
PHYSICAL REVIEW E, VOLUME 63, 051703
Wetting and capillary nematization of a hard-rod fluid: A simulation study
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We present results of a simulation study of a fluid of hard spherocylinders with a length-to-diameter ratio of
15 in contact with a planar hard wall and confined by two parallel hard walls. A Monte Carlo method is
developed for simulating fluids in contact with asinglewall. Using this method, we find a transition from a
uniaxial to a biaxial surface phase, followed, at larger bulk densities, by the formation of a thick nematic film,
with the director parallel to the wall, at the wall-isotropic fluid interface. As the density far from the wallcb

approaches the value at bulk isotropic-nematic coexistencecI , the thickness of the nematic film appears to
increase as2 ln(cI2cb). For a fluid confined by two parallel hard walls, a first-order capillary nematization
transition is found. The phase equilibria are determined by Gibbs ensemble Monte Carlo simulations for
several wall separations. The difference in the coexisting densities of the capillary condensed nematic and
isotropic phases becomes smaller upon decreasing the wall separation, and no capillary nematization transition
is found when the wall separation is smaller than about twice the length of the spherocylinders. These features
imply that the capillary nematization transition ends in a capillary critical point at a critical wall separation.
Our simulation results are fully consistent with the findings of our recent theoretical study of the Zwanzig
model for a hard-rod fluid.

DOI: 10.1103/PhysRevE.63.051703 PACS number~s!: 64.70.Md, 64.60.Cn, 68.08.Bc
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I. INTRODUCTION

Although liquid crystals have been known since 188
they were initially viewed as a scientific curiosity@1#. How-
ever, during the past few decades, many important indus
applications of liquid crystals have been found arising fro
the special light scattering and dielectric properties of th
substances, and the fabrication of liquid crystalline displ
has developed into a multi-billion-dollar industry. Much e
perimental and theoretical effort has been spent on un
standing the phase behavior of liquid crystals. The statist
mechanical theory of liquid crystals began with the semi
work of Onsager in the early 1940s. He was inspired by
experimental observations of a transition from an isotro
~I! to an orientationally ordered nematic~N! phase in colloi-
dal systems of vanadiumpentoxide V2O5 @2# and of tobacco
mosaic virus~TMV ! particles @3#. Onsager modeled thes
systems as a fluid of hard rods and showed that an entr
driven isotropic-nematic transition occurs when the den
is sufficiently large@4#. Onsager’s theory becomes exa
when the length-to-diameter ratio of the rods goes to infin
For hard rods~spherocylinders! with a finite length-to-
diameter ratio, the bulk phase behavior has been determ
by computer simulations@5,6# and by density-functiona
theory @7#; good agreement has been found between the
sults of the two approaches. More important for practi
applications is obtaining a fundamental understanding of
face effects in liquid crystals. There are several very ba
questions that have not been answered in a fully convinc
fashion. For instance, what happens to a fluid of rodlike m
ecules in contact with a single hard wall or confined by t
hard walls? Several predictions have been made by den
functional-theory calculations. However, such calculatio
are difficult as the wall may break the uniaxial symmetry
1063-651X/2001/63~5!/051703~7!/$20.00 63 0517
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the one-particle distribution function giving rise to a biaxi
profile. Thus approximations have often been made for
one-particle distribution function. Poniewierski and Holy
used a simple local approximation for the one-particle dis
bution function in their study of a fluid of hard rods in con
tact with a single planar hard wall@8#. Their approximation
ignores the possibility of biaxiality, which was remedied in
more recent paper by Poniewierski, who studied the stab
of the uniaxial density profiles with respect to biaxial on
using a bifurcation analysis@9#. Poniewierski found that the
onset of biaxiality occurs at a bulk density that is 15% bel
that of the bulkI -N transition, but did not calculate biaxia
profiles. Nor did he address the issue of complete wetting
nematic of the hard-wall isotropic interface. A full densit
functional calculation of biaxial density profiles has be
performed by Chen and Cui for a fluid of hard-core sem
flexible polymers near a hard wall@10#. They find a very
weakly first-order uniaxial to biaxial transition at a bulk de
sity well below that of the bulkI -N transition. They also
observe the formation of a~biaxial! nematic film with the
director parallel to the wall at the wall-isotropic fluid inte
face. The thickness of this film appears to diverge as b
I -N coexistence is approached. This is a strong indication
complete wetting.

For the case of a hard-rod fluid confined by two para
hard walls, we are only aware of the study of Maoet al. @11#,
where they employed the Onsager functional under the
sumption that the density profiles are uniaxial for state po
far below the bulkI -N transition. They compared these r
sults with those of computer simulations. The aim of th
work is to calculate the depletion~or solvation! force be-
tween the plates due to confinement of the rods. Anot
related theoretical and simulation study by Allen is co
cerned with hard ellipsoids in external anchoring fiel
©2001 The American Physical Society03-1
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DIJKSTRA, van ROIJ, AND EVANS PHYSICAL REVIEW E63 051703
@12,13#. The focus of Ref.@12# is on elasticity and anchoring
of liquid crystals and that of Ref.@13# is on the structure of
the IN interface. References@11–13# are not concerned with
the phase behavior of the confined fluid, which is the topic
the present paper.

Here, we study a fluid of hard spherocylinders with
length-to-diameter ratio of 15 in contact with a planar ha
wall and confined by two parallel hard walls. We develop
Monte Carlo method for simulating a fluid in contact with
single wall in order to study adsorption and wetting pheno
ena. This method is described in Sec. II, and in Sec. III
apply it to a fluid of hard spherocylinders. We find a tran
tion from a uniaxial to biaxial phase at densities well belo
that of the bulkI -N transition, followed by the formation o
a nematic film with the director parallel to the wall who
thickness appears to diverge as bulkI -N coexistence is ap
proached. By performing Gibbs ensemble Monte Ca
simulations of the fluid of spherocylinders between two p
allel hard walls, we find a first-order capillary nematizati
transition and determine the coexistence densities for sev
wall separations; these results are discussed in Sec. IV.
conclude in Sec. V by summarizing the results and mak
comparisons with those obtained from the Zwanzig mo
@14,21#. A preliminary account of some of the simulatio
results reported here can be found in Ref.@14#.

II. A SIMULATION METHOD FOR A FLUID IN CONTACT
WITH A SINGLE WALL

In order to investigate the adsorption and, in particu
the wetting properties of a fluid, it is important to study
bulk fluid in contact with asinglewall. This single-wall sys-
tem is difficult to treat in computer simulations, since t
fluid in contact with the wall atz50 cannot be treated with
periodic boundary conditions in thez direction. Conse-
quently, in many computer simulations of adsorption ph
nomena, the fluid is confined between two identical walls
thexy plane, located atz50 andz5Lz . The additional wall
at z5Lz should not affect the adsorption of the fluid at t
wall of interest atz50 providedLz is large enough that ther
is a flat portion of the density profile in the central region
the slit. A drawback of using largeLz is, however, that long
simulation times are needed, which may hamper a system
study of the growth of a thick wetting film. Using smalle
values ofLz can lead to finite-size~capillary! effects, and
these may hinder the observation of the single-wall phen
ena of interest. Such effects are especially important in
grand-canonical ensemble where capillary condensation~or
evaporation! occurs as the chemical potential approaches
value at bulk coexistence and the phase with the wet
films at the walls becomes metastable with respect to c
densation@15#. Observation of the growth of such films the
becomes problematic.

In this paper, we develop a simulation method for treat
a fluid in contact with asinglewall. We emphasize that ou
method is not restricted to the particular model investiga
here, but can be applied to any fluid and any wall; results
the adsorption and wetting behavior of a hard-sphere flui
a planar hard wall and for density profiles of a colloi
05170
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polymer mixture in contact with a planar hard wall will b
presented elsewhere@16#. The simulation method we presen
is similar in spirit to performing iterative solutions of th
Euler-Lagrange equations for the density profiles of flu
wall systems given by density-functional theory~DFT! @17#.
The Euler-Lagrange equations are solved iteratively o
grid under the condition that the density far from the w
reaches a bulk densityrb , which corresponds to the impose
chemical potential. In our simulation method, we impose
self-consistently determined number densityrb far from the
wall using a penalty function that suppresses large deviat
from rb .

Consider a fluid ofN particles in a box with lateral di-
mensionsLx , Ly , andLz . The wall of interest, in our par-
ticular case a planar hard wall, is positioned atz50. As
discussed above, one often confines the fluid between
identical walls, but then capillary effects can occur and m
mask or compete with the adsorption phenomena of inter
An alternative procedure to simulate such a system would
to impose periodic boundary conditions in thex andy direc-
tions, but not in thez direction. Clearly, one must limit the
positions of the particles such that thez coordinate of particle
i, sayzi , cannot become larger than some valueLz , i.e., zi
<Lz . Such a system corresponds to a fluid confined betw
the wall of interest, located atz50, and a different wall
located atz5Lz . Such a procedure was employed by Fi
and Monson@18# in their simulation study of prewetting fo
a Lennard-Jones gas at a~weakly! attractive wall. They
chose the second wall to be hard so that no wetting occu
at this wall. Clearly, one must choose the second wall app
priate to the physical system under investigation. For h
rods, it is not obvious what type of wall potential wou
ensure a flat density profile near the second wall. Any s
stantial increase in the local density might result in surfa
transitions occurring in the layers adsorbed at the sec
wall, and these should be avoided. In his study of surf
anchoring in nematic phases of hard ellipsoids, Allen@12#
imposed an external orienting field in a region adjoining
second wall leading to the formation of a highly orient
‘‘film’’ with a higher degree of nematic order~and a higher
contact density! than in the bulklike region in the center o
the slit @19#. Problems of smooth matching to bulk are c
cumvented in the present procedure where an additional
ternal potential or penalty functionV(z), designed to sup-
press density deviations from a self-consistently determi
densityrb , is imposed in a region close to the second wall
z5Lz . V(z) acts to suppress any surface transition at
second wall. To this end, we calculate the density profi
with data averaged over bins of widthdz, using the follow-
ing external potential for binj:

bV~zj !5H 1

2
kS nj

LxLydz
2rbD 2

, zimp<zj<Lz

0 otherwise,

~1!

whereb5(kBT)21, k.0 determines the magnitude of th
allowed density fluctuations,nj is the number of particles
present in binj, and rb is the self-consistently determine
3-2
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WETTING AND CAPILLARY NEMATIZATION OF A . . . PHYSICAL REVIEW E 63 051703
density far from the wall of interest, corresponding to t
bulk density. The external potential or penalty function a
plies only in binsj with zimp<zj<Lz , where 0<zimp<Lz .

It is important to note that in density-functional theor
the density far away from the wall is imposed by the fix
chemical potential. In principle, our simulation technique c
be performed in the grand-canonical ensemble. However
dense hard-core fluids, it is almost always impossible to
sert particles, leading to poor sampling of phase space
poor statistics. Thus we have chosen to keep the numbe
particles fixed. Our procedure is as follows.

~i! We fix the number of particlesN, the dimensions of the
simulation boxLx , Ly , andLz , and we estimate the densit
far from the wall of interest, denoting this asrb .

~ii ! We perform a simulation with this initial estimate fo
rb and calculate the density profile. The average densityrav
far from the wall of interest is obtained by averaging over
bins, which are sufficiently far from the wall and which sho
a sufficiently flat profile.

~iii ! We repeat step~ii ! usingrav for rb until the newrav
equals the previous value within some given tolerance.

We conclude this section with some remarks.~i! This
simulation technique can be used for any wall-particle pot
tial and any particle-particle interaction and can easily
extended to fluid mixtures.~ii ! The simulations can also b
performed in the grand-canonical ensemble for syste
where insertion of particles is not problematic.~iii ! We em-
phasize that in order to obtain a flat density profile far fro
the wall of interest, it is important thatLz is sufficiently
large. In the next section, we apply this method to a fluid
hard spherocylinders in contact with a hard wall.

III. A HARD-SPHEROCYLINDER FLUID IN CONTACT
WITH A SINGLE HARD WALL

We perform Monte Carlo simulations of a fluid of ha
spherocylinders with a length-to-diameter ratio ofL/D515.
This model exhibits a first-order transition from an isotrop
to a nematic phase in bulk and we first determine the bulk
coexistence by standard Gibbs ensemble simulations@20# of
2300 particles. These yield coexistence densitiescI53.675
60.003 andcN54.30060.003, where we define the dimen
sionless densityc5(L1D)2Dr with r the number density
We then perform a simulation study of the isotropic bu
fluid in contact with a single hard wall using the meth
described in Sec. II. The transverse dimensions of the si
lation box areLx /D5Ly /D536.74 and the second wall is a
Lz /D564 orLz /D5112. The number of particles is chose
such that we obtain an isotropic fluid far from the first wa
i.e., the dimensionless density far from the hard wallcb
5(L1D)2Drb,cI . This corresponds to about 400–300
particles for our choices ofcb . We applied the additiona
external potential Eq.~1! with a value ofzimp such thatuLz
2zimpu50.5L and chosekD6 in the range (23103)2(2
3106). For hard particles, temperatureT is not a significant
quantity and we setkBT5b2151 for all calculations.

We measured the density profile and the eigenvalue
the standard 333 nematic order-parameter tensor
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dab

2 D L , a,b5x,y,z,

~2!

whereua
i is thea component of the unit orientation vector o

particle i, nj is the number of particles present in binj, and
dab is the Kronecker delta. Diagonalizing this tensor giv
three orientational ordering eigenvaluesl1 , l0, andl2 for
each bin. We analyze our results by considering two in
pendent order-parameter profiles:~i! the nematic order-
parameter profile is given by the lowest eigenvaluess(z)
5l2(z), and ~ii ! the biaxial order-parameter profileD(z)
52@l1(z)2l0(z)#/3. More than 53104 Monte Carlo
sweeps were allowed for equilibration and the profiles
bins of width dz50.0625(L1D) were accumulated over
further 53106 sweeps~one sweep is one attempted move p
particle!. The density and order-parameter profiles are sho
in Fig. 1 for four different values ofcb<3.535. We discuss
first the results forcb51.169 ~solid lines!. Figure 1 shows
that the density profilec(z) is at a minimum atz50, indi-
cating a depletion of particles close to the wall.c(z) in-
creases withz and reaches a maximum atz5L/2, where
there is a kink inc(z). This is in agreement with the DFT
results of Ref.@9#. For higherz, c(z) decreases and reache
the bulk value atz.L. We observe that using our simulatio
method, the density profile remains flat at largez. Turning to
the nematic order-parameter profiles(z) in Fig. 1, we find
that s(z50)520.5 at the wall and increases to 0 for larg

FIG. 1. Density and order-parameter profiles of a ha
spherocylinder fluid in contact with a single hard wall located az
50. The dimensionless bulk densitycb5(L1D)2Drb far from the
wall is cb51.169 ~solid line!, cb52.855 ~dashed line!, cb53.379
~dotted line!, andcb53.515~dashed-dotted line!. The total density
is c(z), the nematic order parameter iss(z), and the biaxial order
parameter isD(z).
3-3



l

o
es
ri-
ia
69
in

ic

re
r
r

B
he
s
-
t

of
a

e
e

-

th

et
in

i

u
ts
Th

a
i

e
e
ing

-
en

res
e fit

e

DIJKSTRA, van ROIJ, AND EVANS PHYSICAL REVIEW E63 051703
z. s(z) also shows a kink atz5L/2. The biaxial order-
parameter profileD(z)50 for all z. Thus, we find a uniaxia
distribution close to the wall ass(z),0 andD(z)50, and an
isotropic distribution forz.L ass(z)50 andD(z)50. For
cb52.855~dashed lines!, most of the features are similar t
those forcb51.169. However, we now find nonzero valu
for D(z) close to the wall, corresponding to a biaxial dist
bution of the rods. In order to locate the uniaxial-biax
~UB! transition, we perform a few shorter runs for 1.1
,cb,2.855. We estimate that the onset of biaxial order
D(z)Þ0 first occurs at aboutcUB52.8060.05 or cUB /cI
50.76, in qualitative agreement with the theoretical pred
tion for the Zwanzig model (cUB /cI.0.819) @14,21#, in
which the orientations of the particles are restricted to th
orthogonal directions, and with the density-functional-theo
results for freely rotating infinitely elongated spherocylinde
(cUB /cI.0.847) @9#. Thus, for cb,cUB we find uniaxial
symmetry for all z, whereas biaxiality sets in whencb
.cUB . We did not attempt to ascertain the nature of the U
transition. Recall that within our mean-field treatment for t
Zwanzig model, there is compelling evidence that the tran
tion is second-order@14,21# but the Zwanzig model has re
stricted orientations. Understanding the precise nature of
UB transition in freely rotating hard-rod systems where s
modes are present remains a challenge for simulation
theory.

If we increasecb beyond cUB to cb53.379 and 3.515
~dotted and dashed-dotted lines!, we find that the kink atz
5L/2 disappears inc(z) ands(z). We still find a maximum
in c(z) but shifted to smallerz. D(z) increases its value clos
to the wall whencb is increased, corresponding to a strong
biaxial ordering close to the wall. We also find that thez
interval whereD(z) and s(z) are nonzero increases for in
creasingcb , signifying that the width of the nematic film
~with the director parallel to the wall! is increasing withcb .
This can be better appreciated in Fig. 2, which shows
density and order-parameter profiles forcb53.535, 3.633,
and 3.663, i.e., closer to the bulk transition atcI53.675. We
clearly observe in the density and in both order-param
profiles that the film with in-plane nematic ordering has
creasing thickness for increasingcb . The simulations lend
strong support for complete orientational wetting in the lim
cb→cI . It is worth noting that for the highest value ofcb ,
the nematic film occupies a very large fraction of the sim
lation box and we do begin to run out of ‘‘bulk.’’ The resul
for this state point might possess substantial error bars.
issue will be discussed in more detail in Sec. V.

More quantitative support for the complete orientation
wetting scenario is provided by the measured logarithm
increase of the adsorptionG as a function of (cI2cb)/cI ,
whereG is defined as

G5
1

LE0

Lz
dz@c~z!2cb#. ~3!

Figure 3 indicates thatG increases logarithmically ascb
→cI . The adsorption can be fitted byG5A11A2 ln@(cI
2cb)/cI#, with fit parametersA1522.584 58 andA25
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20.913 897 2 forcb.3.515. For comparison, we plot th
result of this fit as the solid line in Fig. 3. In principle, th
complete wetting scenario could be confirmed by calculat
the contact angle, defined by@21#

cosu5
gWI2gWN

g IN
, ~4!

FIG. 2. Same as in Fig. 1, but withcb53.535 ~solid line!, cb

53.633 ~dashed line!, and cb53.663 ~dotted line!. Note that the
bulk isotropic-nematic transition occurs at densitycI53.675.

FIG. 3. AdsorptionG of a fluid of hard spherocylinders in con
tact with a single hard wall as a function of the difference betwe
the bulk isotropic-nematic coexistence densitycI and the density far
from the wall cb . The simulation results are denoted by squa
joined by the dashed line to guide the eye. The adsorption can b
by G5A11A2 ln@(cI2cb)/cI#, with fit parametersA1522.584 58
andA2520.913 897 2 forcb.3.515, and this fit is denoted by th
solid straight line.
3-4
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wheregWI , gWN , and g IN are, respectively, the interfacia
tension between the wall-isotropic fluid phase withcb5cI ,
the wall-nematic phase withcb5cN , and the isotropic-
nematic interface at bulk coexistence. A vanishing cont
angle would correspond to complete wetting of the wa
isotropic~WI! fluid interface by the nematic phase. Howev
unlike the corresponding analysis for the Zwanzig mod
where it is straightforward to confirmu50 @14,21#, it is an

FIG. 4. Snapshots of the hard-spherocylinder fluid forcb

51.169, 2.855, 3.379, 3.535, and 3.633~from top to bottom!. Each
left-hand-side figure shows a snapshot of the fluid in thexy plane
taken from the wall atz50 looking into the fluid, while each right-
hand side shows the fluid in thexz plane with the hard wall on the
left. Note that in the last snapshot, the box lengthLz /D5112, i.e.,
Lz /(L1D)57, whereas the length of the cell shown here is 5L
1D).
05170
ct
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extremely demanding and almost impossible task to confi
the vanishing contact angle scenario by simulations as
requires all three interfacial tensions with sufficient statisti
accuracy. We did not attempt to proceed with this route@22#.

More visual information about the ordering at the ha
wall is shown in Fig. 4, where we show snapshots forcb
51.169, 2.855, 3.379, 3.535, and 3.633, five of the states
which we showed profiles in Figs. 1 and 2. The left-ha
side of each figure shows a snapshot of the fluid in thexy
plane taken from the hard wall atz50, while the right-hand
side shows the fluid in thexz plane. Forcb51.169, we
clearly observe a uniaxial distribution, while atcb52.855
some small degree of biaxiality has set in. Atcb
53.379, 3.535, and 3.633, we observe that the in-plane n
atic film grows steadily, reaching a thickness of about 4L
1D) for cb53.633.

IV. A HARD-SPHEROCYLINDER FLUID CONFINED
BY TWO PARALLEL HARD WALLS

The results of the preceding section show that forcb
→cI , a hard wall favors planar nematic~director parallel to
the wall! over isotropic ordering. In surface tension term
gWI.gWN so that cosu.0. Simple arguments based on th
Kelvin equation~e.g., Ref.@15#! would then imply that for
the fluid confined between two hard walls, capillary conde
sation of the nematic phase should occur prior to the bulk
transition, i.e., for some value ofcb,cI , when the wall
separationH is finite. Such a scenario is found in calcul
tions based on the Zwanzig model, where cosu51, and one
observes a first-order transition from an isotropic phase, w
biaxial nematic films at the hard walls, condensing to a ne
atic phase that fills the slit@14,21#. This transition is termed
capillary nematization. We seek the equivalent transition
the present model by performing a simulation study of a fl
of hard spherocylinders between two parallel hard walls.
do indeed find a first-order capillary nematization transiti
from a phase with biaxial films~B! to a capillary condensed
nematic phase (C). The phase equilibria are determined b
performing Gibbs ensemble simulations of a fluid of ha
spherocylinders with the same length-to-diameter ratio
L/D515, at fixed wall separationsh5H/(L1D)54, 3, 2.5,
2.375, and 2.25. In a Gibbs ensemble simulation for confi
systems, the two coexisting phases are simulated in
separate boxes, which can exchange area and particles,
the wall separation is kept constant. The exchange of p
ticles ensures equal chemical potential for both phases, w
the exchange of area ensures equal fluid-surface interfa
tension in the same spirit as the exchange of volume ens
equal pressure in bulk systems. A full description of t
Gibbs ensemble simulation technique applied to confin
systems is given by Panagiotopoulos@23#.

The transverse dimensions of the initial simulation box
areLx /D5Ly /D536.74 and the number of particlesN var-
ies from 1700 to 2100 particles for the largest wall sepa
tion. The coexisting densities were accumulated over
3105 sweeps, where one sweep consists of one attem
move per particle, one attempted area change, and on
tempted particle swap between the two boxes.
3-5
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DIJKSTRA, van ROIJ, AND EVANS PHYSICAL REVIEW E63 051703
The resulting phase diagram is shown in Fig. 5 in terms
the inverse wall separationh21 and the dimensionless num
ber densityc5N(L1D)2D/(HLxLy) in the slit. We observe
coexistence between phase~B! and a capillary condense
nematic phase~C! providedh>2.375, whereas no coexis
ence could be found forh<2.25. The difference between th
coexisting densities decreases smoothly ash is reduced. For
h<2.25, no capillary nematization is found and the s
‘‘fills’’ continuously as cb is increased towardscI . These
features are in agreement with the results of the Zwan
model@14,21# and imply that the capillary nematization tra
sition ends in a capillary critical point at a critical wall sep
rationhc.2.3. This value is quite close to the correspond
result from the Zwanzig modelhc[Hc /L52.0860.01
@14,21#. Note also that the shape of the coexistence curv
reminiscent of that obtained from the Zwanzig model. T
condensed nematic branch has a positive slope at small
ues of 1/h. This reflects the choice of order parameterc and
can be accounted for using estimates based on the Ke
equation, valid as 1/h→0 @21#. Within the Zwanzig model,
the biaxial branch acquires a large gradient in the appro
to the critical point~although the criticality is standard mea
field-like in the density-functional treatment of Ref.@21#!.
There is some evidence for a similar feature in the pres
results, which, once again, could reflect the choice of or
parameter, but our simulation data are not sufficiently co
prehensive to confirm this. Neither are we in a position
determine the nature of the criticality, i.e., the critical exp
nents. We conjecture that, as in the case of simple fluids,
criticality of the capillary nematization transition should l
in the two-dimensional Ising universality class since the
der parameter~the difference in the average densities at c
existence! is a scalar and correlations may only diverge

FIG. 5. The coexistence curve for the isotropic phase with
axial films~B! and capillary condensed nematic phase~C! transition
as a function of the dimensionless number densityc in the slit and
the dimensionless inverse wall separation 1/h. The symbols are the
results of Gibbs ensemble Monte Carlo simulations for the confi
fluid. There is no capillary nematization forh<2.25. Note that the
two points on theh5` axis are the bulk coexistence valuescI and
cN obtained from bulk Gibbs ensemble simulations.
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the x-y plane. This would imply a flat-topped coexisten
curve ~exponentb51/8). That we do not observe such
shape may reflect the particular choice of order paramete
that we are insufficiently close to the critical point.

V. SUMMARY AND DISCUSSION

We studied a fluid of hard spherocylinders withL/D
515 in contact with a planar hard wall and confined by tw
parallel hard walls. Using a Monte Carlo method develop
specifically for simulating a fluid in contact with asingle
wall, we found a surface transition from a uniaxial to a b
axial phase, followed, at larger bulk densities, by the form
tion of a thick in-plane nematic film, whose thickness a
pears to increase as2 ln(cI2cb), indicating complete wetting
of the wall-isotropic fluid interface by the in-plane oriente
nematic film. While we believe that the method we ha
introduced is particularly well-suited for investigating we
ting films, we emphasize, once again, that it remains diffic
within computer simulation to demonstrateunequivocally
complete wetting; one cannot investigate the strict limit
box lengthLz→`. In our present calculations, we are co
fident that for (cI2cb)/cI.0.01, corresponding to the pro
files in Fig. 1, the two thinner films in Fig. 2, and all th
snapshots in Fig. 4, we have sufficient ‘‘bulk’’ fluid far from
the hard wall to ensure reliable averaging. We confirmed t
the same profiles resulted forLz /D564 and 112. For smalle
values of (cI2cb)/cI , the nematic film occupies a very larg
fraction of the simulation box and we do begin to run out
‘‘bulk.’’ Thus the results for the profiles corresponding
cb53.663~dotted line! in Fig. 2 and the two highest value
of the adsorptionG shown in Fig. 3 might possess substant
error bars. This observation becomes relevant when we m
comparison with the corresponding results from the Zwan
model, where the adsorption diverges logarithmically b
with a much smaller prefactor, i.e., the coefficientuA2u de-
fined below Eq.~3! is 0.235 @21# rather than 0.914, the
present value. We should recall that general arguments
complete wetting for fluids with short-ranged forces~at the
mean-field level! imply that the wetting film thicknessl
should diverge as2jb ln@(cI2cb)/cb#, wherejb is the bulk
correlation length of the phase, which is wetting. For ve
thick films, G. l (cN2cI)/L so that uA2u5jb(cN2cI)/L.
Given thatcN2cI does not differ greatly between the sim
lations and the Zwanzig model, our results imply thatjb /L
should differ by about a factor of 4. This is surprising. It
possible that capillary-wave-like fluctuations in the wetti
film act to augment the prefactor, but it is more likely that w
have not entered the true asymptotic regime in the sim
tions. Such issues become important if one attempts to in
tigate the depinning nematic-isotropic interface within t
present simulation scheme. Provided the in-plane nem
does wet completely the hard-wall isotropic interface, t
nematic-isotropic interface will depin continuously from th
wall ascb→cI

2 , and one can investigate its properties. Th
is straightforward within density-functional treatments b
becomes problematic in simulations of the present sys
where the necessaryLz becomes prohibitively large.

We should note that the shapes of the profiles for
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densityc(z) and order parameterss(z) and D(z) and their
development with increasingcb are quite similar to those
found for the Zwanzig model@21#.

The subtleties of wetting are not important for the co
fined fluid where the separation of the~identical! walls is
finite, and we find a first-order capillary nematization tran
tion for a fluid confined by two parallel hard walls. Th
coexisting densities of the capillary isotropic~with biaxial
nematic films at the walls! and condensed nematic pha
were determined by Gibbs ensemble simulations. The dif
ence in the coexisting densities decreased as the wall s
ration was reduced and no coexistence was found for
duced wall separationh[H/(L1D),2.25. Our results
point to a capillary nematization transition ending in a ca
illary critical point at a critical ~reduced! wall separation
2.25,hc,2.375. It is very pleasing that all the key featur
of the capillary nematization transition, even the estimate
a

s,
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the reduced critical wall separationhc , are consistent with
the theoretical predictions of the Zwanzig model@14,21#, in
which the orientations of the rods are restricted to three
thogonal directions. This attests to the universality of t
phenomena we observe.
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