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Wetting and capillary nematization of a hard-rod fluid: A simulation study
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We present results of a simulation study of a fluid of hard spherocylinders with a length-to-diameter ratio of
15 in contact with a planar hard wall and confined by two parallel hard walls. A Monte Carlo method is
developed for simulating fluids in contact withsangle wall. Using this method, we find a transition from a
uniaxial to a biaxial surface phase, followed, at larger bulk densities, by the formation of a thick nematic film,
with the director parallel to the wall, at the wall-isotropic fluid interface. As the density far from thecyall
approaches the value at bulk isotropic-nematic coexistencehe thickness of the nematic film appears to
increase as-In(c,—c,). For a fluid confined by two parallel hard walls, a first-order capillary nematization
transition is found. The phase equilibria are determined by Gibbs ensemble Monte Carlo simulations for
several wall separations. The difference in the coexisting densities of the capillary condensed nematic and
isotropic phases becomes smaller upon decreasing the wall separation, and no capillary nematization transition
is found when the wall separation is smaller than about twice the length of the spherocylinders. These features
imply that the capillary nematization transition ends in a capillary critical point at a critical wall separation.
Our simulation results are fully consistent with the findings of our recent theoretical study of the Zwanzig
model for a hard-rod fluid.
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[. INTRODUCTION the one-particle distribution function giving rise to a biaxial
profile. Thus approximations have often been made for the
Although liquid crystals have been known since 1888,one-particle distribution function. Poniewierski and Holyst
they were initially viewed as a scientific curiosity]. How-  used a simple local approximation for the one-particle distri-
ever, during the past few decades, many important industridiution function in their study of a fluid of hard rods in con-
applications of liquid crystals have been found arising fromtact with a single planar hard wdl8]. Their approximation
the special light scattering and dielectric properties of theségnores the possibility of biaxiality, which was remedied in a
substances, and the fabrication of liquid crystalline displaysnore recent paper by Poniewierski, who studied the stability
has developed into a multi-billion-dollar industry. Much ex- of the uniaxial density profiles with respect to biaxial ones
perimental and theoretical effort has been spent on undewsing a bifurcation analysi®]. Poniewierski found that the
standing the phase behavior of liquid crystals. The statisticabnset of biaxiality occurs at a bulk density that is 15% below
mechanical theory of liquid crystals began with the seminathat of the bulkl-N transition, but did not calculate biaxial
work of Onsager in the early 1940s. He was inspired by therofiles. Nor did he address the issue of complete wetting by
experimental observations of a transition from an isotropionematic of the hard-wall isotropic interface. A full density-
(1) to an orientationally ordered nematid) phase in colloi- functional calculation of biaxial density profiles has been
dal systems of vanadiumpentoxidg®; [2] and of tobacco performed by Chen and Cui for a fluid of hard-core semi-
mosaic virus(TMV) particles[3]. Onsager modeled these flexible polymers near a hard wdll0]. They find a very
systems as a fluid of hard rods and showed that an entropyveakly first-order uniaxial to biaxial transition at a bulk den-
driven isotropic-nematic transition occurs when the densitysity well below that of the bulk-N transition. They also
is sufficiently large[4]. Onsager’s theory becomes exactobserve the formation of giaxial) nematic film with the
when the length-to-diameter ratio of the rods goes to infinity director parallel to the wall at the wall-isotropic fluid inter-
For hard rods(spherocylindens with a finite length-to- face. The thickness of this film appears to diverge as bulk
diameter ratio, the bulk phase behavior has been determindeN coexistence is approached. This is a strong indication of
by computer simulationg5,6] and by density-functional complete wetting.
theory[7]; good agreement has been found between the re- For the case of a hard-rod fluid confined by two parallel
sults of the two approaches. More important for practicalhard walls, we are only aware of the study of Mztaal.[11],
applications is obtaining a fundamental understanding of suwhere they employed the Onsager functional under the as-
face effects in liquid crystals. There are several very basisumption that the density profiles are uniaxial for state points
guestions that have not been answered in a fully convincingar below the bulki-N transition. They compared these re-
fashion. For instance, what happens to a fluid of rodlike mol-sults with those of computer simulations. The aim of this
ecules in contact with a single hard wall or confined by twowork is to calculate the depletiofor solvation) force be-
hard walls? Several predictions have been made by densityween the plates due to confinement of the rods. Another
functional-theory calculations. However, such calculationselated theoretical and simulation study by Allen is con-
are difficult as the wall may break the uniaxial symmetry ofcerned with hard ellipsoids in external anchoring fields

1063-651X/2001/6&%)/0517037)/$20.00 63051703-1 ©2001 The American Physical Society



DIJKSTRA, van ROIJ, AND EVANS PHYSICAL REVIEW B3 051703

[12,13. The focus of Ref[12] is on elasticity and anchoring polymer mixture in contact with a planar hard wall will be
of liquid crystals and that of Ref13] is on the structure of presented elsewhef&6]. The simulation method we present
the IN interface. Referencg41-13 are not concerned with is similar in spirit to performing iterative solutions of the
the phase behavior of the confined fluid, which is the topic ofEuler-Lagrange equations for the density profiles of fluid-
the present paper. wall systems given by density-functional theqBFT) [17].
Here, we study a fluid of hard spherocylinders with aThe Euler-Lagrange equations are solved iteratively on a
length-to-diameter ratio of 15 in contact with a planar hardgrid under the condition that the density far from the wall
wall and confined by two parallel hard walls. We develop areaches a bulk densipy, , which corresponds to the imposed
Monte Carlo method for simulating a fluid in contact with a chemical potential. In our simulation method, we impose a
single wall in order to study adsorption and wetting phenom-self-consistently determined number dengityfar from the
ena. This method is described in Sec. Il, and in Sec. Il wewall using a penalty function that suppresses large deviations
apply it to a fluid of hard spherocylinders. We find a transi-from py,.
tion from a uniaxial to biaxial phase at densities well below Consider a fluid ofN particles in a box with lateral di-
that of the bulkl-N transition, followed by the formation of mensiond.,, Ly, andL,. The wall of interest, in our par-
a nematic film with the director parallel to the wall whose ticular case a planar hard wall, is positionedzat0. As
thickness appears to diverge as blikl coexistence is ap- discussed above, one often confines the fluid between two
proached. By performing Gibbs ensemble Monte Carlddentical walls, but then capillary effects can occur and may
simulations of the fluid of spherocylinders between two parmask or compete with the adsorption phenomena of interest.
allel hard walls, we find a first-order capillary nematization An alternative procedure to simulate such a system would be
transition and determine the coexistence densities for severa impose periodic boundary conditions in thandy direc-
wall separations; these results are discussed in Sec. IV. Wéns, but not in thez direction. Clearly, one must limit the
conclude in Sec. V by summarizing the results and makingositions of the particles such that theoordinate of particle
comparisons with those obtained from the Zwanzig model, sayz , cannot become larger than some valyg i.e., z,
[14,21]. A preliminary account of some of the simulation <L,. Such a system corresponds to a fluid confined between
results reported here can be found in R&#]. the wall of interest, located at=0, and a different wall
located atz=L,. Such a procedure was employed by Finn
and Monsor{18] in their simulation study of prewetting for
a Lennard-Jones gas at (weakly) attractive wall. They
chose the second wall to be hard so that no wetting occurred
In order to investigate the adsorption and, in particularat this wall. Clearly, one must choose the second wall appro-
the wetting properties of a fluid, it is important to study a priate to the physical system under investigation. For hard
bulk fluid in contact with asinglewall. This single-wall sys- rods, it is not obvious what type of wall potential would
tem is difficult to treat in computer simulations, since theensure a flat density profile near the second wall. Any sub-
fluid in contact with the wall az=0 cannot be treated with Stantial increase in the local density might result in surface
periodic boundary conditions in the direction. Conse- transitions occurring in the layers adsorbed at the second
quently, in many computer simulations of adsorption phewall, and these should be avoided. In his study of surface
nomena, the fluid is confined between two identical walls inanchoring in nematic phases of hard ellipsoids, All&g]
thexy plane, located at=0 andz=L,. The additional wall imposed an external orienting field in a region adjoining his
at z=L, should not affect the adsorption of the fluid at the Second wall leading to the formation of a highly oriented
wall of interest az= 0 providedL, is large enough that there “film” with a higher degree of nematic ordefand a higher
is a flat portion of the density profile in the central region of contact densitythan in the bulklike region in the center of
the slit. A drawback of using large, is, however, that long the slit[19]. Problems of smooth matching to bulk are cir-
simulation times are needed, which may hamper a systematféimvented in the present procedure where an additional ex-
study of the growth of a thick wetting film. Using smaller ternal potential or penalty functiow(z), designed to sup-
values ofL, can lead to finite-sizécapillary) effects, and Press density deviations from a self-consistently determined
these may hinder the observation of the single-wall phenomdensitypy,, is imposed in a region close to the second wall at
ena of interest. Such effects are especially important in thé=L,. V(z) acts to suppress any surface transition at the
grand-canonical ensemble where capillary condensdtion second wall. To this end, we calculate the density profile,
evaporatioh occurs as the chemical potential approaches itdvith data averaged over bins of widtiz, using the follow-
value at bulk coexistence and the phase with the wettingng external potential for bif:
films at the walls becomes metastable with respect to con-

II. A SIMULATION METHOD FOR A FLUID IN CONTACT
WITH A SINGLE WALL

densatior{ 15]. Observation of the growth of such films then 1 n; 2
becomes problematic. _ _ _ BV(z) = Sk L,z po| » ZmpSZisLl;z 0
In this paper, we develop a simulation method for treating ! .
0 otherwise,

a fluid in contact with asinglewall. We emphasize that our
method is not restricted to the particular model investigated
here, but can be applied to any fluid and any wall; results fowhere 8= (kgT) "%, k>0 determines the magnitude of the
the adsorption and wetting behavior of a hard-sphere fluid atllowed density fluctuationsy; is the number of particles
a planar hard wall and for density profiles of a colloid- present in binj, and py, is the self-consistently determined
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density far from the wall of interest, corresponding to the 5.0 ' ' '
bulk density. The external potential or penalty function ap- 40 /el .
plies only in binsj with z,,<z<L,, where 0<zj,<L,. oy 30 e
It is important to note that in density-functional theory, 20 I ]
the density far away from the wall is imposed by the fixed 10 [ ]
chemical potential. In principle, our simulation technique can 0.0 . . .
be performed in the grand-canonical ensemble. However, for 0 1 2 3 4
dense hard-core fluids, it is almost always impossible to in- ol > ' ' ]
sert particles, leading to poor sampling of phase space and 0:6 ro \\ ]
poor statistics. Thus we have chosen to keep the number of A@z) o4 - o ]
particles fixed. Our procedure is as follows. 02k ]
(i) We fix the number of particlel, the dimensions of the 0.0 &= SN .
simulation boxL,, L, andL,, and we estimate the density -0.2 ' s s
far from the wall of interest, denoting this ag. 0.1 ° L 2 8 4
(ii) We perform a simulation with this initial estimate for S ——
pp and calculate the density profile. The average densijty R T S A .
far from the wall of interest is obtained by averaging over the s(z) e
bins, which are sufficiently far from the wall and which show 03 /7 - - .
a sufficiently flat profile. k-
(iii) We repeat stefii) usingp,, for p, until the newp,, -0.5 0 1 2 3 4
equals the previous value within some given tolerance. 2/(L+D)

We conclude this section with some remarks. This
simulation technique can be used for any wall-particle poten- FIG. 1. Density and order-parameter profiles of a hard-
tial and any particle-particle interaction and can easily bespherocylinder fluid in contact with a single hard wall located at
extended to fluid mixturegii) The simulations can also be =0. The dimensionless bulk density= (L + D)2Dp,, far from the
performed in the grand-canonical ensemble for systemwall is c,=1.169(solid line), c,=2.855(dashed ling c¢,=3.379
where insertion of particles is not problematiii) We em-  (dotted ling, andc,= 3.515(dashed-dotted line The total density
phasize that in order to obtain a flat density profile far fromis ¢(z), the nematic order parametersz), and the biaxial order
the wall of interest, it is important that, is sufficiently ~— parameter is\(2).
large. In the next section, we apply this method to a fluid of
hard spherocylinders in contact with a hard wall.

N3 s,
SPRRTS JEVRCH N
2
I1l. A HARD-SPHEROCYLINDER FLUID IN CONTACT @

WITH A SINGLE HARD WALL P Lo .
whereu!, is thea@ component of the unit orientation vector of

We perform Monte Carlo simulations of a fluid of hard particlei, n; is the number of particles present in Birand
spherocylinders with a length-to-diameter ratioldD=15.  J,4 is the Kronecker delta. Diagonalizing this tensor gives
This model exhibits a first-order transition from an isotropicthree orientational ordering eigenvalues, A, and\ _ for
to a nematic phase in bulk and we first determine the bulk INeach bin. We analyze our results by considering two inde-
coexistence by standard Gibbs ensemble simulafid@sof  pendent order-parameter profile§) the nematic order-
2300 particles. These yield coexistence densities3.675  parameter profile is given by the lowest eigenvalsés)
+0.003 andcy=4.300+0.003, where we define the dimen- =\ _(z), and (ii) the biaxial order-parameter profil&(z)
sionless densitg=(L+D)?Dp with p the number density. =2[\,(z)—\o(2)]/3. More than 5<10* Monte Carlo
We then perform a simulation study of the isotropic bulk sweeps were allowed for equilibration and the profiles in
fluid in contact with a single hard wall using the method bins of width 6z=0.0625(C + D) were accumulated over a
described in Sec. Il. The transverse dimensions of the simuurther 5x 10° sweepgone sweep is one attempted move per
lation box arel, /D=L, /D=236.74 and the second wall is at particle. The density and order-parameter profiles are shown
L,/D=64orL,/D= 112 The number of particles is chosen in Fig. 1 for four different values of,=<3.535. We discuss
such that we obtam an isotropic fluid far from the first wall, first the results forc,=1.169 (solid lineg. Figure 1 shows

e., the dimensionless density far from the hard wgll that the density profile(z) is at a minimum az=0, indi-
=(L+D)?Dpy,<c,. This corresponds to about 400—3000 cating a depletion of particles close to the wal(z) in-
particles for our choices of,. We applied the additional creases withz and reaches a maximum at=L/2, where
external potential Eq(1) with a value ofzy,, such thaflL, there is a kink inc(z). This is in agreement with the DFT

=0.5. and chosekD® in the range (X10®)—(2  results of Ref[9]. For higherz c(z) decreases and reaches

X 10é)) For hard particles, temperatufes not a significant the bulk value ar=L. We observe that using our simulation

quantity and we setgT=8"1=1 for all calculations. method, the density profile remains flat at lamy@urning to
We measured the density profile and the eigenvalues dhe nematic order-parameter profgéz) in Fig. 1, we find
the standard & 3 nematic order-parameter tensor thats(z=0)=—0.5 at the wall and increases to O for larger
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z s(z) also shows a kink az=L/2. The biaxial order-
parameter profile\(z) =0 for all z. Thus, we find a uniaxial
distribution close to the wall a5(z) <0 andA(z) =0, and an
isotropic distribution forz>L ass(z)=0 andA(z)=0. For
C,=2.855(dashed lings most of the features are similar to
those forc,=1.169. However, we now find nonzero values
for A(z) close to the wall, corresponding to a biaxial distri-
bution of the rods. In order to locate the uniaxial-biaxial ’ ‘\\__ '
(UB) transition, we perform a few shorter runs for 1.169 PN
<cp<2.855. We estimate that the onset of biaxial ordering A@Z)
A(z)+#0 first occurs at aboutyg=2.80+0.05 or cyg/c

=0.76, in qualitative agreement with the theoretical predic-

c(2)

tion for the Zwanzig model dyg/c,=0.819) [14,21], in -0.2 . . . . . s
which the orientations of the particles are restricted to three o4 1 2 3 4 S5 6 7
orthogonal directions, and with the density-functional-theory 0.0 | _ _
results for freely rotating infinitely elongated spherocylinders 01} / L E
(cug/c;=0.847) [9]. Thus, forc,<cyg we find uniaxial s(2) _po | /’ J/ i
symmetry for all z, whereas biaxiality sets in wheny 03} s .
>cyg. We did not attempt to ascertain the nature of the UB -0.4 /’—“”“ """ T .
transition. Recall that within our mean-field treatment for the -0.5 ; . . . : :

Zwanzig model, there is compelling evidence that the transi-
tion is second-ordefl4,21 but the Zwanzig model has re-
stricted orientations. Understanding the precise nature of the FIG. 2. Same as in Fig. 1, but witt,=3.535 (solid line), c,

UB transition in freely rotating hard-rod systems where soft=3.633 (dashed ling and c,=3.663 (dotted ling. Note that the
modes are present remains a challenge for simulation ansllk isotropic-nematic transition occurs at density=3.675.

theory.

If we increasec, beyondc g to c,=3.379 and 3.515 —0.9138972 forc,>3.515. For comparison, we plot the
(dotted and dashed-dotted linesve find that the kink ai result of this fit as the solid line in Fig. 3. In principle, the
=L/2 disappears ic(z) ands(z). We still find a maximum complete wetting scenario could be confirmed by calculating
in c(z) but shifted to smallez. A(z) increases its value close the contact angle, defined (h21]
to the wall whercy, is increased, corresponding to a stronger

biaxial ordering close to the wall. We also find that the cosg= T~ VWN’ (4)
interval whereA(z) ands(z) are nonzero increases for in- YIN

creasingcy,, signifying that the width of the nematic film

(with the director parallel to the walls increasing withc,, . 35 ' '

This can be better appreciated in Fig. 2, which shows the
density and order-parameter profiles fog=3.535, 3.633,
and 3.663, i.e., closer to the bulk transitiorcgt 3.675. We 25
clearly observe in the density and in both order-parametel
profiles that the film with in-plane nematic ordering has in-
creasing thickness for increasing. The simulations lend
strong support for complete orientational wetting in the limit
C,—C, . It is worth noting that for the highest value of ,

the nematic film occupies a very large fraction of the simu-
lation box and we do begin to run out of “bulk.” The results

I st ]

for this state point might possess substantial error bars. Thit >
issue will be discussed in more detail in Sec. V. I E\\\D
More quantitative support for the complete orientational
wetting scenario is provided by the measured logarithmic  -05 5 - - 0
increase of the adsorptioli as a function of ¢, —cy)/c,, 10 10 (C —C )/C 10 10
(Yol

wherel is defined as

FIG. 3. Adsorptionl” of a fluid of hard spherocylinders in con-
1L, tact with a single hard wall as a function of the difference between
I'= Efo dZ c(z)—cp]. () the bulk isotropic-nematic coexistence densitynd the density far
from the wallc,. The simulation results are denoted by squares
joined by the dashed line to guide the eye. The adsorption can be fit
Figure 3 indicates thal™ increases logarithmically as, by T'=A;+A,In[(c—cy)/c], with fit parametersA,= —2.584 58
—C¢,. The adsorption can be fitted bly=A;+A,In[(c andA,=—0.913 897 2 forc,>3.515, and this fit is denoted by the
—cp)/c], with fit parametersA;=—2.58458 andA,= solid straight line.
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FIG. 4. Snapshots of the hard-spherocylinder fluid fgr
=1.169, 2.855, 3.379, 3.535, and 3.63m top to bottom. Each
left-hand-side figure shows a snapshot of the fluid inxkeplane
taken from the wall az= 0 looking into the fluid, while each right-
hand side shows the fluid in thez plane with the hard wall on the
left. Note that in the last snapshot, the box lengiiD =112, i.e.,
L,/(L+D)=7, whereas the length of the cell shown here id5 (
+D).

where ywi, vwn, and vy, are, respectively, the interfacial
tension between the wall-isotropic fluid phase with=c,,
the wall-nematic phase witlt,=cy, and the isotropic-

PHYSICAL REVIEW E 63 051703

extremely demanding and almost impossible task to confirm
the vanishing contact angle scenario by simulations as one
requires all three interfacial tensions with sufficient statistical
accuracy. We did not attempt to proceed with this rd@@.

More visual information about the ordering at the hard
wall is shown in Fig. 4, where we show snapshots dgr
=1.169, 2.855, 3.379, 3.535, and 3.633, five of the states for
which we showed profiles in Figs. 1 and 2. The left-hand
side of each figure shows a snapshot of the fluid inxie
plane taken from the hard wall a& 0, while the right-hand
side shows the fluid in thexz plane. Forc,=1.169, we
clearly observe a uniaxial distribution, while et=2.855
some small degree of biaxiality has set in. A,
=3.379, 3.535, and 3.633, we observe that the in-plane nem-
atic film grows steadily, reaching a thickness of about 4(
+D) for c,=3.633.

IV. A HARD-SPHEROCYLINDER FLUID CONFINED
BY TWO PARALLEL HARD WALLS

The results of the preceding section show that dgr
—¢;, a hard wall favors planar nematidirector parallel to
the wal) over isotropic ordering. In surface tension terms,
Ywi>> Ywn SO that co®>0. Simple arguments based on the
Kelvin equation(e.g., Ref.[15]) would then imply that for
the fluid confined between two hard walls, capillary conden-
sation of the nematic phase should occur prior to the bulk IN
transition, i.e., for some value af,<c,;, when the wall
separatiorH is finite. Such a scenario is found in calcula-
tions based on the Zwanzig model, where ée4, and one
observes a first-order transition from an isotropic phase, with
biaxial nematic films at the hard walls, condensing to a nem-
atic phase that fills the sljtL4,21. This transition is termed
capillary nematization. We seek the equivalent transition in
the present model by performing a simulation study of a fluid
of hard spherocylinders between two parallel hard walls. We
do indeed find a first-order capillary nematization transition
from a phase with biaxial film¢B) to a capillary condensed
nematic phase@). The phase equilibria are determined by
performing Gibbs ensemble simulations of a fluid of hard
spherocylinders with the same length-to-diameter ratio of
L/D =15, at fixed wall separations=H/(L+D)=4, 3, 2.5,
2.375, and 2.25. In a Gibbs ensemble simulation for confined
systems, the two coexisting phases are simulated in two
separate boxes, which can exchange area and particles, while
the wall separation is kept constant. The exchange of par-
ticles ensures equal chemical potential for both phases, while
the exchange of area ensures equal fluid-surface interfacial
tension in the same spirit as the exchange of volume ensures
equal pressure in bulk systems. A full description of the
Gibbs ensemble simulation technique applied to confined
systems is given by Panagiotopoul@s].

The transverse dimensions of the initial simulation boxes
areL,/D=L,/D=36.74 and the number of particlésvar-

nematic interface at bulk coexistence. A vanishing contactes from 1700 to 2100 particles for the largest wall separa-
angle would correspond to complete wetting of the wall-tion. The coexisting densities were accumulated over 5
isotropic(WI) fluid interface by the nematic phase. However, X 10° sweeps, where one sweep consists of one attempted
unlike the corresponding analysis for the Zwanzig modelmove per particle, one attempted area change, and one at-

where it is straightforward to confirti=0 [14,21], it is an

tempted particle swap between the two boxes.
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0.5 : T : ' the x-y plane. This would imply a flat-topped coexistence
curve (exponentB3=1/8). That we do not observe such a

04 L B H Yy | shape may reflect the particular choice of order parameter or

’ B C that we are insufficiently close to the critical point.
H H
0.3 g V. SUMMARY AND DISCUSSION
1/h t B+C t We studied a fluid of hard spherocylinders withD
02 | i =15 in contact with a planar hard wall and confined by two

parallel hard walls. Using a Monte Carlo method developed
specifically for simulating a fluid in contact with single
0.1 - 1 wall, we found a surface transition from a uniaxial to a bi-
axial phase, followed, at larger bulk densities, by the forma-
tion of a thick in-plane nematic film, whose thickness ap-
0-03 5 %‘7 3'9 a1 4¢3 45 pears to increase asln(c,—cy), indicating complete wetting
) ' T c | ’ of the wall-isotropic fluid interface by the in-plane oriented
nematic film. While we believe that the method we have
FIG. 5. The coexistence curve for the isotropic phase with bi-introduced is particularly well-suited for investigating wet-
axial films(B) and capillary condensed nematic phéSgtransition  ting films, we emphasize, once again, that it remains difficult
as a function of the dimensionless number densitly the slit and  \yithin computer simulation to demonstratmequivocally
the dimensionless inverse wall separation. IThe symbols are the  complete wetting; one cannot investigate the strict limit of
results of Gibbs ensemble Monte Carlo simulations for the confineg,y lengthL,—. In our present calculations, we are con-

fluid. T.here is no capillary nematization beS?.ZS. Note that the fident that for €,—c;,)/c,>0.01, corresponding to the pro-
two ponr_lts on theh=co axis are the bulk cpemstgnce valugsand files in Fig. 1, the two thinner films in Fig. 2, and all the
Cy obtained from bulk Gibbs ensemble simulations. snapshots in Fig. 4, we have sufficient “bulk” fluid far from
the hard wall to ensure reliable averaging. We confirmed that
The resulting phase diagram is shown in Fig. 5 in terms othe same profiles resulted fbg/D =64 and 112. For smaller
the inverse wall separatidm ' and the dimensionless num- values of ¢, —cp)/c, , the nematic film occupies a very large
ber densityc=N(L + D)2D/(HLXLy) in the slit. We observe fraction of the simulation box and we do begin to run out of
coexistence between pha¢B) and a capillary condensed “bulk.” Thus the results for the profiles corresponding to
nematic phas¢C) providedh=2.375, whereas no coexist- C,=3.663(dotted ling in Fig. 2 and the two highest values
ence could be found fdi=<2.25. The difference between the of the adsorptiod” shown in Fig. 3 might possess substantial
coexisting densities decreases smoothly és reduced. For error bars. This observation becomes relevant when we make
h=2.25, no capillary nematization is found and the slitcomparison with the corresponding results from the Zwanzig
“fills” continuously as ¢, is increased towards,. These model, where the adsorption diverges logarithmically but
features are in agreement with the results of the Zwanzigvith a much smaller prefactor, i.e., the coeffici¢A| de-
model[14,21] and imply that the capillary nematization tran- fined below Eq.(3) is 0.235[21] rather than 0.914, the
sition ends in a capillary critical point at a critical wall sepa- present value. We should recall that general arguments for
rationh,=2.3. This value is quite close to the correspondingcomplete wetting for fluids with short-ranged forces the
result from the Zwanzig modeh.=H./L=2.08-0.01 mean-field level imply that the wetting film thickness
[14,21]. Note also that the shape of the coexistence curve ishould diverge as- &, In[(c,—cy)/c,], where &, is the bulk
reminiscent of that obtained from the Zwanzig model. Thecorrelation length of the phase, which is wetting. For very
condensed nematic branch has a positive slope at small vahick films, I'=I(cy—c,)/L so that |A,|=&,(cy—c)/L.
ues of 1h. This reflects the choice of order paramateand  Given thatcy— ¢, does not differ greatly between the simu-
can be accounted for using estimates based on the Kelviations and the Zwanzig model, our results imply taflL
equation, valid as h/—0 [21]. Within the Zwanzig model, should differ by about a factor of 4. This is surprising. It is
the biaxial branch acquires a large gradient in the approachossible that capillary-wave-like fluctuations in the wetting
to the critical point(although the criticality is standard mean- film act to augment the prefactor, but it is more likely that we
field-like in the density-functional treatment of R¢R1]).  have not entered the true asymptotic regime in the simula-
There is some evidence for a similar feature in the presertions. Such issues become important if one attempts to inves-
results, which, once again, could reflect the choice of ordetigate the depinning nematic-isotropic interface within the
parameter, but our simulation data are not sufficiently compresent simulation scheme. Provided the in-plane nematic
prehensive to confirm this. Neither are we in a position todoes wet completely the hard-wall isotropic interface, the
determine the nature of the criticality, i.e., the critical expo-nematic-isotropic interface will depin continuously from the
nents. We conjecture that, as in the case of simple fluids, theall asc,—c, , and one can investigate its properties. This
criticality of the capillary nematization transition should lie is straightforward within density-functional treatments but
in the two-dimensional Ising universality class since the orbecomes problematic in simulations of the present system
der parametefthe difference in the average densities at co-where the necessaty, becomes prohibitively large.
existence is a scalar and correlations may only diverge in  We should note that the shapes of the profiles for the
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densityc(z) and order parametes{z) and A(z) and their the reduced critical wall separatidn., are consistent with
development with increasing, are quite similar to those the theoretical predictions of the Zwanzig mo@ie#,21, in
found for the Zwanzig modgR21]. which the orientations of the rods are restricted to three or-
The subtleties of wetting are not important for the con-thogonal directions. This attests to the universality of the
fined fluid where the separation of thElentica) walls is  phenomena we observe.
finite, and we find a first-order capillary nematization transi-
tion for a fluid confined by two parallel hard walls. The
coexisting densities of the capillary isotropiwith biaxial
nematic films at the waljsand condensed nematic phase R.v.R. and M.D. thank Bristol University for hospitality
were determined by Gibbs ensemble simulations. The differduring the initial stages of this work, which was supported
ence in the coexisting densities decreased as the wall sepfinancially by the grants ERBFMBICT971869 of the TMR
ration was reduced and no coexistence was found for regrogram and GR/L89013 of the EPSRC. We thank M.P.
duced wall separatiorh=H/(L+D)<2.25. Our results Allen for helpful discussions. This work is part of the re-
point to a capillary nematization transition ending in a cap-search program of the “Stichting voor Fundamenteel Onder-
illary critical point at a critical (reduced wall separation zoek der MaterigFOM),” which is financially supported by
2.25<h.<2.375. It is very pleasing that all the key featuresthe “Nederlandse Organisatie voor Wetenschappelijk Onder-
of the capillary nematization transition, even the estimate ozoek (NWO).”
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