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We investigate the decay of pair correlation functions in a homogeneous~bulk! binary mixture of
hard spheres. At a given state point the asymptotic decayr→` of all threecorrelation functions is
governed by a common exponential decay length and a common wavelength of oscillations.
Provided the mixture is sufficiently asymmetric, size ratiosq&0.7, we find that the common
wavelength reflects either the size of the small or that of the big spheres. By analyzing the~complex!
poles of the partial structure factors we find a sharp structural crossover line in the phase diagram.
On one side of this line the common wavelength is approximately the diameter of the smaller sized
spheres whereas on the other side it is approximately the diameter of the bigger ones; the
wavelength of the longest ranged oscillations changes discontinuously at the structural crossover
line. Using density functional theory and Monte Carlo simulations we show that structural crossover
also manifests itself in the intermediate range behavior of the pair correlation functions and we
comment on the relevance of this observation for real~colloidal! mixtures. In highly asymmetric
mixtures,q<0.1, where there is metastable fluid-fluid transition, we find a Fisher-Widom line with
two branches. This line separates a region of the phase diagram where the decay of pair correlations
is oscillatory from one in which it is monotonic. ©2004 American Institute of Physics.
@DOI: 10.1063/1.1798057#

I. INTRODUCTION

The total correlation functionshi j (r ), wherei andj label
species, or equivalently the radial~pair! distribution func-
tions gi j (r )[hi j (r )11, play a central role in understanding
the equilibrium structure of homogeneous fluid mixtures.
The radial distribution functions determine the probability of
finding a particle of componentj at a distancer from another
particle of componenti. These quantities can be calculated
within different theoretical frameworks, i.e., via computer
simulation, integral equation theories based on the Ornstein-
Zernike equations with suitable closure relations, or density
functional theory using the so-called test particle route.1 In
neutron diffraction experiments, using isotopic substitution,
the partial structure factors can be measured.2 These are, es-
sentially, the Fourier transformsĥi j (k) and the total correla-
tion functions of the mixture can, in principle, be recovered
by an inverse Fourier transform. However, obtaining detailed

information abouthi j (r ) at large separations requires accu-
rate data through the full range of wave numbersk, and this
is difficult to obtain from scattering experiments. On the
other hand, recent advances in experimental techniques now
permit the accurate determination of the pair correlation
function for a two-dimensional colloidal system inreal space
using video microscopy; see, for example, Refs. 3, 4.

Despite its importance in the description of fluid mix-
tures, relatively little is known about the generic properties
of gi j (r ). Most of the studies concerned with pair correlation
functions concentrate on the behavior ofgi j (r ) at small sepa-
rationsr, which provides information about the distribution
of nearest and next nearest neighbors. Clearly, the short-
ranged behavior depends strongly on local details of the in-
terparticle interactions, i.e., on the chemistry. By contrast, at
intermediate and large separations one might expect that
such details are less important and it should be possible to
make some general predictions. Indeed, this is the case. For

JOURNAL OF CHEMICAL PHYSICS VOLUME 121, NUMBER 16 22 OCTOBER 2004

78690021-9606/2004/121(16)/7869/14/$22.00 © 2004 American Institute of Physics

Downloaded 15 Oct 2004 to 131.211.33.4. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp

http://dx.doi.org/10.1063/1.1798057


example, for a pure fluid with short-ranged interactions~in-
terparticle potentials of finite support or decaying exponen-
tially! it can be shown5–7 that the functionrg(r ) will decay
to its asymptotic value of 1 in only two possible ways:~i!
purely exponential, i.e., monotonically or~ii ! exponentially
damped oscillatory. The characteristic decay length and
wavelength of the oscillations depend on the thermodynamic
state point of the fluid. For fluids with attractive interaction
potentials which exhibit liquid-gas coexistence there is a line
in the phase diagram where the ultimate decay ofrh(r )
crosses over from monotonic to oscillatory.7 Such a line ap-
pears to be a general feature;8,9 it was first proposed by
Fisher and Widom.10

In this paper we focus on understanding the intermediate
and asymptotic decay in binary mixtures. For fluid mixtures
in which the interparticle potentials are short-ranged, analy-
sis of the mixture Ornstein-Zernike equations leads to an
important general prediction,6 namely, thatall the total cor-
relation functionsrhi j (r ) must decay to zero asr→`, with
a common exponential decay length and a common wave-
length, assuming one is in the oscillatory part of the phase
diagram. Evanset al.6 went on to demonstrate that the gen-
eral prediction for the leading order asymptotic form@see Eq.
~7! below# remains accurate down to surprisingly small sepa-
rations, i.e., down to the second maximum inhi j (r ), for a
binary hard-sphere mixture with size ratioq50.5, treated in
Percus-Yevick approximation. Here we revisit the additive
binary hard-sphere mixture and enquire about the nature of
pairwise correlations as the packing fractions of big and
small spheres are varied for a wide range of size ratios. We
concentrate on the additive hard-sphere mixture since for this
system well-established and well-tested theoretical tools are
readily available. Moreover, the hard-sphere mixture can be
viewed as a generic reference system for a fluid mixture
~with short-ranged interactions!. Thus our results should shed
light on the decay of pair correlations in a much wider class
of liquid mixtures.

Our paper is organized as follows. In Sec. II we start by
summarizing the basic concepts of the theory of asymptotic
decay in binary fluid mixtures. We present two different ap-
proaches. First, the direct binary mixture route, which we
apply for weakly asymmetric mixtures; and second, the ef-
fective one-component route, which we apply in strongly
asymmetric cases,q!1. The second route corresponds to
integrating out the degrees of freedom of the small spheres to
obtain an effective pair potential between two big spheres—
the so-called depletion potential. In Sec. III we present the
results of our calculations. By calculating the complex poles
of ĥi j (k) using two different approximations for the pair di-
rect correlation functions we find a new structural crossover
line in the phase diagram. On one side of this line the com-
mon wavelength of oscillations inhi j (r ) is set by the diam-
eter of the smaller spheres whereas on the other side this is
set by the diameter of the larger spheres. Using density func-
tional theory and the test particle procedure we determine
hi j (r ) at intermediate values ofr for states on opposite sides
of the line. There are dramatic differences inhi j (r ) that are
confirmed by results of Monte Carlo simulations forq
50.5. For the highly asymmetric cases,q50.1 and 0.05, we

find a fluid-fluid spinodal accompanied by a Fisher-Widom
~FW! line with two branches; the transition lines all lie
within the metastable~with respect to crystallization! region
of the phase diagram. We conclude with a discussion in Sec.
IV.

II. THEORY OF ASYMPTOTIC DECAY OF
CORRELATIONS IN BINARY MIXTURES

We follow the general approach of Refs. 6, 7 and study
the asymptotic decay of the total correlation functionshi j (r )
in a bulk binary hard-sphere mixture. The system is de-
scribed fully by the number densitiesr i , i 5s, b, of the
small ~radius Rs) and the big~radius Rb) spheres, respec-
tively, and the size ratioq5Rs /Rb . In modeling binary
atomic mixtures the size ratioq would usually be close to 1.
Here, however, we have in mind mainly mixtures of spheri-
cal colloids for which the radius of each component can vary
in a huge range, from several nanometers to a few microme-
ters. Hence a size ratioq!1 is easily achieved. Depending
on the value ofq, we might choose to study the asymptotic
behavior using different theoretical frameworks.

For relatively symmetric mixtures, sayq*0.2, an ap-
proach which treats both components on equal footing is
most appropriate. As we shall see, this binary mixture route
requires a theory that can predict accurately partial pair di-
rect correlation functionsci j

(2)(r ) with i, j 5s, b. Here we use
density functionals based on the fundamental measure theory
~FMT! for hard-sphere mixtures11–13 to generateci j

(2)(r ). In
the case of the original Rosenfeld functional11 the pair direct
correlation functions obtained from this route are exactly
those of Percus-Yevick theory,14 while for the White Bear
version of FMT12,13 slightly different pair direct correlation
functions result.

If the size ratioq,0.2, the binary mixture route be-
comes less reliable since standard closure approximations to
integral equation theories exhibit failings for asymmetric
mixtures. This can be seen by noting that the metastable
fluid-fluid phase separation found in simulations forq<0.1
is completely absent in the Percus-Yevick treatment of the
binaryadditivehard-sphere mixture;15 this does not predict a
spinodal.16 For small values ofq the binary mixture can be
mapped onto an effective one-component fluid of big par-
ticles that interact with each other via a pairwise effective
~depletion! potential.17 Although formally an infinite number
of many-body interactions between big particles result from
the exact mapping,15 an explicit calculation of the three-body
interaction18 for q50.2 found this to be small, implying that
for q,0.2 an accurate description of the big-big (bb) corre-
lations and of thermodynamics in the binary mixture should
be given by an effective Hamiltonian for the bulk one-
component fluid which is based on only the pairwise deple-
tion potential plus structure independent contributions.15

Below we describe both routes tobb pair correlations in
the binary hard-sphere mixture.

A. Binary mixture route

In the bulk mixture the total correlation functionshi j (r )
are related to the pair direct correlation functionsci j

(2)(r ) via
the following mixture Ornstein-Zernike~OZ! equations:
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hi j ~r 12!5ci j
~2!~r 12!1 (

k5s,b
rkE d3r 3cik

~2!~r 13!hk j~r 32!,

~1!

with r i j 5ur i2r j u. These equations can be considered as de-
fining the pair direct correlation functions. If an additional
relation betweenhi j (r ) andci j

(2)(r ), a so-called closure rela-
tion, is specified, then the OZ equations can be solved to
yield explicit correlation functions. Alternatively, pair direct
correlation functions obtained from a different theory can be
inputted into Eq.~1!. In the present binary mixture route, we
employ a density functional for the hard-sphere mixture to
generate the pair direct correlation functions. Asymptotic
analysis based on Eq.~1! then leads to predictions forhi j (r )
as r→`. We then compare these predictions with results of
numerical calculations of the total correlation functions ob-
tained from the minimization of the same density functional
using the test-particle procedure.

Assuming that the direct correlation functions are given,
the set of coupled equations~1! can be solved formally in
Fourier space, and the solution is written as

ĥi j ~k!5
N̂i j ~k!

D̂~k!
, ~2!

where ĥi j (k) is the three-dimensional Fourier transform of
hi j (r ). Note that the numerators of Eq.~2! depend on the
indicesi and j, and are given by

N̂ss~k!5 ĉss
~2!~k!1rb@ ĉbs

~2!~k!22 ĉss
~2!~k!ĉbb

~2!~k!#,

N̂bb~k!5 ĉbb
~2!~k!1rs@ ĉbs

~2!~k!22 ĉss
~2!~k!ĉbb

~2!~k!#, ~3!

N̂bs~k!5 ĉbs
~2!~k!5 ĉsb

~2!~k!5N̂sb~k!,

while the denominator of Eq.~2! is common to all three
equations and can be written as

D̂~k!5@12rsĉss
~2!~k!#@12rbĉbb

~2!~k!#2rsrbĉbs
~2!~k!2.

~4!

From the inverse Fourier transform we can obtain the total
correlation function in real space:

rhi j ~r !5
1

2p2 E0

`

dk ksin~kr !ĥi j ~k!. ~5!

Henceforward we assume the singularities ofĥi j (k) to be
~simple! poles.6 If we denote thenth pole of ĥi j (k), i.e., the
nth solution of the equationD̂(k)50 in the upper complexk
half plane bypn , and the corresponding residue ofkĥi j (k)
by Rn

i j , then we can perform the inverse Fourier transform
via the residue theorem and write the total correlation func-
tion as6

rhi j ~r !5
1

2p (
n

Rn
i j eipnr . ~6!

Each pole contributes to the total correlation function either a
pure exponential term, ifpn is purely imaginary, or an expo-
nential damped cosine, ifpn is complex. Accounting for the
behavior ofhi j (r ) for small values ofr requires contribu-
tions from several~in general an infinite number! poles,

while it is clear that in the asymptotic regime,r→`, the
pole that gives rise to the slowest exponential decay will
dominate, i.e., the pole with the smallest imaginary part. We
call this pole the leading order pole:p5a11 ia0 .

So far we did not specify the direct correlation functions
ci j

(2)(r ) and the argument holds forall fluid mixtures with
short-ranged interparticle potentials giving rise to simple
poles.6 However, from the structure of the mixture OZ equa-
tions~2! we can ascertain thatall three total correlation func-
tions have a common asymptotic decay of the form

hi j ~r !;
Ai j

r
exp~2a0r !cos~a1r 2U i j !, r→`, ~7!

with a common characteristic decay lengtha0
21 and wave-

length of oscillations 2p/a1 . Only the amplitudesAi j and
phasesU i j depend on the indicesi j . ~The results generalize
straightforwardly to a multicomponent mixture.! This con-
clusion is remarkable because the two basic length scales in
the problem, namely, the radii or diameters of the particles,
can be very different. It is clear that if we consider a binary
mixture in which the concentration of the small particles is
high, while that of the big ones is low, then the length scale
of the common asymptotic decay of all three total correlation
functions should be set by the size of the small particles.17

On the other hand, we could consider the opposite case in
which the concentration of the big spheres is high, while that
of the small ones is low and conclude that the length of the
common asymptotic decay is set by the size of the big par-
ticles. It is less clear what the asymptotic decay of the binary
mixture should be in the case where the two components
have similar densities. Nevertheless, if the radii of the com-
ponents are comparable, i.e.q;1, the system will have no
problem to find a common asymptotic length scale, which
should interpolate smoothly between the basic length scales.
However, if the radius of the small spheres is significantly
smaller than that of the big ones, little is established about
the nature of the asymptotics, in particular its variation with
concentration, and it is this topic we address here.

1. Pair direct correlation functions

In order to determine the asymptotics we must calculate
the zeros ofD̂(k)—see Eqs.~2! and~4!—which requires, in
turn, ĉi j

(2)(k). Since we are interested in a comparison be-
tween asymptotic results from the OZ equations~1! and
those obtained numerically from the test particle route within
the framework of density functional theory~DFT!, we
choose to use the excess~over ideal gas! Helmholtz free
energy functionalFex@$r i%# to generate the pair direct corre-
lation functions. Within DFT we have19

ci j
~2!~r 12!52b

d2Fex@$r i%#

dr i~r1!dr j~r2!
U

r i ~r1!5r i ,r j ~r2!5r j

. ~8!

For the system of interest, namely binary mixtures of hard
spheres, we employ Rosenfeld’s successful FMT in two dif-
ferent formulations:~i! the original Rosenfeld functional,11

which generates the well-known Percus-Yevick pair direct
correlation functions,14 and ~ii ! the White Bear version,12,13

which modifies the FMT so that the underlying bulk equation
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of state is that due to Mansoori-Carnahan-Starling-Leland
~MCSL!.20,21 The MCSL equation of state is closer to that
found in computer simulations than is the Percus-Yevick
compressibility equation of state which underlies the original
FMT.

The structure of the FMT functionals is given by11–13

bFex@$r i%#5E d3r 8F~$na~r 8!%!, ~9!

i.e., the excess free energy densityb21F, with b
5(kBT)21, is a function of weighted densities of the
n-component mixture that have the form

na~r !5(
i 51

n E d3r 8r i~r2r 8!va
i ~r 8!. ~10!

The weight functionsva
i describe the fundamental geometri-

cal measures of a sphere of componenti.11 There are four
scalar and two vector weights which are labeled bya ~see
the Appendix!. Within FMT the pair direct correlation func-
tion takes the form

ci j
~2!~r !52(

a,b

]2F

]na]nb
va

i
^ vb

j , ~11!

with ^ denoting the convolution product. The convolutions
of weight functions in Eq.~11! are the same for both versions
of FMT and the results are given in the Appendix. The sec-
ond partial derivatives ofF with respect to the weighted
densitiesna depend on the particular version of FMT. In the
case of the Rosenfeld functional,11 Eq. ~11! recovers pre-
cisely the Percus-Yevick pair direct correlation functions,14

which therefore require no further discussion. For the White
Bear version the pair direct correlation function of thepure
fluid was given explicitly in Refs. 12, 13. The general form is
similar to that of the Percus-Yevick~PY! pair direct correla-
tion function. However, the results forc(2)(r ) from the
White Bear version are slightly more accurate when com-
pared to results of computer simulations.

For the binary mixture case, we find the pair direct cor-
relation functions obtained from the White Bear version are
again similar to those corresponding to the PY closure~see
the Appendix!. However, the two approaches are sufficiently
different for us to test whether the results for asymptotics
depend sensitively on the approximations introduced by the
use of approximate pair direct correlation functions. We
show an example of the pair direct correlation functions ob-
tained from both functionals in Fig. 1, for a binary hard-
sphere mixture withq50.4,hb50.1, andhs50.1, where the
packing fractionh i5(4p/3)Ri

3r i . The overall agreement
between the two approaches is good; differences can hard-
ly be seen, on the scale of this plot, forcss

(2)(r ) and for
cbs

(2)(r )[csb
(2)(r ). For this choice of parameters, small differ-

ences incbb
(2)(r ) are visible.

Since the Fourier transformsĉi j
(2)(k) are given analyti-

cally in both the Rosenfeld and White Bear schemes, the
poles can be determined directly by solvingD̂(k)50; k
complex, whereD̂(k) is given by Eq.~4!.

B. Effective one-component route

For asymmetric mixtures with size ratiosq<0.1, it was
found, in Monte Carlo simulations of the effective one-
component fluid,15 that the binary hard-sphere liquid can ex-
hibit fluid-fluid phase separation, although the latter is al-
ways metastable with respect to the fluid-solid phase
transition. As mentioned earlier, this feature is not captured
by the standard Percus-Yevick closure of the mixture OZ
equations, and, hence points to possible failings of integral
equation closures for highly asymmetric mixtures—see, e.g.,
Ref. 15 and references therein. Since the presence of fluid-
fluid phase separation should be accompanied by a so-called
Fisher-Widom line,7,10 at which the asymptotic behavior of
bulk pair correlations changes from damped oscillatory to
purely exponential decay, this failure of the conventional bi-
nary route to account for a spinodal also has implications for
the asymptotics of correlations.

In order to determine the asymptotic behavior of corre-
lations for asymmetric mixtures we change from a descrip-
tion of the full binary mixture and adopt an effective one-
component viewpoint. To this end we integrate out the
degrees of freedom of the small particles and thereby map
their influence in terms of an effective Hamiltonian,15,22

Heff5Hbb1V, ~12!

whereHbb describes the direct interactions between big par-
ticles andV5V01V11V21¯ is the grand potential of
the sea of small particles in the presence of a fixed configu-
ration of big ones.V0 is the zero-body term,2psV, i.e., the
grand potential of a homogeneous sea of small particles of
volumeV and pressureps . V1 , the one-body term, isNbv1 ,
where v1 is the excess chemical potential of speciesb at
infinite dilution, i.e., the difference in grand potential be-
tween the sea of small particles with and without a single big
particle.Nb is the number of big particles.V2 is the contri-
bution from the effective interaction between pairs of big

FIG. 1. The pair direct correlation functionsci j
(2)(r ) obtained from both the

Rosenfeld DFT@equivalent to Percus-Yevick theory~Ref. 14!# and the
White Bear version for a hard-sphere mixture with packing fractionshb

50.1 andhs50.1 and size ratioq[Rs /Rb50.4. Whereas the results for
small-small (ss) and big-small (bs) correlations are almost indistinguish-
able between the two theories, there are visible differences between the
results for big-big (bb) correlations.
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particles.15,17,23Higher order termsV3 , V4 ,... take into ac-
count effective many-body interactions between three, four,
and so forth, big particles. However, for the size ratios of
interest here, these are expected to be small.18 Thus, in the
present context we truncate the effective Hamiltonian after
V2 . For the calculations of the asymptotic decay of the ef-
fective one-component fluid the structure independent terms
V0 andV1 , which depend upon only the chemical potential
ms of the reservoir of small particles, are irrelevant and, for
our present study, the mapping of the hard-sphere mixture
onto an effective one-component fluid is characterized by the
effective interaction potential between two big particles,

Fbb
eff~r !5Fbb

HS~r !1W~r !, ~13!

i.e., the sum of the bare hard-sphere interaction potential
Fbb

HS(r ) and the depletion potentialW(r ). For W(r ), which
depends onms , we use the parameterized form from Ref. 17,
which enforces the correct asymptotic behavior of the deple-
tion potential. Note that the asymptotic behavior of the
depletion potential determines that of the big-big correlation
function in the limit of vanishing density of the big particles,
rb→0, since

lim
rb→0

hbb~r !5exp@2bFbb
eff~r !#21. ~14!

In this limit the asymptotic decay ofhbb(r ) is given by Eq.
~7!, with a0 and a1 determined by the zeros of@1
2rsĉss(k)#.17

Within the effective one-component picture we use the
one-component OZ equation which relates theeffectivetotal
correlation functionheff(r) to the effective pair direct corre-
lation functionceff

(2)(r) of a fluid interacting via the potential
~13!. The one-component OZ equation is, of course, much
simpler in structure than its mixture counterpart, Eq.~1!, and
in Fourier space is given by

ĥeff~k!5
ĉeff

~2!~k!

12rbĉeff
~2!~k!

. ~15!

In order to ascertain the asymptotic behavior ofheff(r), which
is equivalent tohbb(r ) of the binary mixture, we must now
determine the pole structure of Eq.~15! by finding solutions
pn of the equation

12rbĉeff
~2!~pn!50. ~16!

This approach is quite distinct from the full binary mix-
ture treatment, because we can no longer input an analytic
expression for the pair direct correlation function. Rather we
must solve the OZ equation~15! via a closure relation. We
apply either the PY or the hypernetted-chain~HNC! closure
and obtain a numerical solution forceff

(2)(r). The solution of
Eq. ~16! can then be determined numerically using the pro-
cedure described in Refs. 7–9.

Another important difference between the binary route
and the effective one-component route is that we describe the
full binary mixture in the canonical ensemble, whereas the
other route is most efficiently implemented in the semi-
grand-canonical ensemble in which the big spheres are
treated canonically, while the small spheres are coupled to a

reservoir at fixed chemical potentialms . The integrating out
procedure then implies that the depletion potentialW(r ) be-
tween big particles depends on the reservoir density of small
spheres,rs

r , rather than on its system counterpart,rs . A
relation between the system packing fractionhs and the res-
ervoir valuehs

r54pRs
3rs

r /3 can be obtained from the effec-
tive Hamiltonian.15,22 From the effective Hamiltonian based
on the Rosenfeld functional~equivalent to PY compressibil-
ity route! an accurate conversion formula is given by22

hs5~12hb!hs
r23qhbhs

r
12hs

r

112hs
r
23q2hbhs

r
~12hs

r !2

~112hs
r !2

2q3hbhs
r

~12hs
r !3

~112hs
r !2

. ~17!

The resulting conversions yield results that are in very good
agreement with those of Monte Carlo simulations for size
ratios q50.1 and 0.05, and a wide range of values of
hb—see Fig. 3 of Ref. 22. Similarly, one can derive the
corresponding conversion formula based on an effective
Hamiltonian obtained from the White Bear version of FMT.
However, for the size ratios considered here, the difference
between the numerical results is negligibly small, and we
have chosen to employ Eq.~17! in our conversions.

III. RESULTS OF CALCULATIONS

A. Pure hard-sphere fluid

We begin by recalling briefly results for the pole struc-
ture in the well-studied pure hard-sphere fluid.9,17,24–26This
system plays an important role as the limiting case of a bi-
nary mixture in which either the size ratio is close to unity or
the density of one component goes to zero. The trajectories
of poles in the pure fluid are shown in Fig. 2~a!. The poles
are indicated by crosses for a packing fraction ofh50.1 and
p i denotes the polei with i 51,2,... . In the pure case the pole
p1 has, for all packing fractionsh, the smallest imaginary
part, and therefore it is always the leading order pole. It
describes, as discussed already, the asymptotic behavior of
the total correlation function. Other poles are ordered by in-
creasing imaginary parta0 and are denotedp2 , p3 , and so
on.

Whenh is changed all the poles move along the trajec-
tories shown in such a way that the order of the poles re-
mains unchanged. Ash is decreased, the density-density cor-
relation lengthj in the fluid must decrease. This corresponds
to an increase ina0(p1)[j21. For an increase ofh, corre-
lations decay more slowly, which corresponds to a decrease
in a0(p1). Note that in the limith→1 the imaginary part of
all the poles vanishes at least in the framework of PY
theory.26 In the present context we are interested solely in the
equilibrium fluid phase and in order to avoid the complica-
tions of freezing we shall restrict the~total! packing fraction
to h,0.494, the freezing value for pure hard spheres.27 Note
that close packing of hard spheres in dimensiond53 occurs
at h5&p/6'0.7405.

If a binary mixture is considered in which either the
packing fraction of one component is very small or the size
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ratio q is close to unity, then the pole structure of the mixture
should constitute a small perturbation around the pole struc-
ture of the pure fluid. We find that in these limiting cases all
poles move in the same direction in the complex plane upon
changing parameters and the leading order pole remainsp1 .
However, as we shall see below, the trajectories do alter
when higher packing of the minority component or more
asymmetric mixtures are considered.

B. Weakly asymmetric binary mixtures

Here we consider binary mixtures withq.0.2 and arbi-
trary packing fractions of the components, and we apply the
binary mixture route to determine the pole structure and the
leading order pole. We start by considering a mixture with
q50.5 and packing fractionshs50.01 andhb50.1; the cor-

responding results are shown as crosses in Fig. 2~b!. As we
increase the packing fraction of the small sphereshs while
keepinghb fixed, the imaginary part ofp1 increases while
that ofp2 decreases, as is shown by the open symbols in Fig.
2~b!. This behavior ofp1 is opposite from what is found in
the pure case and gives rise to the effect that for a certain
value of hs , which we denotehs* (50.126), the imaginary
part ofp1 and ofp2 are identical and, hence, the asymptotic
behavior of the total correlation functions is determined by
two poles with the samea0 but different a1 . If hs is in-
creased further the role of the polesp1 and p2 is inter-
changed and the leading-order pole is thenp2 . This cross-
over from one leading-order pole to another, with distinct
real parts, is indicated by an arrow in Fig. 2~b!. When the
crossover occurs the wavelength of oscillations of the three
total correlation functions, in the asymptotic regime, jumps
from a value that is set by the diameter of the big spheres at
low hs to one that is set by the diameter of the small ones at
higherhs , and hence changes by roughly a factor ofq ~equal
to 0.5 in the present case!. Close to the crossover point,hs* ,
there are two poles which have similar imaginary parts,a0

and ã0 , and which will both contribute to the exponentially
damped oscillatory decay of the total correlation functions in
the intermediate regime, provided that the amplitudes,Ai j

and Ãi j , of both contributions are of comparable size, i.e.,
we expect

rhi j ~r !;Ai j exp~2a0r !cos~a1r 2U i j !1Ãi j

3exp~2ã0r !cos~ ã1r 2Ũi j !, r→`, ~18!

where the first contribution corresponds top1 , with a1

;p/Rb , and the second top2 , with ã1;p/(qRb). At the
crossover pointa05ã0 . Note that the higher order polesp3 ,
p4 , etc. play no role in determining the asymptotics forq
50.5.

For a slightly more asymmetric binary mixture, withq
50.35, the crossover scenario is more complicated. In Fig.
3~a! we show that starting from packing fractionshb50.1
and hs50.01 and increasing the value ofhs , at first the
behavior of the poles seems very similar to that of the mix-
ture with q50.5: the imaginary part ofp1 increases, while
that of p2 decreases, and eventually there is a crossover at
hs* 50.172 fromp1 to p2 . However, if the value ofhs is
increased further, the imaginary part ofp2 , which is then the
leading order pole, begins to increase again while at the same
time the imaginary part ofp3 decreases sufficiently fast that
for hs.0.211p3 becomes the leading-order pole. Thus for
q50.35 andhb50.1 there are two crossover points at which
the wavelength of oscillations of the asymptotic decay of the
correlation functions jumps discontinuously. However, as
can be seen in Fig. 3~a!, there is only a narrow region of
values ofhs for which p2 is the leading-order pole. This
intermediate crossover behavior disappears once the size ra-
tio becomes slightly smaller. Forq50.3 the crossover occurs
directly fromp1 to p3 , as is shown in Fig. 3~b! for the same
value hb50.1. In a similar way the crossover occurs be-
tweenp1 and some higher pole as the value ofq decreases
further. As an example we show in Fig. 4~a! the direct cross-
over fromp1 to p5 for q50.2 and fixedhb50.1.

FIG. 2. ~a! The trajectories of poles for a one-component fluid of hard
spheres of radiusR treated in the Percus-Yevick approximation. The crosses
denote poles evaluated for a packing fractionh50.1. a0 denotes the imagi-
nary anda1 the real part of each pole. Upon decreasingh, each pole (p1 ,
p2 , etc.! shifts to higher values ofa0 but the sequence remains the same,
i.e., p1 has the smallest imaginary part. In the high density limit,h→1, the
imaginary part of each pole vanishes.~b! Trajectories for a binary hard-
sphere mixture with size ratioq[Rs /Rb50.5 obtained from Percus-Yevick
theory. The packing fraction of the big spheres is fixed athb50.1. The
crosses denote poles for a small sphere packing fractionhs50.01. The
squares indicate trajectories for increasing values ofhs . The imaginary part
of p1 increases withhs while that ofp2 decreases, leading to crossover, see
the horizontal arrow aths* 50.126.a1 increases by a factor of about 1/q
52 at the crossover.
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In order to confirm that the crossover behavior is not
peculiar to the PY theory, we repeated the analysis using pair
direct correlation functions obtained from the White Bear
version of FMT.12,13For weakly asymmetric mixtures at low
total packing fractions the agreement between the two ap-
proaches is almost perfect. This is not too surprising as the
pair direct correlation functions in these limits are very close.
For more asymmetric mixtures, sayq50.2, and larger pack-
ing fractions, quantitative differences between the two theo-
ries become visible. This is illustrated in Fig. 4~b!. However,
the overall agreement between the Percus-Yevick and the
White Bear approaches indicates that the general behavior is
robust against changes in the details of the approximations;
in particular thepatternof crossover is the same for the two
approaches.

1. Crossover lines

The crossover behavior, exemplified in Figs. 2–4 for
various size ratios and for a fixed packing fraction of the big
sphereshb50.1, can be determined for a range ofhb . In
order to represent the locations at which crossover occurs we

plot a crossover line in the (hb ,hs) plane for the binary
hard-sphere mixture. We start, in Fig. 5~a!, by plotting the
crossover line for weakly asymmetric mixtures where we
find crossover between thep1 andp2 poles. For all the size
ratiosq shown in Fig. 5, the crossover lines are truncated at
large total packing fractions. As mentioned earlier, in an at-
tempt to avoid complications of freezing and remain in the
stable fluid phase, we deliberately restrict our calculations to
state points withhs1hb,0.5.

In the case of very symmetric mixtures,q*0.7, the
leading-order pole is alwaysp1 , and hence the wave number
a1 is a continuous function ofhb andhs ; there is no cross-
over. Forq'0.65 we find a short crossover line, as shown in
Fig. 5~a!, at whicha1 jumps as the leading-order pole crosses
over fromp1 to p2 . It is interesting to note that along a path
which connects two points just above and below the cross-
over line, but which does not intersect the line, the two poles
p1 and p2 change their identity in a continuous manner.
Indeed, the nature of the termination of the crossover line is
nontrivial but we do not discuss it here.

FIG. 3. ~a! As in Fig. 2~b! but now forq50.35.hb is fixed at 0.1 and the
crosses refer tohs50.01. Increasinghs leads first to crossover fromp1 to
p2 at hs50.172, left arrow, followed rapidly by a second crossover, aths

50.211, fromp2 to p3 . ~b! For this size ratio,q50.3, the crossover is
directly from p1 to p3 , see arrow, aths* 50.189, wherea1 increases by a
factor of about 1/q53.3.

FIG. 4. ~a! As in Fig. 2~b! but now for q50.2. hb is fixed at 0.1 and the
crosses refer tohs50.01. The imaginary part ofp1 increases with increas-
ing hs while that ofp5 decreases so that aths* 50.278 crossover occurs, see
arrow, fromp1 to p5 wherea1 increases by a factor of about 1/q55. ~b!
Comparison of trajectories from the Rosenfeld~Percus-Yevick! theory
~squares! and the White Bear version~circles! for q50.2 and fixedhb

50.1. Crossover fromp1 to p5 , not shown, occurs forhs* 50.26 in the
White Bear version.
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As the size ratio becomes smaller and the mixture more
asymmetric, the crossover line rapidly grows in length and
spans most of the fluid regime of the phase diagram. At the
same time, the crossover occurs at lower values ofhs—see
Fig. 5~a!. For the three values ofq shown in this figure the
crossover lines obtained from the Percus-Yevick approxima-
tion agree very well with those obtained from the pair direct
correlation functions derived from the White Bear version.

For more asymmetric mixtures the crossover behavior
can occur via intermediate poles, as shown in Fig. 3~a!,
which results in a second branch of the crossover line. This

second branch appears at low packing fractions of the big
spheres, as can be seen in Fig. 5~b! for q50.3 and 0.2. For
values ofq,0.5, the crossover is seen to occur at increasing
values ofhs asq is decreased. In the caseq50.4 there is a
second crossover fromp2 to p3 for hs.0.35.

2. Pair correlation functions in the neighborhood of
the crossover

The crossover behavior, as described so far, is based on
the pole structure of the total correlation functions in com-
plex k ~Fourier! space and hence remains quite abstract. In
order to demonstrate a clearer physical manifestation of the
crossover of the wavelength of the total correlation functions
we choose to perform DFT calculations ofhi j (r ) via the
test-particle route. In this calculation one particle of the fluid
mixture, either a small or a big one, is fixed at the origin and
constitutes the external potential acting on all the other par-
ticles of the fluid. By minimizing the grand-canonical poten-
tial functional of the hard-sphere mixture in the external field
of the fixed particle,i 5s or b, we obtain the density profiles
r j (r ) and, hence, the pair correlation functionsgi j (r )
5r j (r )/r j . Recallhi j (r )[gi j (r )21.

If we use the Rosenfeld functional11 for Fex@$r i%# in the
numerical calculation of the total correlation functions, the
asymptotic decay length and wavelength of oscillations have
the values obtained from the Percus-Yevick pair direct cor-
relation functions, i.e., the values obtained earlier from the
poles.17 Correspondingly, the asymptotic decay of the total
correlation functions obtained from the White Bear version
of FMT, using the test-particle route, is that predicted by the
White Bear pair direct correlation functions. Using the DFT
in the test particle mode, rather than solving the mixture OZ
equations~1!, has the important advantage that the total cor-
relation functions are more reliable for small separationsr.
Indeed thehi j (r ) are usually in good agreement with simu-
lations. Moreover, as emphasized above, they do exhibit
asymptotic behavior consistent with the pole analysis. If we
were to use the mixture OZ equations~1! to determine
hi j (r ), the results would be less accurate for small separa-
tions when the mixture is highly asymmetric.28

Within the context of DFT, the test-particle route to
hi j (r ) is generally more accurate than the OZ route since the
calculation ofr i(r ) via the former requires onlyci

(1)(r ), the
one-body direct correlation function, i.e., a first derivative of
the functionalFex@$r i%#,19 rather than the second derivative
that is employed in the OZ route.

In Fig. 6 we plot the logarithm ofuhbb(r )u for state
points ~a! slightly below, ~b! on, and~c! slightly above the
crossover line for a size ratioq50.3 and a fixed packing
fraction of the big spheres,hb50.15, calculated for the
Rosenfeld functional. The effect of the crossover on the total
correlation function is dramatic. While the wavelength of the
oscillations inhbb(r ) below the crossover line, curve~a!, is
approximatelysb52Rb , the diameter of the big spheres,
oscillations develop on the length scale of the small spheres,
oncehs is sufficiently large that we are above the crossover
line, curve~c!. The change in wavelength is roughly a factor
of q, i.e., 0.3 in the present case. Moreover, it is striking that
this crossover behavior, predicted by the pole analysis and
therefore valid strictly for the asymptotic regimer→`, sets

FIG. 5. ~a! Crossover lines in the (hb ,hs) plane for three size ratiosq
50.5, 0.6, and 0.65. The solid lines denote the results from the Rosenfeld
~Percus-Yevick! theory and the dashed lines those from the White Bear
version. The results from the two theories are rather close apart fromq
50.65 where small deviations can be ascertained. For each size ratio the
crossover is fromp1 to p2 ; below each line the polep1 with the smallera1

~larger sphere radius! dominates, whereas above the linep2 dominates
smaller spheres i.e., the smaller spheres. Note that we truncate each line
when the total packing fraction is greater than 0.5. Forq50.65 the cross-
over line is very short; for smaller values ofhb and hs there is no
crossover—see text. Forq50.5 we also display the crossover line calcu-
lated for the effective one-component~EOC! route ~dotted line!. ~b! As in
~a! but now for more asymmetric mixtures. Forq50.3 the crossover is from
p1 ~below the line! to p3 ~above the line!, whereas forq50.2 this is from
p1 to p5 . For small values ofhb crossover can occur via intermediate
poles, giving rise to two branches of the lines forq50.3 and 0.2. In the case
of q50.4 additional crossover fromp2 to p3 occurs for values ofhs

.0.35. Forq50.1 the results from the Rosenfeld theory show crossover
from p1 to p10 at high values ofhs .
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in at intermediateseparations. In order to emphasize this
point, we show in Fig. 6, alongside the DFT results for
hbb(r ) ~full lines!, results based on leading-order asymptot-
ics ~dashed lines!. The latter were obtained by enforcing the
decay described by Eq.~7!, with a0 and a1 given by the
calculated leading-order pole. The amplitudeAbb and the
phaseUbb were then fitted to the DFT results at intermediate
r. Sufficiently far from the crossover line, the agreement be-
tween the two sets of results is excellent, except for small
separations,r ,2sb , where many poles begin to contribute.
In the close neighborhood of the crossover line we find, as
expected, interference between the oscillatory contributions
of two poles. Then one must fit to the form of Eq.~18!, i.e.,
two different amplitudes and two phases were fitted, having
calculated independently the values ofa0 , ã0 and a1 , ã1 .
The two-pole fit provides an excellent description of the
crossover region; it is not significantly worse than the single-
pole fits which apply away from the crossover—see curve
~b!. Note that the present fitting procedure differs from ear-
lier studies6,8,9of the efficacy of leading-order asymptotics in
that those studies calculated amplitudes and phases from the
residues,Rn

i j , obtained from the OZ equations~2!. Neverthe-
less, the conclusion that leading-order asymptotics is reliable
down to surprisingly small separationsr is borne out once
again. We should also point out that while we have concen-
trated onhbb(r ), we could equally well have plotted results
for the other total correlation functionshbs(r ) and hss(r ).
Recall that since these functions exhibit asymptotic decay
equivalent to that ofhbb(r ) ~only the amplitude and phase
differ! we obtain a similar level of agreement between DFT
test-particle results and leading-order asymptotics.

From the DFT results it is clear that it is possible to pick
up the contribution from the leading-order pole at moderate
separations. This implies that features of the crossover be-

havior should also be visible in correlation functions ob-
tained by computer simulations, where owing to statistical
error one is restricted to small and intermediate separations.
Armed with this information, we performed Monte Carlo
simulations of the total correlation functions for a binary
mixture with q50.5. In order to be able to ascertain a se-
quence of oscillations inhbb(r ) it is important to perform the
simulations in a regime of slow exponential decay, i.e., we
must remain at high total packing fractions. Thus we fixed
Nb5500, the number of big spheres in the simulation box,
which corresponds tohb50.3, and increased the number of
small spheres fromNs5500 to 2400. The results are shown
in Fig. 7~a!. The crossover behavior is evident in the Monte
Carlo results. For the smallest value ofhs shown (hs

50.0375) the wavelength of oscillations is well defined and
is approximatelysb , whereas at the largest value shown
(hs50.1753) the wavelength is roughlysb/2. At intermedi-
ate values ofhs there is clearly interference between two
length scales. The results forhbb(r ) obtained from DFT are
remarkably similar to those from Monte Carlo simulations—
see Fig. 7~b!. Much of the detail at small and intermediate
separations is captured by DFT. Of course, there is no reason
to expect the DFT to yield the precise crossover value. The
simulations imply that this should occur betweenhs

50.1125 and 0.15. The pole analysis, see Fig. 5, gives a
crossover valuehs* '0.14 for hb50.3. That crossover
clearly apparent in the Monte Carlo simulations is important
for two main reasons:~i! in the Monte Carlo simulations no
approximations are made for the pair direct correlations
functions; one simply calculateshbb(r ) directly. ~ii ! Experi-
mentally determined total correlation functions, for colloidal
systems say, also contain statistical noise which makes it
difficult to extend results into the true asymptotic regime.
The agreement between Monte Carlo simulations and DFT
results gives us confidence that we can extract useful infor-
mation at intermediate separations.

In a second set of simulations the effective one-
component description was used in order to calculatehbb(r ).
The depletion potentialW(r ) which was employed~see Sec.
II B ! in the simulation is the parametrized form from Ref. 17;
we comment on this in the following section. The resulting
total correlation functionshbb(r ) are shown in Fig. 7~c!.
These clearly show crossover behavior ashs

r , the packing
fraction of thereservoir, is increased. The sequence of the
results is similar to that from the simulation of the full binary
mixture shown in Fig. 7~a! and to that from the DFT, Fig.
7~b!. If the truncated depletion potential from Ref. 29 is em-
ployed, which does not include the oscillatory structure in
W(r ) and, hence, contains only minimal information about
correlations between the small spheres, then no crossover in
the wavelength of oscillations in the total correlation func-
tion hbb(r ) is observed—compare the bottom plot in Fig.
7~c! with the one above it. Note that noise sets in the simu-
lation results forr /sb*6.

C. Highly asymmetric binary mixtures

We now turn to size ratiosq&0.2 for which the full
binary mixture treatment, based on calculating the pair direct

FIG. 6. Plots of lnuhbb(r)u for the size ratioq50.3 and fixedhb50.15. The
solid lines refer to the results of test-particle DFT calculations based on the
Rosenfeld functional whereas the dashed lines correspond to leading-order
asymptotics—see text.~a! hs50.15, ~b! hs50.2028, the crossover value,
~c! hs50.25. In~a! and~c! a contribution from a single~dominant! pole@see
Eq. ~7!# is used in the asymptotic expression whereas in~b! the contributions
of two poles are included@see Eq.~18!#. The wavelength of the oscillations
changes from aboutsb , the diameter of the big spheres, in~a! to about
0.3sb in ~c!. Interference effects are clearly visible in~b!. The results in~b!
and ~c! are shifted vertically for clarity of display.
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correlation functions from PY approximation~or slight modi-
fications thereof!, is expected to become less reliable. Rather
we treat asymmetric binary mixtures within the framework
of the effective one-component picture based on the pair
depletion potentialW(r )—see Sec. II B. This picture is
known to become increasingly accurate asq is reduced, i.e.,
the more asymmetric the mixture becomes. In order to cap-
ture details of the asymptotic decay ofhbb(r ) at arbitrary
densityrb , the depletion potential used in this route must
itself have the correct asymptotic behavior. Thus, we apply
the parameterized form of the depletion potential from Ref.
17. This is constructed, see Eq.~14!, so that for a given
reservoir densityrs

r , limrb→0 hbb(r ) has the correct decay.
As remarked earlier, this isnot the case for the simplified
~truncated! depletion potential of Ref. 29 used in simulation
studies of the phase behavior of asymmetric hard-sphere
mixtures.15 The truncated potential is inadequate for the
present purposes.

For size ratiosq*0.25 we find that the effective one-
component description results in pole trajectories very simi-
lar to those from the binary mixture treatment. The crossover
lines found from the two routes are in qualitative agreement;
an example is given in Fig. 5~a! for q50.5. It is important to
bear in mind that in the former route the size of the small
spheres enters only by determining the form and setting the
wavelength of oscillations of the depletion potential. That the
asymptotic behavior is similar in the two routes, and cross-

over occurs in both, is an important success for the effective
one-component picture.

We cannot expect quantitative agreement between the
two routes for a weakly asymmetric case such asq50.5
since our effective one-component approach omits three and
higher-body contributions which should play a role at such
size ratios. Note that all the results shown correspond to the
Percus-Yevick closure for solving the one-component OZ
equation. The HNC was also employed for a few test cases
and similar results were obtained.

If we make the mixture more asymmetric, we find new
features. Forq50.1, where we expect our effective one-
component approach to be very reliable, we find that there
are qualitative differences between results from the binary
mixture treatment and those of the effective one-component
fluid. In Fig. 8 we show that for this mixture at fixedhb

50.1, poles from the two approaches move on similar paths
upon increasing the value ofhs but at very different rates.
We do not find the crossover line~at lowerhb) from p1 to
p10, which is shown in Fig. 5~b!. Moreover, we find that in
the effective one-component picture a purely imaginary pole
develops and moves towards the real axis when the reservoir
packing fraction of the small spheres,hs

r , is increased. At a
value of hs

r'0.26 the purely imaginary pole becomes the
leading-order pole, which corresponds to crossover to purely
exponential decay ofrhbb(r ); a150 in Eq. ~7!. The cross-
over from an exponentially decaying oscillatoryrhbb(r ) to a

FIG. 7. ~a! Results for lnuhbb(r)u for a size ratioq50.5 and fixedhb50.3 obtained from direct Monte Carlo simulations of the binary mixture. At the two
smallest values ofhs the oscillations have a wavelength of aboutsb , whereas for the largest value ofhs the wavelength is about 0.5sb . For intermediate
values ofhs there is no well-defined wavelength.~b! DFT results using the test-particle procedure and the Rosenfeld functional for the same system as in~a!.
The results agree remarkably well with those from Monte Carlo simulations.~c! Monte Carlo results for the same system,q50.5 andhb50.3, based on an
effective one-component description of the mixture using a depletion potential from Ref. 17.hs

r denotes the packing fraction of the small sphere reservoir. For
hs

r50.1 the oscillations at intermediater have a well-defined wavelength of aboutsb , whereas forhs
r50.4 this is reduced to about 0.5sb . For intermediate

values ofhs
r there is interference. The bottom curve refers to simulation results based on the truncated depletion potential of Go¨tzelmannet al. ~Ref. 29!,

which does not incorporate properly the correlations of the small spheres. This depletion potential does not yield the crossover that is displayed inthe curves
above. Note that in each part of the figure the curves are shifted vertically for clarity of display.
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purely exponentially decayingrhbb(r ) is well known in
other systems where the fluid displays fluid-fluid or liquid-
vapor phase separation.6–9,30As mentioned in the Introduc-
tion, the line in the phase diagram at which such crossover
occurs is termed the Fisher-Widom10 line, named after the
authors who predicted its existence.

As an example of the change of the total correlation
functionhbb(r ) as the Fisher-Widom line is crossed is shown
in Fig. 9 forq50.05 andhb50.1. Results are plotted for two
values ofhs

r , one below and the other above the Fisher-
Widom line. hbb(r ) is the solution of the PY closure to the
effective one-component OZ equation~15!. Again, the
asymptotic behavior sets in at intermediate separations, as
can be seen from the agreement betweenhbb(r ) ~full line!
and results obtained by retaining only the leading-order pole
contribution~dashed line!—see Fig. 9. For the latter the de-
cay described by Eq.~7! was enforced on the oscillatory side
of the Fisher-Widom line, witha0 anda1 given by the cal-
culated leading-order pole and the amplitude and phase fitted
to the numerical results at intermediater. On the monotonic
side, where the purely imaginary pole dominates,a0 is cal-
culated and only the amplitude is fitted.

A particular feature of the binary hard-sphere mixture is
that in the limithb→0 the correlation functions must oscil-
late with a wavelength set by the small spheres—for allhs

.0. This implies that, for sufficiently largehs , in addition to
the Fisher-Widom line which separates an oscillatory region
which is rich in big spheres from a monotonic region poor in
big spheres, there must be another branch of the Fisher-
Widom line at small values ofhb separating the aforemen-
tioned monotonic region poor in big spheres from an oscil-
latory region which is even more dilute in big spheres. We
find this second branch of the Fisher-Widom line lies at ex-
tremely low values ofhb for q50.1, i.e.,hb'1026 for in-
termediatehs

r . Upon decreasingq further this branch of the

Fisher-Widom line rapidly moves closer to thehb50 axis.
The fact that there are two branches of the Fisher-Widom
line is very similar to what is found for a Gaussian core
binary mixture.30 There one also finds a structural crossover
line emerging from the confluence of the two branches.30 We
find the equivalent scenario here. The two branches of the
Fisher-Widom line meet at some point very close to thehb

50 axis. Below this point emerges a single crossover line,
running close to the axis and terminating athb50, hs50,
which separates the two types of oscillatory decay. The
Fisher-Widom line is shown in Fig. 10 in the reservoir~a!
and the system~b! representations for size ratioq50.05.
However, on this scale the left branch of the Fisher-Widom
line separating the region in which the pair correlation func-
tions oscillate with a wavelength set by the size of the small
spheres from that in which correlations decay monotonically
cannot be distinguished from thehb50 axis; the line is at
even smaller values ofhb than forq50.1. Nor can one dis-
tinguish the structural crossover line which occurs at lower
hs .

A FW line is associated with the presence of a fluid-fluid
spinodal. Indeed, the FW line is bounded by the spinodal,
which is defined bya050, i.e., when the pure imaginary
pole reaches the origin.7 In Fig. 10 we plot the spinodal for
q50.05 obtained from the effective one-component~EOC!
approach. We did not attempt to calculate the corresponding
fluid-fluid binodal. The spinodal and the FW line lie well
above the fluid-solid binodal~dotted line! obtained from
Monte Carlo simulations of the EOC system.15 For q50.05
the fluid-fluid transition is deep in the metastable region of
the phase diagram and the accompanying Fisher-Widom line
also lies in the metastable region.

FIG. 8. The trajectories of poles for a binary mixture of hard spheres with
size ratioq50.1 and fixedhb50.1. The crosses denote the poles evaluated
for a very low values ofhs . Upon increasinghs the poles calculated from
the binary mixture Percus-Yevick route~squares! and from the EOC route
~triangles! follow similar paths, but the latter move much more rapidly.
Within the EOC there is a pure imaginary pole,a1[0, which moves towards
the real axis as the reservoir densityhs

r increases. Nearhs
r50.26 the pure

imaginary pole becomes the leading pole, crossover occurs and the ultimate
decay ofrhbb(r ) is purely exponential.

FIG. 9. Plots of lnuhbb(r)u for a size ratioq50.05 and fixedhb50.1. The
solid lines refer to the results obtained from the Percus-Yevick closure of the
EOC OZ Eq.~15! based on the depletion potential, whereas the dashed lines
correspond to leading-order asymptotics—see text. In~a!, hs

r50.12, a con-
tribution from a single~dominant! complex pole@see Eq.~7!# is used in the
asymptotic expression and the wavelength of the oscillations is aboutsb

while in ~b!, hs
r50.18, a single pure imaginary pole (a150) contributes and

the decay ofhbb(r ) is monotonic for larger. Crossover occurs nearhs
r

50.15. The results in~b! are shifted vertically for clarity of display.
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IV. DISCUSSION

We have carried out extensive studies of the asymptotic,
r→`, and intermediate range decay of pair correlation func-
tions in homogeneous binary hard-sphere mixtures. In the
case of weakly asymmetric mixtures the full, two-component
description is to be preferred whereas for highly asymmetric
mixtures~small values of the size ratioq! the effective one-
component description is expected to be more accurate. Both
descriptions predict the phenomenon of structural crossover,
provided q&0.7. At the crossover the wavelength of the
longest range oscillation inhi j (r ) changes discontinuously
from a value set by the diameter of the larger spheres to a
value set by the diameter of the smaller species. The cross-
over occurs when the leading-order pole of the Fourier trans-
form, ĥi j (k), changes from one branch to another. For cer-
tain size ratios the change does not take place in a single step
but can occur via crossover from one branch of poles to a

branch with an intermediate wavelength followed by further
crossover to a shorter wavelength branch—see Fig. 3~a! for
q50.35. To the best of our knowledge, this is the first time
structural crossover has been predicted for hard-sphere
mixtures.31 The crossover is robust; it occurs in both the
Rosenfeld and White Bear version of DFT as well as in a
completely different treatment~integral equation treatment!
of the effective one-component model. Moreover, the cross-
over lines in the (hb ,hs) plane are calculated to be quite
close in the different theories. Were the crossover to manifest
itself only at longest range~asymptotically! it would not be
of much practical interest. However, our DFT studies and
Monte Carlo simulations demonstrate that crossover mani-
fests itself atintermediateas well as at longest range—see
Figs. 6 and 7. One can observe different characteristic wave-
lengths on opposite sides of the crossover line. Close to
crossover there are interference effects. Leading-order as-
ymptotics, based on the leading-order complex poles, ac-
count accurately for the intermediate range behavior of
hi j (r ). Note that throughout we have focused onhbb(r ), the
big-big correlation function, but as emphasized earlier, the
other correlation functionshbs(r ) and hss(r ) will display
equivalent features of crossover behavior.

The EOC description performs remarkably well for size
ratios where one might expect the many-body contributions
omitted in the effective pair potential treatment might be
significant. Thus, forq50.5 the EOC yields a reasonable
crossover line@Fig. 5~a!# and a reliable account of the behav-
ior of hbb(r ) at intermediate values ofr—see the simulation
results of Fig. 7. It is important to recognize that the EOC
provides a valid account of crossover provided anaccurate
approximation is employed for the depletion potentialW(r ).
The latter must incorporate the correct asymptotic decay, i.e.,
the oscillations which are determined by correlations in the
reservoir of small spheres. If these are not properly incorpo-
rated, the EOC picture fails to describe crossover—see Fig.
7~c!. In the case of highly asymmetric mixtures,q&0.1,
where the EOC description should be accurate, we find a
Fisher-Widom line with two branches. This line is intimately
connected with the existence of a fluid-fluid spinodal within
the EOC analysis—see Fig. 10 forq50.05. The presence of
the spinodal ensures that there must be a region of mono-
tonic decay of pair correlations, i.e., there must be Ornstein-
Zernike behavior in the neighborhood of the critical point.
What is special about the present system is that correlations
must decay in a damped oscillatory fashion along the axis
hs50 ~the pure fluid of small hard spheres!, and this is re-
sponsible for the two branches at large values ofhs ~or hs

r).
At lower values ofhs ~or hs

r) one finds the same type of
structural crossover line as that ascertained in Ref. 30 for the
Gaussian core mixture. Indeed the overall scenario we find
for small values ofq mimics, to a large extent, that found for
certain Gaussian core mixtures exhibiting fluid-fluid phase
separation.30 The main difference is that the fluid-fluid phase
transition and the accompanying Fisher-Widom line is meta-
stable with respect to the fluid-solid transition in the present
hard-sphere mixture case. If one could suppress freezing and
perform measurements in the metastable region~see Fig. 10!
then one would observe interesting crossover from damped

FIG. 10. The~metastable! fluid-fluid spinodal~dashed curve! and the cor-
responding Fisher-Widom~FW! line ~solid curve! separating regimes in
which pair correlation functions decay monotonically from those in which
they decay in an oscillatory fashion for a binary hard-sphere mixture with
q50.05. ~a! reservoir representation of the phase diagram;~b! system rep-
resentation. Note that in the limithb→0 the pair correlation functions decay
in an oscillatory fashion with a wavelength set by the size of the small
spheres. This leads to an additional branch of the FW line for large values of
hs and a structural crossover line at lower values ofhs . These lines are
located at extremely smallhb so they are not visible on this scale~see text!.
The dotted line denotes the fluid-solid binodal from Monte Carlo simula-
tions ~Ref. 15!.
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oscillatory asymptotic decay of correlations to monotonic de-
cay ashs is increased at fixedhb , i.e., as the total packing
fraction is increased. Such behavior is somewhat counterin-
tuitive and would provide a signature of the~incipient! fluid-
fluid spinodal.

A similar situation exists for the extreme nonadditive
hard-sphere mixture, namely, the Asakura-Oosawa-Vrij
model of a colloid-polymer mixture which treats the colloids
as hard spheres and the polymer coils as ideal interpenetrat-
ing spheres that are excluded from colloids. A recent DFT
treatment32 determined the fluid-fluid spinodal and binodal
and the associated Fisher-Widom line for various polymer to
colloid size ratiosq. Increasinghp

r , the polymer reservoir
packing fraction, leads generally to crossover from oscilla-
tory to exponential decay, and for sufficiently large values of
q this can occur in a stable~fluid! region of the phase
diagram.32 The important difference between the results in
Ref. 32 and the present ones is that for the latter pair corre-
lations must exhibit oscillatory decay ashb→0, whereas in
the Asakura-Oosawa-Vrij model the smaller species is re-
placed by ideal, interpenetrating spheres for which the pair
correlation function decays exponentially, i.e., the decay for
hc ~equivalent tohb)→0 is monotonic rather than oscilla-
tory. This means that the Fisher-Widom line does not have
two branches, as is found in the present case, and there is no
crossover line at smallhp

r .32

Although we have focused here on crossover behavior
for the pair correlation functions inbulk binary hard-sphere
mixtures, it is important to recognize that similar features
can be found for the decay of correlations ininhomogeneous
fluid mixtures. The one-body density profiles of a hard-
sphere mixture close to a wall that exhibits short-ranged
wall-fluid interactions, the solvation force for the same mix-
ture confined between two walls and the depletion potential
between two big~colloidal! particles immersed in a binary
mixture of smaller hard spheres will exhibit equivalent fea-
tures determined by the same physical considerations, i.e., by
the pole structure described in the present paper. We shall
return to this topic in a later paper.

In real fluids, whether these are mixtures of simple
~atomic! components or of two types of~spherical! colloidal
particles, the interparticle potentials are not precisely those
of hard spheres. The potential function is never infinitely
repulsive. It is important to enquire how our results might
change for repulsive interparticle potentials that are softer
than hard spheres. Provided the interparticle potentials re-
main short ranged~no power-law decay!, the pole structure
of the ĥi j (k) should be equivalent to that described here, and
all hi j (r ) must decay in the same fashion asr→`. Thus, in
the oscillatory regime the mixture must find a unique wave-
length for the longest ranged oscillations. It follows that,
provided the effective diameters are sufficiently different, the
mixture should display a structural crossover for some
choice of thermodynamic parameters. Given that structural
crossover occurs in the binary Gaussian core mixture,30

where the pair potentials are very soft, it is difficult to imag-
ine that the phenomenon would disappear for mixtures that
are much more harshly repulsive.

Since we have demonstrated that the characteristic

wavelength of the oscillations ingi j (r ) manifests itself at
moderate separations, even when statistical errors are
present, we believe that it should be possible to observe the
phenomenon of crossover in binary mixtures of colloidal par-
ticles using real space techniques of the type employed al-
ready for one-component systems.3,4
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APPENDIX: PAIR DIRECT CORRELATION FUNCTIONS
WITHIN FMT

The weight functions within the FMT approach, which
describe the fundamental geometrical measures of a sphere
of componenti of radiusRi , are

w3
i ~r !5U~Ri2ur u!, ~A1!

w2
i ~r !5d~Ri2ur u!, ~A2!

w1
i ~r !5

1

4pRi
w2

i ~r !, ~A3!

w0
i ~r !5

1

4pRi
2 w2

i ~r !, ~A4!

w2
i ~r !5

r

ur u
d~Ri2ur u!, ~A5!

w1
i ~r !5

1

4pRi
w2

i ~r !, ~A6!

whered(r ) denotes the Diracd function andU(r ) denotes
the Heaviside function. The convolution product^ used in
Eq. ~11! is defined as

wa
i

^ wb
j [E drw~a!

i ~r i2r !wb
j ~r j2r !. ~A7!

The spheres do not overlap for separationsr .Ri1Rj ,
with i, j 5b, s and r 5ur i2r j u. This leads towa

i
^ wb

j 50.
Therefore, we obtainci j

(2)(r .Ri1Rj )50, which is a key
feature for all pair direct correlation functions based on FMT.

In the caseuRi2Rj u,r ,Ri1Rj the surfaces of the
spheres intersect and we obtain the results

w3
i

^ w3
j 5

p

3 S 2
3

2
Ri

2r 2
3

4

Ri
4

r
12Ri

31
1

4
r 31

3

2

Ri
2Rj

2

r

2
3

2
Rj

2r 2
3

4

Rj
4

r
12Rj

3D , ~A8!

w2
i

^ w3
j 52pRi S Ri1

1

2

Rj
22r 22Ri

2

r D , ~A9!

w3
i

^ w2
j 52pRj S Rj1

1

2

Ri
22r 22Rj

2

r D , ~A10!
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w2
i

^ w2
j 5

2pRiRj

r
, ~A11!

w2
i

^ w2
j 5pS Ri

21Rj
2

r
2r D , ~A12!

which simplify considerably whenRi5Rj . For spheres with
different radii, it is possible that a small sphere is completely
contained within a big sphere, and forr ,Rb2Rs we obtain

w3
i

^ w3
j 5

4p

3
Rs

3, ~A13!

w2
b

^ w3
s5w3

s
^ w2

b50, ~A14!

w3
b

^ w2
s5w2

s
^ w3

b54pRs
2, ~A15!

w2
i

^ w2
j 5w2

i
^ w2

j 50. ~A16!

Taking into account that the vectorlike weighted densities
vanish in the bulk limit, then]2F($nn%)/]na]nb50 in both
the Rosenfeld and the White Bear versions of the functional
and mixed scalarlike and vectorlike convolutions in Eq.~11!
are not required. The remaining convolutions are propor-
tional to those given above in Eqs.~A8!–~A16!.

The second partial derivatives ofF with respect to the
weighted densitiesna , xRF

( i )[]2FRF/]n3]ni , required in Eq.
~11!, are for the case of the Rosenfeld functional:

xRF
~0!5

1

12n3
, ~A17!

xRF
~1!5

n2

~12n3!2
, ~A18!

xRF
~2!5

n1

~12n3!2
1

n2
2

4p~12n3!3
, ~A19!

xRF
~3!5

n0

~12n3!2
12

n1n2

~12n3!3
1

n2
3

4p~12n3!4
. ~A20!

In the case of the White Bear version of the functional the
second partial derivativesxWB

( i ) []2FWB/]n3]ni are given by

xWB
~0! 5xRF

~0! , ~A21!

xWB
~1! 5xRF

~1! , ~A22!

xWB
~2! 5xRF

~2!

1
n2

2@n3~5n32n3
222!22~12n3!3 ln~12n3!#

12p~12n3!3n3
3
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~A23!

xWB
~3! 5xRF
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n2

3@6~12n3!4 ln~12n3!2n3~21n3226n3
2114n3

326!#

36p~12n3!4n3
4

. ~A24!

Owing to the new form of the functional an additional term
arises in the sum~11!,

xWB
~22![

]2FWB

]n2]n2
5xRF

~1!
n31~12n3!2 ln~12n3!

6pn3
2

. ~A25!
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