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We study the effective interactions, structure, and the isothermal compressibility of a binary mixture
interacting with pairwise additive pair potentials. By integrating out the degrees of freedom of
species 2 in the partition sum we first show that a binary mixture can be mapped formally onto an
effective one-component system with an effective Hamiltonian consisting of a structure-independent
term, which contributes to the total pressure and chemical potential of the system, but does not
affect the phase behavior, and a structure-dependent potential of mean force, which contains pair–,
triplet–, and higher–body interactions. We then show that the 1-1 structure factor and pair
correlation function, and the total isothermal compressibility of the mixture are equal to those of the
effective one-component system, provided the mapping is exact. We illustrate and confirm these
results by calculating the structure factors and pair correlation functions of the binary Asakura–
Oosawa model, which is a simple model for colloid–polymer mixtures, and those of the
corresponding one-component system for a size ratio such that the mapping onto an effective
one-component Hamiltonian with a strictly pairwise potential of mean force is exact. The distinction
between the osmotic and total compressibility of the mixture is emphasized. ©2000 American
Institute of Physics.@S0021-9606~00!51335-X#
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I. INTRODUCTION

Colloidal suspensions are complex fluids that consis
mesoscopic particles suspended in a solvent~e.g., water!.
Often other components, such as salt ions or polymers,
present as well. Such multicomponent fluids are difficult
describe as very different length and time scales are invo
for the different constituents. This problem is often circu
vented by coarse graining, i.e., by eliminating the degree
freedom of the smaller particles and the solvent, wh
yields a one-component system that is described by effec
interactions. The ideal-gas version of this concept dates b
to Van’t Hoff, who showed that the osmotic pressure o
suspension is proportional to the solute concentration.
formalism for describing the more complicated and intere
ing case of interacting, nonideal particles was introduced
McMillan and Mayer in 1945.1An important ingredient of
the McMillan–Mayer solution theory is the so-called ‘‘po
tential of mean force,’’ which plays the role of the intera
tion Hamiltonian in the effective one-component system
the potential of mean force is assumed to be pairwise a
tive, with some specific effective pair-potential~e.g., the
DLVO potential in the case of charge-stabilized colloid
suspensions,2 or the depletion potential in the case
colloid–polymer, colloid–colloid mixtures,3,4 and mixtures

a!Electronic mail: m.dijkstra@phys.uu.nl
4790021-9606/2000/113(11)/4799/9/$17.00
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of micelles and emulsion droplets5 ! one can determine the
phase behavior of the colloidal system via simulation
theory using the same techniques as for one-component
tems. It is known that predictions for the phase behavior
charge-stabilized suspensions which follow from the eff
tive DLVO theory are in agreement with experiments,
least at sufficiently high salt concentrations.2,6 The status of
the DLVO theory at very low salt concentrations is mo
controversial, but recent theoretical studies of effective int
actions can explain some of the features of the experim
tally observed phase behavior.7 In the case of very asymmet
ric binary hard-sphere mixtures, we compared the ph
behavior determined from simulations of the effective on
component system with that from simulations of the tr
binary mixture.8 The agreement we found was surprising
good, and provides important justification for the use of t
pairwise depletion potential in the effective one-compon
system.8 Thus, it is fair to argue that the concept of integra
ing out or coarse graining has been successful in descri
phase diagrams of colloidal systems.

An important subsequent question is whether the eq
librium structure and the various thermodynamic propert
of the mixture are also well-described by the potential
mean force or the effective Hamiltonian. Some recent
amples in the literature suggest that this isnot the case. Re-
cent experiments on charge-stabilized colloidal crystals,
instance, show that the bulk modulus—the inverse of
9 © 2000 American Institute of Physics
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compressibility—as determined from the colloid structu
factor at long wavelengths is three times smaller than
calculated from the DLVO theory.10 The authors then con
clude that the conventional DLVO theory for the effecti
colloidal interactions fails to account for the elastic prop
ties of colloidal crystals.10 Another example is given by
Louis et al., who calculate the structure factors of th
Asakura–Oosawa model for colloid–polymer mixtures in t
Percus–Yevick~PY! approximation.11 They find that the iso-
thermal compressibilityxT obtained from thek→0 limit of
the partial structure factors@see Eq. ~9!# in the two-
component Asakura–Oosawa model is smaller by an o
of magnitude thanxT,eff , the osmotic compressibility, ob
tained from thek→0 limit of the colloidal structure factor o
the corresponding effective one-component system@see Eq.
~13!#.11

In this article we address the issue of how to comp
the thermodynamic properties of the mixture with those
the effective one-component system. Making such comp
sons is not trivial. We first show that when the mapping
the homogeneous mixture onto the corresponding effec
one-component system is exact, the colloid–colloid struct
in the mixture should be equal to the colloidal structure
the effective one-component system. In particular this
plies that the pair correlation functions and structure fact
of the colloids obtained from the effective one-compon
Hamiltonian description are exactly equivalent to t
colloid–colloid pair correlation functions and structure fa
tors in the colloidal suspension. The same equivalence h
for higher-order correlations. We then demonstrate that th
modynamic properties, focusing on the isothermal compre
ibility, are also equal in the mixture and in the correspond
effective one-component system—provided once again
mapping is exact and the comparison is made at precisely
same state point. As an example we calculate the struc
factors and pair correlation functions of the two-compon
Asakura–Oosawa model and those of the effective o
component system for a polymer/colloid size ratio such t
the mapping onto an effective one-component Hamiltoni
whose potential of mean force has strictly pair interactio
is known to be exact.9 We show that the structure factors an
the pair correlation functions are equal in the two cor
sponding systems.xT as calculated from thek→0 limit of
the partial structure factors of the mixture does agree w
the full result for the effective one-component system. T
main contribution to the latter is an ideal polymer term n
contained inxT,eff and not considered in Ref. 11.

II. MAPPING A MIXTURE ONTO AN EFFECTIVE ONE-
COMPONENT SYSTEM

We showed in Ref. 8 that a homogeneous binary mixt
can be formally mapped onto an effective one-compon
system with effective interaction HamiltonianHeff by inte-
grating out the degrees of freedom of one of the two spe
in the partition sum. For completeness we briefly recap
late. We consider a classical fluid of two species, label 1
2, in a macroscopic volumeV. For particle numbersN1

5Vr1 and N25Vr2 , the total Hamiltonian consists o
~trivial! kinetic energy contributions and the interactio
Downloaded 26 Aug 2002 to 131.211.35.187. Redistribution subject to A
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HamiltonianH5H111H121H22. We assume pairwise add
tive pair potentialsf11, f12, andf22 in the mixture~but not
in the effective one-component system!. Thus, H11

5( i , j
N1 f11(Ri j ), H125( i 51

N1 ( j 51
N2 f12(Ri2r j ), and H22

5( i , j
N2 f22(r i j ), whereRi and r j denote the coordinates o

the particles of species 1 and 2, respectively,Ri j 5Ri2Rj

andr i j 5r i2r j . It is convenient to consider the system in th
(N1 ,z2 ,V) ensemble, in which the fugacityz2of species 2 is
fixed. Omitting the explicitT dependence, we can write th
thermodynamic potentialF(N1 ,z2 ,V) of this system as
exp@2bF#5Tr1 exp@2bHeff#, whereHeff5H111V is the ef-
fective Hamiltonian of species 1 andb51/kBT. Here, V
5V(N1 ,z2 ,V;$R%) is the grand potential of the fluid of spe
cies 2 in the external field of a fixed configuration ofN1

particles of species 1 with coordinates$Ri%; i 51,2, . . .N1 ,
and is given by exp@2bV#5(N250

` z2
N2Tr2 exp@2b(H12

1H22)#. The trace Trn is short for 1/Nn!Ln
3Nv times the vol-

ume integral over the coordinates of all the particles of s
ciesn. Ln is the thermal wavelength.

By performing a Mayer cluster expansion, we th
showed thatV can be written as(n50

N1 Vn , wheren labels the
number of particles of species 1 that interact simultaneou
with the ‘‘sea’’ of species 2. The zero-body termV0 is the
grand potential of a pure system of species 2 at fugacityz2 in
a volumeV, i.e., V0(z2 ,V)52p2(z2)V, with p2(z2) the
pressure of the reservoir of species 2. The one-body term
of the formV1(N1 ,z2)5N1v1(z2), with v1(z2) the grand-
potential difference between a ‘‘sea’’ of species 2 at fugac
z2 with and without a particle of species 1 at the origi
Within the same formalism we obtainV2(N1 ,z2 ;$R%)
5( i , j

N1 v2(z2 ;Ri j ), wherev2 is the grand potential differ-
ence between a ‘‘sea’’ of species 2 at fugacityz2 containing
two particles of species 1 separated by a finite distanceRi j

5uRi2Rj u and by infinite distance. Similar expressions c
be given for the three- and higher-body terms, e.g.,V3

5( i , j ,k
N1 v3(z2 ;Ri jk). Thus, we arrive at the effective one

component Hamiltonian

Heff~N1 ,z2 ,V;$R%!52p2~z2!V1N1v1~z2!

1W~N1 ,z2 ;$R%!, ~1!

where the dependence on the coordinates$R% resides only in
the potential of mean force

W~N1 ,z2 ;$R%!5(
i , j

N1

@f11~Ri j !1v2~z2 ;Ri j !#

1 (
i , j ,k

N1

v3~z2 ;Ri jk !1 . . . . ~2!

Consequently, the thermodynamic potential of interestF can
be written as

F~N1 ,z2 ,V!52p2~z2!V1N1v1~z2!1A~N1 ,z2 ,V!,
~3!

with A defined by exp@2bA#5Tr1 exp@2bW#, i.e., A is the
Helmholtz free energy of a one-component system with
interaction Hamiltonian that equals the potential of me
force.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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4801J. Chem. Phys., Vol. 113, No. 11, 15 September 2000 Effective interactions of colloidal suspensions
A few remarks are in order.~i! Although the problem of
the binary mixture has been reduced formally to that of
effective one-component fluid, one must determine the ef
tive potentialsvn for n51,2 . . . before explicit calculations
of F and A can be made.~ii ! Since the termsV0

52p2(z2)V and V15N1v1(z2) in the effective Hamil-
tonian in Eq.~1! do not depend on the instantaneous coor
nates$R% of the particles of species 1, they do not affect t
structureof the effective one-component system, as we w
see in more detail below. Moreover, these two terms do
affect thephase behaviorof the two-component system be
cause of their trivialV andN1 dependence, which gives ris
to innocuous shifts in the pressurep52(]F/]V)N1,z2

and
chemical potentialm15(]F/]N1)z2,V

of species 1. It is, in
fact, easy to see from Eq.~3! that

p~N1 ,z2 ,V!5p2~z2!1P~N1 ,z2 ,V!, ~4!

m1~N1 ,z2 ,V!5v1~z2!1m̃1~N1 ,z2 ,V!, ~5!

with the osmotic pressureP[2(]A/]V)N1 ,z2
and the

shifted chemical potentialm̃1(N1 ,z2 ,V)[(]A/]N1)z2,V
. As

the shiftsp2 and v1 are independent of densityr1 they do
not influence the phase coexistence.9 Clearly,P andm̃1 play
the role of pressure and chemical potential in the o
component system interacting viaW. ~iii ! It is interesting that
the one-body termv1 can be related to the Henry’s law
constanth(z2)5 limr1→0r1 /z1(r1),12 with z1 the activity of

species 1:z15exp@bm1#/L1
3. From Eq. ~5! it follows that

h(z2)5exp@2bv1(z2)#. The deviation ofh(z2) from unity is
a measure for the average 1–2 interaction, at givenz2 , in the
absence of 1–1 interactions.~iv! Although phase coexistenc
of the effective one-component system for a fixed tempe
ture and given value ofz2 is completely determined by
equality of osmotic pressuresP and shifted chemical poten
tials m̃1 in two coexisting phases, one does requirep2(z2)
andv1(z2) explicitly in order to convert fromz2 to the av-
erage densityr25^N2&N1,z2,V

/V of particles of species 2
This can be ascertained directly from the identity

^N2&N1 ,z2 ,V52z2~]bF/]z2!N1 ,V . ~6!

It is this conversion from the (N1 ,z2 ,V) ensemble to the
binary mixture (N1 ,N2 ,V) ensemble that plays a crucial ro
in what follows.~v! The particular technique described he
does not apply directly to Coulombic mixtures where oth
methods are required.7

III. STRUCTURE AND ISOTHERMAL
COMPRESSIBILITY

In the previous section, we showed that a binary mixt
can be mapped formally onto an effective one-compon
system with an effective interaction HamiltonianHeff, and
corresponding potential of mean forceW, by integrating out
the degrees of freedom of one of the species in the parti
sum and described how the phase behavior may be d
mined. Now we investigate the relation between struct
and susceptibility~in this case the isothermal compressib
ity! in the binary mixture ensemble at fixed (N1 ,N2 ,V) and
the effective one-component ensemble at fixed (N1 ,z2 ,V).
Downloaded 26 Aug 2002 to 131.211.35.187. Redistribution subject to A
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We begin by defining the 232 partial structure factor
matrix in the binary mixture ensemble by

Sab~k!5
1

ANaNb

^ra~k!rb~2k!&N1 ,N2 ,V , ~7!

wherer1(k)5( j 51
N1 exp@2ikR j # and analogously forr2(k),

and where the ensemble average of an observ
O(N1 ,N2 ;$R%,$r%) is defined by

^O&N1 ,N2 ,V5
Tr1 Tr2O exp@2bH#

Tr1 Tr2 exp@2bH#
. ~8!

It is a standard result that thek→0 limit of the partial struc-
ture factorsSab(k) and the isothermal compressibilityxT of
the binary system are related by13

rkBTxT5
S11~0!S22~0!2S12

2 ~0!

x1S22~0!1x2S11~0!22Ax1x2S12~0!
, ~9!

where r5(N11N2)/V, x15N1 /(N11N2), and x25N2 /
(N11N2), and wherexT is defined as

xT
2152VS ]p

]VD
N1 ,N2

, ~10!

wherep denotes, as before, the pressure of the binary m
ture and the temperatureT is, as usual, fixed.

In the effective one-component system at fix
(N1 ,V,z2) the structure factor~of species 1, of course! is
defined by

Seff~k!5
1

N1
^r1~k!r1~2k!&N1 ,V,z2

, ~11!

where the ensemble average of an observableO($R%,N1),
i.e., an observable that is independent ofN2 and$r % and thus
commutes with Tr2, is now given by

^O&N1 ,V,z2
5

Tr1 (N250
` z2

N2 Tr2O exp@2bH#

Tr1 (N250
` z2

N2 Tr2 exp@2bH#

5
Tr1 O exp@2bW#

Tr1 exp@2bW#
. ~12!

Note that the potential of mean forceW can be replaced by
Heff on the right-hand side of Eq.~12!, since the difference
gives rise to a common factor in the numerator and the
nominator. Thek→0 limit of the structure factorSeff of a
one-component system of densityr1 and pressureP satisfies

r1kBTxT,eff5 lim
k→0

Seff~k!, ~13!

with the effective compressibilityxT,eff defined as

xT,eff
21 52VS ]P

]V D
N1 ,z2

. ~14!

The effective compressibility is therefore the osmotic co
pressibility. Clearly, Eq.~13! is the one-component analog o
~9!, and Eq.~14! that of ~10!.

We are now in a position to connect several of the qu
tities defined above. A key ingredient of this identification
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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the fact that any ensemble average^O& of a ~static! observ-
ableO($R%,N1) is independent of the ensemble in the th
modynamic limitN1→`, V→` with N1 /V constant. On the
basis of Eqs.~7! and ~11! we therefore have

S11~k![Seff~k!, ~15!

provided the thermodynamic state points are identical,
providedN25^N2&N1 ,z2 ,V . Together withp5P1p2 , as de-
fined in Eq.~4!, and the definitions of the compressibilities
Eqs.~10! and ~14!, the identity of Eq.~15! directly yields

xT
215xT,eff

21 2VS ]z2

]V D
N1 ,N2

F S ]P

]z2
D

N1 ,V

1S ]p2

]z2
D G . ~16!

The identification of the structure factor in Eq.~15! and the
relation between the total and the osmotic compressibility
Eq. ~16! are the central results of this article. The differen
betweenxT andxT,eff involves the volume dependence ofz2

at fixedN1 andN2 , and the dependence of bothP andp2 on
z2 , i.e., not only properties of the effective one-compone
system, but also the thermodynamics of the reservoir of s
cies 2, at fugacityz2 .

If the structure factors are identical, it follows that th
total pair correlation functions are also identical:h11(r )
[heff(r). Moreover, it is straightforward to generalize
three-body, four-body, etc., correlations. These higher-or
correlations will be identical, provided once again the st
points are chosen to be identical. However, we wish to e
phasize that~equilibrium! correlation functions of species
are only identical in the effective one-component system
the binary mixture, provided theexact potential of mean
forceW is used in the determination of the statistical avera
Eq. ~12!. It is not guaranteed that an approximate mapping
the two-component system onto a one-component sys
will preserve this identity of the structure, even if the pred
tions for the phase behavior that result from the approxim
mapping are reasonably accurate. A typical exactW involves
pair-, triplet-, and higher-body terms, while a typical a
proximateW contains only pair interactions.

In the remainder of this article we study a special bina
mixture for which the mapping onto an effective on
component system can be performed exactly and explic
This system is therefore especially well-suited to illustr
the main results of this section, embodied in Eqs.~15! and
~16!.

IV. ASAKURA–OOSAWA MODEL

Reference 9 shows that the so-called Asakura–Oos
model, which is a simple model for colloid–polymer mix
tures, can be mapped exactly onto an effective o
component Hamiltonian withW strictly pairwise, when the
polymers are sufficiently small compared with the colloid
Here we calculate the structure factors and the pair corr
tion functions for the two-component Asakura–Oosa
model and those for the corresponding effective o
component system. We demonstrate explicitly from our
merical results that the structure factors, the pair correla
functions, and the isothermal compressibilities in the t
systems are the same.
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In the Asakura–Oosawa model the colloids are mode
as hard spheres with diameters15s11. The polymer coils
are treated as interpenetrating, noninteracting particles a
gards their mutual interactions (s2250). However, the poly-
mers are excluded by a center of mass distance ofs12

5(s11s2)/2 from the colloids, wheres2 , the diameter of
the polymer coil, is given bys252Rg with Rg the radius of
gyration. The pairwise potentials in this simple model a
thus given by

f11~Ri j !5H `, uRi j u,s11

0, otherwise
,

~17!

f12~Ri2r j !5H `, uRi2r j u,s12

0, otherwise
,

f22~r i j !50.

HereRi andr j are the positions of the centers of the colloi
and the polymer coils, respectively, whileRi j 5Ri2Rj and
r i j 5r i2r j .

The structure of the homogeneous binary Asakur
Oosawa model is characterized by three partial correla
functionshi j (r ;r1 ,r2) and three pairwise direct correlatio
functionsci j (r ;r1 ,r2) which satisfy the coupled Ornstein
Zernike relations:

hi j ~r !5ci j ~r !1(
l 51

2

r lE cil ~ ur2r 8u!hl j ~r 8!dr 8. ~18!

In principle one could determine thehi j by computer simu-
lation. However, for the very asymmetric situations of inte
est here, where the size ratioq[s2 /s1 is small, ergodic
problems arise when the packing fraction of the small~poly-
mer! species 2 becomes substantial. In order to avoid s
difficulties, we solved Eq.~18! numerically using the
Percus–Yevick~PY! closure relations

hi j ~r !521, r ,s i j ,

ci j ~r !50, r .s i j . ~19!

We chose to restrict our attention to very small values of
polymer packing fraction and fairly small values of the co
loid packing fraction where the PY closure should be ve
accurate. Figures 1–5 show examples of the resulting pa
correlation functionsh11(r ), h12(r ), andh22(r ), and the cor-
responding partial structure factorsSi j (k) for the fixed size
ratio q50.15, and for various state points, characterized
colloid and polymer packing fractionsh15ps1

3r1/6 and
h25ps2

3r2/6. As expected, the colloid–colloid structure b
comes more pronounced as the colloid packing fractionh1

increases at fixedh2 : compare Figs. 2, 4, and 5. Forh1

50.30 the colloid–polymer pair-correlation functionh12(r )
and structure factorS12(k) ~see dotted lines in Fig. 5! also
exhibit pronounced structure. Increasingh2 , the polymer
fraction, at fixedh1 , leads to a rapid increase in the colloid
colloid h11(r ) near contactr 5s1 and to an increase in th
polymer–polymer structure factorS22(k) at smallk: compare
Figs. 1 and 2 and Figs. 3 and 4.

We now consider the structure and thermodynamics
the associated one-component system, and compare th
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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4803J. Chem. Phys., Vol. 113, No. 11, 15 September 2000 Effective interactions of colloidal suspensions
sults with those of the binary mixture. It is well-known th
three or more nonoverlapping large hard spheres canno
multaneously overlap with a single smaller sphere, if the s
ratio q,0.1547.14 In Ref. 9, this was shown to imply that th
n-body terms in the potential of mean force of Eq.~2! vanish,
i.e., vn[0, for n>3. Thus, for these small size ratios, th
only nonzero contributions toW are the pairwise terms:

W~N1 ,z2 ;$R%!5(
i , j

N1

@f11~Ri j !1v2~z2 ;Ri j !#, ~20!

where the bare pair potentialf11 is given in Eq.~17!, and
wherev2 , the polymer-induced contribution to the pair p
tential, was derived by Asakura and Oosawa4

FIG. 1. Colloid–colloid ~full line!, colloid–polymer ~dotted line!, and
polymer–polymer~dashed line! partial pair correlation functionsh(r /s1)
~a! and structure factorsS(ks1) ~b! for a colloid–polymer mixture with size
ratio q50.15, colloid packing fractionh150.02 and polymer packing frac
tion h250.01. The thick dashed line denotes the colloid pair correlat
function ~a! and structure factor~b! for the corresponding effective one
component system, based on the Asakura–Oosawa pair potential Eqs~20!
and ~21!.
Downloaded 26 Aug 2002 to 131.211.35.187. Redistribution subject to A
si-
e

bv2~z2 ;Ri j !55
2

ps2
3z2

6

~11q!3

q3

3F12
3Ri j

2~11q!s1
1

Ri j
3

2~11q!3s1
3G ,

for s1,Ri j ,s11s2,

0, otherwise.
~21!

This Asakura–Oosawa pair potential describes an attrac
potential well close to the surface of the colloid, whose de
increase linearly with increasingz2 . The range of the poten
tial is given bys2 . Due to the ideal character of the poly
mers in this model, the one-body termv1 and the reservoir
pressurep2 are also known exactly9

bv1~z2!5z2

p

6
s1

3~11q!3 ,

bp2~z2!5z25r2
r ~z2!, ~22!

wherer2
r (z2) is the density of ideal polymer in the reservo

We have thus specified completely the effective on
component Hamiltonian of the Asakura–Oosawa mod
Clearly the absence of higher-body contributions toW leads
to an enormous simplification, allowing us to have an e

n

FIG. 2. As in Fig. 1 but nowh150.02 andh250.05.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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plicit effective Hamiltonian, which is, nevertheless, an ex
representation of the original two-component model. N
we calculate the effective one-component pair correlat
function heff(r;r1,z2), which is related to the effective one
component direct correlation functionceff(r;r1,z2) through
the one-component Ornstein–Zernike equation

heff~r !5ceff~r !1r1E dr 8ceff~ ur2r 8u!heff~r 8!. ~23!

As in the binary mixture case we employ the PY closu
which now takes the form

heff~r !521, r ,s11,

ceff~r !5~12exp@bv2# !@heff~r !11#, r .s11, ~24!

where the numerical solution of Eqs.~23! and ~24! then
yields, for various state points (h1 ,z2) and fixed size ratio
q50.15, the pair correlationheff(r) and the structure facto
Seff(k)5@12r1ĉ

eff(k)#21.
In order to be able to compare the resultingheff(r) and

Seff(k) for given (h1 ,z2) with the previoush11(r ) andS11(k)
obtained for given (h1 ,h2), we need to convert between th

FIG. 3. As in Fig. 1 but nowh150.10 andh250.01.
Downloaded 26 Aug 2002 to 131.211.35.187. Redistribution subject to A
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n

,

(N1 ,N2 ,V) ensemble and the (N1 ,z2 ,V) ensemble. This
conversion is provided by Eq.~6!, which with Eq.~3! can be
rewritten as

^N2&N1 ,z2 ,V5z2V
]bp2~z2!

]z2
2z2N1

]bv1~z2!

]z2

2z2S ]bA

]z2
D

N1 ,V

. ~25!

For q,0.1547 and providedh1 is not too high, it is an
excellent approximation to neglect the third term on t
right-hand side of Eq.~25!.15 Then, with Eq.~22!, we obtain

^N2&N1 ,z2 ,V

V
5z2@12h1~11q!3#, ~26!

or equivalently

z2~h1 ,h2!5
6

ps2
3

h2

12h1~11q!3 . ~27!

Employing the conversion of Eq.~27!, we can compare our
results for the binary mixture with those of the effective on
component system. Note that Eq.~27! with ~22! implies that

FIG. 4. As in Fig. 1 but nowh150.10 andh250.05.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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the ratio of polymer fraction in the binary mixture to that
the reservoir is given byh2 /h2

r (z2)512h1(11q)3.
Alongside the pair correlation functionshi j (r ) and the

structure factorsSi j (k) of the binary mixture at several sta
points, Figs. 1–5 also displayheff(r) andSeff(k) of the corre-
sponding one-component system, withz2 determined from
Eq. ~27!. It is evident that S11(k)5Seff(k) and h11(r )
5heff(r) within the accuracy of the plots in all five case
shown. This confirms that for this particular model the ma
ping is exact. Note that the comparisons in Figs. 1–5 all re
to very low polymer packing fractions, viz.,h2<0.05, al-
though the colloid fractions can be substantially higher, v
h1<0.30. We deliberately restricted our consideration to t
regime because of the approximate nature of the PY-clo
employed in our calculations. It is important to recogni
that the PY treatment for the two-component system is
precisely equivalent to PY for the effective one-compon
system. However, for sufficiently low packing fractions t
differences between the two treatments should be neglig
For h2.0.05 we do find thath11(r ) begins to deviate sig
nificantly fromheff(r) ~there is already an indication of sma
deviations in Fig. 5! but we emphasize that this reflects o
use of the PY closure and not any fundamental failing of
mapping.

Within the one-component description it is easy to u

FIG. 5. As in Fig. 1 but nowh150.30 andh250.05.
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derstand whyh11(r )@5heff(r)# increases near contact a
more polymer is added at fixed colloid packing fraction. I
creasingh2 simply increases2v2(z2 ;s1), the well depth of
the Asakura–Oosawa pair potential leading to enhanced
traction near contact; recallheff(r).exp@2bv2(z2;r)#21 for
low colloid fractions.

Having confirmed that the colloid structure is the sam
in the binary and effective one-component systems we
investigate the isothermal compressibilities in the two cor
sponding systems. In the binary Asakura–Oosawa model
isothermal compressibility can be calculated from thek→0
limit of the partial structure factors, using Eq.~9!. The results
for Si j (0) and for the dimensionless quantityrkBTxT at the
five states considered in Figs. 1–5 can be found in Tabl
Recall thatr5r11r2 .

It follows from the effective one-component expressi
for xT in Eq. ~16!, together with Eqs.~13! and ~22!, that

1

rkBTxT
5

x

Seff~0!
1S ]z2

]r D
x
F11S ]bp

]z2
D

r1

G , ~28!

where x5x15r1 /r. The first term on the right-hand sid
follows directly from the calculation of the colloid structur
factor, and the prefactor of the second term follows from E
~27!. We estimate the remaining term on the right-hand s
of Eq. ~28!, namely (]bP/]z2)r1 , from the approximate
one-component equation of statebP(r1 ,z2)5bPHS(r1)
1B2

AO(z2)r1
2, with PHS the one-component hard-sphe

pressure andB2
AO the second virial coefficient associate

with the Asakura–Oosawa pair interaction of Eq.~21!. This
yields (]bP/]z2)r1

5r1
2@]B2

AO(z2)/]z2#. We have now de-
termined explicit expressions for all three terms on the rig
hand side of Eq.~28!. All three contributions, as well as th
resulting values ofrkBTxT , are listed in Table II. Compar
ing the far right columns of Tables I and II confirms that t
isothermal compressibility of the effective one-compone
system is equal to that of the corresponding binary Asaku
Oosawa model for all five state points. Comparing the m
nitudes of the three contributions on the right-hand side
Eq. ~28! shows that the main contribution to the inverse is
thermal compressibility is due to the second, ideal polym
term. Changing the volume of the effective one-compon
system at fixedN1 andN2 gives rise to a different fugacity
z2 . It is this volume dependence ofz2 at fixed N1 and N2

~combined with the dependence of the polymer reserv

TABLE I. Dimensionless isothermal compressibilityrkBTxT for the binary
Asakura–Oosawa model obtained from the colloid–colloid structure fa
S11(0), colloid–polymer structure factorS12(0), and polymer–polymer
structure factorS22(0) and Eq.~9! for size ratioq50.15 and varying colloid
and polymer packing fractionsh1 andh2 .

h1 h2 S11(0) S12(0) S22(0) rkBTxT

0.02 0.01 0.850 20.333 1.133 0.94
0.02 0.05 0.860 20.748 1.656 0.94
0.10 0.01 0.460 20.461 1.460 0.71
0.10 0.05 0.483 21.070 3.380 0.72
0.30 0.05 0.125 20.715 5.085 0.29
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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pressurep2 on z2! that mainly determines the inverse is
thermal compressibility. The final term in Eq.~28! is 2% or
3% of the total forh150.30 while for the first four states
considered in Table II it is completely negligible. Thus, t
particular choice of approximation forP(r1 ,z2) is not im-
portant in estimating this term. The first term, which cor
sponds to the inverse osmotic compressibility, contribute
the few percent level. Clearly it isnot appropriate to approxi-
mate the compressibility of the true binary mixturexT by
that of the effective one-component system,xT,eff . In general
the former can be expected to be much smaller than
latter, as was found in the single example studied by Lo
et al. in Ref. 11. Those authors were not able to account
the large difference between their calculated values which
we have seen, resides in the ideal polymer term, not con
ered in their work.

V. DISCUSSION

In this article we have argued that care should be ta
when one compares thermodynamic properties of a bin
mixture with those obtained from the corresponding effect
one-component system. We first showed that, for exact m
pings, the colloid–colloid structure in the mixture is equal
the colloidal structure in the effective one-component s
tem, provided that the thermodynamic state points are id
tical, i.e., N25^N2&N1 ,z2 ,V . We then showed thatxT , the
isothermal compressibility of the mixture, is equal to t
total compressibility of the corresponding effective on
component system, but should be carefully distinguish
from xT,eff , theosmoticcompressibility of the effective one
component system, which is proportional to thek→0 limit
of the structure factor of the colloids. The difference betwe
the total and the osmotic compressibility involves the v
ume dependence of the fugacityz2 at fixed particle numbers
N1 and N2 , and the dependence of the osmotic pressurP
and the reservoir pressurep2 on z2 . Explicit calculations for
the Asakura–Oosawa model of a binary colloid and~ideal!
polymer mixture with size ratioq50.15 confirm that the
structure of the colloids and the total compressibility are
same in the effective one-component system as in the m
ture. Our results show that for the low packing fractions
considerxT,eff

21 makes only a small contribution toxT
21 and

that it is the volume dependence ofz2 which makes the main
contribution. There are clear repercussions for the compr

TABLE II. Dimensionless isothermal compressibilityrkBTxT obtained
from Eq.~28! for states corresponding to those in Table I, calculated for
effective one-component system based on the Asakura–Oosawa pair p
tial Eqs. ~20! and ~21!. h2

r is the packing fraction of polymer in the rese
voir.

h1 h2
r (h2)

x

Seff~0!
S]z2

]r D
x

S]z2

]r D
x
S]bP

]z2
D
r1 rkBTxT

0.02 0.0103~0.01! 0.0079 1.057 29.2e25 0.94
0.02 0.0516~0.05! 0.0016 1.062 21.0e24 0.94
0.10 0.0118~0.01! 0.0710 1.345 22.9e23 0.71
0.10 0.0590~0.05! 0.0138 1.382 23.4e23 0.72
0.30 0.0920~0.05! 0.1588 3.315 28.0e22 0.29
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ibility of real polymer–colloid mixtures. Either one attemp
to measure all three partial structure factors neark50 and
utilizes Eq.~9! ~this is a tall order even with modern neutro
scattering techniques! or one attempts to obtainxT from Eq.
~16!, making some assumption aboutp2(z2) and the volume
dependence ofz2 .

We have, of course, ignored the atomic/molecular nat
of the solvent. This leads to further complications in t
interpretation of the actual compressibility of the terna
(colloid1polymer1solvent) mixture. In principle one can
include solvent effects using the present formalism. For
ample, for a one-component colloidal suspension the an
sis of Secs. II and III remains valid and the compressibil
of the suspension is given by Eq.~9!, where 1 refers to col-
loid and 2 to solvent, or~assuming pairwise additive poten
tials for solvent and colloid! Eq. ~16! wherep2 andz2 refer
to the reservoir of solvent. We are not aware of attempts
interpret the measured compressibility of suspensions
terms of Eq.~16! but we suspect they exist.

Finally, we conclude with some remarks about charg
colloids. As mentioned in Sec. I experiments on char
stabilized colloids show that the osmotic bulk modulus
determined from the colloidal structure factor at long wav
lengths@see Eq.~13!# is three times smaller than that calc
lated from a simple elastic theory using the potential of me
force W. It is important to realize that the latter quantit
which is based onW, yields again anosmoticbulk modulus,
and thus a fair comparison is made in Ref. 10. In both
proaches no attempt is made to make connection with
total bulk modulus of the ternary mixture of colloids an
co-and counterions. However, the potential of mean forceW
that is employed in their elastic theory containsonly the
repulsive DLVO pair interactions, while the exactW may
contain triplet, and higher-body interactions. The discre
ancy between the osmotic bulk modulus obtained from
colloidal structure factor and the elastic theory can, thus,
explained by the approximation made in the potential
mean force and we therefore support their conclusions
the DLVO pair interactions alone cannot explain the resu
of the scattering experiments and that triplet, and high
body interactions are nonnegligible.

Indeed recent theoretical studies of effective interactio
in a charged-stabilized colloidal suspension show tha
many-body cohesion can explain some of the features of
experimentally observed phase behavior.7 In this work, the
three-component system of charged colloids, co-, and co
terions is mapped onto an effective one-component collo
system with anapproximateeffective Hamiltonian for the
colloids that consists of a one-body term and purely rep
sive DLVO pair interactions, which both depend nontrivial
on the colloid density. In this approximate theory, the man
body cohesion is embodied in the density-dependent
body and pair terms. The result is the prediction of a ga
liquid transition terminating in a critical point which i
driven by the one-body term or ‘‘volume term’’~Ref. 7!. As
the effective pairwise potentials are purely repulsive th
cannot account for a critical point divergence of the collo
structure factor ask→0. On the other hand, the exact effe
tive one-component Hamiltonian, with two-, three-, a
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4807J. Chem. Phys., Vol. 113, No. 11, 15 September 2000 Effective interactions of colloidal suspensions
more body interactions, would show the structure factor
verging when a critical point is approached.16 It is tempting
to argue that in this approximate theory~parts of! the three-
and higher-body terms are lumped together in the one b
and pair terms, which thereby become nontrivially depend
on the colloid density. This will be investigated in a furth
study.

We should also mention a theoretical study on the in
ence of the nonzero size of the small ions on the struc
factors of a micellar system by Kleinet al.17 They show that,
when the size of the small ions is sufficiently large, the p
tial structure factors of the micelles calculated from a prim
tive approach for the mixture differ significantly from th
structure factor of an effective one-component system wi
potential of mean forceW that contains only the DLVO po
tential for the micelles. The discrepancy between the mic
lar structure factor of the mixture and the effective on
component system can be accounted for by
approximation made inW. Triplet- and higher-body interac
tions are again nonnegligible when the micelles are not m
larger than the ions.
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