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ABSTRACT

It is shown that small metallic inclusions can have a dramatic effect on the photonic band structure of diamond
and zinc blende structures. In the case of silica spheres with a silver core, the complete photonic band gap
(CPBG) between the 2nd-3rd bands opens for a metal volume fraction fm ≈ 1% and has a width of 5% for
fm ≈ 2.5%. Absorption in the CPBG of 5% remains very small (≤ 2.6% for λ ≥ 750 nm). These findings
open the door for any semiconductor and polymer material to be used as a genuine photonic crystal building
block and significantly increase the possibilities for experimentalists to realize a sizeable and robust CPBG in
the near-infrared and in the visible.
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1. INTRODUCTION

Photonic crystals are structures with a periodically modulated dielectric constant. In analogy to the case
of an electron moving in a periodic potential, light propagating in a photonic crystal experiences multiple
scattering leading to the formation of Bloch waves and photonic band gaps.1–3 If the bandgap persists for both
polarizations and all directions of propagation one speaks of a complete photonic bandgap (CPBG).4, 5 Light
with frequencies within a CPBG is totally reflected since it cannot propagate inside the crystal. Yet light can
propagate through waveguides carefully designed within such a photonic crystal, even when such a waveguide
has sharp bends.6 In the last decade, photonic crystals have enjoyed a lot of interest in connection with their
possibilities to guide light and to become a platform for the fabrication of photonic integrated circuits.3, 6 There
is a common belief that, in the near future, photonic crystals systems will allow us to perform many functions
with light that ordinary crystals do with electrons. In addition to numerous potential technological applications
(filters, optical switches, superprisms, cavities, etc3), photonic crystals also promise to become a laboratory for
testing fundamental processes involving interactions of radiation with matter under novel conditions.1, 2 The
presence of a CPBG causes dramatic changes in the local density of states, which offers the possibility to control
and engineer the spontaneous emission of embedded atoms and molecules.1

For applications one needs a sufficiently large CPBG to leave a margin for gap-edge distortions due to
omnipresent defects.7 Let us define the relative gap width gw as the gap width-to-midgap frequency ratio,
4ω/ωc. Then in order to achieve gw larger than 5%, the dielectric contrast ≥ 9.8 and ≥ 12 is required for
a diamond8 and face-centered-cubic (fcc) structure,9 respectively. This leaves only a couple of materials for
photonic crystals applications at near infrared and optical wavelengths.10 Surprisingly enough, it will be
demonstrated here that there is a way to create a sizeable and robust CPBG in the near-infrared and in the
visible even with silica glass or a polymer. The trick is to place small inclusions of a low absorbing metal in the
right dielectric structure. It turns out that the effect of small inclusions of a low absorbing metal on the photonic
bandgap structure is very strong for diamond and zinc-blende structures (see Fig. 1). The photonic properties
of these structures, which are calculated using the multiple-scattering theory for electromagnetic waves (see
Sec. 2), are reviewed in Sec. 3. Only the case of the close-packed case of spheres in air was investigated.
This case can be soon fabricated either by “do-it-yourself organization”3 or by a microrobotic technique.3 At
the same time, when starting from colloidal suspension, one expects to use dried structures in air for practical
applications which will most probably consist of touching spheres (close-packed structures).
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Figure 1. Gap width to midgap frequency ratio of the 2nd-3rd CPBG for a close-packed metallo-dielectric diamond
lattice of silver core - dielectric shell spheres with a fixed ratio of the core and sphere radii rc/rs = 0.5 (fm = 4.25%)
in air as a function of the shell dielectric constant for the cases rs = 80 nm and rs = 300 nm. For a comparison, the
dot-dashed line with diamonds shows the gap to midgap frequency ratio of the 2nd-3rd CPBG of a close-packed diamond
lattice of purely dielectric spheres.

2. MULTIPLE-SCATTERING THEORY FOR ELECTROMAGNETIC WAVES

Let Λ be a simple (Bravais) periodic lattice in three dimensions. According to the Bloch theorem, propagating
wave ψ in a periodic structure with the symmetry Λ is characterized by the Bloch momentum k. The latter
describes translational properties of ψ by any lattice vector rs ∈ Λ,

ψ(r + rs) = ψ(r) exp(ik · rs). (1)

The Bloch property holds irrespective of the spin of a wave, i.e., is the same for scalar and vector waves. We shall
confine ourselves to the case when, outside scatterers, wavefunction ψ satisfies the scalar Helmholtz equation,

[∆ + σ2]ψ = 0, (2)

with σ being a positive constant. Let G0Λ(σ,k,R) denote the free-space periodic Green’s function of the
Helmholtz equation. The latter is defined as

G0Λ(σ,k,R) =
∑

rs∈Λ

G0(σ,R − rs)e
ik·rs =

∑

rs∈Λ

G0(σ,R + rs)e
−ik·rs , (3)

G0(σ,R) = G0(σ, r, r
′) = −

exp(iσR)

4πR
, (4)

where R = r − r′ and R = |R|, denotes a free-space scattering Green’s function of the 3D scalar Helmholtz
equation at the points r and r′. Within the Korringa-Kohn-Rostocker (KKR) method,11 band structure is
determined by solving the KKR secular equation

det [1 − t(σ)g(σ,k)] = 0, (5)

where t is a single-scatterer scattering T-matrix and g is the matrix of structure constants.11 Both t and g
in Eq. (5) are considered as matrices with matrix elements labeled by pairs of angular momentum numbers
(lm, l′m′), where −l ≤ m ≤ l. In the scalar case, for instance, in the case of multiple-scattering scattering of
electrons, the matrix elements of g in the angular-momentum basis are defined as expansion coefficients of

G0Λ(σ,k,R) −G0(σ,R) =
∑

lm,l′m′

glm,l′m′(σ,k)jl(σr)Ylm(r)jl′ (σr
′)Y ∗

l′m′(r′), (6)

where jl are the regular spherical Bessel functions,12 and Ylm are the conventional spherical harmonics.12



It is interesting to note that, to a large extent, the scalar case also covers the scattering of vector and
tensorial waves, i.e., waves with a non zero spin, provided each field component independently obeys the scalar
Helmholtz equation (2).13, 14 In the vector case of multiple-scattering of electromagnetic waves, σ = ωεh/c,
where ω is the angular frequency, c is the speed of light in vacuum, and εh is the dielectric constant of the
host dielectric medium. Let L = (lm) stand for a multiindex of angular momentum numbers and let A label
independent polarizations. The corresponding vector structure constants GAL,A′L′ are obtained from the scalar
structure constants gL,L′ as

GAL,A′L′ =

1∑

p,p′=−1

1∑

α,α′=−1

UA(l,m, p, α)gl+p,m+α;l′+p′,m′+α′UA′(l′,m′, p′, α′), (7)

where the UA’s are group-theoretical coefficients, in the current case determined by the vector-coupling Clebsh-
Gordon coefficients.13, 14 Therefore, in a numerical implementation, it is only required to make the following
two modifications in the scalar KKR numerical code: (i) to include a single routine which performs the trans-
formation of the scalar structure constants into vectorial structure constants9, 14, 16, 17 and (ii) to use the routine
which calculates t the single-scatterer scattering T-matrix appropriate to a given boundary value problem. The
same is also true if one wants to adapt the scalar 3D KKR numerical codes which deals with clusters of more
than 1000 particles of arbitrary shape and clusters of more than 1000 arbitrary impurities in a crystal.18, 19

There seem to be no obstacle to have the photonic KKR methods9, 13, 14, 16, 17 dealing with clusters of more than
300 particles. The KKR method can be used for scatterers of arbitrary shape19 and is optimized for lattices of
spheres.

If Λ is not a simple (Bravais) periodic lattice, i.e., there is more than one scatterer in the primitive lattice
cell, the matrices t and g in Eq. (5) become matrices with entries labeled by multiindices ALα, where A and L
are as before and α runs over all the scatterers in the primitive lattice cell.15

3. PHOTONIC CRYSTALS WITH SMALL METAL INCLUSIONS

On purely experimental grounds, only the case of spheres with a metal core is investigated here. Usually, a
metal shell around a dielectric core is formed by an aggregation of small metallic nanoparticles. The shell has
to be around 20 nm thick before it becomes complete.20 With an emphasis on photonic structures in the near
infrared and in the visible, the 20 nm shell thickness then would mean a rather high threshold value of the
metal filling fraction fm (of the order of 5%). On the other hand, it is much easier to tune the metal filling
fraction fm from zero to a few percent by coating small metal nanoparticles with a dielectric in a controlled
way.21 Moreover, a dielectric shell is necessary to prevent aggregation of the metallic particles by reducing the
Van der Waals forces between them. In the latter case, a coating of roughly 20 nm is required.

The KKR method is best suited to deal with highly dispersive scatterers. Computational time with and
without the dielectric constant dispersion is the same and only depends on the angular momentum cut-off
parameter lmax in Eq. (5). As in previous work,16, 24 only the real part of the material dielectric constant
is used when the photonic band structure is calculated. It has been known that the imaginary part of a low
absorbing metal has only little influence on the band structure.22 However it will be necessary to use both the
real and imaginary part of the material dielectric constant when reflectance, transmittance, and absorptance
are calculated. The dielectric constant of material is used as in Ref..23

3.1. Band structure

Given a metal volume fraction fm, the strongest effect on CPBG was found for a diamond structure. The actual
metal volume fraction fm needed to open a CPBG of more than 5% depends on the available material dielectric
constant ε and can be kept below 1% for εs = 4 (Fig. 2). Surprisingly, the inclusions have the biggest effect
for the dielectric constant ε ∈ [2, 12], which is a typical dielectric constant at near-infrared and in the visible
for many semiconductors and polymers. To reach convergence within 1%, the photonic band gap structure was
calculated with the value of the angular-momentum cut-off lmax = 8.
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Figure 2. Calculated gap width to midgap frequency ratio of the 2nd-3rd CPBG for a close-packed diamond lattice
of dielectric ns = 1.45 (silica) and ns = 2 (ZnS) coated silver spheres in air. The upper graph is for the sphere radius
rs = 80 nm and the lower graph is for the sphere radius rs = 300 nm. The gap to midgap ratio is plotted as a function
of the metal core radial filling fraction rc/rs. Metal volume fraction is then fm = 0.34 × (rc/rs)

3.

0.3 0.5 0.7 0.9
Frequency [c/A]

0
0.2
0.4
0.6
0.8

A
rs=100 nm
rs=125 nm
rs=150 nm
rs=250 nm

0
0.2
0.4
0.6
0.8

T

0
0.2
0.4
0.6
0.8

R

Figure 3. Reflectance, transmittance and absorptance of light incident normally on a two unit cells (12 planes) thick
zinc blende lattice of spheres in air stacked in the (111) direction. One of the two spheres in the lattice primitive cell is
ns = 1.45 (silica) shell sphere with a silver core with fixed rc/rs = 0.75, whereas the other is a homogeneous ns = 1.45
sphere of the same radius (fm = 7.2%). Dimensionless frequency is used on the x-axis, where A is the lattice constant of
a conventional unit cell of the cubic lattice. In all cases, the 2nd-3rd CPBG lies between ≈ 0.7 and 0.8 and stays above
5%.

3.2. Reflection, transmission, absorption

In Fig. 3 reflectance, transmittance and absorptance of light incident normally on a two unit cells (12 planes)
thick zinc blende lattice of spheres in air stacked in the (111) direction is shown. They were calculated by
adapting available computer code,25 which is based on the layer photonic KKR method.13 The same method
was also used in Ref..24 To reach convergence within 1% around the 2nd-3rd CPBG, lmax = 6 was used.
Calculations showed that absorption can be kept at very small levels. Given the desired gap width of 5%, the
smallest absorption was found for close-packed zinc-blende structures, even though the required fm was typically
twice as large as that of the close-packed diamond structure. This result suggest that, given the metal filling
fraction fm, absorption is reduced due to a reduction of near-field electromagnetic energy transfer between the
metal cores with an increased separation of the metal islands in the structure. For a zinc-blende structure,
absorptance within a CPBG of 5% for λ ≥ 750 nm can be kept below 2.6%. The results on the absorption are
by far the best which have been demonstrated for a 3D metallo-dielectric structure with a CPBG. They are
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Figure 4. An example of scaling of the midgap wavelength of the 2nd-3rd CPBG for a close-packed zinc-blende lattice of
spheres in air with the sphere radius. One of the two spheres in the lattice primitive cell is ns = 1.45 (silica) shell sphere
with a silver core with fixed rc/rs = 0.75, whereas the other is purely dielectric sphere of the same radius (fm = 7.2%).
The latter is either a homogeneous n = 1.45 (silica) sphere, a homogeneous n = 2 (ZnS) sphere, or, nc = 2 (ZnS)
core-ns = 1.45 (silica) shell sphere with fixed rc/rs = 0.6.

an order of magnitude better than for the case of an fcc lattice of metal coated spheres24 and compare well
to the best results for one-dimensional and two-dimensional metallo-dielectric photonic crystals which show
absorptance ≈ 1% and ≈ 3%, respectively, at λ ≈ 600 nm.3 Photonic band structure calculations also revealed
a surprising scaling-like behavior of our metallo-dielectric diamond and zinc blende structures (see Figs. 3, ??),
which is only intrinsic to purely dielectric structures. The scaling-like behavior means that once a CPBG is
found, the CPBG can be open for any wavelength, simply by scaling all the sizes of a structure - an extremely
useful property from a practical point of view. A metal-core dielectric-shell sphere morphology seems to play an
essential and non-negligible role in the effect of small metal inclusions on photonic band structure. For instance,
a diamond structure of small metal nanospheres embedded in a dielectric matrix shows a much smaller CPBG
and much higher absorptance for a comparable fm than either a diamond or a zinc-blende close-packed structure
of metal-core dielectric-shell spheres in air. If instead of a metal core the same volume of a metal is spread
homogeneously within the spheres, no CPBG opens in the spectrum. In the latter case the sphere dielectric
constant was calculated using the Garnett formula.9

4. CONCLUSIONS

For the example of a diamond and zinc blende structures of dielectric spheres it has been demonstrated that
small inclusions of a low absorbing metal with volume fraction fm can have a dramatic effect on a CPBG
between the 2nd-3rd bands. Surprisingly, the inclusions have the biggest effect for ε ∈ [2, 12], which is a typical
dielectric constant at near-infrared and in the visible for many semiconductors and polymers. For example, in
the case of silica spheres, the 2nd-3rd CPBG opens for fm ≈ 1.1% of silver and exceeds 5% for fm ≈ 2.5%.
Absorption in the 2nd-3rd CPBG of 5% remains very small (≤ 2.6% for λ ≥ 750 nm). The structures enjoy
scaling-like behavior, enabling one to scale the 2nd-3rd CPBG from microwaves down to ultraviolet wavelengths.
Our results imply that just any dielectric material can be used to fabricate a photonic crystal with a sizeable and
robust CPBG in three dimensions. These findings (i) open a door for many other semiconductor and polymer
materials to be used as genuine photonic crystal building blocks and (ii) significantly increase the possibilities
for experimentalists to realize a CPBG in the visible. Moreover, due to a high sensitivity of a CPBG on fm,
one has the freedom to engineer gw from zero to more than 60%.
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