomogeneous system of present in-
terest non-trivial phenomena already show up within this low-level description.

Simulation method. – We perform Molecular Dynamics (MD) simulations in a box of
dimensions K ×K ×H, taken periodic in the horizontal directions x, y ∈ [0,K] and finite in
the vertical direction z ∈ [0,H]. We consider N colloids of positive charge Qe and diameter
σ, N+ coions of charge +e, and N− = QN + N+ counterions of charge −e. The microions
have a (small) diameter in order to prevent the system from collapsing. Since a hard-core
repulsion is not well-suited for MD simulations, we replace it, following ref. [12], by a softer
r−9 potential, such that the pair potential between particles of species i and j (i.e. between
colloid-colloid, colloid-microion, and microion-microion pairs) is given by

Uij(r) = kBT
QiQjλB

r
+ kBT

|QiQj |λB

9

(
σi + σj

2

)8 1
r9

, (3)

where Qi, σi is the valency and diameter of species i, respectively, while r = |ri − rj |. The
prefactor of the soft repulsion was chosen such that the potential well of oppositely charged
particles is located at hard-core contact, r = (σi+σj)/2 [12]. In addition to the pair interaction
in eq. (3), the colloids are coupled to the gravitational field that points in the negative z-
direction, and the potential is given by V (z) = kBTz/L with L the gravitational length defined
earlier. The microions are considered massless, and do not couple to the gravitational field.

The long range of the Coulomb interaction requires the use of periodic images to account
for the electrostatics properly. The standard Ewald summation method [13] cannot be used,
since the system is only periodic in the x- and y-, and not in the z-direction. Instead we
employed the so-called MMM2D method, which can deal with the slab geometry of present
interest properly and efficiently [14, 15]. In order to keep the particles inside the simulation
box, repulsive walls are added at z = 0 and z = H. The wall potential for species j is given by
the soft r−9 repulsion of eq. (3), now with r equal to the distance from the wall and i equal to
the macroion species. This choice mimics, to a good approximation, a hard wall with contact
distance given by (σ + σj)/2.

It is important to note that the simulated system is not osmotically coupled to a salt
reservoir; the number of microions is fixed. In principle, this complicates the direct comparison
with the theory presented earlier [10], where the reservoir salt concentration is fixed and not
the actual concentration in the suspension. However, we see that the top part of the simulation
box contains such a low colloid density that it acts as a reservoir, and the measured total salt
concentration in the top can be directly identified with the reservoir salt concentration 2ρs.

The MD simulations are performed for fixed particle numbers, volume, and temperature.
Constant temperature is achieved by using the so-called Langevin dynamics [16], where the
equation of motion for each particle is a Langevin equation instead of the usual Newton equa-
tion (that gives rise to a constant energy). Denoting the potential energy of a configuration
by U , the Langevin equation for particle i at position ri(t) at time t can be written as [16]

mir̈i = −∇iU − νmiṙi + Fi(t) , (4)
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where mi is the inertial mass of the particle, ν a friction coefficient, Fi(t) a random force,
and the dots denote time derivatives. The dissipative term, −νmiṙi, damps the motion of the
particles, while the fluctuating term, Fi(t), gives particles random pushes and therefore, on
average, accelerates the motion of the particles. Together these two terms provide a heat bath
at constant temperature, provided the fluctuation-dissipation theorem is satisfied by setting
〈Fi(t)〉 = 0 and 〈Fi(0) · Fi(t)〉 = 2mikBTνδ(t), where the brackets denote the average over
a Gaussian distribution. We use the velocity Verlet algorithm to integrate eq. (4) [16], and
employ reduced units: the colloid diameter σ and mass m are the units of length and mass,
respectively, and kBT is the unit of energy, resulting in σ

√
m/kBT for the unit of time.

The density profiles ρ(z), ρ+(z) and ρ−(z) for the macro- and microions are calculated
from the particle configurations recorded during a simulation run. The electric field E(z)
along the z-axis inside the simulation box is calculated from the integrated Poisson equation,
that in dimensionless form is given by

E(z) =
σeE(z)
kBT

= −4π
λB

σ
σ2

∫ z

0

q(z′)dz′ , (5)

where q(z) = Qρ(z)+ρ+(z)−ρ−(z) is the total charge density. One can directly compare the
simulated E(z) with the theoretical prediction σφ′(z) that follows from the solution of eq. (2).

Results. – In all four simulations (labeled (a)-(d)) presented here we set λB = 4×10−3σ,
the inertial mass of the microions 0.01m, L = 10σ, the lateral dimension of the box K ≈ 7.24σ,
and the total colloidal packing fraction η = (π/6)σ3N/AH = 0.01. The height of the box is
H = 100σ, except in (d), where H = 50σ. Simulations (a) and (b) represent salt-free systems
(N+ = 0) of N = 100 colloids, where Q = 10 and N− = 1000 in (a) and Q = 5 and N− = 500
in (b). Simulations (c) and (d) have added salt, with (c) having N = 100 colloids and
N+ = 250 added coions and (d) N = 50 colloids and N+ = 625 added coions. In simulations
(a)-(c) we use microion diameter σion = 10−3σ and in (d) we use σion = 0.01σ. The friction
coefficient in the Langevin equation (4) is chosen to be ν = 5 × 10−5/∆t for all simulations,
and the time step for the velocity Verlet algorithm is chosen to be ∆t = 1 × 10−4σ

√
m/kBT

for (a)-(c) and ∆t = 5 × 10−5σ
√

m/kBT for (d). Such a small ∆t requires long simulations
to properly sample the colloidal degrees of freedom.

The colloidal charges Q = 5 and Q = 10 that we use are much lower than is typical
of realistic colloidal suspensions, where Q = 102–104. Such a low colloidal charge is used
here for practical reasons: it keeps the total number of particles in the system low enough
and the colloid-ion interaction weak enough for fast and efficient simulations [12], while the
mechanisms at work can yet be revealed. Note that λB/σ and σion/σ do have values that are
typical of colloidal suspensions.

The salt-free simulations (a) and (b) were started with colloids and ions distributed homo-
geneously and randomly in the simulation box, while the added-salt simulations (c) and (d)
had an initial distribution that approximately corresponds to the theoretical prediction [10].
In all cases, the density profiles ρ(z) were only acquired after carefully checking that the av-
eraged center of mass of the colloids had reached a plateau, indicating that the sedimentation
equilibrium had been reached. In order to check the consistency of our methods, simula-
tions (a) and (b) were first performed without electrostatic interactions and, as expected, the
barometric height distribution of eq. (1) was recovered at large enough heights.

In fig. 1 we plot the simulated density profiles ρ(z) together with the corresponding theo-
retical predictions (the smooth curves) based on numerical solutions of eq. (2). The inset of
fig. 1 shows the corresponding microion density profiles. In the theoretical calculation for (c)
and (d) we used reservoir salt concentrations ρs = 0.08/σ3 and ρs = 0.285/σ3, respectively;
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Fig. 1 – Density profiles ρ(z) for a colloidal suspension of height H = 100σ, total packing fraction
η = 0.01, Bjerrum length λB = 4 × 10−3σ, and gravitational length L = 10σ, with colloidal charge
number Q given by (a) Q = 10 without added salt, (b) Q = 5 without added salt, and (c) Q = 5
with N+ = 250 added cations. The curves labeled (d) correspond to H = 50σ, Q = 5 and N+ = 625
added cations. For clarity, the colloid density profiles for (b), (c) and (d) are shifted upwards by
0.02σ3, 0.04σ3 and 0.1σ3, respectively. The inset shows the corresponding microion density profiles
where the density profile for (b) is shifted upwards by 0.15σ3. The smooth solid curves are the
theoretical Poisson-Boltzmann predictions based on eq. (2) and ref. [10], and the dashed curves give
the barometric density distributions with L = 10σ for both H = 100σ and H = 50σ.

these values were obtained from (an extrapolation of) the simulated co- and counterion den-
sities in the top of the container. Figure 1 shows that in all four cases the simulation results
for both the colloid and ion density profiles agree almost quantitatively with the theoretical
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Fig. 2 – Simulated dimensionless electric field E(z) defined in eq. (5) and its theoretical prediction
σφ′(z) (smooth curve) for the parameter choices (a)-(d) as in fig. 1. For clarity, the graphs for (b),
(c) and (d) are shifted upwards by 0.01σe/kBT , 0.03σe/kBT and 0.05σe/kBT , respectively.
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Fig. 3 – Total charge density profile q(z) showing a positive charge at the bottom and a negative
charge at the top, for systems (a)-(d) labeled as in fig. 1. The inset shows a close-up of the bottom
region (see text). The smooth curves represent the theoretical predictions. For clarity, the graphs for
(b), (c) (d) are shifted upwards by 0.1σ3, 0.2σ3 and 0.3σ3, respectively.

estimates. Note that the simulation data for the added-salt cases (c) and (d) are noisier than
in the salt-free cases (a) and (b). The relatively poor statistics in (c) and (d) is due to the
larger number of particles in these systems, which require a longer simulation CPU time. The
dashed curves in fig. 1 represent the colloidal barometric height distributions of eq. (1) with
L = 10σ. As can be clearly seen, the density profiles (a)-(c) are far from being barometric,
while the profile for the high-salt system (d) is close to the barometric distribution.

The non-barometric distributions are due to a spontaneously formed electric field, which
we plot in fig. 2. Again, it is seen that the agreement between the simulation results and
the theory is remarkable. The non-zero electric field inside the container is caused by charge
separation between the colloids and the microions. In other words, there is excess positive
charge from the colloids at the bottom of the box and, conversely, excess negative charge from
the microions at the top. The charge separation is readily observed in fig. 3, where we plot
the total charge density q(z). In systems (a)-(c) there are clearly two peaks in the total charge
density, one at the bottom (z = 0σ) and one at the top (z = 100σ) of the box. In fact, as is
seen from the inset in fig. 3 where we show a close-up of the bottom region of the simulation
box, there is also another negative peak at the bottom which is caused by the exclusion of
the colloids from the bottom wall due to their size. This “fine structure” of the peak is not
accounted for in the present version of the theory, as it ignores the finite colloidal size. It can,
however, be included and explain the exclusion effect.

Conclusions. – We show, for the first time by simulation, that a non–density-matched
colloidal suspension in a gravitational field gives rise to a macroscopic charge separation of col-
loids and microions, provided the added-salt concentration is low enough (but not necessarily
unphysically low). The mechanism, which was already identified in earlier work [4,6–10], is due
to the intricate balance between colloidal and ionic entropy, potential energy, and electrostatic
energy. The electric field that is generated by the charge separation is shown to be almost
constant in the suspension, and is such that it largely compensates the gravitational force on
the colloids, so that the colloids are lifted to altitudes much larger than their gravitational
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length. This implies that the system cannot be understood as an effective one-component
system of colloids, not even at rather low densities [10].

Our simulations agree quantitatively with the Poisson-Boltzmann theory of ref. [10], which
we briefly repeated here, i.e. the (mean-field) theory is robust with respect to the inclusion of
fluctuations, correlations, and hard-core effects present in the simulations. We note that the
low Coulomb coupling of the present system is large enough to induce the entropic lift mecha-
nism, but is yet small enough to ignore correlations in the theory. Given that the four systems
presented here span the whole interval from the low- (zero-) salt regime close to the high-salt
regime, and that the predictions of the theory hold quantitatively for the rather low colloidal
charges considered here, it is tempting to conclude that the theoretical prediction of the en-
tropic lift of the colloids due to a macroscopic electric field may also be rather accurate, or at
least qualitatively correct, for low-salt suspensions of highly charged colloids. We hope that
this motivates more experimental studies of the sedimentation equilibrium of charged colloids.
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