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A simulation study of the decay of the pair correlation function
in simple fluids
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Monte Carlo simulations are used to investigate the asymptotic decay of the total pairwise
correlation functionh(r ) for some model fluids. We determine the poles of the Fourier transform
ĥ(q) from the direct correlation functionc(r ). The leading poles determine the ultimate,r→`,
decay ofh(r ). For the truncated and shifted Lennard-Jones fluid we calculate the Fisher–Widom
~disorder! line in the temperature-density (T,r) plane where the ultimate decay ofrh(r ) crosses
over from monotonic~exponential! to exponentially damped oscillatory decay. This line lies close
to that obtained in an earlier integral-equation@hypernetted chain-soft core mean spherical
approximation~HMSA!# study. For states on the monotonic side of the disorder line,h(r ) has a
finite number of oscillations and we determine the boundaries which mark regions in the (T,r)
plane whereh(r ) has a given number of zeros using a random-phase approximation forc(r ). In the
case of the hard-sphere fluid, the ultimate decay ofh(r ) is oscillatory for all densities and we find
that simulation results for the period and~exponential! decay length of the oscillations are in good
overall agreement with those of Percus–Yevick theory, although there is some indication that
systematic differences develop for high-density statesr* >0.85. © 2000 American Institute of
Physics.@S0021-9606~00!51003-4#
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I. INTRODUCTION

It is now 30 years since Fisher and Widom1 conjectured,
on the basis of some exact results for one-dimensional m
els, that there should be a line in the temperature-den
(T,r) plane where the longest range decay of the total p
wise correlation functionh(r ) of a simple fluid should cross
over from monotonic to exponentially damped oscillato
For high temperatures and densities, repulsive forces
packing considerations dominate andh(r ) should exhibit os-
cillatory decay. At lower densities and temperatures, attr
tive interatomic forces play a more important role andh(r )
should decay in a monotonic fashion, as in Ornstein–Zern
theory. In magnetism, spin-spin correlations can also exh
different types of asymptotic decay and the analog of
cross over or Fisher–Widom~FW! line is well-known and is
termed the disorder transition line. For bulk fluids and ma
nets, the change in asymptotic decay ofh(r ) which occurs at
the crossover line does not imply any thermodynamic sin
larity and little attention was paid to the crossover pheno
enon until Evanset al.2 pointed out its repercussions for th
structure of fluid interfaces. The density profile of a fluid f
from a planar wall exhibits the same type of decay as
bulk h(r ). Thus, if rh(r );exp(2a0r) for r→`, then the
density profile at a wall~exerting a short-ranged wall-fluid
potential! will decay as exp(2a0z), wherez is the distance

from the wall, whereas ifrh(r );exp(2ã0r)cos(ã1r2u) then

the profile decays as exp(2ã0z)cos(ã1z2uw).2,3 This obser-
vation has significant implications for the structure of t
liquid-vapor interface2 and for the occurrence of wettin

a!Present address: Debye Institute, Condensed Matter Physics, Utrech
versity, Postbus 80000, 3508 TA Utrecht, The Netherlands.
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transitions at wall-fluid interfaces.2,4 The first attempt at cal-
culating the FW line for a realistic model of a fluid wa
based on the random phase approximation~RPA! for the
square-well model. The FW line, which is the line in th

(T,r) plane wherea05ã0, was found to intersect the liquid
branch of the liquid-gas coexistence curve atT/Tc;0.9 and
r/rc;1.9, whereTc andrc are the critical temperature an
density.2 Later, the accurate HMSA integral equation theo
was used to determine the FW line for the truncated a
shifted ~at Rc52.5s) Lennard-Jones fluid.5 The calculated
FW line intersected the coexistence curve at values ofT/Tc

andr/rc close to those stated above~see also Fig. 4!. Sub-
sequent investigations of asymptotic decay and crosso
lines have focused on Coulombic or screened Coulom
fluids6,7 where the crossover mechanisms associated w
charge correlations are different from those in simple, atom
fluids described by short-ranged interatomic potentials.

All the studies of the asymptotic decay of correlatio
reported hitherto have employed approximate theories of
uids, with varying degrees of sophistication. In the pres
paper we present the first study of the asymptotic decay
ing computer simulations. At first sight this might appear
be an especially difficult task—measuringh(r ) directly at
large interatomic separationr requires very large system
sizes and good statistics. However, we show that by us
the Ornstein–Zernike equation to calculate the direct co
lation functionc(r ) it is possible to extract the longest rang
decay ofh(r ) and determine the FW line without recourse
simulations with enormous numbers of particles. We rest
attention to model fluids with interatomic potentials that a
of finite range. For fluids in which the pairwise potenti
f(r ) decays as a power law,h(r ) decays ultimately as
2S2(0)f(r )/kBT, whereS(0) is theq→0 limit of the liq-

ni-
9 © 2000 American Institute of Physics
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1450 J. Chem. Phys., Vol. 112, No. 3, 15 January 2000 M. Dijkstra and R. Evans
uid structure factor,8,9 and there is no sharp FW line, a
though there is still erosion of the intermediate range os
lations ofh(r ) as the densityr is decreased.5

Our paper is arranged as follows: in Sec. II we summ
rize the key results for the asymptotics of correlation fun
tions and describe the theoretical framework for calculat
the inverse decay lengthsa0 , ã0 and the period 2p/ã1

which describe the decay ofh(r )—see above. Our Monte
Carlo simulation studies of the Lennard-Jones fluid, tru
cated and shifted atRc52.5s, are reported in Sec. III. We
measureh(r ), extract c(r ), and determine the quantitie
a0 ,ã0, andã1 from the latter. The FW line which we obtai
lies very close to that obtained in Ref. 5 from the HMSA f
the same potential. Moreover, we find that leading orde
symptotics provide an accurate fit to the simulation res
for h(r ) at intermediateseparations, i.e., forr as small as 2s,
as well as at long range. In Sec. IV we focus on the ha
sphere fluid, where the decay ofh(r ) is always oscillatory,
and determine the decay length and period using simula
results forc(r ). The results are compared with those fro
Percus–Yevick theory. Section V addresses the issue of
the FW line behaves at very high temperatures where
effects of attraction become weak and where the deca
h(r ) should become hard-sphere-like. Section VI descri
an RPA analysis of the number of zeros ofh(r ) for states on
the monotonic side of the FW line. We determine bounda
in the (T,r) plane which separate a region whereh(r ) hasn
zeros from one withn12 zeros. For states approaching t
FW line, n increases to infinity and the boundaries clust
Finally, in Sec. VII we make some concluding remarks.

II. THEORY

Below we give a brief summary of the asymptotics
the pair correlation function of a fluid with short-ranged i
teratomic potentials. For more details we refer the reade
Refs. 2 and 3. The asymptotic decay of the radial distribut
function g(r ) is most easily determined by investigating t
pole structure of the structure factorS(q). The Ornstein–
Zernike~OZ! equation relates the total pair correlation fun
tion h(r )5g(r )21 to the direct correlation functionc(r )

h~r !5c~r !1rE dr 8h~r 8!c~ ur2r 8u!, ~1!

wherer denotes the bulk density. In Fourier representati
this equation reads

ĥ~q!5
ĉ~q!

12r ĉ~q!
, ~2!

where the Fourier transformf̂ (q) of a spherically symmetric
function f (r ) is given by

f̂ ~q!54pE
0

`

dr r 2f ~r !
sinqr

qr
, ~3!

or inversely by

f ~r !5
1

2p2E0

`

dq q2 f̂ ~q!
sinqr

qr
. ~4!
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Combining Eqs.~2! and ~4! yields

rh~r !5
1

2p2E0

`

dq qsinqr
ĉ~q!

12r ĉ~q!
. ~5!

For short-ranged interatomic potentials, wherec(r ) decays
faster than a power law, it follows that the asymptotic beh
ior of rh(r ), i.e., r→`, is determined by the poles ofĥ(q),
i.e., poles at complexq5a[a11 ia0 that satisfy

12r ĉ~a!50. ~6!

A pole can lie on the imaginary axis where it gives rise
pure exponential decay ofrh(r ), or it can lie off the imagi-
nary axis where it gives rise to exponentially damped os
latory decay. Equating the real and imaginary parts in Eq.~6!
gives

154prE
0

`

dr r 2c~r !
sinh~a0r !

a0r
cos~a1r !, ~7!

154prE
0

`

dr r 2c~r !cosh~a0r !
sin~a1r !

a1r
. ~8!

Providedc(r ) is known for a given density and temperatur
this pair of equations can be used to find the polesq5a1

1 ia0 . A pure imaginary pole is obtained from Eq.~7! alone
with a150. The right-hand side of Eq.~5! can be evaluated
by choosing the contour to be an infinite semicircle in t
upper half-plane, and provided all poles are simple it follo
that

rh~r !5(
n

eiqnrAn with An52
qn

2pr2ĉ8~qn!
, ~9!

whereqn is then-th pole, 2pAn is the residue ofqĉ(q)/(1
2r ĉ(q)) at q5qn , and ĉ8(qn) is the derivative ofĉ(q)
with respect toq at q5qn . In general, an infinite number o
poles can be expected10 but the longest range part ofh(r ) is
determined by the pole or poles with the smallest imagin
part. Two scenarios are possible:~a! Pure exponential deca
dominates at longest range if the pole lying on the imagin
axisq5 ia0 has the smallest value ofa0 . Using Eq.~9!, we
find that the contribution of a pure imaginary pole torh(r ) is
given by

rh~r !;Ae2a0r ~10!

with an amplitude

A52
ia0

2pr2ĉ8~ ia0!
~11!

and

ĉ8~ ia0!5
4p

ia0
E

0

`

dr r 2c~r !Fcosh~a0r !2
sinh~a0r !

a0r G . ~12!

~b! The complex poles in the upper half-plane occur as c
jugate pairs and exponentially damped oscillatory decay w
a wavelength 2p/ã1 dominates at longest range, if a conj
gate pair of polesq56ã11 i ã0 has a smaller imaginary
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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1451J. Chem. Phys., Vol. 112, No. 3, 15 January 2000 Decay of the pair correlation function
part than the pole on the imaginary axis. The decay ofh(r )
at longest range is then determined by the contribution of
conjugate pair of complex poles, i.e.,

rh~r !;2uÃue2ã0r cos~ ã1r 2u!. ~13!

Explicit formulas for the amplitude and phase are derived
Refs. 3 and 6 and read

uÃue2 iu5
~ ã0

21ã1
2!

8p2r2Aã21b̃2
e2 i (t22p), and ~14!

with the anglesp and t determined by

eip5
ã11 i ã0

Aã0
21ã1

2
, eit5

ã1 i b̃

Aã21b̃2
, ~15!

and

ã5
aã01bã1

ã0
21ã1

2
2c, b̃5

aã12bã0

ã0
21ã1

2
1d, ~16!

where the functionsa,b,c, andd are defined by

a5E
0

`

dr rc~r ! sinh~ ã0r ! cos~ ã1r !, ~17!

b5E
0

`

dr rc~r ! cosh~ ã0r ! sin~ ã1r !, ~18!

c5E
0

`

dr r 2c~r ! cosh~ ã0r ! cos~ ã1r !, ~19!

d5E
0

`

dr r 2c~r ! sinh~ ã0r ! sin~ ã1r !. ~20!

The crossover from monotonic decay to damped oscillat
decay at longest range is given by the so-called Fish
Widom ~FW! line. The locus of the FW line in the (r,T)
plane is determined by the conditiona05ã0 . In order to
utilize the procedure described above, all the relevant in
grals must converge. This is guaranteed whenc(r ) is of
finite range, as is the case for interatomic potentialsf(r ) of
finite range treated in the mean-spherical~MSA! or random-
phase~RPA! approximation. In reality, however,c(r ) will
have a nonvanishing tail forr .Rc , the cutoff distance. In-
tegral equation theories predict thatc(r ) decays as

c~r !;2bf~r !1
t~r !

2
h2~r !1•••, ~21!

whereb51/kBT andt(r ) is some~slowly varying! function
of r. Within the hypernetted chain~HNC! approximation
t(r )[1 while in the HMSA11 0,t(r ),1. This implies that
the integrals in Eqs.~7! and ~8! will diverge for any pole
whose imaginary part is larger than twice the imaginary p
(a0 or ã0) of the leading, i.e., the lowest-lying pole.6 Thus,
our numerical procedure for determining poles and resid
is restricted to the calculation of the two leading poles. N
also that certain integral equation theories yield other ty
of singularities inĥ(q) which give rise to additional terms in
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Eq. ~9!. Following earlier work,6 we shall assume any suc
terms decay faster than the contributions of the two lead
poles.

III. MONTE CARLO SIMULATION STUDIES OF THE
LENNARD-JONES FLUID

A. Determination of the Fisher–Widom line

We performed canonical Monte Carlo simulations of
fluid interacting with a Lennard-Jones potential which
truncated and shifted atRc52.5s,

fLJts~r !5fLJ~r !2fLJ~Rc! r<Rc ,
~22!

50 r .Rc ,

with fLJ(r )54e((s/r )122(s/r )6). The Gibbs ensemble
simulation study of Smit13 estimated the critical point of this
model to lie atTc* 51.085 andrc* 50.32. We measured th
pair correlation functiong(r ) at equidistant intervals o
s/100 for several reduced temperaturesT* 5(be)21 and re-
duced densitiesr* 5Ns3/V, whereN is the number of par-
ticles andV the volume of the system. The system consists
a cubic box with lengthL520s containing N particles,
whereN is the nearest integer torL3 . We determined the
poles by solving the two Eqs.~7! and~8!. These requirec(r )
as input. First, we computeĥ(q) by a Fourier transform of
h(r )5g(r )21. We then obtainĉ(q) using the Ornstein–
Zernike~OZ! equation in Fourier space@Eq. ~2!#. The direct
correlation function in real spacec(r ) is obtained from an
inverse Fourier transform ofĉ(q). Figure 1 shows the direc
correlation function c(r ) for T* 51.25 and r*
50.40,0.50,0.55,0.575, and 0.60. We find that thec(r ) is
negative inside the core,r ,s, and is positive outside the
core, decaying smoothly to zero at large distances. U
increasing the density,c(r ) becomes more negative insid
the core as the packing increases and the effects of repu
become more important. Significantly, forr outside the core,

FIG. 1. Monte Carlo results for the direct correlation functionc(r ) of the
truncated and shifted LJ fluid at reduced temperatureT* 51.25 for several
densities. The oscillations forr /s<0.1 arise from truncating the Fourie
transforms.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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1452 J. Chem. Phys., Vol. 112, No. 3, 15 January 2000 M. Dijkstra and R. Evans
c(r ) is almost independent ofr* . Using thesec(r )’s, we
obtain the leading poles ofh(q̂) by solving Eqs.~7! and~8!.
In the first instance we simply truncated the integrals at 2.s,
the cutoff value of the potential, sincec(r ) is very small at
this distance. In Fig. 2, we show for each density the p
imaginary pole and the pole off the imaginary axis with t
smallest value ofã0 . The statistical error bars~one standard
deviation! were estimated by calculating the poles from 3
independent sets ofg(r )’s. We also performed simulation
for L525s in order to check the system size depende
and found that the values of these poles agree with th
obtained from the smaller system size within the statist
error. Note that the spurious oscillations inc(r ) at r /s
<0.1 arise from truncation effects in the Fourier transform12

These do not have a significant effect on the values obta
for the poles since for these values ofr the integrands in~7!
and ~8! vary asr 2c(r ), which is very small. What is more
significant is the larger behavior ofc(r ) since at larger the
integrands vary asrc(r )exp(a0r) and, as pointed out in Sec
II, c(r ) is not identically zero beyond the range of the p
tential. In order to check the sensitivity of our results to t
tail of c(r ) we assumed thatc(r );h2(r )/2 for r .2.5s and
calculatedh(r ) from the two-pole asymptotic formula

rh~r !;Ae2a0r12uÃue2ã0r cos~ ã1r 2u!, ~23!

i.e., from the pure imaginary plus the lowest-lying conjuga
pair of complex poles, using the values of the poles and
residues obtained from the original calculations which ha
c(r )50 for r .2.5s. Recalculating the poles from~7! and
~8! with this form of tail for c(r ) changes their values by
small amount. For the lowest densityr* 50.4, a0 changes
by 0.26% andã0 by 0.10%, whereas for the highest densi
r* 50.6, the corresponding changes are 4% and 0.3%.ã1 is

FIG. 2. The imaginary (a0) and real (a1) part of the leading poles for
several densities as obtained from the results shown in Fig. 1, i.e., foT*
51.25. The symbols witha1[0 refer to the pure imaginary pole while

those witha1s;6.1 refer to the lowest-lying complex paira56ã11 i ã0

~only the pole withã1.0 is shown!. The dashed lines couple poles at th
same density.
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insensitive to the addition of the tail. Thus, we believe th
our results for the two leading poles should not depend v
strongly on tail contributions toc(r ).

In Fig. 2 we observe that atr* 50.40 and 0.50 the pure
imaginary pole has a smaller imaginary part than the co
sponding complex pole, whereas atr* 50.575 and 0.60 the
complex pole has the smaller imaginary part. This indica
that for T* 51.25 the decay ofrh(r ) changes from purely
exponential, at longest range, to damped oscillatory asr* is
increased from 0.50 to 0.575. Figure 3 displays the diff
ence betweena0 ~for the pure imaginary pole! and ã0 ~for
the first complex pole! as a function ofr* . Fitting the data
to a cubic spline we estimate the crossover from monoto
decay to damped oscillatory, wherea05ã0, to occur atr*
50.553 forT* 51.25.

Further sets of calculations were carried out for the s
critical temperatureT* 51.0 and forT* 51.8, and the corre-
sponding results fora02ã0 are also plotted in Fig. 3. From
these results we have constructed a portion of the FW lin
the (T* ,r* ) plane and this is shown in Fig. 4 along with th
FW line obtained from the HMSA integral equation theory5

The two lines have very similar shape and lie close togeth
The simulation FW line intersects the liquid branch of t
coexistence curve of Smit13 at T* .0.95, i.e., at T/Tc

50.88 andr/rc51.94.

B. Long and intermediate range decay of h „r …

Integral equation studies of the asymptotic decay ofh(r )
for a variety of fluids have shown that retaining only the tw
leading pole contributions in the expansion of~9! leads to a
remarkably accurate description ofh(r ) at intermediate as
well as long range.3,5–7 More specifically, it was found tha
the approximation~23! is in very close agreement with th
results forh(r ) obtained from the direct numerical solutio
of the integral equations even for interatomic separations
small as 2s, i.e., second nearest neighbor distances. It is

FIG. 3. Monte Carlo results for the difference between the pure imagin

pole (a0) and the imaginary part of the lowest-lying complex pole (ã0) as
a function of reduced densityr* for three different temperatures. Whe

(a02ã0)s,0 the ultimate decay ofh(r ) is monotonic whereas for (a0

2ã0)s.0 it is damped oscillatory.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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1453J. Chem. Phys., Vol. 112, No. 3, 15 January 2000 Decay of the pair correlation function
considerable interest to enquire whether the same app
mation provides an equally accurate description of the sim
lation results.

In Fig. 5~a! we compare the simulation result forh(r )
with that from ~23! for T* 51.25 andr* 50.4. The poles
and the residues, which determine via Eqs.~10!–~20! the
amplitudes and the phase, were obtained fromc(r ) calcu-
lated as described above. For this state pointa0,ã0 ~see
Fig. 2!, so the ultimate asymptotic decay ofh(r ) is predicted
to be monotonic. However, the contribution from the con
gate pair of complex poles dominates at intermediate
short range and accounts for the three maxima ofh(r ) that
are easily discernible in the simulations. Equation~23! pro-
vides an excellent fit to the simulation result down tor
;2s and it even gives the correct position of the first pe
in h(r ). The overall quality of the approximation is simila
to that found in the HMSA calculations.5 Figure 5~b! dis-
plays the corresponding results for the same temperature
a higher density,r* 50.6. Now a0.ã0 since we have
crossed the FW line and the ultimate decay should
damped oscillatory. Once again~23! provides an excellent fi
to simulation down tor;2s and yields the correct first pea
position.

The present two-pole approximation appears to be jus
reliable at intermediate range as in the earlier integral eq
tion studies, where its success was attributed5–7 to the fact
that the next lowest-lying complex poles have much lar
imaginary parts. Thus we conclude that were we able to
culate the next poles by simulation these would also be
removed from the lowest-lying ones.

As a remark on the usefulness of our asymptotic anal
we should note that naive comparison of the simulation
sults for h(r ) in Figs. 5~a! and 5~b! would not establish a
conclusive difference between the two forms of asympto
decay. Although onemight ascertain one or two more osci
lations for r* 50.6 than forr* 50.4, one would be hard

FIG. 4. The Fisher–Widom~FW! line in the temperature-density plane fo
the LJ fluid truncated and shifted at 2.5s. The asterisks joined by dot
denote our present Monte-Carlo results for the FW line while the solid cu
is the result of the HMSA~Ref. 5!. The dashed line joining squares denot
the simulation results~Ref. 13! for the liquid-gas coexistence curve and th
cross is the simulation estimate of the critical point.
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pushed to make any definitive statement. Direct observa
of crossover from monotonic to damped oscillatory decay
h(r ) is extremely difficult in a simulation study, where da
are limited by box size and the statistical accuracy may
poor. Our procedure, which inputs data forh(r ) at small and
intermediater and provides, via the auxiliary functionĉ(q),
detailed information abouth(r ) at larger, does appear to be
very useful. What its status is as a mathematical extrap
tion procedure remains to be investigated.

IV. POLES IN THE HARD-SPHERE FLUID

The occurrence of both pure imaginary and comp
poles in the Lennard-Jones fluid is a consequence of the
that such potentials have both attractive and repulsive c
ponents. For potentials which are purely repulsive and
finite range one expectsrh(r ) to exhibit exponentially

e

FIG. 5. h(r ) for the truncated and shifted LJ fluid atT* 51.25. The solid
curve is the Monte Carlo result and the dashed curve is the asymptotic r
obtained from~23!, i.e., retaining the contribution from the single pole o
the imaginary axis plus that from the lowest-lying conjugate pair of comp
poles.~a! r* 50.4. The pure imaginary pole hasa0s50.885 and the con-

jugate pair hasas566.1051 i1.718. Thusa0,ã0 and the ultimate de-
cay of rh(r ) is pure exponential.~b! r* 50.6. Now the pure imaginary pole
has a0s51.761 and the conjugate pair hasas566.2731 i1.241. Thus

a0.ã0 and the ultimate decay is exponentially damped oscillatory.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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damped oscillatory decay for all state points. Of course,
inverse decay lengtha0 and period 2p/a1 will still depend
on the density and temperature. Of special interest is
hard-sphere fluid where the density~or packing fractionh
5pd3r/6) is the only relevant variable.d is the hard-sphere
diameter. Upon increasingh toward the value at freezing
~h.0.49! one expects, intuitively, that the decay of the o
cillations inh(r ) will become slower. It is less obvious how
the period will vary. There have been surprisingly few stu
ies of the asymptotic decay ofh(r ) in the hard-sphere fluid
Perry and Throop14 calculated the lowest-lying conjugat
pair of poles and the corresponding amplitude and phas
~13! from the Percus–Yevick~PY! approximation for the
Laplace transform ofrh(r ). Rosenfeld,15 and more recently
Leote de Carvalhoet al.,6 investigated several of the Percus
Yevick poles in the approach to the so-called asympto
high-density limith→1. Henderson and Sabeur16 determined
the onset of pure oscillatory decay ofh(r ) for hard spheres
i.e., solutions of~6! with a050, from a weighted density
functional treatment. Here we determine the poles of
hard-sphere fluid using the results of Grootet al.,17 who ex-
tractedc(r ) in a careful analysis of Monte Carlo data, an
compare these with the results from the PY approximatio

As is well-known, within PYc(r ) vanishes forr .d and
is a polynomial inr for r ,d with coefficients depending on
h. We calculated the lowest-lying conjugate pair of po
using Eqs.~7! and ~8! for a range of~fluid! densities. The
results for the real and imaginary parts are shown in Fig
and these agree with published results obtained by o
methods.6,14 In reality the direct correlation function does n
vanish identically forr .d, rather it has a rapidly decayin
tail. Grootet al.17 allowed for the possibility of an empirical
damped oscillatory tail inc(r ). Their fits ~via OZ! to the
simulation data forh(r ) show that the tail is non-negligible
for large packing fractions. However, for all the cases th

FIG. 6. The imaginary (a0) and real (a1) parts of the lowest-lying conju-
gate pair of polesa56a11 ia0 for the hard-sphere fluid, with diameterd,
for a series of reduced densitiesr* 5rd350.2 ~top!, 0.4, 0.6, 0.65, 0.7,
0.75, 0.8, 0.85, and 0.9~bottom!. The squares denote the values from the P
approximation and the asterisks those from the Monte Carlo results forc(r )
given in Ref. 17.
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study the tail is rapidly decaying anduc(r )u is <0.01 for
r /d>2.0. We used the data forc(r ) given in Table II of Ref.
17 along with Eqs.~7! and ~8! to obtain the lowest-lying
conjugate pair of poles at each density and these results
also shown in Fig. 6. There is rather close agreement
tween the PY and simulation results across the full range
densities. Given that PY does provide quite a good desc
tion of the intermediate range structure inh(r ), this level of
agreement may not come as a surprise. However, we sh
remark that sincec(r ) in Ref. 17 does differ significantly
both inside and outside the hard core, from the PY solut
we are inputting two sets of significantly different data in
the equations which determine the poles. As expected,
inverse decay lengtha0 decreases rapidly with increasin
density until large packings are attained when the decre
becomes much slower. The variation ofa1 with density is
weaker. Forr* 50.2, the period 2p/a1 is about 1.25d
whereas forr* 50.9 this is 0.94d.

V. THE FW LINE AT HIGH TEMPERATURES

For a fluid described by a pairwise potential of th
Lennard-Jones-type, repulsive forces must always domin
at sufficiently large temperatures and then the structure of
fluid must resemble that of a fluid in which the potential
hard-sphere like, for which the decay ofh(r ) is always
damped oscillatory and no crossover exists. Earlier stud
investigated the FW line for temperatures up to about tw
the critical temperature2,5 where the effects of attractive
forces are still very strong and one is far from approach
hard-sphere like behavior. Here we address the issue of w
happens to the FW line for very highT* .

Rather than extending the simulation study of Sec.
which would be extremely laborious, we have used the R
to map out the FW line in the (T* ,r* ) plane for the LJ fluid
with potential~22!. The RPA assumes that the direct corr
lation function can be approximated by

crpa~r !5chs~r !2bfatt~r !, ~24!

wherechs(r ) is the PY hard-sphere direct correlation fun
tion at densityr* and the attractive potential is chosen to

fatt~r !52e r<r min[21/6s
~25!

5fLJts~r ! r .r min .

For simplicity, the hard-sphere diameterd is set equal to
s. Other choices of the attractive potential inside the core
possible and it is well-known thath(r ) calculated from the
RPA closure is not necessarily zero inside the repulsive c
Nevertheless, the pole structure arising from the RPA d
reproduce the key features of more sophisticated clos
approximations.2,5 Once again the lowest-lying poles we
calculated using Eqs.~7! and~8! and the FW line was deter
mined as in Sec. III. The results are shown in Figs. 7 and
At temperatures in the range 1.0<T* <1.8, the RPA FW line
has a similar~near linear! shape to the line obtained in simu
lation ~and in the HMSA!. The RPA line intersects the
~simulation! coexistence curve at a slightly higher tempe
ture,T* 51.015, than our simulation estimateT* 50.95. For
higher temperatures, the FW line increases rapidly with
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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1455J. Chem. Phys., Vol. 112, No. 3, 15 January 2000 Decay of the pair correlation function
creasingr* . Crossover from monotonic to damped oscill
tory decay ofh(r ) occurs at the critical densityr* 5rc*
whenT* .3.171, i.e.,T/Tc.2.923. At a fairly low density,
r* 50.03 (;0.1rc* ), crossover does not occur untilT*
.32. One deduces that the attractive interactions, wh
give rise to the pure imaginary pole, continue to manif
themselves up to very high temperatures when the densi
low. Figure 7 shows that the FW line approaches the te
perature axis asymptotically, as expected, and it is clear

FIG. 7. FW line~solid curve! for the truncated and shifted LJ fluid at hig
temperatures as obtained from the RPA. The asterisks joined by dots d
our Monte Carlo results for the FW line. The dashed line joining squa
denotes simulation results~Ref. 13! for the liquid-gas coexistence curve an
the cross marks the critical point—see Fig. 4.

FIG. 8. Boundaries separating regions in the temperature-density plane
n andn12 zeros ofh(r ) for the truncated and shifted LJ fluid. The sol
curves are RPA results for the loci of the boundaries between regions
1, 3, 5, . . . zeros. On these boundaries, the last, (n11)th zero is a mini-
mum of h(r ). For largen the boundaries crowd together and asn→` they
approach the FW line~bold curve!. The asterisks joined by dots denote o
Monte Carlo results for the FW line. The dashed line joining squares
notes simulation results~Ref. 13! for the liquid–gas coexistence curve an
the crossmarks the critical point.
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in a very low density fluid the ultimate asymptotic decay
h(r ) will not resemble that of hard spheres until extreme
high temperatures.

VI. THE NUMBER OF ZEROS OF h „r …

On the oscillatory side of the FW line,h(r ) has an infi-
nite number of zeros since the dominant decay is given
Eq. ~13!. On the monotonic side oscillations do still occur.
is only the ultimate decay ofrh(r ) which is pure exponentia
~10! and the lowest-lying complex poles make increasin
important contributions as the FW line is approached. R
writing the two-pole approximation~23! as

rh~r !.Ae2a0r S 11
2uÃu

A
e2(ã02a0)r cos~ ã1r 2u! D , ~26!

we see that, provided the ratio of amplitudes is sufficien
large, the second~oscillatory! term will remain comparable
with the first at increasingly large distances asã0→a0 . In
turn, this implies an increasing number of zeros ofh(r ) will
be exposed on approaching the FW line and one can en
age boundaries in the (T,r) plane separating a region whe
h(r ) hasn zeroes from one where it hasn12 zeros. On the
boundary there will ben11 zeros with the (n11)th being
an extremum. Asn increases, these boundaries should cro
closer together and converge to the FW line, which cor
sponds ton5`.

We have calculated the loci of these boundaries for
truncated and shifted LJ fluid using the RPA, i.e., Eqs.~24!
and ~25!. Our calculations employed the two-pole approx
mation ~23! with the poles, amplitudes, and phase det
mined as previously. As argued in Sec. III B, this appro
mation yields an accurate description of the intermedi
range behavior ofh(r ) provided the next lowest-lying con
jugate pair of poles has an imaginary part@ã0 . We
checked, by computing the fullh(r ) from the OZ relation,
that~23! counts correctly the first few zeros. Upon increasi
r* at fixedT* , one passes from a region whereh(r ) has one
zero to one where it has three zeros and then to one with
zeros and so forth. The boundaries separating these reg
are shown in Fig. 8. Pronounced crowding of the bounda
has already occurred forn;20, at densities which are stil
well below that of the FW line. Note that except exactly on
boundary,h(r ) always has anodd number of zeros. We can
understand this as follows. In the limitr→0, h(r );exp
(2bf(r))21 which has one zero. The presence of the cos
in the two-pole approximation~26! implies that the number
of zeros increases by two upon crossing the first bound
On the boundary there are two zeros, the second corresp
ing to a minimum ofh(r ). The sequence continues so th
on the monotonic side of the FW lineh(r ) always decays to
zero from above asr→`. The amplitudeA in ~26! must be
positive. These conclusions have been confirmed within
RPA. Our simulation results also appear to be consis
with the observation thath(r ) should decay to zero from
above, although it is difficult to check this directly whenn
.7. Although we are not aware of any rigorous proof that
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1456 J. Chem. Phys., Vol. 112, No. 3, 15 January 2000 M. Dijkstra and R. Evans
the region of ultimate monotonic decayh(r ) should decay
from above, such a result is in keeping with Widom’s pro
that *dr (g(r )exp(bf(r))21)>0.8

VII. CONCLUDING REMARKS

We have shown that computer simulation results can
used to determine the longest range asymptotic deca
h(r ) for fluids exhibiting finite-range interatomic potential
By calculatingc(r ) from the simulation results we were ab
to determine the lowest-lying poles ofĥ(q), which enabled
us to calculate a portion of the crossover~FW! line for the
truncated and shifted Lennard-Jones fluid. The FW line
very close to the previous HMSA results, implying that t
latter provides an accurate description of the lowest-ly
poles. In order to calculate the poles we had to make cer
assumptions about the asymptotic decay ofc(r ), i.e. that this
function decays sufficiently rapidly to employ Eqs.~7! and
~8!. Although these assumptions appear to be justified in
present case, future work should reexamine them. This
become increasingly important as the potential cutoffRc

increases.5,18 For fluids with true power-law potentials o
with exponentially decaying~Yukawa! pair potentials, alter-
native procedures are required to determine the poles5–7 and
it remains a challenge to implement these within simulati

Although our present technique does not allow us to c
culate reliably the higher-lying poles, the success of the tw
pole asymptotic approximation in describing the interme
ate range features ofh(r ) implies the next lowest-lying pole
is well-removed from those we do determine and that c
tributions toh(r ) from other types of singularity do not hav
a major influence. Were such an observation to be va
generally this would lead to important simplifications in d
veloping a fundamental understanding of correlation fu
tions.

Our results for the asymptotic decay ofh(r ) in the hard-
sphere fluid extend to reduced densitiesrd3[r* 50.9. It is
interesting that the inverse decay lengtha0 ~see Fig. 6! ob-
tained from simulation results decreases less rapidly at h
r* than in the PY approximation. Further simulation resu
for densities up to freezing (r* .0.94) could confirm this
trend and test the reliability of density functional treatme
in the high-density region. Note that PY approximation f
hard spheres~at densities well-beyond freezing! does not
predict an instability to pure oscillatory solutions where
certain density functional treatments forc(r ) do.16
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The last two sections of our paper dealt with the FW li
at high temperatures and with the location of boundar
separating regions in the (T,r) plane whereh(r ) has a dif-
ferent numbers of zeros. To the best of our knowledge, n
ther of these topics has been considered previously. Ou
sults are based on the RPA which, although crude, sho
capture most of the key features of the decay ofh(r ). In
particular we would expect the overall shape of the FW l
in Fig. 7 and the form and clustering of the boundaries
Fig. 8 to be given correctly by the RPA. This could,
course, be tested by employing more sophisticated inte
equation theories or, indeed, simulations.
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