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We investigate the decay of pair correlation functions in a homogen@all binary mixture of

hard spheres. At a given state point the asymptotic deeay of all three correlation functions is
governed by a common exponential decay length and a common wavelength of oscillations.
Provided the mixture is sufficiently asymmetric, size ratgps0.7, we find that the common
wavelength reflects either the size of the small or that of the big spheres. By analyzingrite®

poles of the partial structure factors we find a sharp structural crossover line in the phase diagram.
On one side of this line the common wavelength is approximately the diameter of the smaller sized
spheres whereas on the other side it is approximately the diameter of the bigger ones; the
wavelength of the longest ranged oscillations changes discontinuously at the structural crossover
line. Using density functional theory and Monte Carlo simulations we show that structural crossover
also manifests itself in the intermediate range behavior of the pair correlation functions and we
comment on the relevance of this observation for fealloidal) mixtures. In highly asymmetric
mixtures,q=<0.1, where there is metastable fluid-fluid transition, we find a Fisher-Widom line with
two branches. This line separates a region of the phase diagram where the decay of pair correlations
is oscillatory from one in which it is monotonic. @004 American Institute of Physics.

[DOI: 10.1063/1.1798057

I. INTRODUCTION information abouth;;(r) at large separations requires accu-
rate data through the full range of wave numblerand this

The total correlation functionis;;(r), wherei andj label s difficult to obtain from scattering experiments. On the
species, or equivalently the radigbair) distribution func-  other hand, recent advances in experimental techniques now
tions g;;(r)=h;;(r)+1, play a central role in understanding permit the accurate determination of the pair correlation
the equilibrium structure of homogeneous fluid mixtures.function for a two-dimensional colloidal systemrigal space
The radial distribution functions determine the probability of using video microscopy; see, for example, Refs. 3, 4.
finding a particle of componentat a distance from another Despite its importance in the description of fluid mix-
particle of component. These quantities can be calculatedtures, relatively little is known about the generic properties
within different theoretical frameworks, i.e., via computer of gj;(r). Most of the studies concerned with pair correlation
simulation, integral equation theories based on the Ornsteirfunctions concentrate on the behaviorgf(r) at small sepa-
Zernike equations with suitable closure relations, or densityationsr, which provides information about the distribution
functional theory using the so-called test particle rdute.  of nearest and next nearest neighbors. Clearly, the short-
neutron diffraction experiments, using isotopic substitutionranged behavior depends strongly on local details of the in-
the partial structure factors can be measfr@tiese are, es- terparticle interactions, i.e., on the chemistry. By contrast, at
sentially, the Fourier transforntg; (k) and the total correla- intermediate and large separations one might expect that
tion functions of the mixture can, in principle, be recoveredsuch details are less important and it should be possible to
by an inverse Fourier transform. However, obtaining detailednake some general predictions. Indeed, this is the case. For
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example, for a pure fluid with short-ranged interacti¢ims  find a fluid-fluid spinodal accompanied by a Fisher-Widom
terparticle potentials of finite support or decaying exponen{FW) line with two branches; the transition lines all lie
tially) it can be showfr’ that the functiorrg(r) will decay  within the metastabléwith respect to crystallizatiorregion
to its asymptotic value of 1 in only two possible wayB:  of the phase diagram. We conclude with a discussion in Sec.
purely exponential, i.e., monotonically @i) exponentially V.
damped oscillatory. The characteristic decay length and
wavelength of the oscillations depend on the thermodynamid. THEORY OF ASYMPTOTIC DECAY OF
state point of the fluid. For fluids with attractive interaction CORRELATIONS IN BINARY MIXTURES
potentials which exhibit liquid-gas coexistence there is aline  \we follow the general approach of Refs. 6, 7 and study
in the phase diagram where the ultimate decayrlofr)  the asymptotic decay of the total correlation functiohgr)
crosses over from monotonic to oscnlatarﬁuch aline ap- a bulk binary hard-sphere mixture. The system is de-
pears to be a gegleral featdré;it was first proposed by scribed fully by the number densitigg, i=s, b, of the
Fisher and Widont: small (radiusRg) and the big(radiusR,,) spheres, respec-

In this paper we focus on understanding the intermediatgvewi and the size ratigq=R./R,. In modeling binary
and asymptotic decay in binary mixtures. For fluid mixturessiomic mixtures the size ratipwould usually be close to 1.
in which the interparticle potentials are short-ranged, analyHere, however, we have in mind mainly mixtures of spheri-
sis of the mixture Omstein-Zernike equations leads t0 ara| colloids for which the radius of each component can vary
important general predictidhnamely, thatall the total cor- in 4 huge range, from several nanometers to a few microme-
relation functionsh;;(r) must decay to zero as—x, with  ters, Hence a size ratig<1 is easily achieved. Depending
a common exponential decay length and a common wavegn the value ofy, we might choose to study the asymptotic
length, assuming one is in the oscillatory part of the phasgehavior using different theoretical frameworks.
diagram. Evanet al® went on to demonstrate that the gen- For relatively symmetric mixtures, say=0.2, an ap-
eral prediction for the leading order asymptotic fdisee Eq.  proach which treats both components on equal footing is
(7) below] remains accurate down to surprisingly small sepamost appropriate. As we shall see, this binary mixture route
rations, i.e., down to the second maximumhipn(r), for a  requires a theory that can predict accurately partial pair di-
binary hard-sphere mixture with size rate-0.5, treated in  rect correlation functions{?(r) with i, j =, b. Here we use
Percus-Yevick approximation. Here we revisit the additivegensity functionals based on the fundamental measure theory
binary hard-sphere mixture and enquire about the nature qfMT) for hard-sphere mixturés 2 to generateci(jz)(r). In
pairwise correlations as the packing fractions of big andhe case of the original Rosenfeld functiottahe pair direct
small spheres are varied for a wide range of size ratios. Weorrelation functions obtained from this route are exactly

concentrate on the additive hard-sphere mixture since for thighose of Percus-Yevick theoty,while for the White Bear
system well-established and well-tested theoretical tools argersion of FMT:>*2 slightly different pair direct correlation

readily available. Moreover, the hard-sphere mixture can b@ynctions result.
viewed as a generic reference system for a fluid mixture f the size ratioq<0.2, the binary mixture route be-

(with short-ranged interactionsThus our results should shed comes less reliable since standard closure approximations to
light on the decay of pair correlations in a much wider classntegral equation theories exhibit failings for asymmetric
of liquid mixtures. mixtures. This can be seen by noting that the metastable
Our paper is organized as follows. In Sec. Il we start byfluid-fluid phase separation found in simulations ép0.1
summarizing the basic concepts of the theory of asymptotigs completely absent in the Percus-Yevick treatment of the
decay in binary fluid mixtures. We present two different ap-binary additivehard-sphere mixtur&’ this does not predict a
proaches. First, the direct binary mixture route, which wespinodal*® For small values ofj the binary mixture can be
apply for weakly asymmetric mixtures; and second, the efmapped onto an effective one-component fluid of big par-
fective one-component route, which we apply in stronglyticles that interact with each other via a pairwise effective
asymmetric casegj<1. The second route corresponds to (depletion potential*’ Although formally an infinite number
integrating out the degrees of freedom of the small spheres t§f many-body interactions between big particles result from
obtain an effective pair potential between two big spheres—the exact mapping’ an explicit calculation of the three-body
the so-called depletion potential. In Sec. Il we present thenteractiort® for q=0.2 found this to be small, implying that
results of our calculations. By calculating the complex polesor < 0.2 an accurate description of the big-blgbj corre-
of hjj(k) using two different approximations for the pair di- lations and of thermodynamics in the binary mixture should
rect correlation functions we find a new structural crossovebe given by an effective Hamiltonian for the bulk one-
line in the phase diagram. On one side of this line the comeomponent fluid which is based on only the pairwise deple-
mon wavelength of oscillations ih;;(r) is set by the diam- tion potential plus structure independent contributibhs.
eter of the smaller spheres whereas on the other side this is Below we describe both routes bdo pair correlations in
set by the diameter of the larger spheres. Using density funghe binary hard-sphere mixture.
tional theory and the test particle procedure we determin
hi;(r) at intermediate values offor states on opposite sides
of the line. There are dramatic differenceshin(r) that are In the bulk mixture the total correlation functiohg(r)
confirmed by results of Monte Carlo simulations fgr  are related to the pair direct correlation functi(mﬁfs)(r) via
=0.5. For the highly asymmetric casess 0.1 and 0.05, we the following mixture Ornstein-Zernik€DZ) equations:

%\. Binary mixture route
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while it is clear that in the asymptotic regime—, the
hij(rlz)zci(jZ)(r12)+k2b pi | d3rscid(righ(ray), pole that gives rise to the slowest exponential decay will
- (1) dominate, i.e., the pole with the smallest imaginary part. We

call this pole the leading order polp=a;+iag.

with rj;=|r;—r|. These equations can be considered as de- g far we did not specify the direct correlation functions

fining the pair direct correlation functions. If an additional Ci(jz)(r) and the argument holds fail fluid mixtures with
relation betweet;; (r) andc{?)(r), a so-called closure rela- short-ranged interparticle potentials giving rise to simple
tion, is specified, then the OZ equations can be solved t@qjes® However, from the structure of the mixture OZ equa-

yield explicit correlation functions. Alternatively, pair direct {jons(2) we can ascertain thall threetotal correlation func-

inputted into Eq(1). In the present binary mixture route, we
employ a density functional for the hard-sphere mixture to
generate the pair direct correlation functions. Asymptotic
analysis based on Eql) then leads to pre(_j|ct|on§ for; (1) with a common characteristic decay Ien@bﬁl and wave-
asr—oo, We then compare these predictions with results of,

ical calculat f the total lation funcii b length of oscillations 2zr/a;. Only the amplitudesA;; and
numerical caicuiations of the total correlation functions o phase®);; depend on the indicg$. (The results generalize
tained from the minimization of the same density functional

ina th icl q straightforwardly to a multicomponent mixtuyeThis con-
using the tgst-partlc € procedure. . . clusion is remarkable because the two basic length scales in
Assuming that the direct correlation functions are given

h ¢ led orid b ved f v i 'the problem, namely, the radii or diameters of the particles,
the s_et ot couple equatlorﬁ_) can be solved formally N cap pe very different. It is clear that if we consider a binary
Fourier space, and the solution is written as

mixture in which the concentration of the small particles is

A
hij(r)~ %exp(—aor)cos{alr—eij), r—w,  (7)

. "\\lij(k) high, while that of the big ones is low, then the length scale
hij (k)= DK (2  of the common asymptotic decay of all three total correlation

functions should be set by the size of the small partities.

whereﬁij(k) is the three-dimensional Fourier transform of On the other hand, we could consider the opposite case in
hi;(r). Note that the numerators of E¢R) depend on the which the concentration of the big spheres is high, while that

indicesi andj, and are given by of the small ones is low and conclude that the length of the
- ~(2) A2 rn2 AL LrAR) common asymptotic decay is set by the size of the big par-
Nsg(k) = Css (K) + pp[ Cpg (K)“—Cs5 (K) Cpp (K) ], ticles. It is less clear what the asymptotic decay of the binary

- @2 A2 2 A2 A2) mixture should be in the case where the two components
Nbb(K) = Co (K) +pol Cos (K) "= Css (K)o (K) 1, 3 have similar densities. Nevertheless, if the radii of the com-
Nbs(k)=6ﬁ,25)(k)=e(52b)(k)=Nsb(k), ponents are 'comparable, ig~-1, the §ystem will have no

problem to find a common asymptotic length scale, which
while the denominator of Eq(2) is common to all three should interpolate smoothly between the basic length scales.

equations and can be written as However, if the radius of the small spheres is significantly
S a2) a2 _ A(2)/ 2 smaller than that of the big ones, little is established about
D(k) =11~ psCss (K)J[1 = puCob (K) 1= psppCps (k) ‘@ the nature of the asymptotics, in particular its variation with
concentration, and it is this topic we address here.
From the inverse Fourier transform we can obtain the total
correlation function in real space: 1. Pair direct correlation functions

1 (= ) N In order to determine the asymptotics we must calculate
rhij(r)= o2 fo dk ksin(kr)hj; (k). ) the zeros oD (k)—see Eqgs(2) and (4 —which requires, in
. turn, 6i(j2)(k). Since we are interested in a comparison be-
Henceforward we assume the singularitieshgf(k) to be  tween asymptotic results from the OZ equatioil$ and
(simple poles® If we denote thenth pole ofh;;(k), i.e., the  those obtained numerically from the test particle route within
nth solution of the equatio® (k) =0 in the upper complek the framework of density functional theor{DFT), we
half p|ane bypn, and the Corresponding residue |di”(k) choose to use the excerver ideal ga)s Helmholtz free
by R, then we can perform the inverse Fourier transformenergy functional7e{{p;}] to generate the pair direct corre-
via the residue theorem and write the total correlation funclation functions. Within DFT we hav@
tion &< sy g Follo)] |
rhij(r)zziE Rinieipnr. 6) J 5Pi(r1)5pj(r2) pi(1)=p; p;(1)=p;
T For the system of interest, namely binary mixtures of hard
Each pole contributes to the total correlation function either aspheres, we employ Rosenfeld’s successful FMT in two dif-
pure exponential term, i, is purely imaginary, or an expo- ferent formulations:(i) the original Rosenfeld functiont,
nential damped cosine, [f, is complex. Accounting for the which generates the well-known Percus-Yevick pair direct
behavior ofh;;(r) for small values ofr requires contribu-  correlation functions; and (ii) the White Bear versioff*?
tions from several(in general an infinite numbgmoles, which modifies the FMT so that the underlying bulk equation

®
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of state is that due to Mansoori-Carnahan-Starling-Leland
(MCSL).2%2! The MCSL equation of state is closer to that
found in computer simulations than is the Percus-Yevick
compressibility equation of state which underlies the original
FMT.

The structure of the FMT functionals is given'by*® &

Q

BFAlpl1= [ dr @), ©

i.e., the excess free energy densiy '®, with B
=(kgT) !, is a function of weighted densities of the
py-component mixture that have the form

l'/Rb

14
_ 3,7 —y i '
na(r)_zl fd rpi(r—r )wa(r )- (10 FIG. 1. The pair direct correlation functionﬁz)(r) obtained from both the
Rosenfeld DFT[equivalent to Percus-Yevick theorfRef. 14] and the

. . i . . White Bear version for a hard-sphere mixture with packing fractiggs
I
The weight funCtlonS"a describe the fundamental geometri- =0.1 and»s=0.1 and size rati@m=Rs/R,=0.4. Whereas the results for

cal measures of a sphere of componitit There are four  small-small 69 and big-small bs) correlations are almost indistinguish-
scalar and two vector weights which are labeleddoysee able between the two theories, there are visible differences between the
the Appendix. Within FMT the pair direct correlation func- results for big-big bb) correlations.

tion takes the form

2 PP i ; B. Effective one-component route

@(ry=— J 11
G (r) a.B anaanﬁw“®wﬁ’ (D

For asymmetric mixtures with size ratigs<0.1, it was
found, in Monte Carlo simulations of the effective one-
component fluid? that the binary hard-sphere liquid can ex-
hibit fluid-fluid phase separation, although the latter is al-
‘ways metastable with respect to the fluid-solid phase
transition. As mentioned earlier, this feature is not captured
by the standard Percus-Yevick closure of the mixture OZ
equations, and, hence points to possible failings of integral
which therefore require no further discussion. For the Whiteech:.aggnaﬂgsrléﬁfgr?;:slgﬂZriisl,{ er?n(itgctr:glﬁ;J;::ncsee; ?Iu?d

Bgar versipn the pallir. dir_ect correlation function of thare ._fluid phase separation should be accompanied by a so-called
fluid was given explicitly in Refs. 12, 13. The general form is Fisher-Widom ling1° at which the asymptotic behavior of

similar to that of the Percus-YevidlPY) pair direct correla- bulk pair correlations changes from damped oscillatory to

i i (2)
3\%1. fugcnon. quever, tlheh rlesults foe(r) fromh the purely exponential decay, this failure of the conventional bi-
Ite Bear version are slig t'y more accurate when Com'nary route to account for a spinodal also has implications for
pared to results of computer simulations. the asymptotics of correlations
For the binary mixture case, we find the pair direct cor- In order to determine the asymptotic behavior of corre-

i simil h di he PY cf Sations for asymmetric mixtures we change from a descrip-
again similar to those corresponding to the clossee tion of the full binary mixture and adopt an effective one-

:jh]: Appe]rc]dn)(. However, t?]e tr\]/vo aﬁproacr;es fare SUffICIer]Flycomponent viewpoint. To this end we integrate out the
fferent for us to test whether the results for asymptotlcsdegrees of freedom of the small particles and thereby map

depend sensitively on the approximations introduced by th‘?heir influence in terms of an effective Hamiltoni$ie2
use of approximate pair direct correlation functions. We

show an example of the pair direct correlation functions ob-  Her=HppT {2, 12

tained from both functionals in Fig. 1, for a binary hard- \yherey, . describes the direct interactions between big par-
sphere mixture witly=0.4, 7,=0.1, andys=0.1, where the  icjes and=Qy+Q,+Q,+:-- is the grand potential of

packing fraction ’7i:(47’/3)Ri39i - The overall agreement he sea of small particles in the presence of a fixed configu-
between the two approaches is good; differences can hargssion of big onesQ, is the zero-body terms p.V, i.e., the
Iy2be seer, on the scale of this plot, fof(r) and for  grand potential of a homogeneous sea of small particles of
c(r)y=c@)(r). For this choice of parameters, small differ- \ojumeV and pressurg,. Q,, the one-body term, o, ,
ences incgy(r) are visible. where w; is the excess chemical potential of speciesat
Since the Fourier transformi?(k) are given analyti- infinite dilution, i.e., the difference in grand potential be-
cally in both the Rosenfeld and White Bear schemes, th@ween the sea of small particles with and without a single big
poles can be determined directly by solviik)=0; k  particle.N, is the number of big particles), is the contri-
complex, whereD (k) is given by Eq.(4). bution from the effective interaction between pairs of big

with ® denoting the convolution product. The convolutions
of weight functions in Eq(11) are the same for both versions
of FMT and the results are given in the Appendix. The sec
ond partial derivatives ofb with respect to the weighted
densitiesn, depend on the particular version of FMT. In the
case of the Rosenfeld functionalEq. (11) recovers pre-
cisely the Percus-Yevick pair direct correlation functidfs,
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particlest>1"2Higher order term€);, O, ... take into ac-  reservoir at fixed chemical potentiak. The integrating out
count effective many-body interactions between three, fourprocedure then implies that the depletion potentigl) be-

and so forth, big particles. However, for the size ratios oftween big particles depends on the reservoir density of small
interest here, these are expected to be stidlhus, in the spheres,p., rather than on its system counterpast,. A
present context we truncate the effective Hamiltonian afterelation between the system packing fractinand the res-
Q,. For the calculations of the asymptotic decay of the ef-ervoir value .= 477R§p;/3 can be obtained from the effec-
fective one-component fluid the structure independent termtive Hamiltonian!>?% From the effective Hamiltonian based
Q4 andQ 4, which depend upon only the chemical potential on the Rosenfeld function&kquivalent to PY compressibil-
s of the reservoir of small particles, are irrelevant and, fority route) an accurate conversion formula is giverfby

our present study, the mapping of the hard-sphere mixture

r r2
onto an effective one-component fluid is characterized by the ne=(1— 7) 7.~ 3q 77" 1~ s 3¢y, (1—175)
effective interaction potential between two big particles, s bi s b *1+27. *Ts(1+2 0?2
5L = DL+ W(r), (13 R
—q "7 7s (17

(1+275)2

The resulting conversions yield results that are in very good
agreement with those of Monte Carlo simulations for size

i.e., the sum of the bare hard-sphere interaction potential
®{'S(r) and the depletion potenti&l/(r). For W(r), which

depends o, we use the parameterized form from Ref. 17,
which enforces the correct asymptotic behavior of the deple=<’ .
tion potential. Note that the asymptotic behavior of the'atios q=0.1 and 0.05, and a wide range of values of

depletion potential determines that of the big-big correlation”o™ S€€ Z'g 3 of Ref.. 22'f S'm'lla”% ong can denvf? the
function in the limit of vanishing density of the big particles, corresponding conversion lormula based on an € ective
Hamiltonian obtained from the White Bear version of FMT.

—0, since ) X . .
Po However, for the size ratios considered here, the difference
lim hbb(r)zexp{—ﬁcbﬁg(r)]—l. (14)  between the numerical results is negligibly small, and we
Pp—0 have chosen to employ E{L7) in our conversions.

In this limit the asymptotic decay df,,(r) is given by Eq.
(7), with ap; and a; determined by the zeros ofl lIl. RESULTS OF CALCULATIONS
_Ps&ss(k)]-17 .
Within the effective one-component picture we use the- Pure hard-sphere fluid
one-component OZ equation which relates déffifectivetotal We begin by recalling briefly results for the pole struc-
correlation functiorhe(r) to the effective pair direct corre- tyre in the well-studied pure hard-sphere fl&id:24=2This
lation functioncgﬁ)(r) of a fluid interacting via the potential system plays an important role as the limiting case of a bi-
(13). The one-component OZ equation is, of course, muchary mixture in which either the size ratio is close to unity or
simpler in structure than its mixture counterpart, Bg, and  the density of one component goes to zero. The trajectories
in Fourier space is given by of poles in the pure fluid are shown in Figia The poles
~(2) are indicated by crosses for a packing fractionysf0.1 and
Ceit (K) (15) 7r; denotes the polewith i=1,2,.... In the pure case the pole
1—pbéfjf>(k)' , has, for all packing fractions;, the smallest imaginary
part, and therefore it is always the leading order pole. It
describes, as discussed already, the asymptotic behavior of
the total correlation function. Other poles are ordered by in-
creasing imaginary pad, and are denoted,, 3, and so
on.
1_pbégf)(pn):0- (16) _ When 7 is_changed all the poles move along the trajec-
tories shown in such a way that the order of the poles re-
This approach is quite distinct from the full binary mix- mains unchanged. Ag is decreased, the density-density cor-
ture treatment, because we can no longer input an analytielation lengthé in the fluid must decrease. This corresponds
expression for the pair direct correlation function. Rather weto an increase imy(,)=¢ 1. For an increase of;, corre-
must solve the OZ equatiofi5) via a closure relation. We lations decay more slowly, which corresponds to a decrease
apply either the PY or the hypernetted-ch&iNC) closure in ay(7;). Note that in the limity—1 the imaginary part of
and obtain a numerical solution fcmézf?(r). The solution of all the poles vanishes at least in the framework of PY
Eq. (16) can then be determined numerically using the protheory? In the present context we are interested solely in the
cedure described in Refs. 7-9. equilibrium fluid phase and in order to avoid the complica-
Another important difference between the binary routetions of freezing we shall restrict tHgotal) packing fraction
and the effective one-component route is that we describe the 7<0.494, the freezing value for pure hard sphéfdsote
full binary mixture in the canonical ensemble, whereas thehat close packing of hard spheres in dimensien3 occurs
other route is most efficiently implemented in the semi-at »=v2#/6~0.7405.
grand-canonical ensemble in which the big spheres are If a binary mixture is considered in which either the
treated canonically, while the small spheres are coupled to packing fraction of one component is very small or the size

hei(K) =

In order to ascertain the asymptotic behaviohgf(r), which
is equivalent tah,,(r) of the binary mixture, we must now
determine the pole structure of Ed.5) by finding solutions
p, of the equation
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responding results are shown as crosses in Fig. As we
"6 increase the packing fraction of the small sphesgsvhile
keeping 7, fixed, the imaginary part ofr; increases while
i that of 7, decreases, as is shown by the open symbols in Fig.
2 n 2(b). This behavior ofr; is opposite from what is found in
” 2 the pure case and gives rise to the effect that for a certain
n=~0 value of 55, which we denotey? (=0.126), the imaginary
- part of r; and of, are identical and, hence, the asymptotic
1r . behavior of the total correlation functions is determined by
two poles with the same, but differenta;. If #g is in-
creased further the role of the poles and 7, is inter-
n—1 \ changed and the leading-order pole is then This cross-
0 0 5 10 15 s Over from one leading-order pole to another, with distinct
real parts, is indicated by an arrow in Figlb2 When the
a; R crossover occurs the wavelength of oscillations of the three
total correlation functions, in the asymptotic regime, jumps
from a value that is set by the diameter of the big spheres at
low 7, to one that is set by the diameter of the small ones at
higher 7, and hence changes by roughly a factogééqual
to 0.5 in the present caseClose to the crossover poingy ,
there are two poles which have similar imaginary paats,
anda,, and which will both contribute to the exponentially
damped oscillatory decay of the total correlation functions in
the intermediate regime, provided that the amplitudgs,

and Rij , of both contributions are of comparable size, i.e.,
we expect

@[ 7° %

—
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W
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N
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. : 1'0 5 20 rhi;(r)~Aj exp(—aor)cos(alr—~6ij)+Aij
a Ry Xexp—agr)cosar—6;), r—=, (18

FIG. 2. (@ The trajectories of poles for a one-component fluid of hard where the first contribution corresponds o, with a;

spheres of radiuR treated in the Percus-Yevick approximation. The crosses— -/ R,, and the second tar,, with “él,v 7/(qRy). At the
denote poles evaluated for a packing fractipn0.1. a, denotes the imagi-

nary anda; the real part of each pole. Upon decreasigach pole {4, Crossover poinéy=2ay. .NOte that.the hlgher order pqle@,
m,, etc) shifts to higher values ofi, but the sequence remains the same, 741 etc. play no role in determlnlng the asymptotics ﬁpr

i.e., m; has the smallest imaginary part. In the high density limit; 1, the =0.5.

imaginary part of each pole vanishdb) Trajectories for a binary hard- For a slightly more asymmetric binary mixture, Wim
sphere mixture with size ratig=Rs/R,= 0.5 obtained from Percus-Yevick =0.35, the crossover scenario is more complicated. In Fig.
theory. The packing fraction of the big spheres is fixedpge0.1. The

crosses denote poles for a small sphere packing fracfign0.01. The 3(@) we show that _Startmg_ from packing fractlo%zo.l
squares indicate trajectories for increasing valuesofThe imaginary part ~ and 7s=0.01 and increasing the value ofs, at first the

of 7, increases withys while that of =, decreases, leading to crossover, see behavior of the poles seems very similar to that of the mix-
the horizontal arrow aty} =0.126.a, increases by a factor of aboutgl/  tyre with g=0.5: the imaginary part ofr; increases, while
=2 at the crossover.

that of 7, decreases, and eventually there is a crossover at
75 =0.172 from, to m,. However, if the value ofys is

ratio  is close to unity, then the pole structure of the mixtureincréased further, the imaginary part=f, which is then the
should constitute a small perturbation around the pole strud-,eadlng qrder pole, begins to increase again Wh'le at the same
ture of the pure fluid. We find that in these limiting cases altime the imaginary part ofr decrea§es sufficiently fast that
poles move in the same direction in the complex plane upof" 7s=>0.211m3 becomes the leading-order pole. Thus for
changing parameters and the leading order pole remains g=0.35 andyp,=0.1 th_ere_are two crossover points at which
However, as we shall see below, the trajectories do altei'® Wavelength of oscillations of the asymptotic decay of the
when higher packing of the minority component or morecorrelatlon functions jumps discontinuously. However, as

asymmetric mixtures are considered. can be seen in F|g_.(3), thgre is only_a narrow region (_Jf
values of 55 for which 5 is the leading-order pole. This
I ) intermediate crossover behavior disappears once the size ra-
B. Weakly asymmetric binary mixtures

tio becomes slightly smaller. For=0.3 the crossover occurs
Here we consider binary mixtures with>0.2 and arbi-  directly from m; to 75, as is shown in Fig. ®) for the same

trary packing fractions of the components, and we apply thevalue 7,=0.1. In a similar way the crossover occurs be-
binary mixture route to determine the pole structure and théween,; and some higher pole as the valuecpflecreases
leading order pole. We start by considering a mixture withfurther. As an example we show in Figiafthe direct cross-
g= 0.5 and packing fractiong,=0.01 andn,=0.1; the cor-  over from, to 75 for g=0.2 and fixedrn,=0.1.
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FIG. 3. () As in Fig. 2b) but now forq=0.35. 7, is fixed at 0.1 and the  FIG. 4. (a) As in Fig. 2b) but now forq=0.2. 7, is fixed at 0.1 and the

crosses refer tays=0.01. Increasingy, leads first to crossover from; to crosses refer toy;=0.01. The imaginary part of-, increases with increas-

m, at s=0.172, left arrow, followed rapidly by a second crossovergat  ing s while that of 5 decreases so that at =0.278 crossover occurs, see
=0.211, fromar, to m5. (b) For this size ratioq=0.3, the crossover is

arrow, from 7, to 5 wherea, increases by a factor of aboutg¥ 5. (b)
directly from 7, to 75, see arrow, aty* =0.189, wheren, increases by a Comparison of trajectories from the Rosenfellercus-Yevick theory
factor of about 1d=3.3.

(squarep and the White Bear versiofcircles for q=0.2 and fixed»,

=0.1. Crossover fromr, to a5, not shown, occurs for} =0.26 in the
White Bear version.

In order to confirm that the crossover behavior is not
peculiar to the PY theory, we repeated the analysis using pair

direct correlation functions obtained from the White Bearplot a crossover line in thest,,7s) plane for the binary
version of FMT213 For weakly asymmetric mixtures at low hard-sphere mixture. We start, in Figiag by plotting the
total packing fractions the agreement between the two apsrossover line for weakly asymmetric mixtures where we
proaches is almost perfect. This is not too surprising as th8nd crossover between the, andm, poles. For all the size
pair direct correlation functions in these limits are very closeratiosq shown in Fig. 5, the crossover lines are truncated at
For more asymmetric mixtures, say= 0.2, and larger pack- large total packing fractions. As mentioned earlier, in an at-
ing fractions, quantitative differences between the two theotempt to avoid complications of freezing and remain in the
ries become visible. This is illustrated in Figh However, stable fluid phase, we deliberately restrict our calculations to
the overall agreement between the Percus-Yevick and th&ate points withys+ 7,<0.5.
White Bear approaches indicates that the general behavior is In the case of very symmetric mixtureg=0.7, the
robust against changes in the details of the approximationdeading-order pole is always, , and hence the wave number
in particular thepatternof crossover is the same for the two @i is a continuous function of, and 7s; there is no cross-
approaches. over. Forg~0.65 we find a short crossover line, as shown in
Fig. 5@), at whicha; jumps as the leading-order pole crosses
over fromar, to 5. Itis interesting to note that along a path

which connects two points just above and below the cross-
The crossover behavior, exemplified in Figs. 2—4 forover line, but which does not intersect the line, the two poles

various size ratios and for a fixed packing fraction of the bigw; and m, change their identity in a continuous manner.

spheresn,=0.1, can be determined for a range gf. In Indeed, the nature of the termination of the crossover line is
order to represent the locations at which crossover occurs waontrivial but we do not discuss it here.

1. Crossover lines
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second branch appears at low packing fractions of the big
spheres, as can be seen in Fi¢h)For q=0.3 and 0.2. For
values 0fq<<0.5, the crossover is seen to occur at increasing
values of g asq is decreased. In the cage=0.4 there is a
second crossover fromr, to 75 for 7s>0.35.

2. Pair correlation functions in the neighborhood of
the crossover

The crossover behavior, as described so far, is based on
the pole structure of the total correlation functions in com-
plex k (Fouriep space and hence remains quite abstract. In
order to demonstrate a clearer physical manifestation of the
crossover of the wavelength of the total correlation functions
we choose to perform DFT calculations bfi(r) via the
test-particle route. In this calculation one particle of the fluid
mixture, either a small or a big one, is fixed at the origin and
constitutes the external potential acting on all the other par-
ticles of the fluid. By minimizing the grand-canonical poten-
tial functional of the hard-sphere mixture in the external field
of the fixed particlej =s or b, we obtain the density profiles
pj(r) and, hence, the pair correlation functiorms(r)
=pj(r)/p;. Recallh;;(r)=g;;(r)—1.

If we use the Rosenfeld functiortafor F.,[{p;}] in the
numerical calculation of the total correlation functions, the
asymptotic decay length and wavelength of oscillations have
the values obtained from the Percus-Yevick pair direct cor-
relation functions, i.e., the values obtained earlier from the
poles!’ Correspondingly, the asymptotic decay of the total
correlation functions obtained from the White Bear version
of FMT, using the test-particle route, is that predicted by the
White Bear pair direct correlation functions. Using the DFT
in the test particle mode, rather than solving the mixture OZ
gquations(l), has the important advantage that the total cor-
relation functions are more reliable for small separations

=0.65 where small deviations can be ascertained. For each size ratio tHadeed theh;;(r) are usually in good agreement with simu-

crossover is fromr, to 7, ; below each line the pole, with the smallera,
(larger sphere radiisdominates, whereas above the limg dominates
smaller spheres i.e., the smaller spheres. Note that we truncate each li
when the total packing fraction is greater than 0.5. §er0.65 the cross-
over line is very short; for smaller values of, and ¢ there is no
crossover—see text. Far=0.5 we also display the crossover line calcu-
lated for the effective one-componeOC) route (dotted ling. (b) As in

(a) but now for more asymmetric mixtures. Fgp= 0.3 the crossover is from
7, (below the ling to 75 (above the ling whereas foig=0.2 this is from
m, to 5. For small values ofy, crossover can occur via intermediate
poles, giving rise to two branches of the lines épr 0.3 and 0.2. In the case
of g=0.4 additional crossover fromr, to 73 occurs for values ofyg

lations. Moreover, as emphasized above, they do exhibit
r<'lslesymptotic behavior consistent with the pole analysis. If we
were to use the mixture OZ equatiori$) to determine
hij(r), the results would be less accurate for small separa-
tions when the mixture is highly asymmetfft.

Within the context of DFT, the test-particle route to
hij(r) is generally more accurate than the OZ route since the
calculation ofp;(r) via the former requires onlyi(l)(r), the
one-body direct correlation function, i.e., a first derivative of

the functionalF.{{p;}1,° rather than the second derivative

>0.35. Forg=0.1 the results from the Rosenfeld theory show CroSSOVernat is employed in the OZ route

from m, to 7,4 at high values ofy; .

In Fig. 6 we plot the logarithm ofhy(r)| for state
points (a) slightly below, (b) on, and(c) slightly above the
crossover line for a size ratiq=0.3 and a fixed packing

As the size ratio becomes smaller and the mixture morgraction of the big spheresy,=0.15, calculated for the
asymmetric, the crossover line rapidly grows in length andRosenfeld functional. The effect of the crossover on the total
spans most of the fluid regime of the phase diagram. At theorrelation function is dramatic. While the wavelength of the

same time, the crossover occurs at lower valueggfsee
Fig. 5@). For the three values af shown in this figure the

oscillations inh,,(r) below the crossover line, curv@), is
approximatelyo,=2R,, the diameter of the big spheres,

crossover lines obtained from the Percus-Yevick approximaoscillations develop on the length scale of the small spheres,
tion agree very well with those obtained from the pair directonce 7, is sufficiently large that we are above the crossover
correlation functions derived from the White Bear version. line, curve(c). The change in wavelength is roughly a factor
For more asymmetric mixtures the crossover behaviobf q, i.e., 0.3 in the present case. Moreover, it is striking that
can occur via intermediate poles, as shown in Fi),3 this crossover behavior, predicted by the pole analysis and
which results in a second branch of the crossover line. Thigherefore valid strictly for the asymptotic regime-«, sets

Downloaded 15 Oct 2004 to 131.211.33.4. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



J. Chem. Phys., Vol. 121, No. 16, 22 October 2004 Decay of pair correlations 7877

havior should also be visible in correlation functions ob-
tained by computer simulations, where owing to statistical
error one is restricted to small and intermediate separations.
Armed with this information, we performed Monte Carlo
simulations of the total correlation functions for a binary
mixture with g=0.5. In order to be able to ascertain a se-
guence of oscillations ihy(r) it is important to perform the
simulations in a regime of slow exponential decay, i.e., we
must remain at high total packing fractions. Thus we fixed
N,=500, the number of big spheres in the simulation box,
which corresponds t@,= 0.3, and increased the number of
small spheres frolfNs=500 to 2400. The results are shown
10 in Fig. 7(a). The crossover behavior is evident in the Monte
Carlo results. For the smallest value af, shown (g
=0.0375) the wavelength of oscillations is well defined and
FIG. 6. Plots of Ifhy(r)| for the size ratiaqy=0.3 and fixedz,=0.15. The IS approximatelyoy,, whereas at the largest value shown
solid lines refer to the results of test-particle DFT calculations based on th¢ 7,=0.1753) the wavelength is roughéy,/2. At intermedi-
Rosenfeld functional whereas the dashed lines correspond to leading-ordgie values ofys there is clearly interference between two
asymptotics—see texta) s=0.15, (b) 7,=0.2028, the crossover value, length scales. The results fog,(r) obtained from DFT are
(¢) 7s=0.25. In(a) and(c) a contribution from a singlédominanj pole[see - b . .
Eq.(7)]is used in the asymptotic expression whereabjithe contributions ~ 'emarkably similar to those from Monte Carlo simulations—
of two poles are includefsee Eq(18)]. The wavelength of the oscillations see Fig. ). Much of the detail at small and intermediate
changes from aboutr,, the diameter of the big spheres, (@ to about  separations is captured by DFT. Of course, there is no reason
0.30, in (c). Interference effects are clearly visible(in). The results inb) to expect the DFT to yield the precise crossover value. The
and (c) are shifted vertically for clarity of display. . : . . !
simulations imply that this should occur between,
=0.1125 and 0.15. The pole analysis, see Fig. 5, gives a
crossover valuen:~0.14 for 5,=0.3. That crossover
clearly apparent in the Monte Carlo simulations is important
for two main reasong(i) in the Monte Carlo simulations no
approximations are made for the pair direct correlations
functions; one simply calculatds,,(r) directly. (i) Experi-

In by (1)l

............ leading order asymptotics

1 2 3 4 5 6 7 8 9
I'/Gb

in at intermediateseparations. In order to emphasize this
point, we show in Fig. 6, alongside the DFT results for
hpp(r) (full lines), results based on leading-order asymptot-
ics (dashed lines The latter were obtained by enforcing the

decay described by Ed7), with ag and a; given by the . _ . .
Y y Ed7) 0 L d y mentally determined total correlation functions, for colloidal

calculated leading-order pole. The amplitudg, and the | . istical noi hich Kes |
phaseO, were then fitted to the DFT results at intermediateSySteMs say, also contain statistical noise which makes it
difficult to extend results into the true asymptotic regime.

r. Sufficiently far from the crossover line, the agreement be—_l_h b M Carlo simulati d DFT
tween the two sets of results is excellent, except for small e agreement between Monte Carlo simulations an

separations; <2¢,, where many poles begin to contribute. results gives us confidence that we can extract useful infor-

In the close neighborhood of the crossover line we find, agnation at intermediate separations.

expected, interference between the oscillatory contributions In a second. set of S|mulgt|ons the effective one-
of two poles. Then one must fit to the form of H48), i.e., component description was used in order to calcuigtér).

two different amplitudes and two phases were fitted, havin The depletion potentialV(r) which was employedsee Sec.
QI B) in the simulation is the parametrized form from Ref. 17;

calculated independently the valuesayf, a, anda,, a;. L _ _ )
b y &, 3 Lol we comment on this in the following section. The resulting

The two-pole fit provides an excellent description of the | lation f iongh h i Fi
crossover region; it is not significantly worse than the single-tokt]a corlre altlonh unctionshy(r) aLe shown 'E 9. 5)'
pole fits which apply away from the crossover—see curvefT ese cefarhy show crossover be aVIOI!@S the pac n:cgh
(b). Note that the present fitting procedure differs from ear- ractlon_ 0 _t ereservol 1 mcreas_ed. T. € sequence o the
lier studie€®°of the efficacy of leading-order asymptotics in re_sults is S|m|Iar_ to that from the simulation of the full blqary
that those studies calculated amplitudes and phases from t xture shown in Fig. @) gnd to thaF from the DFT, _F'g‘
residuesRinj , obtained from the OZ equatioli&). Neverthe- 7(b). If the truncated depletion potential from Ref. 29 is em-

less, the conclusion that leading-order asymptotics is reliablg\lloyed' \('j"h'hCh does not.mcludle th? _osclll!a:cory structurt)e n
down to surprisingly small separatiomss borne out once (r) and, hence, contains only minimal information about

again. We should also point out that while we have concencorrelations between the small spheres, then no crossover in

trated onhy(r), we could equally well have plotted results the wavelength of oscillations in the total correlation func-

for the other total correlation functiors,(r) andhe(r).  1ON hon(r) is observed—compare the bottom plot in Fig.
Recall that since these functions exhibit asymptotic deca (9) with the one above it. Note that noise sets in the simu-
equivalent to that ohy(r) (only the amplitude and phase ation results forr/op=6.
differ) we obtain a similar level of agreement between DFT
test-particle results and leading-order asymptotics.

From the DFT results it is clear that it is possible to pick
up the contribution from the leading-order pole at moderate  We now turn to size ratiog|<0.2 for which the full
separations. This implies that features of the crossover bdsinary mixture treatment, based on calculating the pair direct

C. Highly asymmetric binary mixtures
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FIG. 7. (@) Results for Ifh,y(r)| for a size ratiog=0.5 and fixedz,=0.3 obtained from direct Monte Carlo simulations of the binary mixture. At the two
smallest values ofjs the oscillations have a wavelength of abayt, whereas for the largest value gf the wavelength is about Q5. For intermediate
values of7; there is no well-defined wavelengtfi) DFT results using the test-particle procedure and the Rosenfeld functional for the same systéa as in
The results agree remarkably well with those from Monte Carlo simulatigh#/onte Carlo results for the same systegs; 0.5 and#,=0.3, based on an
effective one-component description of the mixture using a depletion potential from Ref; d@notes the packing fraction of the small sphere reservoir. For
75=0.1 the oscillations at intermediatehave a well-defined wavelength of abatf, whereas forpg=0.4 this is reduced to about @. For intermediate
values of 7y there is interference. The bottom curve refers to simulation results based on the truncated depletion potertialrfu@et al. (Ref. 29,
which does not incorporate properly the correlations of the small spheres. This depletion potential does not yield the crossover that is displeyadn
above. Note that in each part of the figure the curves are shifted vertically for clarity of display.

correlation functions from PY approximatigar slight modi-  over occurs in both, is an important success for the effective
fications theredf is expected to become less reliable. Ratherone-component picture.
we treat asymmetric binary mixtures within the framework  We cannot expect quantitative agreement between the
of the effective one-component picture based on the paitwo routes for a weakly asymmetric case suchgas0.5
depletion potentialW(r)—see Sec. IIB. This picture is since our effective one-component approach omits three and
known to become increasingly accurateggis reduced, i.e., higher-body contributions which should play a role at such
the more asymmetric the mixture becomes. In order to capsize ratios. Note that all the results shown correspond to the
ture details of the asymptotic decay bf,(r) at arbitrary  Percus-Yevick closure for solving the one-component OZ
density p,, the depletion potential used in this route mustequation. The HNC was also employed for a few test cases
itself have the correct asymptotic behavior. Thus, we apphand similar results were obtained.
the parameterized form of the depletion potential from Ref.  If we make the mixture more asymmetric, we find new
17. This isconstructed see Eq.(14), so that for a given features. Forq=0.1, where we expect our effective one-
reservoir densitypg, lim, _ohpy(r) has the correct decay. component approach to be very reliable, we find that there
As remarked earlier, this igot the case for the simplified are qualitative differences between results from the binary
(truncatedl depletion potential of Ref. 29 used in simulation mixture treatment and those of the effective one-component
studies of the phase behavior of asymmetric hard-spheriuid. In Fig. 8 we show that for this mixture at fixegl,
mixturest® The truncated potential is inadequate for the=0.1, poles from the two approaches move on similar paths
present purposes. upon increasing the value ofs but at very different rates.
For size ratiosg=0.25 we find that the effective one- We do not find the crossover linat lower ) from 7, to
component description results in pole trajectories very simisryg, which is shown in Fig. &). Moreover, we find that in
lar to those from the binary mixture treatment. The crossovethe effective one-component picture a purely imaginary pole
lines found from the two routes are in qualitative agreementgevelops and moves towards the real axis when the reservoir
an example is given in Fig.(8 for q=0.5. Itis important to  packing fraction of the small spheres;, is increased. At a
bear in mind that in the former route the size of the smallvalue of »;~0.26 the purely imaginary pole becomes the
spheres enters only by determining the form and setting thkeading-order pole, which corresponds to crossover to purely
wavelength of oscillations of the depletion potential. That theexponential decay afhy,(r); a;=0 in Eq. (7). The cross-
asymptotic behavior is similar in the two routes, and crossover from an exponentially decaying oscillataty,,(r) to a
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FIG. 8. The trajectories of poles for a binary mixture of hard spheres withFIG. 9. Plots of Ifhy(r)| for a size ratiog=0.05 and fixedrn,=0.1. The

size ratiog=0.1 and fixedn,=0.1. The crosses denote the poles evaluatedsolid lines refer to the results obtained from the Percus-Yevick closure of the
for a very low values ofy,. Upon increasingys the poles calculated from EOC OZ Eq.(15) based on the depletion potential, whereas the dashed lines
the binary mixture Percus-Yevick roufsquaresand from the EOC route  correspond to leading-order asymptotics—see textalnz;=0.12, a con-
(triangles follow similar paths, but the latter move much more rapidly. tribution from a singlgdominanj complex polgsee Eq(7)] is used in the
Within the EOC there is a pure imaginary pade=0, which moves towards asymptotic expression and the wavelength of the oscillations is agput
the real axis as the reservoir densiy increases. Neay.=0.26 the pure  while in (b), 75=0.18, a single pure imaginary pola,(=0) contributes and
imaginary pole becomes the leading pole, crossover occurs and the ultimatee decay ofhy,(r) is monotonic for larger. Crossover occurs neays
decay ofrhy,(r) is purely exponential. =0.15. The results iith) are shifted vertically for clarity of display.

purely exponentially decayinghy,(r) is well known in
other systems where the fluid displays fluid-fluid or liquid-
vapor phase separati6i®*°As mentioned in the Introduc- Fisher-Widom line rapidly moves closer to thg=0 axis.
tion, the line in the phase diagram at which such crossoverhe fact that there are two branches of the Fisher-Widom
occurs is termed the Fisher-WiddPrline, named after the line is very similar to what is found for a Gaussian core
authors who predicted its existence. binary mixture®® There one also finds a structural crossover
As an example of the change of the total correlationiine emerging from the confluence of the two brancifasle
functionhy,,(r) as the Fisher-Widom line is crossed is shownfind the equivalent scenario here. The two branches of the
in Fig. 9 forq=0.05 andy,=0.1. Results are plotted for two Fisher-widom line meet at some point very close to the
values of 75, one below and the other above the Fisher-—q axis. Below this point emerges a single crossover line,
Widom line. hy(r) is the solution of the PY closure to the rynning close to the axis and terminating s=0, 7s=0,
effective one-component OZ equatiofi5). Again, the \hich separates the two types of oscillatory decay. The
asymptotic behavior sets in at intermediate separgtlons, Fsher-Widom line is shown in Fig. 10 in the reservéa
can be seen from the agreement betwbgi(r) (full line)  5ng the systenib) representations for size ratip=0.05.
and r_esu_lts obtained _by retammg only the leading-order pOI(?—Iowever, on this scale the left branch of the Fisher-Widom
contnbuthn(dashed ling—see Fig. 9. For the Iaf[ter the Qe- line separating the region in which the pair correlation func-
cay described by Ed7) was enforced on the oscillatory side tions oscillate with a wavelength set by the size of the small

of the Fisher-Widom line, witta anda, given by the cal- op 00 fom that in which correlations decay monotonicall
culated leading-order pole and the amplitude and phase fitted] Y y

. . . . cannot be distinguished from thg,=0 axis; the line is at
to the numerical results at intermediateOn the monotonic ven smaller val than fora=0.1. Nor can one di
side, where the purely imaginary pole dominai®g,s cal- ? € 'Sh ?he tautes ?ﬁb an 1o ql'_ ' .h' ﬁ can o et IS'
culated and only the amplitude is fitted. inguish the structural crossover line which occurs at lower

A particular feature of the binary hard-sphere mixture is”s- . ) ) . .
that in the limit 7,—0 the correlation functions must oscil- A FW line is associated with the presence of a fluid-fluid

late with a wavelength set by the small spheres—forygll ~SPinodal. Indeed, the FW line is bounded by the spinodal,
>0. This implies that, for sufficiently largss, in additionto ~ Which is defined bya,=0, i.e., when the pure imaginary
the Fisher-Widom line which separates an oscillatory regiorP0le reaches the origihin Fig. 10 we plot the spinodal for
which is rich in big spheres from a monotonic region poor ind=0.05 obtained from the effective one-componésOC)

big spheres, there must be another branch of the FishepPproach. We did not attempt to calculate the corresponding
Widom line at small values ofy, separating the aforemen- fluid-fluid binodal. The spinodal and the FW line lie well
tioned monotonic region poor in big spheres from an oscil-above the fluid-solid binodaldotted ling obtained from
latory region which is even more dilute in big spheres. WeMonte Carlo simulations of the EOC systénfor g=0.05

find this second branch of the Fisher-Widom line lies at exthe fluid-fluid transition is deep in the metastable region of
tremely low values ofp, for q=0.1, i.e.,5,~10 ® for in-  the phase diagram and the accompanying Fisher-Widom line
termediater;. Upon decreasing further this branch of the also lies in the metastable region.
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03 T branch with an intermediate wavelength followed by further
@) crossover to a shorter wavelength branch—see K. 8r
g=0.35. To the best of our knowledge, this is the first time
structural crossover has been predicted for hard-sphere
mixtures>* The crossover is robust; it occurs in both the
Rosenfeld and White Bear version of DFT as well as in a
completely different treatmenr(integral equation treatment
of the effective one-component model. Moreover, the cross-
over lines in the {,,7ns) plane are calculated to be quite
close in the different theories. Were the crossover to manifest

\ itself only at longest rangéasymptotically it would not be
0 of much practical interest. However, our DFT studies and
0 0.1 02 03 04 05 Monte Carlo simulations demonstrate that crossover mani-

fests itself atintermediateas well as at longest range—see
o Figs. 6 and 7. One can observe different characteristic wave-
0.3 ' lengths on opposite sides of the crossover line. Close to
: ) crossover there are interference effects. Leading-order as-
ymptotics, based on the leading-order complex poles, ac-
count accurately for the intermediate range behavior of
0.2 I 1 hij(r). Note that throughout we have focusedtayp(r), the
~~~~~~ e big-big correlation function, but as emphasized earlier, the
N | monotonic ... spinodal other correlation functions,((r) and he(r) will display
TR e equivalent features of crossover behavior.
0.0 proml T The EOC description performs remarkably well for size
............................................................... ratios where one might expect the many-body contributions
""""""""""""""""""""""""" omitted in the effective pair potential treatment might be
significant. Thus, forg=0.5 the EOC yields a reasonable
crossover lingFig. 5@] and a reliable account of the behav-
ior of hyp(r) at intermediate values of—see the simulation
M results of Fig. 7. It is important to recognize that the EOC
FIG. 10. The(metastablg fluid-fluid spinodal(dashed curveand the cor- ~ Provides a valid account of crossover providedaaeurate
responding Fisher-WidontFW) line (solid curve separating regimes in approximation is employed for the depletion potendé&r).
which pair c_orrelation_ functions c_iecay mon_otonically from thosg in Whic_h The latter must incorporate the correct asymptotic decay, i.e.,
they decay in an oscillatory fashion for a binary hard-sphere mixture with S . . . .
q=0.05. (a) reservoir representation of the phase diagrésnsystem rep- the osc!llatlons which are determined by correlatlon_s in the
resentation. Note that in the limit,— 0 the pair correlation functions decay reservoir of small spheres. If these are not properly incorpo-
in an oscillatory fashion with a wavelength set by the size of the smallrated, the EOC picture fails to describe crossover—see Fig.
spheres. This leads to an additignal branch of the FW line for Iafge values O?(C) In the case of highly asymmetric mixtureg=0.1,
ns and a structural crossover line at lower valueszgf These lines are . .
located at extremely smad}, so they are not visible on this scaleee texk vvhere th.e EO(_: degcrlptlon should be ficgura.te,' We find a
The dotted line denotes the fluid-solid binodal from Monte Carlo simula- Fisher-Widom line with two branches. This line is intimately
tions (Ref. 15. connected with the existence of a fluid-fluid spinodal within
the EOC analysis—see Fig. 10 fqr=0.05. The presence of
the spinodal ensures that there must be a region of mono-
tonic decay of pair correlations, i.e., there must be Ornstein-
We have carried out extensive studies of the asymptoticZernike behavior in the neighborhood of the critical point.
r—o, and intermediate range decay of pair correlation funcAWhat is special about the present system is that correlations
tions in homogeneous binary hard-sphere mixtures. In thenust decay in a damped oscillatory fashion along the axis
case of weakly asymmetric mixtures the full, two-component;,=0 (the pure fluid of small hard sphejesind this is re-
description is to be preferred whereas for highly asymmetrigponsible for the two branches at large valuesgfor 7).
mixtures(small values of the size ratig) the effective one- At lower values of g (or 7g) one finds the same type of
component description is expected to be more accurate. Bo#tructural crossover line as that ascertained in Ref. 30 for the
descriptions predict the phenomenon of structural crossoveGaussian core mixture. Indeed the overall scenario we find
provided q=0.7. At the crossover the wavelength of the for small values of} mimics, to a large extent, that found for
longest range oscillation ih;;(r) changes discontinuously certain Gaussian core mixtures exhibiting fluid-fluid phase
from a value set by the diameter of the larger spheres to geparatiori® The main difference is that the fluid-fluid phase
value set by the diameter of the smaller species. The crossansition and the accompanying Fisher-Widom line is meta-
over occurs when the leading-order pole of the Fourier transstable with respect to the fluid-solid transition in the present
form, h;;(k), changes from one branch to another. For cerhard-sphere mixture case. If one could suppress freezing and
tain size ratios the change does not take place in a single st@erform measurements in the metastable re¢ee Fig. 10
but can occur via crossover from one branch of poles to @ahen one would observe interesting crossover from damped

IV. DISCUSSION
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oscillatory asymptotic decay of correlations to monotonic dewavelength of the oscillations ig;;(r) manifests itself at

cay as7; is increased at fixedy,, i.e., as the total packing moderate separations, even when statistical errors are

fraction is increased. Such behavior is somewhat counterirpresent, we believe that it should be possible to observe the

tuitive and would provide a signature of tkiacipient fluid- phenomenon of crossover in binary mixtures of colloidal par-

fluid spinodal. ticles using real space techniques of the type employed al-
A similar situation exists for the extreme nonadditive ready for one-component systefts.

hard-sphere mixture, namely, the Asakura-Oosawa-Vrij

model of a colloid-polymer mixture which tr.eats t'he colloids ACKNOWLEDGMENTS

as hard spheres and the polymer coils as ideal interpenetrat-
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treatment’ determined the fluid-fluid spinodal and binodal and R. van Roij. R.E. and M.D. are grateful to S. Dietrich

and the associated Fisher-Widom line for various polymer t@nd his colleagues for their hospitality, and R.E. thanks the

colloid size ratiosg. Increasingzy,, the polymer reservoir Alexander von Humboldt Foundation for support under

packing fraction, leads generally to crossover from oscilla-GRO/1072637 during his stay at the MPI in Stuttgart.

tory to exponential decay, and for sufficiently large values of

q this can occur in a stabléfluid) region of the phase AppeNpix: PAIR DIRECT CORRELATION FUNCTIONS

diagram?“ The important difference between the results inyyHIN EMT

Ref. 32 and the present ones is that for the latter pair corre-

lations must exhibit oscillatory decay ag— 0, whereas in The weight functions within the FMT approach, which

the Asakura-Oosawa-Vrij model the smaller species is redescribe the fundamental geometrical measures of a sphere

placed by ideal, interpenetrating spheres for which the paiff component of radiusR;, are

correlatl_on function decays exponen_nally, i.e., the decgy for Wi3(l’)=9(Ri—|l’|), (A1)
7. (equivalent toz,)—0 is monotonic rather than oscilla- _
tory. This means that the Fisher-Widom line does not have  wh(r)=8(R;—|r|), (A2)
two branches, as is found in the present case, and there is no 1
; r 32 i i
crossover line at smaty, . wi(r)= mw'z(f), (A3)
1

Although we have focused here on crossover behavior
for the pair correlation functions ibulk binary hard-sphere

mixtures, it is important to recognize that similar features — wi(r)= sziz(r), (A4)
can be found for the decay of correlationsrihomogeneous 47 R

fluid mixtures. The one-body density profiles of a hard- _ r

sphere mixture close to a wall that exhibits short-ranged W'z(r)=m5(Ri—|r|), (A5)
wall-fluid interactions, the solvation force for the same mix-

ture confined between two walls and the depletion potential i 1

between two big(colloidal) particles immersed in a binary wa(r)= mwz(r), (A6)

mixture of smaller hard spheres will exhibit equivalent fea- ) )
tures determined by the same physical considerations, i.e., Bynere 8(r) denotes the Dirad function andO(r) denotes
the pole structure described in the present paper. We shdff® Hea\_/|SIde. function. The convolution produgtused in
return to this topic in a later paper. Eq. (11) is defined as

In real fluids, whether these are mixtures of simple : i : j
(atomig components or of two types ¢$pherical colloidal Wa®WBEf drw, (ri=r)wp(rj=r). (A7)
particles, the interparticle potentials are not precisely those )
of hard spheres. The potential function is never infinitely _ '€ Spheres do not overlap for Separat'OP’SRiTRi’
repulsive. It is important to enquire how our results mightith I, j=b, s and r.=(|2r)i—rj|. This leads tow,®w,=0.
change for repulsive interparticle potentials that are softef herefore, we obtairc;(r>R;+R;)=0, which is a key
than hard spheres. Provided the interparticle potentials rdeature for all pair direct correlation functions based on FMT.
main short rangedno power-law decaly the pole structure In the case|R—Rj|<r<R;+R; the surfaces of the
of theh;; (k) should be equivalent to that described here, anc?pheres intersect and we obtain the results
all hj;(r) must decay in the same fashionras . Thus, in Lo 3, 4 , 1, 3 R?Rjz
the oscillatory regime the mixture must find a unique wave- ~ Wz®W=7| — 5 R =7 =+ 2R+ 717+ 5 ——

r r
length for the longest ranged oscillations. It follows that,

provided the effective diameters are sufficiently different, the 3, 14 3
mixture should display a structural crossover for some B zRir_ 4 T+2Ri : (A8B)
choice of thermodynamic parameters. Given that structural ) )
crossover occurs in the binary Gaussian core mixttire, i i 1 Rj_rZ_Ri
, _ DA, . Whews=27R| R+ = ——— (A9)

where the pair potentials are very soft, it is difficult to imag- 2273 2 r '
ine that the phenomenon would disappear for mixtures that RZ_ 12 R?
are much more harshly repulsive. i i | o 1 iR

Since we have demonstrated that the characteristic Wa®W;=2mRj| Rj+ 2 r ' (AL0)
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i i 27TR| R] (0) 1
Wo®Wp=—""", (Al1) XRF=1 o (Al17)
3
| R .
(1-ng)?
which simplify considerably wheR;=R;. For spheres with
different radii, it is possible that a small sphere is completely n n2
- o i . 2)_ 1 2
contained within a big sphere, and fo R,— Rs we obtain XRF_(l n)?  Am(l—ng)? (A19)
— N3 — N3
i AT s
Xhp= S+2 S+ ;- (A20)
whows=wiewh=0, (A14) (1-ng)®  (1—ng)” 4m(1-ny)
wlews=wiewl=47R?, (A15)  Inthe case of the White Bear version of the functional the
S0 second partial derivativeg)s= 3°®"B/gnzan; are given by
wrewh=w,ow,=0. (A16)
o . . L XWE=XRE (A21)
Taking into account that the vectorlike weighted densities
vanish in the bulk limit, the@?®({n,})/dn,dnz=0 in both B =@ (A22)

the Rosenfeld and the White Bear versions of the functional

and mixed scalarlike and vectorlike convolutions in EtL)

2) _ (2
SR

are not required. The remaining convolutions are propor-

tional to those given above in EqA8)—(A16).
The second partial derivatives df with respect to the
weighted densitien,, , xil=a?®RF anzan;, required in Eq.

. n3[ns(5n3—n3—2)—2(1-nz)%In(1—ngy)]

127(1—n3)°n3

(11), are for the case of the Rosenfeld functional: (A23)
|
3 4 2 3
n3[6(1—n3)"In(1—n3)—nz(21nz3—26n5+ 14n3—6)]
XWe=XRe+ : (A24)

36m(1—ngz)*ng

Owing to the new form of the functional an additional term *Y.-X. Yu and J. Wu, J. Chem. Phy$17, 10165(2002.

arises in the sunf1l),

2qWB
(22) P (1)

ng+(1—ng)?In(1—ng)
XwB = an,an, = XRF .

2

(A25)
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