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We study the effective interactions, structure, and the isothermal compressibility of a binary mixture
interacting with pairwise additive pair potentials. By integrating out the degrees of freedom of
species 2 in the partition sum we first show that a binary mixture can be mapped formally onto an
effective one-component system with an effective Hamiltonian consisting of a structure-independent
term, which contributes to the total pressure and chemical potential of the system, but does not
affect the phase behavior, and a structure-dependent potential of mean force, which contains pair—,
triplet—, and higher—body interactions. We then show that the 1-1 structure factor and pair
correlation function, and the total isothermal compressibility of the mixture are equal to those of the
effective one-component system, provided the mapping is exact. We illustrate and confirm these
results by calculating the structure factors and pair correlation functions of the binary Asakura—
Oosawa model, which is a simple model for colloid—polymer mixtures, and those of the
corresponding one-component system for a size ratio such that the mapping onto an effective
one-component Hamiltonian with a strictly pairwise potential of mean force is exact. The distinction
between the osmotic and total compressibility of the mixture is emphasize®00® American
Institute of Physicg.S0021-960600)51335-X

I. INTRODUCTION of micelles and emulsion droplét$ one can determine the
phase behavior of the colloidal system via simulation or
Colloidal suspensions are complex fluids that consist otheory using the same techniques as for one-component sys-
mesoscopic particles suspended in a solveng., watel.  tems. It is known that predictions for the phase behavior of
Often other components, such as salt ions or polymers, aigharge-stabilized suspensions which follow from the effec-
present as well. Such multicomponent fluids are difficult totive DLVO theory are in agreement with experiments, at
describe as very different length and time scales are involvegast at sufficiently high salt concentraticifsThe status of
for the different constituents. This problem is often circum-the DLVO theory at very low salt concentrations is more
vented by coarse graining, i.e., by eliminating the degrees ofontroversial, but recent theoretical studies of effective inter-
freedom of the smaller particles and the solvent, whichactions can explain some of the features of the experimen-
yields a one-component system that is described by effectivgylly observed phase behavioin the case of very asymmet-
interactions. The ideal-gas version of this concept dates baglc binary hard-sphere mixtures, we compared the phase
to Van't Hoff, who showed that the osmotic pressure of apehavior determined from simulations of the effective one-
suspension is proportional to the solute concentration. Th@omponent system with that from simulations of the true
formalism for describing the more complicated and interestbinary mixture® The agreement we found was surprisingly
ing case of interacting, nonideal particles was introduced byjood, and provides important justification for the use of the
McMillan and Mayer in 1945An important ingredient of pairwise depletion potential in the effective one-component
the McMillan—Mayer solution theory is the so-called “po- systen® Thus, it is fair to argue that the concept of integrat-
tential of mean force,” which plays the role of the interac- jng out or coarse graining has been successful in describing
tion Hamiltonian in the effective one-component system. 'fphase diagrams of colloidal systems.
the potential of mean force is assumed to be pairwise addi- ap, important subsequent question is whether the equi-
tive, with some specific effective pair-potentied.g., the  jiprium structure and the various thermodynamic properties
DLVO potential in the case of charge-stabilized colloidal 5 the mixture are also well-described by the potential of
suspensions, or the depletion potential in the case of mean force or the effective Hamiltonian. Some recent ex-
colloid—polymer, colloid—colloid mixture$* and mixtures amples in the literature suggest that thisit the case. Re-
cent experiments on charge-stabilized colloidal crystals, for
3Electronic mail: m.dijkstra@phys.uu.nl instance, show that the bulk modulus—the inverse of the
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compressibility—as determined from the colloid structureHamiltonianH=H;+H,+H,,. We assume pairwise addi-
factor at long wavelengths is three times smaller than thative pair potentialsp,;, ¢1,, andg,, in the mixture(but not
calculated from the DLVO theordf The authors then con- in the effective one-component systemThus, Hy;
clude that the conventional DLVO theory for the effective =% 1 y(Ryj), Hyp=3{" 312 d1o(Ri—1)), and Hy
colloidal interactions fails to account for the elastic proPer'zEN2.¢22(rij), whereR; andr; denote the coordinates of
ties of colloidal crystals® Another example is given by i s

i e particles of species 1 and 2, respectivély,=R;—R;
Louis et al, who calculate the structure factors of the andr;j=r;—r;. Itis convenient to consider the system in the

Asakura—Oosawa model for colloid—polymer mixtures in the(N1 z,,V) ensemble, in which the fugaciof species 2 is
Percus—YevickPY) gpproxima_tiorﬂl They find that the iso- e “Omitting the explicifT dependence, we can write the
thermal compressibilityt obtained from th&k—0 limit of thermodynamic potentiaF (N;,z,,V) of this system as
the partial structure factorgsee Eg.(9)] in the two- exy — BF]=Tr, ex — BH®™], whereH® =H,,+ Q is the ef-
component Asakura—Oosawa model is smaller by an ord&g tive Hamiltonian of spécies 1 anfl=1/kgT. Here, Q

of magnitude thanyr ¢, the osmotic compressibility, ob- =Q(N;,2,,V;{R}) is the grand potential of the fluid of spe-
tained from thek— O limit of the colloidal structure factor of a5 2 in the external field of a fixed configuration Nf

t(r;(;)]c?lrresponding effective one-component sysise® EQ.  particles of species 1 with coordinatfR}; i=1,2, .. .N,,
) . . . " C

In this article we address the issue of how to compareand s given by .e){p_ﬁm_z’\‘z:oi;mﬂz. ex— At

the thermodynamic properties of the mixture with those oft H22)]. The trace Tyis short for IN,!A ™ times the vol-

the effective One_component system. Makmg such Compariume integral over the coordinates of all the partiC|es of spe-
sons is not trivial. We first show that when the mapping of¢iesv. A, is the thermal wavelength.

the homogeneous mixture onto the corresponding effective By performing a Mayer cluster expansion, we then
one-component system is exact, the colloid—colloid structuréhowed thaf) can be written a& 2 Q,,, wheren labels the

in the mixture should be equal to the colloidal structure innumber of particles of species 1 that interact simultaneously
the effective one-component system. In particular this imwith the “sea” of species 2. The zero-body tely, is the
plies that the pair correlation functions and structure factorgrand potential of a pure system of species 2 at fugasity

of the colloids obtained from the effective one-component@ volumeV, i.e., Qy(z,,V)=—p,(z2)V, with p,(z,) the
Hamiltonian description are exactly equivalent to thepressure of the reservoir of species 2. The one-body term is
colloid—colloid pair correlation functions and structure fac- of the form€;(N,z,)=N;w1(Z,), with w.(z,) the grand-
tors in the colloidal suspension. The same equivalence holdzotential difference between a “sea” of species 2 at fugacity
for higher-order correlations. We then demonstrate that therz, with and without a particle of species 1 at the origin.
modynamic properties, focusing on the isothermal compresd#ithin the same formalism we obtaif2,(N;,z,;{R})
ibility, are also equal in the mixture and in the correspondinngi’\'gjwz(zz;Rij), where w, is the grand potential differ-
effective one-component system—provided once again thence between a “sea” of species 2 at fugajycontaining
mapping is exact and the comparison is made at precisely th@/o particles of species 1 separated by a finite distaRge
same state point. As an example we calculate the structure|Ri—Rj| and by infinite distance. Similar expressions can
factors and pair correlation functions of the two-componenbe given for the three- and higher-body terms, e@@s,
Asakura—Oosawa model and those of the effective O”e'IE:\‘ikas(Zz;Rijk)- Thus, we arrive at the effective one-
component system for a polymer/colloid size ratio such thanmponent Hamiltonian

the mapping onto an effective one-component Hamiltonian,

whose potential of mean force has strictly pair interactions, ~H®"(N1,22,V;{R}) == pa(2,)V+N;w1(2,)

is knovyn to be egaé’tWe show that the stru.cture factors and +W(N;,2,:{RD), 1)
the pair correlation functions are equal in the two corre-

sponding systemsyr as calculated from the—0 limit of ~ where the dependence on the coordingR3sresides only in
the partial structure factors of the mixture does agree witithe potential of mean force

the full result for the effective one-component system. The Ny

main _contr_lbuuon to the latter is an |Qeal polymer term not W(Nl,Zz:{R})=2 [12(R)) + wa(2;R)]

contained inyt ¢ and not considered in Ref. 11. <]

Ny
Il. MAPPING A MIXTURE ONTO AN EFFECTIVE ONE- + E w3(ZoiRj)+ - . )
COMPONENT SYSTEM i<j<k

We showed in Ref. 8 that a homogeneous binary mixtureConsequently, the thermodynamic potential of inteFesin
can be formally mapped onto an effective one-componenbe written as
system with effective interaction Hamiltonia®™ by inte-
grating out the degrees of freedom of one of the two species T (N1:22,V)==Pa(22)V+ Ny 04(25) + ANy, 25, V),
in the partition sum. For completeness we briefly recapitu- @)
late. We consider a classical fluid of two species, label 1 anavith A defined by exp—BA]=Tr, exd —BW], i.e., A is the
2, in a macroscopic volum&. For particle numberdN, Helmholtz free energy of a one-component system with an
=Vp,; and N,=Vp,, the total Hamiltonian consists of interaction Hamiltonian that equals the potential of mean
(trivial) kinetic energy contributions and the interaction force.
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A few remarks are in ordefi) Although the problem of We begin by defining the 2 partial structure factor
the binary mixture has been reduced formally to that of armatrix in the binary mixture ensemble by
effective one-component fluid, one must determine the effec-

tive potentialsw, for n=1,2 . . . before explicit calculations S .(k _ K)o o —K 7
of F and A can be made.(ii) Since the terms(), as(K) \/NaNB<pa( Pl )>N1’N2’V' @

=—py(z,)V and Q;=Njw4(2z,) in the effective Hamil- N )
tonian in Eq.(1) do not depend on the instantaneous coordi\VNerep1(k) =22, exf —ikR;] and analogously fop,(k),

nates{R} of the particles of species 1, they do not affect the@"d where the ensemble average of an observable
structureof the effective one-component system, as we will O(N1,N2;{R},{r}) is defined by

see in more detail belqw. Moreover, these two terms do not Tr, TrO exd — BH]
affect thephase behavioof the two-component system be- <O>N1,N2,v= Tr,Tryexd — BH] -
cause of their triviaV andN; dependence, which gives rise 12
to innocuous shifts in the pressupe= —(JF/dV)y, ., and It is a standard result that the—0 limit of the partial struc-
chemical potentiaju; = (9F/dN,), v of species 1. Itis, in ture fgctorsSaB(k) and the isothermal compressibiligy of
fact, easy to see from E¢@) that ’ the binary system are related By

®

p(Nl,Zz,V):p2(22)+H(N1,22,V), (4) _ Sll(O)SZZ(O)_S§2(O)
pkeTxT= — : 9
Iu’l(N11221V)=w1(22)+ﬁ1(N11221V)! (5) X1822(0)+X2811(0)_2 X1X2812(0)

with the osmotic pressurdl=—(JA/dV)y, ., and the Wl\rl‘ereNP:(Nl(;Nﬁ)/V' Xlzd'\]l,l/(leJ“NZ)' and =N,/
shifted chemical potentidk(N; .z,,V)=(3A/dN;),, . As (N1+N2), and whereyr is defined as

the shiftsp, and w, are independent of densipy; they do 1 p
not influence the phase coexistefid@learly, IT and 7, play XT = _V(
the role of pressure and chemical potential in the one-

component system interacting Wd (iii ) It is interesting that wherep denotes, as before, the pressure of the binary mix-
the one-body termw; can be related to the Henry's law ture and the temperatuieis, as usual, fixed.
constant(z,) =lim,, _.op1/21(p1),*? with z; the activity of In the effective one-component system at fixed

species 1z, =ex{ Bu, /A, From Eq.(5) it follows that  (N1,V,2p) the structure factofof species 1, of courgds

h(z,) = exqd — Bw,(z,)]. The deviation oh(z,) from unity is  defined by

a measure for the average 1-2 interaction, at gierin the 1

absence of 1-1 interaction($v) Although phase coexistence s*fi(k) = N—<p1(k)p1(— k)>N1]Vsz’ 11

of the effective one-component system for a fixed tempera- 1

ture and given value of, is completely determined by where the ensemble average of an observ&{gR},N,),

equality of osmotic pressurd$ and shifted chemical poten- i.e., an observable that is independenNgfand{r} and thus
tials 724 In two coexisting phases, one does requirz,) commutes with T4, is now given by

and w4(z,) explicitly in order to convert fronz, to the av-

erage densityp2=<N2>Nl‘22’V/V of particles of species 2.

, (10)
Np N,

Trlzﬁzzo 2’2\'2 Tr,O exd — BH]

O =
This can be ascertained directly from the identity { >N1’V'22 Try E°N°2:022'2 Tryexd — BH]
(N2IN, 2, v= —2Z2(IBFI 92N, v - (6) _ T Oexi - BW] 2
It is this conversion from theN;,z,,V) ensemble to the Triexd — W]

_bmary mixture N;,N2,V) en_semble that_plays a C“_JC'al role Note that the potential of mean ford¥ can be replaced by
in what follows. (v) The particular technique described here

q i v directlv to Coulombic mixt h h He™ on the right-hand side of Eq12), since the difference
0€s not apply directly 1o L.oulombic mixtures where o ergives rise to a common factor in the numerator and the de-
methods are requiréed.

nominator. Thek—O0 limit of the structure factoS®" of a
one-component system of density and pressurél satisfies

Ill. STRUCTURE AND ISOTHERMAL

COMPRESSIBILITY p1KeTxT,er= lim S*M(k), (13
k—0

In the previous section, we showed that a binary mixture,,
can be mapped formally onto an effective one-component
system with an effective interaction Hamiltoni&tf", and . V(al’[)

\PRY2

ith the effective compressibility+ ¢ defined as

corresponding potential of mean foreé by integrating out XTeff= oV (14)

the degrees of freedom of one of the species in the partition

sum and described how the phase behavior may be deteFhe effective compressibility is therefore the osmotic com-
mined. Now we investigate the relation between structurgressibility. Clearly, Eq(13) is the one-component analog of
and susceptibility(in this case the isothermal compressibil- (9), and Eq.(14) that of (10).

ity) in the binary mixture ensemble at fixetll{,N,,V) and We are now in a position to connect several of the quan-
the effective one-component ensemble at fix8d,&,,V). tities defined above. A key ingredient of this identification is
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the fact that any ensemble avera@® of a (statig observ- In the Asakura—Oosawa model the colloids are modeled
able O({R},N,) is independent of the ensemble in the ther-as hard spheres with diamete;=o,. The polymer coils
modynamic limitN; — o, V—o with N;/V constant. On the are treated as interpenetrating, noninteracting particles as re-
basis of Eqs(7) and(11) we therefore have gards their mutual interactions-§,=0). However, the poly-
_ ceff mers are excluded by a center of mass distancergf

Su(k) =Sk, (15 = (0, + 0,)/2 from the colloids, wherer,, the diameter of
provided the thermodynamic state points are identical, i.ethe polymer coil, is given by,=2R, with R, the radius of
providedN2=<N2)N1'22,V. Together withp=11+p,, as de- gyration. The pairwise potentials in this simple model are
fined in Eq.(4), and the definitions of the compressibilities in thus given by
Egs.(10) and(14), the identity of Eq.(15) directly yields

9z, Jll ap2
9z, 0z,) |’

(R )= ®, |Rjl<oy
P1(Rij) = 0, otherwise

(16)

-1_ -1
XT _XT,eff_V av

)Nl,Nz Ny V (17)

The identification of the structure factor in E@.5) and the b1 Ri— rj):{
relation between the total and the osmotic compressibility in

Eq. (16) are the central results of this article. The difference  ¢,,(r;;)=0.
betweenyt and y1 o involves the volume dependencezf
at fixedN,; andN,, and the dependence of bdthandp, on

o0, |Ri—rj|<0'12

0, otherwise

HereR; andr; are the positions of the centers of the colloids

z,, i.e., not only properties of the effective one-component2nd the polymer coils, respectively, whif; =R; —R; and

system, but also the thermodynamics of the reservoir of spddi —'i i _
cies 2, at fugacityz, . The structure of the homogeneous binary Asakura—

If the structure factors are identical, it follows that the 90Sawa model is characterized by three partial correlation
total pair correlation functions are also identicél;jq(r) funCt!OnShii(r;pl’pZ) anq three. pairwise direct correla’Flon
=hef(r). Moreover, it is straightforward to generalize to functionsc;; (r; p1,p2) which satisfy the coupled Ornstein—

three-body, four-body, etc., correlations. These higher-ordefemMike relations:

correlations will be identical, provided once again the state 2

points are chosen to be identical. However, we wish to em- hij(r)zcij(r)+2 p|f ci([r=r'PDhy(r")dr’. (18
phasize thatequilibrium) correlation functions of species 1 =1

are only identical in the effective one-component system angh principle one could determine the; by computer simu-
the binary mixture, provided thexact potential of mean |ation. However, for the very asymmetric situations of inter-
forceWis used in the determination of the statistical averaggst here, where the size ratip=o,/o is small, ergodic
Eq.(12). Itis notguaranteed that an approximate mapping ofproplems arise when the packing fraction of the srfyaly-

the two-component system onto a one-component systefep species 2 becomes substantial. In order to avoid such
will preserve this identity of the structure, even if the predic- yifficulties. we solved Eq.(18) numerically using the
tions for the phase behavior that result from the approximat@ercys—Yevick PY) closure relations

mapping are reasonably accurate. A typical eXsdbvolves
pair-, triplet-, and higher-body terms, while a typical ap- hij(r)=—-1, r<oy,
proximateW contains only pair interactions. cij(r)=0, r>o . (19

In the remainder of this article we study a special binary
mixture for which the mapping onto an effective one- We chose to restrict our attention to very small values of the
component system can be performed exactly and explicitlyPolymer packing fraction and fairly small values of the col-
This system is therefore especially well-suited to illustrateloid packing fraction where the PY closure should be very

the main results of this section, embodied in Ed$) and ~ accurate. Figures 1-5 show examples of the resulting partial
(16). correlation functioni14(r), hy(r), andh,,(r), and the cor-

responding partial structure factogg(k) for the fixed size
ratio q=0.15, and for various state points, characterized by
colloid and polymer packing fractionsh:mripl/G and
Reference 9 shows that the so-called Asakura—Oosawafmrgpz/G. As expected, the colloid—colloid structure be-
model, which is a simple model for colloid—polymer mix- comes more pronounced as the colloid packing fractgn
tures, can be mapped exactly onto an effective oneincreases at fixedy,: compare Figs. 2, 4, and 5. Foy;
component Hamiltonian withWV strictly pairwise, when the =0.30 the colloid—polymer pair-correlation functidn(r)
polymers are sufficiently small compared with the colloids.and structure factoB;,(k) (see dotted lines in Fig.)5lso
Here we calculate the structure factors and the pair correlaexhibit pronounced structure. Increasing, the polymer
tion functions for the two-component Asakura—Oosawafraction, at fixedr,, leads to a rapid increase in the colloid—
model and those for the corresponding effective one<olloid hiy(r) near contact = ¢, and to an increase in the
component system. We demonstrate explicitly from our nupolymer—polymer structure fact&,(k) at smallk: compare
merical results that the structure factors, the pair correlatiofrigs. 1 and 2 and Figs. 3 and 4.
functions, and the isothermal compressibilities in the two ~ We now consider the structure and thermodynamics of
systems are the same. the associated one-component system, and compare the re-

IV. ASAKURA-OOSAWA MODEL
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FIG. 2. As in Fig. 1 but nowp;=0.02 and»,=0.05.
FIG. 1. Colloid—colloid (full line), colloid—polymer (dotted ling, and 9 W &

polymer—polymer(dashed ling partial pair correlation functionf(r/o;)
(a) and structure factorS(ka;) (b) for a colloid—polymer mixture with size
ratio g=0.15, colloid packing fractiony; =0.02 and polymer packing frac-

tion 7,=0.01. The thick dashed line denotes the colloid pair correlation ( 77'0'222 (1+ q)3

function (@) and structure factoth) for the corresponding effective one- - T —

component system, based on the Asakura—Oosawa pair potential2Bys. RE

and(21). 3Rij Ri?}
Bwy(Zy;Rij) = X1

S 2(1+q)oy 2(1+q)303)
for 0'1<Rij<0'1+0'2,

sults with those of the binary mixture. It is well-known that | 0. otherwise.

three or more nonoverlapping large hard spheres cannot si- @D
multaneously overlap with a single smaller sphere, if the sizd his Asakura—Oosawa pair potential describes an attractive
ratio < 0.1547* In Ref. 9, this was shown to imply that the Potential well close to the surface of the colloid, whose depth
n-body terms in the potential of mean force of E2).vanish, ~ increase linearly with increasing. The range of the poten-
i.e., w,=0, for n=3. Thus, for these small size ratios, the tial is given byo,. Due to the ideal character of the poly-

only nonzero contributions taV are the pairwise terms: mers in this model, the one-body tern and the reservoir
pressurep, are also known exactly

_, T 3 3
Ny ﬁwl(ZZ)_22€0-1(l+q) ;

W(N{,z,;{R})= Rii) + wo(25;Rii) 1, 20
(N1 2i{RD =2, [$(Ry) +w2(ziR)) (20 Boa(za) = 22— P42, 22
wherep)(z,) is the density of ideal polymer in the reservoir.
We have thus specified completely the effective one-
where the bare pair potentig;; is given in Eq.(17), and  component Hamiltonian of the Asakura—Oosawa model.
wherew,, the polymer-induced contribution to the pair po- Clearly the absence of higher-body contributiondMdeads
tential, was derived by Asakura and Oos&wa to an enormous simplification, allowing us to have an ex-
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FIG. 3. As in Fig. 1 but nowy,=0.10 andz,=0.01. FIG. 4. As in Fig. 1 but nowy, =0.10 andz,=0.05.

plicit effective Hamiltonian, which is, nevertheless, an exact(N1:N2,V) ensemble and theNy,z,,V) ensemble. This
representation of the original two-component model. NowCOnVersion is provided by E6), which with Eq.(3) can be
we calculate the effective one-component pair correlatiof€Written as

i effrp. b ;
function h®"(r;p1,2,), which is related to the effective one- ﬁﬁpz(zz)_ N IBwy(2)

component direct correlation functiocf(r;p;,2,) through (N2, 2, v=22V 0 ZN——
the one-component Ornstein—Zernike equation 2 2
JBA
" " " " —zz(—ﬁ ) . (25
he(r)=c® (r)+p1f dr'c®(Jr—r'|)he(r"). (23 922 I\, v

For q<0.1547 and providedy; is not too high, it is an
excellent approximation to neglect the third term on the
right-hand side of Eq(25).'® Then, with Eq.(22), we obtain

<N2>N1,Z2,V 3
—y=all-mlta)?), (26

As in the binary mixture case we employ the PY closure,
which now takes the form

heﬁ(r):_l, I’<0’11,

(= (1-exd BwaD[N*(r) +1], r>0y;, (29
where the numerical solution of Eq§23) and (24) then or equivalently
yields, for various state pointsp{,z,) and fixed size ratio ) 6 7y
q=0.15, the pair correlatioh®™(r) and the structure factor 2. 1)= —s T AT a3
S =[1- s (k)] Tz tT T
In order to be able to compare the resultin®f(r) and  Employing the conversion of Eq27), we can compare our

S*f(k) for given (771 ,2,) with the previoush;,(r) andS;;(k) results for the binary mixture with those of the effective one-
obtained for given §4,7,), we need to convert between the component system. Note that E&7) with (22) implies that

(27)
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35 : : TABLE |. Dimensionless isothermal compressibiliiig T 1 for the binary
3 Asakura—Oosawa model obtained from the colloid—colloid structure factor
3.0 S,;4(0), colloid—polymer structure facto,;,(0), and polymer—polymer
25 [ structure facto5,,(0) and Eq(9) for size ratiog=0.15 and varying colloid
it and polymer packing fractions,; and 7, .
2.0
15 r 71 72 S;4(0) S;(0) S2(0) pkeTxT
g 0.02 0.01 0850  —0.333 1.133 0.94
= 1.0 0.02 0.05 0.860 —0.748 1.656 0.94
0.10 0.01 0.460 —0.461 1.460 0.71
0.5 0.10 005 0483 -1070  3.380 0.72
0.0 0.30 0.05 0.125 -0.715 5.085 0.29
-05 - - ]
-1.0 5 :
0 1 2 3 )
/o, derstand whyh,(r)[=h®f(r)] increases near contact as
6.0 more polymer is added at fixed colloid packing fraction. In-
| ' ' ' ' b) | creasingr, simply increases- w,(z,;04), the well depth of
50 F——\ - the Asakura—Oosawa pair potential leading to enhanced at-

\ 1 traction near contact; recali®(r)=exg — Bw,(z,;r)]—1 for
low colloid fractions.

Having confirmed that the colloid structure is the same
in the binary and effective one-component systems we can
investigate the isothermal compressibilities in the two corre-
sponding systems. In the binary Asakura—Oosawa model, the
isothermal compressibility can be calculated from khe O
; limit of the partial structure factors, using E®). The results
10 — :,-"' i for §;(0) and for the dimensionless quantji%g T x1 at the

i K ] five states considered in Figs. 1-5 can be found in Table I.
-2.0 0 ’ : ' Recall thatp=p;+ p,.

It follows from the effective one-component expression

for x1 in Eq. (16), together with Eqs(13) and (22), that

4.0

S(ko,)

ko,

FIG. 5. As in Fig. 1 but nowp;=0.30 and»,=0.05.

: (28)

1 X (&22> (a,lh)
= <r—+|—| |1+|—

pkeTxr S*(0) | dp X{ Jz, o
the ratio of polymer fraction in the binary mixture to that in
the reservoir is given by, / 75(z,) =1— 7:(1+q)°. wherex=x;=p./p. The first term on the right-hand side

Alongside the pair correlation functiorts;(r) and the follows directly from the calculation of the colloid structure
structure factorss;; (k) of the binary mixture at several state factor, and the prefactor of the second term follows from Eg.
points, Figs. 1-5 also display(r) and S*f(k) of the corre- (27). We estimate the remaining term on the right-hand side
sponding one-component system, with determined from Of Eq. (28), namely ¢BI1/9z;),,, from the approximate
Eq. (27). It is evident thatS;;(k)=S%(k) and h;y(r)  ©ne-component equation of stafell(p;,z;) = pBIlys(p1)
=heff(r) within the accuracy of the plots in all five cases +B5°(22)p3, with Tlys the one-component hard-sphere
shown. This confirms that for this particular model the map-Pressure and35° the second virial coefficient associated
ping is exact. Note that the comparisons in Figs. 1-5 all refepvith the Asakura—Oosawa pair interaction of E1). This
to very low polymer packing fractions, vizz,<0.05, al-  Yields (9B11/d25), = p5[IB5°(25)/9z,]. We have now de-
though the colloid fractions can be substantially higher, viz.termined explicit expressions for all three terms on the right-
71=0.30. We deliberately restricted our consideration to thishand side of Eq(28). All three contributions, as well as the
regime because of the approximate nature of the PY-closunesulting values opkgTx, are listed in Table Il. Compar-
employed in our calculations. It is important to recognizeing the far right columns of Tables | and Il confirms that the
that the PY treatment for the two-component system is notsothermal compressibility of the effective one-component
precisely equivalent to PY for the effective one-componentsystem is equal to that of the corresponding binary Asakura—
system. However, for sufficiently low packing fractions the Oosawa model for all five state points. Comparing the mag-
differences between the two treatments should be negligiblanitudes of the three contributions on the right-hand side of
For »,>0.05 we do find thah;4(r) begins to deviate sig- Eg.(28) shows that the main contribution to the inverse iso-
nificantly fromh®f(r) (there is already an indication of small thermal compressibility is due to the second, ideal polymer
deviations in Fig. 5 but we emphasize that this reflects our term. Changing the volume of the effective one-component
use of the PY closure and not any fundamental failing of thesystem at fixed\N; and N, gives rise to a different fugacity
mapping. Z,. It is this volume dependence @} at fixed N, andN,

Within the one-component description it is easy to un-(combined with the dependence of the polymer reservoir
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TABLE II. Dimensionless isothermal compressibiliyksTx+ obtained

from Eq.(28) for states corresponding to those in Table I, calculated for the
effective one-component system based on the Asakura—Oosawa pair poten
tial Egs.(20) and (21). 7, is the packing fraction of polymer in the reser-

VOir.

J. Chem. Phys., Vol. 113, No. 11, 15 September 2000

Dijkstra, van Roij, and Evans

ibility of real polymer—colloid mixtures. Either one attempts
to measure all three partial structure factors nea0 and
utilizes Eq.(9) (this is a tall order even with modern neutron
scattering technique®r one attempts to obtaig; from Eq.
(16), making some assumption abqu{(z,) and the volume

X gz) (@ (r’fﬁﬂ) dependence of,.

m w5(15) ST\l L\ By ok Ty We have, of course, ignored the atomic/molecular nature
of the solvent. This leads to further complications in the

0.02 0.01030.0) 0.0079 1.057 -9.22-5 0.94 int tati fth twal ibility of the t

002 00516005 00016 1062 —10c—4 0.94 interpretation of the actual compressibility of the ternary

0.10 0.01180.0) 00710 1.345 —2.9-3 071 (colloid+polymert+solvent) mixture. In principle one can

0.10 0.059000.09 0.0138 1.382 —3.4e—3 0.72 include solvent effects using the present formalism. For ex-

0.30  0.09200.05 01588 3315  -8.0e-2 0.29 ample, for a one-component colloidal suspension the analy-

sis of Secs. Il and Il remains valid and the compressibility
of the suspension is given by E@), where 1 refers to col-

pressurep, on z,) that mainly determines the inverse iso- Ipid and 2 to solvent, ofassuming pairwise additive poten-
thermal compressibility. The final term in E€@8) is 2% or  tials for solvent and colloiEq. (16) wherep, andz, refer

3% of the total fory,=0.30 while for the first four states [© the reservoir of solvent. We are not aware of attempts to
considered in Table Il it is completely negligible. Thus, the Nterpret the measured compressibility of suspensions in
particular choice of approximation fdil(p;,z,) is not im-  terms of Eq.(16) but we suspect they exist.

portant in estimating this term. The first term, which corre- ~ Finally, we conclude with some remarks about charged
sponds to the inverse osmotic compressibility, contributes afelloids. As mentioned in Sec. | experiments on charge-

the few percent level. Clearly it isot appropriate to approxi- Stabilized colloids show that the osmotic bulk modulus as
mate the compressibility of the true binary mixtuye by  determined from the colloidal structure factor at long wave-

that of the effective one-component system . In general lengths[see Eq.(13)] is three times smaller than that calcu-
the former can be expected to be much smaller than thkted from a simple elastic theory using the potential of mean
latter, as was found in the single example studied by Louidorce W. It is important to realize that the latter quantity,
et al.in Ref. 11. Those authors were not able to account fotvhich is based o, yields again amsmoticbulk modulus,
the large difference between their calculated values which, a8"d thus a fair comparison is made in Ref. 10. In both ap-

we have seen, resides in the ideal polymer term, not considtroaches no attempt is made to make connection with the
ered in their work. total bulk modulus of the ternary mixture of colloids and

co-and counterions. However, the potential of mean face
that is employed in their elastic theory contaiosly the
repulsive DLVO pair interactions, while the exadt may

In this article we have argued that care should be takewontain triplet, and higher-body interactions. The discrep-
when one compares thermodynamic properties of a binargncy between the osmotic bulk modulus obtained from the
mixture with those obtained from the corresponding effectivecolloidal structure factor and the elastic theory can, thus, be
one-component system. We first showed that, for exact magexplained by the approximation made in the potential of
pings, the colloid—colloid structure in the mixture is equal tomean force and we therefore support their conclusions that
the colloidal structure in the effective one-component systhe DLVO pair interactions alone cannot explain the results
tem, provided that the thermodynamic state points are ideref the scattering experiments and that triplet, and higher-
tical, i.e., No=(Np)n, -, v We then showed thatr, the  body interactions are nonnegligible.
isothermal compressibility of the mixture, is equal to the  Indeed recent theoretical studies of effective interactions
total compressibility of the corresponding effective one-in a charged-stabilized colloidal suspension show that a
component system, but should be carefully distinguishednany-body cohesion can explain some of the features of the
from xt ¢, the osmoticcompressibility of the effective one- experimentally observed phase behavidm. this work, the
component system, which is proportional to the;0 limit  three-component system of charged colloids, co-, and coun-
of the structure factor of the colloids. The difference betweerterions is mapped onto an effective one-component colloidal
the total and the osmotic compressibility involves the vol-system with anapproximateeffective Hamiltonian for the
ume dependence of the fugacity at fixed particle numbers colloids that consists of a one-body term and purely repul-
N; andN,, and the dependence of the osmotic press$iire sive DLVO pair interactions, which both depend nontrivially
and the reservoir pressupg on z,. Explicit calculations for  on the colloid density. In this approximate theory, the many-
the Asakura—Oosawa model of a binary colloid diukal) body cohesion is embodied in the density-dependent one
polymer mixture with size ratiqj=0.15 confirm that the body and pair terms. The result is the prediction of a gas—
structure of the colloids and the total compressibility are thdiquid transition terminating in a critical point which is
same in the effective one-component system as in the mixdriven by the one-body term or “volume tern(Ref. 7). As
ture. Our results show that for the low packing fractions wethe effective pairwise potentials are purely repulsive they
consider)({}eff makes only a small contribution te;* and  cannot account for a critical point divergence of the colloid
that it is the volume dependencemfwhich makes the main  structure factor ak— 0. On the other hand, the exact effec-
contribution. There are clear repercussions for the compressive one-component Hamiltonian, with two-, three-, and

V. DISCUSSION
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more body interactions, would show the structure factor di-Matter Network and is part of the research program of the
verging when a critical point is approach¥dt is tempting  “Stichting voor Fundamenteel Onderzoek der Materie
to argue that in this approximate thedparts of the three- (FOM),” which is financially supported by the “Neder-
and higher-body terms are lumped together in the one bodiandse Organisatie voor Wetenschappelijk Onderzoek
and pair terms, which thereby become nontrivially dependentNWO).”
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