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We summarize the main results of our recent investigations of the interfacial proper- 
ties of the simplest model of a colloid-polymer mixture, namely that introduced by 
Asakura & Oosawa and by Vrij, in which colloidPcolloid and colloid-polymer interac- 
tions are treated as hard sphere-like, while the polymer-polymer interaction is ideal 
(perfectly interpenetrating coils). In spite of its simplicity, we find that the model 
exhibits rich interfacial behaviour which depends on the size ratio q = gp/oc, where 
or, and oc denote the diameters of polymer and colloid, respectively. For highly asym- 
metric mixtures: q < 0.1547, an explicit and exact mapping of the binary mixture 
to an effective one-component Hamiltonian for the colloids allows one to perform 
computer simulations for inhomogeneous mixtures. We investigate a mixture with 
g = 0.1 and find th a t small amounts of polymer give rise to strong depletion effects at 
a hard wall. The colloid density at contact with the wall is several times greater than 
that for pure hard spheres at a hard wall. However, for states removed from the bulk 
fluid-solid coexistence curve we find no evidence of wall-induced crystallization. In 
order to treat less asymmetric cases, where stable fluid-fluid demixing occurs in bulk, 
we have designed a density functional theory specifically for this model mixture. For 
q = 0.6 we find a first order wetting transition from partial to complete wetting by 
the colloid-rich phase at the hard-wall-colloid-poor interface as the packing fraction 
q; of polymer in the reservoir is decreased. At a slightly higher value of $, there is a 
novel single layering transition, characterized by a jump in the densities in the first 
two adsorbed layers, as the bulk colloid packing fraction rlc is increased. The same 
density functional has been used to investigate the surface tension and colloid and 
polymer density profiles at the free interface between the demixed fluid phases. 

Keywords: colloid-polymer mixtures; depletion forces; effective Hamiltonians; 
wetting and layering transitions; surface tension; adsorption 

1. Introduction 

It is well known that the addition of non-adsorbing polymers to a colloidal sus- 
pension gives rise to an attractive interaction between the colloidal particles. The 
physical mechanism for this phenomenon is the depletion effect, i.e. an effective 
attractive interaction is induced by the exclusion of polymer from a depletion zone 
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between colloids; the range of the interaction is set by the diameter of the polymer 
coils and the strength of the attraction is determined by the chemical potential of 
the polymer reservoir (Asakura & Oosawa 1954). The simplest model of the binary 
colloid-polymer mixture treats the colloids as hard spheres, with diameter g,, and 
the polymers as ideal interpenetrating coils, as regards their mutual interactions. It 
requires the polymers to be excluded by a centre of mass distance (oC + a,)/2 from 
the colloids (Asakura & Oosawa 1954; Vrij 1976). The parameter oP is usually taken 
to be 2R,, where R, is the radius of gyration of the polymer. Assuming that the poly- 
mer is ideal is a drastic oversimplification. It is a situation achieved (approximately) 
for dilute solutions of polymer in a theta solvent. Nevertheless, this binary Asakura- 
Oosawa (AO) model does capture the main features of the observed variation of 
the bulk phase behaviour of real colloid-polymer mixtures with increasing size ratio 
g = crPp/gC (Gast et al. 1983; Lekk er er k k er et al. 1992; Ilett et al. 1995). Surprisingly, 
little attention has been paid to inhomogeneous colloid-polymer mixtures where the 
average density profiles of both species are spatially varying. Such situations arise in 
adsorption at a solid substrate, in mixtures confined in narrow pores, at the planar 
interface between two coexisting (colloid-rich and polymer-rich) fluid phases and in 
colloidal crystals. Given the usefulness of the A0 model for bulk phase behaviour, 
where it predicts stable solid, liquid and gas colloid phases for sufficiently large 4, 
it is natural to investigate its properties for interfaces. Such a strategy is common 
in statistical physics. The Ising or lattice gas model provides only a crude descrip- 
tion of a real liquid-gas (bulk condensation) phase transition but yields a wealth of 
predictions for surface transitions, with the substrate modelled as a simple external 
field, most of which have been found in adsorption experiments. Here we show that 
the interfacial properties of the A0 model should be richer than those of the bulk 
and argue that adsorption-type experiments on real colloid-polymer mixtures could 
reveal striking phenomena. The results which emerge from the A0 model are inter- 
esting from a fundamental statistical mechanics viewpoint since the bare interactions 
between the constituent particles are either hard or ideal; surface and bulk transi- 
tions are purely entropically driven. Depletion effects give rise to effective attractive 
interactions between colloidal particles or between colloids and a hard wall. 

This paper describes the two different strategies we have employed in tackling the 
statistical mechanics of the A0 model. The first involves integrating out the polymer 
degrees of freedom to obtain an effective one-component Hamiltonian for the colloids, 
while the second is based on a new density functional theory specifically designed 
for the binary A0 mixture. 

2. Bare and effective Hamitonians 

We consider an extreme non-additive binary hard sphere mixture consisting of NC 
hard spheres, representing colloid, and NP interpenetrable, non-interacting particles, 
representing ideal polymer, in a volume V at temperature T. This is a reasonable 
model of a colloid-polymer mixture, as the interaction between sterically stabilized 
colloidal particles can be made close to that of hard spheres, and dilute solutions 
of polymer in a theta solvent are very weakly interacting. We implicitly assume 
that any solvent molecules which are present in a real suspension can be treated as 
an inert continuum, and thus have no effect on bulk or interfacial properties. The 
colloids interact via the hard sphere potential, with diameter g,, and the polymers 
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are excluded from the colloids to a centre of mass distance (a, + gP)/2. This simple 
model of an idealized colloid-polymer mixture is often called the Asakura-Oosawa 
(AO) model although it was first defined explicitly by Vrij (1976). It is specified by 
the bare pair potentials: 

&J&j) = 
00 for&j <gC, 
0 otherwise, 1 

4pp(rij) = 0, J 
where R and r denote colloid and polymer centre of mass coordinates, respectively, 
with Rij = IRi - RjI and rij = ]ri - ~j I. The Hamiltonian thus consists of (trivial) 
kinetic energy contributions and a sum of interaction terms: H = H,, + HCP + HP,,, 
where 

N, \ 

Hcc = 2 4x(&J, 

HPP = c &q&i) = 0. 
i<j 

Following the treatment of the bulk (Dijkstra et al. 1999a, b), we work in a semi- 
grand-canonical, (N,, zP, I/: T), ensemble in which the fugacity of the polymers, zP = 
“p3 exp(Ppp), is fixed. pi, denotes the chemical potential of the reservoir of polymer 
and ,L3 = l/lcnT. In addition to the pairwise interactions, we add two, in general dif- 
ferent, external fields which couple independently to the colloid and polymer degrees 
of freedom: 

(2.3) 
i=l i=l 

These potentials create inhomogeneous density profiles pC(p) and p,,(y). The quantity 
of interest is the Helmholtz free energy, F(N,, V, .+). Formally, 

exp[-OF] = J dPc exp[-P(H,, + 0 + Vyt)], 

where 

exp[-pfi] = Nco $ / drNP exp[-fi(H,, + VFt)] (2.5) 
P’ 

and Ai is the thermal de Broglie wavelength of species i (i = c, p). 0 is the grand 
potential of the ideal polymer coils in the presence of the applied external field VFt 
and the external field that is generated by a fixed configuration of IV, colloids. If 
one can determine Q explicitly, one has reduced the difficult problem of treating the 
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binary system to a much simpler one-component problem: equation (2.4) describes 
the statistical mechanics of a colloidal system interacting through an effective one- 
component Hamiltonian Heff = H,, + L’ + VceXt. 

For a general binary mixture, ti consists of an infinite series of terms, representing 
zero-, one-, two-, . . . , many-body contributions (Dijkstra et al. 1999a). In the partic- 
ular case of the A0 model, each contribution simplifies because &,P = 0. For a homo- 
geneous (bulk) fluid mixture with VzXt = Vjt = 0, pC(~) and pp(r) are constant and 
the series truncates after the two-body term, provided that q < 2/J3 - 1 = 0.1547 
(Gast et al. 1983; Dijkstra et al. 19993). In this regime of high asymmetry there is 
no triple overlap of excluded volume regions, even when three colloids are contacting 
each other. We showed (Brader et al. 2001a) that similar geometrical considerations 
apply for the A0 mixture in contact with a hard wall defined by 

wc”““(+z) = 0”’ 
z < 44 co z < 42, 

> 2 > 42, 
qF%> = o z > ~ ,2 (2.6) 

P 7 

where z is the coordinate of the centre of the particle measured normal to the wall. 
More precisely, we found that for q < 0.1547 the effective Hamiltonian for the inho- 
mogeneous system reduces to 

Heff = Hc, + &(zi) + .&$(z,) + L?;u1k + 6?F”lk + c +AO(~ij), (2.7) 
i=l i=l i<j 

where $yd’ represents the attractive A0 depletion potential between a colloid and 
the planar hard wall. The depth of this potential is proportional to zP and its range 
is op. The last three terms of equation (2.7) are those which define R for the bulk 
fluid, 

-pflplk = +v, -pflplk = 
-z,Nc+, + ~5,)~/6 = -zprc(l + q)3v, 

where Q = (7r/G)$N,/V is th e colloid packing fraction. +*0(R) is the well-known 
A0 pair potential between two colloids in a sea of ideal polymer. This attractive 
potential also has range gP, is proportional to zP, has a similar shape to that of 
$A0 wa11, but is less deep. 

It is important to recognize that in the regime q < 0.1547 the mapping of the 
binary mixture to an effective one-component fluid with the Hamiltonian specified 
by equation (2.7) is exact within the A0 model. This observation is very significant 
when we recall that direct simulation of the model binary mixture, which constitutes 
a very asymmetric system, is prohibited by slow equilibration since huge numbers of 
polymer are required per colloid particle at state points of interest. It is much easier 
to perform computer simulations or develop a reliable integral equation theory for 
the effective Hamiltonian than for the bare binary mixture. 

In a bulk fluid the equilibrium structure, i.e. the colloid correlation functions (Dijk- 
stra et al. 2000), is determined solely by the effective pair potential, 

d@(R) = &c(R) + $AO(@ 

Moreover since Ogbulk and L’ylk are linear in NC and V, respectively, they have 
no effect on the bulk phase equilibria (Dijkstra et al. 1999a, b). These terms do 
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contribute to the total pressure and total compressibility XT of the mixture, making 
the latter very different from the osmotic compressibility XT,eff. More specifically, we 
find that xi& makes only a small contribution to the total bulk modulus x+l. It is 
a term -k~hf(8x,/W) N,,N, determined by the thermodynamics of the reservoir 
which provides the dominant contribution (Dijkstra et al. 2000). 

Spontaneously generated inhomogeneities where the density profiles of colloid and 
polymer are spatially varying in the absence of external fields warrant special atten- 
tion. Examples are the planar interface between demixed fluid phases, colloidal crys- 
tals where the densities vary periodically and the crystal-fluid interface. In such 
cases Heff reduces to the effective Hamiltonian of the bulk system; there are no 
additional contributions associated with the inhomogeneity. At first sight this may 
seem somewhat surprising, as the distribution of polymer in a colloidal crystal, or 
in the region of the fluid-fluid interface, is clearly very different from that in a bulk 
fluid and one might imagine that different effective interactions might arise. However, 
because we work exclusively with a reservoir of polymer, it is the fugacit,y zP of this 
reservoir which controls the interactions in the system. As zP is constant throughout 
the inhomogeneous fluid, then so too is the effective interaction between the colloids, 
regardless of the local polymer density. This serves to reinforce the fact that the 
species which is integrated out is treated grand-canonically. 

We emphasize that for less asymmetric mixtures, with larger size ratios 4, the 
effective Hamiltonian becomes very complex. For 4 > 0.25, the effective pair potential 
depends on the distance of each colloid centre from the hard wall, not just on their 
separation Rij, and higher-body potentials are present (Brader et al. 2001~). 

As a final remark on the formal procedure of integrating out the polymer degrees 
of freedom we note that it is possible, in principle, to recover information about the 
polymer distribution by performing functional differentiation of the free energy F 
with respect to v?’ (T). The polymer density profile pp(r) can be expressed in terms 
of the n-body correlation functions of the colloids as determined from the effective 
Hamiltonian. In practice, the applicability of this procedure is probably restricted 
to bulk mixtures with 4 < 0.1547, where one can derive (i) an exact and tractable 
formula for the free-volume fraction a(p,; z+,) - pP/pL of polymer in the fluid mixture 
and (ii) an approximation for the inhomogeneous polymer density associated with a 
crystalline array of colloids (Brader et al. 2001~). 

3. Adsorption at a hard wall for size ratio q = 0.1 

In this section we illustrate the use of the effective Hamiltonian for a mixture with 
4 = 0.1. As remarked earlier, the bulk structure is determined solely by pff(R) 
the effective pair potential of equation (2.8), and Monte Carlo results for the radial 
distribution function g,,(R) and structure factor S,,(k) of the colloids at various 
colloid packing fractions qc are given by Dijkstra et al. (19993). The complete phase 
diagram of the bulk mixture was also determined by simulation. In the pb versus qc 
representation there is a very broad, in q,, fluid-solid coexistence curve which lies 
well below a metastable fluid-fluid coexistence. Note that the polymer density in the 
reservoir, pb (- xP for ideal polymer) is equivalent to inverse temperature in simple 
fluids; each term in the effective Hamiltonian is proportional to zP. There is also an 
isostructural (FCC) solid-solid transition which is slightly metastable with respect to 
the fluid-solid transition (Dijkstra et al. 1999b). These simulation result’s provide a 
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benchmark against which approximate theories can be tested. For example, Percus- 
Yevick theory, applied with the same pff (R), yields very accurate colloid radial 
distribution functions and structure factors while a perturbation theory, based on a 
hard-sphere reference system, yields a reasonable fluid-solid coexistence curve but 
the metastable fluid-fluid coexistence is at unphysically high values of vc (Dijkstra 
et al. 1999b). 

In figure 1 we show Monte Carlo results for the colloid density profile ~~(2) in 
the same mixture adsorbed at a hard wall. These were obtained using the effective 
Hamiltonian (2.7) and refer to a fixed bulk colloid packing Q = 7r$pc(co)/6 = 0.4 
and three values of the polymer reservoir packing fraction qt; = 7r$$t;/6. In the 
absence of polymer (figure la), the system reduces to pure hard spheres at a hard 
wall and the profile exhibits the usual pronounced oscillations arising from packing 
effects. On adding a small amount of polymer, $, = 0.05 (figure lb), the depletion 
attraction at the wall leads to a much higher contact density pc(ac/2) than for pure 
hard spheres at a hard wall. The effect is larger for $, = 0.10 (figure lc), where the 
reduced contact density is greater than 20. Plotted alongside the Monte Carlo results 
are the density profiles obtained from a simple one-component density functional 
theory (DFT), which treats the hard sphere contribution by the Rosenfeld (1989) 
fundamental measures theory and the attractive contribution, arising from +*0(R), 
in mean-field fashion. The overall agreement is quite good although differences do 
show up on the expanded scale of the insets. A similar trend in the profiles is obtained 
for Q = 0.3 (Brader et al. 2001~). 

While the addition of polymer gives rise to extremely high contact densities the 
colloid density profiles decay very rapidly to bulk-like values over the small range, 

OP = O.la,, of the wall depletion potential +AO . wa11 Crudely speaking, the colloid is 
behaving as an ideal gas in the deep effective wall potential, with some small enhance- 
ment of the local density due to packing effects. The Gibbs adsorption, 

r = c; 
.I O" dz (PC(~) - PC(~)), 0 

does not increase rapidly with increasing r$, and there is no evidence for any wall- 
induced local crystallization for the states we have investigated, i.e. up to ?$ = 0.1. 
However, this state point is still substantially removed from the bulk fluid-solid phase 
boundary. Whether wall induced crystallization sets in at slightly higher polymer 
packings or whether one must approach very close to the bulk phase boundary in 
order to observe such a phenomenon remains to be ascertained. One might certainly 
expect depletion effects to favour the development of crystalline layers prior to bulk 
crystallization. The main issues are (i) how close to the bulk transition must one 
be before the first adsorbed layer becomes crystalline and (ii) how do subsequent 
crystalline layers develop at the hard wall-fluid interface as vF, is increased (for a fixed 
Q) towards its value at bulk fluid-solid coexistence? Various scenarios are possible. 
There could be an infinite sequence of layering transitions culminating in complete 
wetting of the wall-fluid interface by a nearly close-packed crystal. Alternatively, the 
interface could remain incompletely wetted by crystal. 

We expect similar depletion phenomena for additive binary mixtures of hard 
spheres near a hard wall, provided the size ratio 4 is small enough. DFT calculations 
based on the Rosenfeld (1989) functional for such a binary mixture with 4 = 0.1 
yield big sphere (colloid) density profiles which are very similar to those shown here. 

Phil. 'Trans. R. Sot. Land. A (2001) 



Interfacial properties of model colloid-polymer mixtures 967 

6 

15 

10 
“u 
b 

cl” 

5 

20 

“u 
b 

cl 

10 0 1234 

0 1 2 3 4 
Z/Oc 

Figure 1. Colloid density profiles near a hard wall: the open circles are the Monte Carlo results 
while the solid lines denote the one-component DFT results. In each case the bulk colloid packing 
fraction 71~ = 0.4 and the size ratio q = 0.1. The packing fraction of ideal polymer in the reservoir 
increases from (a) qi = 0 (pure hard spheres) to (b) $, = 0.05 and (c) $, = 0.10. The insets 
show the results on an expanded vertical scale. Note the rapid increase in contact value p,(a,/2) 
as $ is increased. 

Once again there is no sign of crystallization at the wall for the state points which 
were investigated. Detailed comparisons of results for additive hard sphere mixtures 
with those from the A0 model will be presented elsewhere when we shall compare 
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our findings with those from Poon & Warren (1994), who developed an empirical 
approach for the calculation of the onset of wall crystallization in additive binary 
hard sphere mixtures. These authors find hard wall induced crystallization at small 
sphere packing fractions which are far below the bulk fluidsolid transition. Our 
results show no evidence of wall induced crystallization at state points where Poon 
& Warren predict such a transition. 

These findings have relevance for real colloidal mixtures in the presence of walls. 
Several authors have reported evidence for wall induced crystallization well below 
the bulk fluid-solid phase boundary in mixtures of hard sphere-like colloids at a 
planar wall. There are also earlier observations of wall induced crystallization in 
colloid-polymer mixtures (see, for example, Kose & Hachisu 1976; Gast et al. 1986). 
If, as now seems likely, the idealized A0 model of a binary colloid-polymer mixture 
at a planar hard wall predicts that the onset of wall-induced crystallization occurs 
very close to the bulk transition, this means that factors other than depletion must 
be important in the experiments. These may include polydispersity, which could 
play a different role in wall crystallization from that in bulk crystallization, and the 
fact that the actual walllcolloid potential could be different from that of a hard 
wall. Any residual attractive dispersion forces between the substrate and the colloid 
could favour the onset, of wall-induced crystallization. The theoretical framework 
which we have developed allows us to obtain reliable results for the well-defined A0 
model, which although simple, does incorporate the key features of depletion-induced 
colloid-colloid and wall-colloid attraction. As such it provides a valuable means of 
studying the effects of depletion on interfacial properties. The drawback is that the 
procedure is, for most practical purposes, restricted to 4 < 0.1547. 

4. Density functional theory for the binary A0 model 

As emphasized in 5 2, formally integrating out the polymer degrees of freedom yields 
very complicated effective Hamiltonians for the colloids when g > 0.1547. In order 
to tackle less asymmetric mixtures, an alternative strategy is required. Since direct 
simulation of the binary system is not practicable because of the large numbers 
of polymer coils required, we have designed a DFT specifically for the binary A0 
mixture (Schmidt et al. 2000). Here we describe the functional and report some 
results of its application to adsorption at a hard wall and to the properties of the 
free fluid-fluid interface. 

(u) Description of the density functional 

The procedure for constructing the DFT is based on the successful fundamental 
measures theory developed by Rosenfeld (1989) f or additive hard sphere mixtures 
and the excess, over ideal, Helmholtz free energy functional is given by an equivalent 
form: 

The weighted densities are 
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where the weight functions are W;(T) = B(Ri - r), W;(T) = S(Ri - r), W/~(T) = 
wa(r)r/r, and where r = 1~1, Q( r is the step function and b(r) is the Dirac dis- ) 
tribution. Further weights are w:(r) = w5(~)/(47~@), wil(f) = wi2(7=)/(47;Ri), 
w;(r) = w”;(r)/@. There are four scalar and two vector (w,~ and w,~) weight 
functions. Ri denotes the radius of species i, with i = c,p, so that RC = ~7,/2 and 
RP = ~,,/2. In order to obtain the free energy density @ appropriate to the A0 model, 
Schmidt et al. (2000) considered the zero-dimensional limit which corresponds to a 
cavity that can hold at most one colloid but can hold an arbitrary number of ideal 
polymer coils if no colloid is present. We found 

i@ = n~@(nC,, n;) + (nins - n:, . n”,2)(pij(ng, ng) 

+ &(n;n;n$/3-n~n~, . n~,)pijk(n~, ng), (4.2) 

where the Einstein summation convention is used, and 

Here 
PFOd(%, %) = (1 - vc - vp) ln(l - %> + % 

is the excess free energy appropriate to this particular cavity, and Q and qp are the 
packing fractions of the two species. In the original paper, Schmidt et al. included a 
tensor weight function; this is omitted here. The functional can also be regarded as 
a linearization, in the polymer density, of the original Rosenfeld functional. 

For a homogeneous (bulk) fluid mixture our functional yields the excess Helmholtz 
free-energy density PFexc(pc, pp)/V = pfhs (pc) - pp In c&k), where fhsbc) is the 

excess free-energy density of pure hard spheres in the scaled-particle (Percus-Yevick 
compressibility) approximation and CK = (1 - qc) exp(-Ay - By2 - Cy3), with y = 
qc/(l -Q), A = q3 + 3q2 + 3q, B = 3q3 + 9q2/2, and C = 3q3. This result is identical 
to that of the free-volume theory of Lekkerkerker et al. (1992) for the A0 model, 
which is known to yield stable colloidal gas-liquid coexistence for size ratios 4 3 0.32. 
For smaller 4 this fluid-fluid transition becomes metastable with respect to a broad, 
in qc, fluid-solid transition. 

The bulk pair direct correlation functions c$’ obtained by differentiating 
F,,,[p,, pp] are given analytically. The Ornstein-Zernike relations then provide the 
bulk partial structure factors Sij (k). A s a consequence of linearization in the polymer 
density, c&) = 0, as in Percus-Yevick approximation for this model. The other two 
functions CL:’ and cbz are not the same as those from Percus-Yevick theory. Never- 
theless, the resulting analytical Sij (k) are of a similar quality to those obtained from 
numerical solutions of the binary mixture Percus-Yevick integral equations (Schmidt 
et al. 2000). An important advantage of the present DFT over integral equation the- 
ories is that the structure factors and radial distribution functions, obtained from the 
Ornstein-Zernike route, are consistent with the bulk free energy, i.e. thermodynamic 
and structural routes to the fluid-fluid spinodal and critical point are equivalent. 
This property is particularly advantageous when one investigates interfaces at or 
near two-phase coexistence. 

The functional treats colloid and polymer on equal footing. For inhomogeneous 
situations the colloid and polymer density profiles are obtained by minimizing the 
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grand potential functional, 

(4.3) 

where Fjd[&, pp] is the ideal gas free energy functional and pi is the chemical potential 
of species i. Solving the resulting Euler-Lagrange equations is somewhat simpler than 
for a general binary mixture since pp(r) is an explicit functional of p,-(r) and V,“““(T); 
only pc(r) needs to be determined by numerical minimization. 

(b) Wetting and layering transitions at a hard wall 

Since our DFT incorporates bulk fluid-fluid phase separation it can be used to 
investigate fluid wetting phenomena at solid substrates. We choose to consider a 
planar hard wall defined by equation (2.6). For such a model we expect entropic 
depletion effects to favour the adsorption of colloid-rich phase at the wall so we 
might expect to observe complete wetting by this phase at the hard wall-colloid- 
poor interface. 

In order to test the DFT we first calculated density profiles for 4 = 0.1, the 
mixture considered in § 3, for which Monte Carlo results are available for the colloid 
profile; recall that the mapping to the effective Hamiltonian (2.7) is exact in this 
case. Our functional provides a very good description of the Monte Carlo results; the 
agreement is of similar quality to that between the simulation and one-component 
DFT results shown in figure 1. Explicit comparisons of theory and simulation results 
will be presented elsewhere, but we confirmed that the functional does account for 
the depletion attraction between the hard wall and the colloids. 

We focus now on larger size ratios where a stable fluid-fluid transition occurs. 
Figure 2 shows the bulk phase diagram obtained from the present theory for a size 
ratio 4 = 0.6 for which the fluid-fluid demixing transition has a critical point at 

$,crit N 0.495. It should be emphasized that the fluid-fluid and solid-fluid phase 
boundaries presented here are those of the original free-volume theory of Lekkerkerker 
et al. (1992). A full investigation of the freezing propert’ies of the present functional 
is outside the scope of the current study which is restricted to fluid states. Also 
shown in figure 2 is the Fisher-Widom (FW) line which divides the phase diagram 
into regions where the asymptotic decay of bulk pairwise correlations, gij(r), is either 
monotonic or exponentially damped oscillatory (Evans et al. 1994). The FW line was 
determined by calculating the poles of the partial structure factors Sij(lc). Note that 
in a binary mixture the three gij(r) change simultaneously their asymptotic decay 
as the FW line is crossed. 

In det,ermining the adsorption characteristics, we choose to fix $ and approach 
the bulk phase boundary from the colloid-poor side. This is analogous to performing 
a gas adsorption isotherm measurement for a simple fluid. Recall that 7; plays a role 
equivalent to inverse temperature. Depending on the value of $ chosen, the adsorp- 
tion behaviour changes dramatically. We consider size ratio q = 0.6 and describe 
some of the phenomena encountered. We first choose a path just above the critical 
point, with r$, = 0.55; see path I in figure 2. On approaching the phase boundary 
we find that the wall is completely wet by the colloid-rich phase. Figure 3 shows the 
colloid profiles signalling the growth of a thick layer of colloidal liquid against the 
wall. The corresponding polymer profiles are shown in the inset and indicate how 
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Figure 2. The bulk phase diagram calculated from free volume theory for q = 0.6. 7, is the 
packing fraction of the colloid and 7; that of polymer in the reservoir. F denotes fluid and 
S solid. The long-dashed line shows the fluid-fluid spinodal and the short-dashed line shows 
the Fisher-Widom line obtained from DFT. The latter intersects the binodal at r&w = 0.53. 
Horizontal arrows indicate the paths I and II by which the phase boundary is approached for 
the adsorption studies. The point on the binodal at qj;,+. M 0.63 indicates the location of the 
wetting transition. 

polymer becomes more depleted as the colloid-rich layer grows. Strictly speaking, 
macroscopically thick wetting films can only occur on the monotonic side of the FW 
line, i.e. for $j < qk,FW, the point of intersection of the FW line and the binodal, 
since oscillatory binding potentials will stabilize very thick but finite films which 
would otherwise be infinite (Henderson 1994). For $ = 0.55 (path I) we can easily 
obtain films of thickness 20 or 3Og, and in the flat portion of the profiles the densities 
of colloid and polymer are equal to their values in the coexisting colloid-rich phase. 
At large values of $ (> 0.75), we find that the wall is incompletely wetted by colloid; 
the layer thickness increases continuously remaining finite at the phase boundary. 
At lower values (0.6 < $, < 0.75), we find a single, first order layering transition. 
This is illustrated in figure 4, where the colloid profiles are plotted for $, = 0.7, 
following path II in figure 2, along with the Gibbs adsorption r. At the transition 
the densities p,-(z) in the first (contact) layer and in the second layer increase sub- 
stantially and 7 jumps discontinuously. P remains finite at bulk coexistence, i.e. 
there is still partial wetting. The layering transition line ends in a critical point at 

VP r M 0.62; the jump in the adsorption disappears for smaller $. It would appear that 
the layering represents a quasi-two-dimensional gas-liquid condensation transition. 
The layering transition line is quite separate from the prewetting line which emerges 
tangentially from the bulk coexistence curve at r,&, M 0.63 (the wetting transition 
‘temperature’) and ends in the prewetting critical point at $ M 0.60. This pattern 
of surface transitions appears to be quite different from what is usually found for 
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Figure 3. Colloid density profiles for q = 0.6 showing the complete wetting of a hard wall by 
the colloid-rich phase at r$, = 0.55 as the bulk phase boundary is approached along path I in 
figure 2. Bulk colloid fractions are qc = 0.04, 0.06, 0.07, 0.076: 0.0775, 0.0778 and 0.0779 (from 
bottom to top). The inset shows the polymer profiles for the same qc (from top to bottom). 
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Figure 4. Colloid density profiles for q = 0.6 showing the layering transition at r$ = 0.7 corre- 
sponding to path II in figure 2. Bulk colloid fractions are vc = 0.010, 0.015, 0.018, 0.019 and 
0.020 (from bottom to top); the transition occurs between 0.019 and 0.020. The inset shows the 
corresponding Gibbs adsorption r; this remains finite at bulk coexistence Q. = 0.0203. 
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simple fluids adsorbed at strongly attractive substrates where, for temperatures not 
too far from the triple point, complete wetting often proceeds via a sequence (pos- 
sibly infinite) of layering transitions (see, for example, Ball & Evans 1988). Here we 
have a single transition distinct from prewetting, which occurs well away from the 
triple point; the latter is at 7: M 1.43 in the free-volume theory. It is very likely that 
the occurrence of the layering transition reflects the underlying difference between 
a one-component fluid, described by a simple pairwise fluid-fluid potential and a 
simple one-body wall-fluid potential representing interactions with a substrate, and 
the present binary A0 mixture. As we have seen in 5 2, the effective one-component 
Hamiltonian involves pairwise potentials which depend on the distance of the col- 
loids from the wall as well as complex higher-body interactions for these (large) size 
ratios. 

Although we have yet to determine how the pattern of surface transitions depends 
on the size ratio 4, and there might well be surprises in store, we believe our present 
predictions of entropically driven wetting and layering transitions might encourage 
experimental investigations of adsorption in colloid-polymer mixtures. Real space 
techniques, such as confocal microscopy, may provide a useful tool for observing 
wetting in colloidal suspensions. Measurements of the contact angle 0 formed at 
the contact line between the colloid-rich-colloid-poor (liquid-gas) interface and a 
suitable substrate modelling a hard wall could also be revealing. We are predicting 
that the colloidal liquid phase should incompletely wet the substrate (6’ > 0) for 
‘I; > r7I;,w the wetting transition value, and wet completely (6 = 0) for $ < v;,~. 

(c) The structure and tension of the fluid-fluid in,terface 

We have also calculated the properties of the free liquid-gas interface between 
demixed fluid phases using our new DFT approach. Detailed results are given in 
Brader et al. (2001b); here we merely state the main findings. For CJ = 0.6 and 1.0, 
the two cases investigated in most detail, we find that the width of the interface is 
about one colloid diameter for states near the bulk triple point. This width is similar 
to estimates inferred from recent ellipsometric measurement on a real colloid-polymer 
mixture (de Hoog et al. 1999). The surface tension we calculate agrees reasonably 
well with data obtained from spinning-drop and breaking-thread measurements for 
mixtures of a silica colloid, coated wit#h 1-octadecanol, and polydimethylsiloxane 
(PDMS) in cyclohexane at T = 293 K (de Hoog & Lekkerkerker 1999). The size 
ratio for this mixture is approximately 1.0. In order to compare our DFT results 
with experiment we choose CJ~ = 26 nm, the mean diameter of the particles inves- 
tigated in the experiment; there are no other adjustable parameters in the theory. 
The measured and calculated tensions are 3-4 PN m-l, values which are about 1000 
times smaller than tensions of simple fluids. Such small tensions result from the 
fact that colloids are much larger than atoms or simple molecules; the tension scales 
roughly as kgT$/oz for states well removed from the critical point (Brader & Evans 
2000). The most, striking results which emerge from the DFT are those for the form 
of the density profiles ~~(2) and pi,(z). We find that when qf; is sufficiently high, 
i.e. well removed from the critical point, both pC( z and pi,(~) exhibit oscillations ) 
on the colloid-rich (liquid) side of the free interface. The period, which is about gC, 
and the decay length of the oscillations are identical for both species, in keeping 
with general arguments concerning asymptotic decay of correlation functions in mix- 
tures (Evans et al. 1994). For states with 7;; < $,FW (see figure 2), both ~~(2) and 
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pi,(z) decay monotonically into the bulk liquid. Although similar oscillations with 
a period of about one atomic diameter, are seen in DFT studies of the free liquid- 
gas interface for simple fluids near their triple points (Evans et al. 1993) here the 
amplitude of the oscillations in the colloid profile appears to be larger. Of course 
DFT treatments are mean-field-like in that they ignore the effects of capillary-wave 
fluctuations of the interface. We are presently investigating whether including these 
fluctuation effects will completely erode the oscillations or whether some oscillatory 
structure will remain in the ‘dressed’ colloid profile. From an experimental viewpoint 
it should be more favourable to investigate such structuring in colloidal fluids, where 
the period is of colloidal size, than in simple, atomic fluids. 

5. Concluding remarks 

Two different but complementary strategies for tackling the statistical mechanics of 
the A0 model have been adopted. In the first we performed a formal integrating out 
of the polymer degrees of freedom to obtain an effective Hamiltonian for the colloids. 
Such a strategy is especially valuable for size ratio 4 < 0.1547, where the resultant 
effective Hamiltonian is exact and is sufficiently simple, even for inhomogeneous mix- 
tures, to be investigated using computer simulation methods. The mapping makes 
tractable a difficult binary mixture problem which would not be tractable by direct 
simulation methods. This strategy has also proved valuable for determining the bulk 
phase behaviour of highly asymmetric binary mixtures of additive hard spheres (Dijk- 
stra et al. 1999a). In this case the mapping to an effective one-component system 
of big spheres involves an infinite sum of terms for any value of q. However, if one 
truncates the series after the two-body (depletion potential) contribution, simulation 
results for the effective Hamiltonian capture accurately all the key features of the 
bulk phase equilibria as determined by direct simulation of the binary hard-sphere 
mixture-at least for size ratios up to 4 = 0.2 (Dijkstra et al. 1999a). How far in q 
one can trust an approximate effective Hamiltonian for studies of adsorption remains 
to be ascertained. 

In the second strategy we did not perform any integrating out of the polymer 
degrees of freedom, rather we developed an approximate DFT for the binary A0 
mixture. Since there is no explicit integrating out, the DFT is applicable for all size 
ratios. This permits us to investigate mixtures for which stable fluid-fluid phase sep- 
aration occurs, and allows us to tackle wetting and related adsorption phenomena as 
well as the free fluid-fluid interface. The same DFT could, in principle, be used to 
tackle bulk fluid-solid (freezing) transitions and the corresponding solid-fluid inter- 
face. It could also be used to investigate wall-induced crystallization, although this 
is a very demanding problem in DFT or in simulation. Confined mixtures constitute 
another class of problem which is well suited to investigation by DFT and we have 
observed capillary condensation phenomena when the mixture is confined between 
two parallel planar hard walls. Since the walls prefer the colloid-rich (liquid) phase, 
condensation occurs on the low qc side of the coexistence curve (J. M. Brader 2000, 
unpublished work). We should emphasize that unlike DFT treatments of interfacial 
phenomena in simple fluids, where there is an explicit attractive fluid-fluid poten- 
tial which is usually treated in a perturbative (mean-field) fashion (see, for example, 
Evans 1992), here the effective attractive interactions emerge from the theory and 
they are not treated perturbatively. 
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In summary we have shown that interfacial properties of the simplest model 
colloid-polymer mixture can be extremely rich. That such a diversity of phenom- 
ena should arise in a system where the bare interactions are either hard or ideal is 
remarkable and points to the importance of entropic depletion forces in determining 
surface as well as bulk phase behaviour. 
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the resulting effective Hamiltonians. This research was supported by the British-German ARC 
Programme (Project 104b) and by DFG Lo 418/5. 
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