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Direct Simulation of the Phase Behavior of Binary Hard-Sphere Mixtures:
Test of the Depletion Potential Description
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We study the phase behavior of additive binary hard-sphere mixturerdgt computer simulation,
using a new technique which exploits an analog of the Gibbs adsorption equation. The resulting
phase diagrams, for size ratiog= 0.2,0.1, and 0.05, are in remarkably good agreement with
those obtained from an effective one-component Hamiltonian based on pairwise additive depletion
potentials, even in regimes of high packing (solid phases) and for relatively large size gati08.%)
where one might expect the approximation of pairwise additivity to fail. Our results show that the
depletion potential description accounts for the key features of the phase equilibrig £00.2.
[S0031-9007(98)08128-9]

PACS numbers: 64.75.+9g, 64.60.—i, 82.70.Dd

Understanding the stability of colloidal mixtures is rele- colloidal particles due to the presence of a “sea” of (small)
vant for many industrial applications, e.g., paint, ink,polymers. This depletion potential is essentially attrac-
etc., but is also interesting from a fundamental statisticative, and was derived by Asakura and Oosawa and inde-
physics point of view [1]. Surprisingly, the phase behav-pendently by Vrij for the case of ideal polymers [9]. As
ior of even the simplest model colloid mixture, i.e., largeit is generally accepted that the stability of binary mix-
and small hard spheres, is still not established and remainares is determined by these depletion potentials, several
a topic of much debate. For instance, it is still uncleargroups attempted to measure them directly in experiments
whether a (stable) fluid-fluid demixing transition exists for[10]. Moreover, explicit theoretical expressions .,
any additive binary hard-sphere mixture. The celebratethave been derived by several groups [11,12] and these
Percus-Yevick approximation [2] predicts no fluid spino- have been tested against simulations [4,13]. In this Let-
dal instability, while other integral equation approxima-ter we show that phase diagrams calculated using an ef-
tions do [3,4], although at completely different statepointsfective pairwise potentiabp.ir = ¢y + dacp, Where gy,
Experiments on colloidal hard-sphere mixtures suggest thas the hard-sphere potential, agree well with those deter-
the demixing transition is strongly coupled to the freezingmined by direct simulation of the true binary hard-sphere
transition, although sedimentation effects preclude defimixture forg = 0.2, 0.1, and 0.05. Our results provide
nite conclusions [5]. Theoretical approaches that considdhe first justification for the effective depletion potential
both the fluid and solid phase have also been inconcludescription of phase equilibria.
sive. First, a phenomenological free volume theory pre- We considerN; large andN; small hard spheres in a
dicts a fluid-fluid demixing transition that is metastable macroscopic volum& at temperatur@. The total Hamil-
with respect to a broad fluid-solid coexistence region [6].tonian consists of kinetic energy contributions and inter-
Here “broad” refers to the width of this coexistence regionaction termsH = H; + H;; + Hg,. It is convenient to
in terms of the difference between the packing fractionsonsider the system in thH&v;, V, z;) ensemble, in which
of the larger species in the two coexisting phases. Anthe fugacityz, of the small spheres is fixed; the pack-
other scenario is reported in Ref. [7] where a virial expaning fraction of the corresponding reservoir is denoted
sion is used for the fluid phase and a density functional] and we omit the expliciZ dependence. The appro-
approximation for the solid. This yields a narrow freez-priate thermodynamic potenti& (N, V, z;), from which
ing transition forg = 0.1, a broad one fogy = 0.2, and a the phase behavior can be deduced as in Ref. [14], is
fluid-fluid spinodal instability at such high pressures that itdefined by
is argued to be metastable. Yet another theoretical treat- -
ment predicts a narrow fluid-solid coexistence for- 0 exd—BF]=Tr > N Trexd—gH], (1)

[8]. The calculated phase behavior is thus very sensitive N,=0
to the details of the approximations involved in the abovewhere the trace Tris short for 1/N,!A3Y: times the
approaches. volume integral over the coordinates of the particles

An alternative approach to asymmetric binary hard-of speciesr, and whereA, is the thermal wavelength
sphere mixtures stems from the analogy with colloid-and B8 = 1/kgT. F is the Helmholtz free energy
polymer mixtures. The properties of such mixtures haveof an effective one-component large-sphere system
been described succesfully in terms of the so-called depledescribed by az,-dependent effective Hamiltonian
tion potential¢q., Which arises between a pair of (large) Hegr, viz. exd —BF] = Tr;exd — B Hest] with
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Hee = Hy + Q. The physical meaning ofQ) is

the grand potential of the sea of small spheres in the pres-
ence of theN,; large spheres at fixed positions [14]. By
neglecting three- and more body termsHi and using
accurate (but empirical) expressions for the depletion
potential ¢q.,, We determineF for fixed z; and packing
fraction ; = (7 /6)oi N;/V by standard thermodynamic
integration using Monte Carlo simulations [14]. The
resulting phase diagrams, which follow from common
tangent constructions, are shown by the solid lines in
Fig. 1. These calculations predict the existence of a fluid-
fluid demixing transition forg = 0.1 and 0.05, although
this is metastable with respect to the fluid-solid transition
[14]. Perhaps more surprisingly, they also yield a stable
isostructural solid-solid transition fog = 0.05, and a
metastable one fog = 0.1. For ¢ = 0.2 the effective
one-component calculations predict only a fluid-solid
transition that becomes broader for larggf. Note,
however, that these results are not exact, since three- and
higher body interactions are neglected. One might expect
this approximation to break down at sufficiently high
densities (e.g., in the solid phase) or for less extreme size
ratios (e.g.g > 0.154, where three nonoverlapping large
spheres can overlap with a small one [15]), thereby casting
doubt on the specific predictions (in particular, those for
the solid-solid transition). Moreover, even the potential
¢dcp Used in the simulations is approximated by an empiri-
cal form that does not take into account the longer-ranged
oscillations [14]. To the best of our knowledge these
approximations—and therefore the depletion potential
picture as a whole—have never been tested directly by a
comparison with results of a full treatment of true binary
mixtures. Given the richness of the predicted phase
diagrams and the experimental and computational effort
that is being put into the determination of the depletion
potential, it seems both important and timely to perform
such atest. It has been argued by many authors (including
the present) that direct simulations are not feasible for
highly asymmetric binary hard-sphere mixtures because
of ergodicity problems. However, results of Fig. 1 show
such interesting phase behavior at (surprisingly) lpiv
that we were motivated to perform direct simulations in
this regime. Note that direct simulations have recently

0.4

(b)

been performed in Ref. [16], but their new algorithmFIG. 1. Phase diagram of binary hard-sphere mixtures with
precludes a study of the state points of interest hergize ratios (a)g = 0.2, (b) ¢ = 0.1 and (c) g = 0.05 as a

(g + m > 0.25).

The scheme we use to calculate the “exact” phase di

function of the large-sphere packing fractign and the small
sphere reservoir packing fraction,. F and S denote the
&table fluid and solid (FCC) phasd + S,F + F,andS + §

grams of binary hard-sphere mixtures by direct simulationyenote, respectively, the stable fluid-solid, the metastable fluid-

employs the identity
BF(Ni,V,z5) = BF  (N.,V,z; = 0)

[ [T g

s aZ;

The system at; = 0 is the pure system of large hard
spheres, and hence the first term of the right-hand side

118

fluid, and the (meta)stable solid-solid coexistence region. The
solid and dashed lines are the effective one-component results,
the squares and the asterisks (joined by lines to guide the eye)
denote, respectively, the fluid-solid and the solid-solid transition
obtained from direct simulations of the true binary mixture with
N; = 32 large spheres.

&q. (2) is given accurately by Carnahan-Starling [17] in
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the fluid phase and by Hall [18] in the solid phase. In theand this is crucial for a proper description of the depletion
latter case, an integration constant was chosen such thatechanism.
the known fluid-solid coexistence of the pure hard-sphere We now return to the calculation df from Egs. (2)
system is recovered [19]. The integrand in the secona@nd (3). Typical data are presented in Fig. 2, where
term can be rewritten using Eqg. (1) as we plot n, as a function ofn! as measured in a
simulation with N; = 32 and ¢ = 0.1 for several 7;.
Here we convertedz; into n! using the Carnahan-
’ (3) Starling expression(a,/A;)? = (6m!/m)exd(8nF —
91’2 + 3973) (1 — )73, which is essentially exact in
where (N;), denotes the average number of small parthe regime of interest. Althouglv; = 32 may seem
ticles in the(N,,V,z;) ensemble. This quantity can be too small a number to perform reliable simulations, one
measured directly in a grand-canonical simulation of theshould recognize that (i) the pure large-sphere free energy
“adsorption” of small spheres from a reservoir at fugacity(at z; = 0) is taken from accurate independent sources,
zs onto a system oW, large spheres in a volunié. and (ii) the maximum value ofN;), is about5 X 10*
Before discussing the results of these direct simulationgue to the small size ratio. For comparison we also
(Fig. 1), a few remarks are in order. First, the schemelot 7, as predicted by the free volume approach of
proposed in Egs. (2) and (3) is merely a bulk analogRef. [6]; these are straight lines. As expected, agreement
of using the Gibbs adsorption equation to determinewith results of direct simulations becomes worse with
the surface tension, wher@;), plays the role of the increasingn; for every value ofn;. Moreover, the
adsorptionF that of the surface tension, and whérg V,  diffferences between simulation and theory begin at lower
andq characterize the “substrate.” Second, itis important;! when %, is higher. In particular, the difference
to realize that(N,), is not identical to the unweighted for n; = 0.1 increases dramatically af; =~ 0.15, which
average adsorption from the reservoir onto a system df close to the fluid-solid transition. This is a direct
static large hard spheres, since not all configurations ofmanifestation of the depletion mechanism, that allows
large spheres carry the same statistical weight. In factnore free volume (and hence a highgy) because of
this weight is proportional to eXp- BH.], a quantity clustering of the large ones. This part of the depletion
that is not known exactly as it involves empirical pair effect is not contained in the free volume approach.
potentials and unknown higher-order interactions, as we Using the simulation data forp,, we calculate
have seen above. Consequently, the grand-canonical(N,,V,z,) from Eq. (2) by numerical integration. Once
simulations that measur@V,), must be combined with F is known we employ common tangent constructions at
a simultaneouscanonical average over the large-spherdixed z; to obtain the phase boundaries shown by the sym-
configurations. This requirement still leads to ergodicitybols in Fig. 1 [14]. The main observation is the strikingly
problems at highn!, although the upperbound, which good overall agreement with the effective one-component
depends onN;, V, and ¢, is high enough to permit
us to study interesting regimes. Third, the requirement
to perform a simultaneous canonical average over the 0.3 ;
large spheres in the calculation @¥;), also points to * Simulations
a shortcoming in the free volume approach to asymmetric —— Free vol. (Ref. [6]) n=0.10
binary mixtures. The key quantity in this approaclvis '
ns/m%, where the packing fraction of the small spheres 02 |
is defined byn, = (w/6)a(N;), /V. If it is assumed
thata (< 1) depends om; and ¢ but is independent of N,
zs, and we employ the scaled particle expression for this
quantity, we recover the free volume approach [6] from 01 L
Egs. (2) and (3). However, this scaled particle expression
identifies @ with the probability to insert a small sphere
in the pure large-sphere system, and thus assigns an
equal statistical weight to all (nonoverlapping) large- V= s ‘ ‘ ‘ ‘
sphere configurations. This shortcoming can (formally) 000 005 010 015 020 025 030 035
be remedied by realizing that the “free volume fraction” r
« is not an intrinsic property of the pure large-sphere N,
system, as assumed in, e.g., Ref. [6], but also depends ) _
on the thermodynamic state of the reservoir of smalf!C: 2. The small sphere packing fractign of a hard-sphere

. o mixture with size ratiay = 0.10 versus that of the reservoiy!
ones, i.e.oc = a(n:,q,z,). Actually, thez, dependence ¢, several large sphere packing fractions. The asterisks

of a is a manifestation of the fact that not all large- denote simulation data while the full lines denote the results of
sphere configurations carry the same statistical weighthe free volume approach [6].

[aﬁF(Nl,v,zs)} _ (v,
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results for all three values of the size-ratio Such good true mixture. A word of caution is appropiate here, since
agreement throughout the fluid-solid coexistence curvéhe importance of the effective pair potential implies the
for ¢ = 0.2 and at highn, for ¢ = 0.1 and0.05 is rather need for an accurate one. In the present hard-sphere case
unexpected, as one might expect the depletion picturthe theoretical expressions employed in Ref. [14] for the
to break down in these regimes. The only significantdepletion potential agree well, but probably fortuitously
difference is that the isostructural solid-solid transition forwell at high»!, with simulations [12]. Before embarking
g = 0.1 at p] ~ 0.06 turns out to be stable with respect upon generalizations, it is necessary to understand better
to fluid-solid coexistence, in contrast to the effectivethis fortuitous agreement.
one-component prediction. The present results provide This work was supported by Grants
further evidence for a fluid-solid coexistence broadeningNo. ERBFMBICT972446, No. EPSRC GR/L89013,
with increasingn! for all ¢, and do not support the and No. ERBFMBICT971869. We thank D. Frenkel for
narrowing predicted by some theoretical approaches [7,8ktimulating discussions.
Unfortunately, the ergodicity problems prevented us from
reaching the fluid-fluid demixing regime by direct simu-
lation, so that this feature of the effective one-component
results could not be tested. Nevertheless, the quantitativ
:ﬂ;eﬁ]rgiigﬁg; t'[zeatagrcee:sclizlvevnvilfuasggc}cgr())lzfioTlo'E)ogtlgr?tiaI an_d Simulation of Phase Transitions in Complex Fluids,
. . : edited by M. Baus, L.R. Rull and J. P. Ryckaert (Kluwer,
picture will occur at highem; . Dordrecht, 1995).
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