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Phase diagram of highly asymmetric binary hard-sphere mixtures

Marjolein Dijkstra, Rene´ van Roij, and Robert Evans
H. H. Wills Physics Laboratory, University of Bristol, Royal Fort, Bristol BS8 1TL, United Kingdom

~Received 23 December 1998!

We study the phase behavior and structure of highly asymmetric binary hard-sphere mixtures. By first
integrating out the degrees of freedom of the small spheres in the partition function we derive a formal
expression for the effective Hamiltonian of the large spheres. Then using an explicit pairwise~depletion!
potential approximation to this effective Hamiltonian in computer simulations, we determine fluid-solid coex-
istence for size ratiosq50.033, 0.05, 0.1, 0.2, and 1.0. The resulting two-phase region becomes very broad in
packing fractions of the large spheres asq becomes very small. We find a stable, isostructural solid-solid
transition forq<0.05 and a fluid-fluid transition forq<0.10. However, the latter remains metastable with
respect to the fluid-solid transition for all size ratios we investigate. In the limitq→0 the phase diagram
mimics that of the sticky-sphere system. As expected, the radial distribution functiong(r ) and the structure
factor S(k) of the effective one-component system show no sharp signature of the onset of the freezing
transition and we find that at most points on the fluid-solid boundary the value ofS(k) at its first peak is much
lower than the value given by the Hansen-Verlet freezing criterion. Direct simulations of the true binary
mixture of hard spheres were performed forq>0.05 in order to test the predictions from the effective Hamil-
tonian. For those packing fractions of the small spheres where direct simulations are possible, we find remark-
ably good agreement between the phase boundaries calculated from the two approaches—even up to the
symmetric limitq51 and for very high packings of the large spheres, where the solid-solid transition occurs.
In both limits one might expect that an approximation which neglects higher-body terms should fail, but our
results support the notion that the main features of the phase equilibria of asymmetric binary hard-sphere
mixtures are accounted for by the effective pairwise depletion potential description. We also compare our
results with those of other theoretical treatments and experiments on colloidal hard-sphere mixtures.
@S1063-651X~99!07805-8#

PACS number~s!: 82.70.Dd, 61.20.Gy, 64.70.2p
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I. INTRODUCTION

The theory of the structure and phase behavior of sim
~atomic! fluids relies heavily on our knowledge of the har
sphere system, which serves as a standard reference sy
for determining the properties of more realistic models.
such the hard-sphere system has been studied in great
during the past few decades and its phase behavior is
well understood. In particular, it was shown by compu
simulations that a system of identical hard spheres ha
well-defined freezing transition@1,2# driven by purely en-
tropic effects. Pure hard spheres do not undergo a liquid
transition since this requires a source of attractive inter
tions. The state of affairs for the binary hard-sphere mixt
is less clear-cut and the phase behavior is still hotly deba
This system plays a similar~reference! role for binary mix-
tures of simple fluids and also serves as a model for mixtu
of colloids and polymers, or other colloidal systems. T
main issue is whether a binary fluid mixture of large a
small hard spheres is miscible for all size ratios and com
sitions or whether a fluid-fluid demixing transition tak
place and, if it does, whether such a transition is stable
metastable with respect to the fluid-solid transition. The d
cussion was instigated in 1991 by Biben and Hansen, w
showed within an integral equation theory that the bin
hard-sphere mixture exhibits a spinodal instability in a hig
density fluid when the size ratio of the two species is m
extreme than 1:5@3#. As this result was in contradiction with
a classic study by Lebowitz and Rowlinson, who had co
cluded that the mixture is stable against demixing regard
PRE 591063-651X/99/59~5!/5744~28!/$15.00
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of the state point and the size ratio@4#, it initiated renewed
interest in this system. Despite all the work that has sin
been devoted to this issue, it remains an unresolved ques
as to whether a stable fluid-fluid demixing transition exists
hard-sphere mixtures. The physical mechanism behind~pos-
sible! demixing in hard-sphere mixtures is the depletion
fect. This is based on the idea that clustering of the la
spheres allows more free volume for the small ones wh
may lead to an increase in the entropy, i.e., to a lowering
the free energy. The depletion effect is known to lead
demixing in colloid-polymer mixtures but it is not know
whether this is sufficiently strong to bring about demixing
additivemixtures of hard spheres. In such mixtures the pa
wise potential between species 1 and 2 is described b
diameters12 which is the mean of those for like-like inter
actions: s125(s111s22)/2. Colloid-polymer mixtures are
usually treated by a model which assumes the polym
polymer interactions to be ideal so that the hard-sphere
ameters are nonadditive. Here we focus on additive bin
hard-sphere mixtures, thereby ignoring recent work on
nary hard-core mixtures of nonspherical particles@5,6# and
polydispersity@7#, and we mention briefly results for nonad
ditive mixtures where these are relevant.

One might suppose that computer simulations sho
have resolved the issues concerning the phase beha
However, direct simulations of highly asymmetric bina
mixtures are prohibited by slow equilibration when the pac
ing fraction of the small spheres becomes substantial
there have been no systematic attempts to calculate p
diagrams for the asymmetric cases which are of most in
5744 ©1999 The American Physical Society
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est. On the theoretical side it is now well accepted that th
approaches which attempt to treat both species on an e
footing, e.g., integral equation theories or virial expansio
of the mixture equation of state, yield results which are n
toriously sensitive to the details of the approximations. T
~non!existence and location of the spinodal instability is p
ticularly susceptible but the location of the fluid-solid pha
boundary is also very sensitive to the choice of approxim
tion. In the present paper we adopt a different strategy wh
takes advantage of the large-size asymmetry: we integ
out the degrees of freedom of the small spheres and obta
effective Hamiltonian for the larger ones. The effecti
Hamiltonian consists of zero-body, one-body, two-body, a
higher-body interactions which depend on the density of
small spheres. We employ a simplified version, which c
sists of only pairwise additive depletion potentials betwe
the larger spheres, in Monte Carlo simulations. We find
fluid-fluid demixing transition for size ratios of 1:10 or mo
extreme. However, this transition is metastable with resp
to the fluid-solid transition which occurs at strikingly sma
values of the packing fraction of the large spheres. M
surprisingly, perhaps, we also find an isostructural solid-s
transition at high packing fractions of the large spheres. T
transition becomes stable for a size ratio<0.05. The richness
of the predictions from the approximate effective Ham
tonian leads us to attempt direct simulations of the true
nary hard-sphere mixture. Theseare feasible for size ratios
>0.05, provided the density of the small spheres is fa
low. We find remarkably good agreement between the res
of the two sets of simulations even in the solid phase~s! and
for relatively large size ratios~0.2! where one might expec
the approximation of pairwise additivity to fail. The succe
of our comparison implies that an effective Hamiltonian a
proach based on a pairwise depletion potential descrip
should provide an accurate, albeit approximate, accoun
the main features of the phase behavior of highly asymme
hard-sphere mixtures.

The paper is organized as follows: In Sec. II we give
historical overview of research on additive binary ha
sphere mixtures. This is not intended as a comprehen
review; rather, it should provide a more detailed introduct
to earlier work and motivation for our present approach.
Sec. III the effective Hamiltonian is derived by integratin
out the degrees of freedom of one of the species in a bin
mixture. We emphasize that this derivation is not restric
to a binary hard-sphere mixture; it applies to any tw
component mixture where the species interact via sh
ranged pairwise potentials. The theory is applied to addi
binary hard-sphere mixtures in Sec. IV where explicit form
las are introduced for the one-body and two-body~depletion
potential! contributions. Results of computer simulatio
based on the approximate effective Hamiltonian are p
sented in Sec. V. The phase diagrams and the pairwise
relation functions are calculated for a range of size ratios
Sec. VI we present the results of the direct simulations of
true binary mixture and compare the phase diagrams w
those obtained from the effective Hamiltonian. Section VII
makes comparisons between our present results and tho
experiment and previous theories or simulations, while
Sec. VII B we make a connection with the so-called fr
volume theory of binary hard-sphere mixtures, showing h
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that approach relates to the present. Finally, in Sec. VII C
make some concluding remarks. Some of our results h
been presented in short communications@8,9#.

II. HISTORICAL OVERVIEW

In the early days of liquid state physics it was not cle
whether attraction was necessary to drive a freezing tra
tion in simple fluids. In 1957 Wood and Jacobson@1# and
Alder and Wainwright@2# showed by computer simulation
that a system of purely repulsive hard spheres has a w
defined freezing transition. These results were disputed f
long period, but nowadays it is generally accepted tha
system of identical hard spheres does have a fluid-solid t
sition @10#. The origin of this freezing transition is purel
entropic and occurs because the entropy of the crysta
phase is higher than that of the fluid phase at sufficien
high densities.

In a simple picture of a solid all molecules are confined
cells centered at lattice sites. This confinement results
decrease in entropy. At sufficiently high density, howev
the molecules in a dense fluid will be more jammed than i
solid, where the molecules can move freely within cells. T
increase in free volume per molecule in a solid results i
gain in entropy that can outweigh the loss in entropy
curred by confining the molecules to cells.

The location of this hard-sphere freezing transition w
determined from simulations by Hoover and Ree, who fou
that the packing fractions of the coexisting fluid and fac
centered cubic solid phase~fcc! are given byhfluid50.494
and hsolid50.545, which corresponds to a pressu
Ps3/kBT511.69 with s the diameter of the hard sphere
@11#. We also note that it has been shown recently tha
coexistence the fcc crystal is indeed more stable than
hexagonal close-packed~hcp! crystal @12#.

In the last decade, it was found that binary hard-sph
mixtures show extremely rich phase behavior. A dens
functional treatment of Barrat, Baus, and Hansen show
that starting from the pure limit, the freezing transition of t
mixture changes from a spindlelike transition via an azeo
pic to an eutecticlike one when the two species become m
dissimilar in size@13#. In the case of spindlelike phase b
havior, a narrow coexistence is found between a fluid an
substitutionally disordered fcc crystal. Here ‘‘narrow’’ refe
to the width of this coexistence region expressed in terms
the composition difference between the two coexist
phases. When the spheres become more dissimilar in
the fluid-solid region broadens and an azeotropic point
pears. At higher packing fractions a coexistence region
tween two substitutionally disordered fcc solids appears
the phase diagram when the spheres become sufficiently
similar. When this miscibility gap in the solid phase inte
venes with the fluid-solid coexistence the phase diagram
comes eutecticlike. Computer simulations, other den
functional approaches, and a scaled particle approach
vealed that these predictions are qualitatively correct@14–
19#: the transition from a spindle to azeotropic type of pha
diagram is predicted at a size ratioq5s2 /s150.94 @13,14#
and the transition from azeotropic to eutectic atq50.92@13#
or 0.875@14#. The diameters of the large and small sphe
are, respectively,s1 ands2. Note that only substitutionally
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disordered fcc solids are found for these size ratios.
In recent experiments, however, complex crystalline or

is found forq50.58 and 0.62@20#. For sterically stabilized
polymethylmetacrylate~PMMA! spheres,AB2 andAB13 su-
perlattice structures are found, whereA denotes the large
species. The presence of these superlattice structure
stable phases was subsequently confirmed by comp
simulations for 0.41<q<0.625 @21# and by density func-
tional approaches@22#. In addition, it was shown that th
fluid phase never undergoes fluid-fluid demixing for the
size ratios. Thus the phase behavior of binary hard-sph
mixtures is well understood forq.0.4.

This state of affairs should be contrasted with the case
more asymmetric binary hard-sphere mixtures, the phase
havior of which is still under debate. For instance, it is s
unclear whether a~stable! fluid-fluid demixing transition can
exist for any binary hard-sphere mixture. In 1964, Lebow
and Rowlinson showed, using the Percus-Yevick~PY! clo-
sure of the Ornstein-Zernike~OZ! equations, that the homo
geneous fluid phase of a binary mixture of large and sm
hard spheres is stable with respect to demixing, regardles
the diameter ratio, composition, or pressure@4#. A similar
prediction emerged from the generalization of Manso
et al.of the Carnahan-Starling equation of state for mixtur
i.e., no spinodal instability was found in the fluid phase@23#.
Computer simulations of binary hard-sphere mixtures foq
50.6 @24#, 0.909 @25#, 0.5 and 0.33@26#, 0.33 @27#, 0.909,
0.6, 0.33, 0.2, and 0.05@28#, performed for packings wher
ergodicity problems do not prevent equilibration, did n
provide any evidence for a demixing transition, and it w
therefore generally believed that binary hard-sphere mixtu
never phase separate into two fluid phases. In 1990, h
ever, Biben and Hansen showed that the pair distribu
function diverges at contact, within the Percus-Yevick a
proximation, in the extreme asymmetric limitq→0 @29#.
One year later, the same authors showed that the Rog
Young ~RY! closure, which for the pure hard-sphere syst
is known to be more accurate than the Percus-Yevick
sure, yields a fluid spinodal instability whenq<0.2 @3#. They
attributed the fluid spinodal to the stickiness of the lar
particles arising from the so-calleddepletion effect. This ef-
fect, which has long been known to drive phase separatio
colloid-polymer mixtures@30,31#, induces effective attrac
tions between large~colloidal! spheres at small separation
due to an unbalanced pressure of small~polymeric! spheres.
An alternative description of the same effect is that a f
volume of the small spheres is gained due to the overla
the excluded volume of clustering large spheres; the res
ing gain of entropy of the small spheres drives this clus
ing, and thus induces effective attractions between the la
spheres. In 1993, this latter picture of the depletion eff
was employed by Lekkerkerker and Stroobants in a phen
enological approach based on scaled particle expression
the free volume@32#. In qualitative agreement with the re
sults of Ref.@3#, these authors found a fluid-fluid spinod
@32#. However, the spinodal instability in Ref.@32# shifts to
higher packing fractions of the small spheres when the
ratio becomes more asymmetric, while the opposite tren
to be expected since the depletion effect becomes stro
for more asymmetric hard-sphere mixtures. Moreover, it w
shown by Amokrane and Regnaut that the location of
r
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spinodal instability is very sensitive to the precise express
used for the free volume@33#. In 1995 Rosenfeld employed
his fundamental-measures density functional theory to as
metric binary hard-sphere systems, and predicted a fl
fluid demixing transition for a size ratioq<0.25 @34#.

These early theories for asymmetric binary hard-sph
mixtures did not consider the crystalline solid phase exp
itly. However, experiments on colloidal~nearly! hard-sphere
particles suggest that any demixing transition is stron
coupled to the freezing transition. Unfortunately, surfa
crystallization and sedimentation effects preclude mak
definite conclusions. For instance, Sanyalet al. performed
experiments on mixtures of polystyrene spheres with a dia
eter ratio of 0.2@35#, and observed cluster formation in th
sediment at the bottom of their samples. In contrast, w
they suspended the mixture in a density-matched solv
neither sedimentation nor flocculation was seen. In the
periments of van Duijneveldtet al., a phase instability was
found in a fairly narrow concentration range of small a
large silica particles withq50.1667@36#. However, in these
experiments conclusions could only be drawn during the fi
few hours, as sedimentation becomes important at lon
times. Thus the authors could not determine whether
phases formed initially in the samples outside this narr
concentration range were stable fluid phases or metast
fluids or glasses. They also concluded that the crystallizat
observed in the sediment after several weeks, could
caused either by slow concentration-dependent kinetics o
densification to the freezing point arising from sedimen
tion. Experiments on mixtures of polystyrene particles w
size ratios 0.069<q<0.294 by Kaplanet al. showed the ex-
istence of either a single homogeneous disordered phas
coexistence between two disordered phases, a coexist
between a disordered phase and a crystal on the sample
or coexistence between two disordered bulk phases an
surface crystallization@37#. However, bulk crystallization
was never observed. A possible reason why no surface c
tallization was found in the experiments of van Duijneve
et al. is the fast settling of silica spheres compared to po
styrene particles. Dinsmoreet al. reported results on mix-
tures of polystyrene particles with 0.083<q<0.149@38#. In
addition to surface crystallization, they observed fluid-so
phase separation at higher packing fractions of small sphe
When they increased the packing fraction of the sm
spheres even further, they observed that the clusters in
sediment rapidly form a ‘‘loose’’ gel instead of a crysta
Independently, Imhof and Dhont found a fluid-solid type
phase separation in experiments on silica spheres witq
50.1075@39#. Moreover, two types of glassy states, disti
guished by the different mobilities of the small spheres, w
found at high packing fractions of the large spheres. In b
cases the large ones form a glasslike structure whereas
small ones are mobile~fluidlike! in one case and rather im
mobile in the other.

Inspired by these experimental results, Poon and Wa
@40# and Dinsmoreet al. @41# extended the free volume ap
proach of Lekkerkerker and Stroobants@32# to the solid
phase and concluded that the fluid-fluid demixing transit
should be metastable with respect to a broad fluid-solid
existence region. In addition they found that the presenc
small spheres causes crystallization of large spheres next
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hard wall at concentrations well below those correspond
to bulk phase separation, in agreement with the experime
observations. A broad fluid-solid coexistence has also b
found in density functional calculations based on the mo
fied weighted density approximation for a binary hard-sph
mixture with q50.1 @42#. Recently Caccamo and Pellican
showed, using a single-phase entropic freezing criterion
the thermodynamically self-consistent Rogers-Young theo
that for a single state point the phase instability in bina
hard-sphere mixtures withq50.1 is consistent with fluid-
solid phase separation@43#. Another freezing criterion was
employed by Saija and Giaquinta@44#. A different approach,
based on results for the first five virial coefficients of t
binary hard-sphere mixture, was adopted by Coussaert
Baus@45,46#. In addition to a fluid-solid transition they find
a thermodynamically stable fluid-fluid transition for size r
tios as large asq50.15 andq50.33 @45#, if the fourth and
fifth virial coefficients are taken from results of Saijaet al.
@47#. However, in a subsequent erratum which uses
fourth and fifth virial coefficients from Encisoet al. @48#,
they find that the fluid-fluid transition is at such high packi
fractions that they argue it should be metastable with res
to a broad fluid-solid transition forq50.2 and a narrow one
for q50.1 @46#. Yet another theoretical treatment by Veg
predicts a narrow fluid-solid coexistence forq→0 @49#. In
summary the predicted phase behavior of asymmetric bin
hard-sphere mixtures is very sensitive to the details of
theoretical approaches, and the character of the fluid-fl
and fluid-solid transitions and their interplay remains poo
understood.

In this paper we explore an alternative route to the ph
behavior of asymmetric binary hard-sphere mixtures. It
based on our present knowledge of the depletion force
tween two big spheres immersed in a fluid of small particl
When the separation of the big spheres is less than the d
eter of the small ones, there is an unbalanced pressure o
‘‘sea’’ of small spheres which gives rise to the attracti
depletion force between the big spheres. As mentioned ab
this mechanism was first described by Asakura and Oos
for colloid-polymer mixtures@30#. The depletion force was
investigated in detail by Attard and co-workers with
hypernetted-chain-based approximations@50# and in simula-
tions @51#. Mao et al. calculated the depletion force up t
third order in the density of the smaller spheres@52#, having
first made the Derjaguin approximation to relate the fo
between the two big spheres to that which arises when
small particles are confined between two planar walls. T
found good agreement with the simulation results forq
50.1 of Bibenet al. @53#. Götzelmannet al. @54# have re-
cently assessed various theoretical treatments of the de
tion force and the corresponding depletion potentialfdep(r ).
Depletion potentials have also been ‘‘measured’’ experim
tally. Kaplanet al. performed experiments for a large sphe
near a wall in a suspension of small spheres. By tracking
Brownian trajectory of the large sphere with video micro
copy, they were able to determine the potential depth, wh
they estimated to be of the order of a fewkBT for a size ratio
of 0.028@55#. Ye et al. measured the structure factor of th
big colloidal particles in a neutron scattering experiment
colloid-polymer mixtures. By fitting these structure factors
those calculated from the Asakura-Oosawa depletion pair
g
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tential ~using the random phase approximation!, they found
that the depth of the depletion potential increases linea
with ~low! polymer concentration, as predicted by th
Asakura-Oosawa approximation@56#. Laser radiation experi-
ments were used to measure the minimum laser intensity
is required to blow off a large polystyrene latex particle fro
the wall as a function of polymer concentration@57#. These
laser intensities were translated into depletion forces
again good agreement was found with the Asakura-Oos
depletion force. Depletion forces of colloidal hard sphe
trapped in a vesicle were measured by Dinsmoreet al. @58#.
They found that the large particles are more likely to
trapped close to regions of the surface which have a la
curvature and they argue the importance of their results
biological systems@58#. Very recently, Rudhardtet al. @59#
measured the depletion force on a large polystyrene sp
immersed in a solution of small, noncharged polymers a
function of thedistanceto a flat glass surface and ofpolymer
concentration using total internal reflection microscopy
They also find good agreement with theoretical predictio
@59#. Finally, we mention that the depletion potential w
measured recently using optical tweezers@60# and good
agreement with the Asakura-Oosawa depletion potential
claimed.

Of course, one should bear in mind that real colloid
mixtures or colloid-polymer mixtures are not strictly bina
hard-sphere mixtures, and so there are possible influe
from screened Coulomb forces, polydispersity, etc., wh
make direct comparison between experiment and the
based on idealized models a matter for some caution.

In view of all the theoretical and experimental effo
which has been expended on determining depletion po
tials it is somewhat surprising, perhaps, that these poten
have not been used to calculate the phase behavior of bi
hard-sphere mixtures. One might envisage performing sim
lations or carrying out theoretical studies for an effecti
one-component system in which the big spheres interact
a pairwise potentialfeff5f111fdep, wheref11 is the hard-
sphere potential between the two big spheres andfdep is the
depletion potential obtained from the theoretical or simu
tion treatments described above. Recall thatfdep depends on
the density of the small spheres. Such a strategy was
ployed by Gastet al. @61# in a pioneering investigation of the
phase behavior of colloid-polymer mixtures. However, a s
tematic derivation of an effective Hamiltonian, obtained
integrating out the degrees of freedom of the small sphe
was not carried out, and so the status of the effective p
wise depletion potential description has remained uncert
Moreover, Ref.@61# specializes to the case of ideal polyme
for which the Asakura-Oosawa potential is appropria
rather than the case of additive binary hard-sphere mixtu
~We make contact with the results of Ref.@61# in later sec-
tions.! In the present work we derive an effective Ham
tonian by formally integrating out the degrees of freedom
the small spheres. We show that this Hamiltonian has ze
body, one-body, two-body, and higher-body terms. The tw
body ~pairwise! term is precisely that which is given by th
depletion potential description and we show that the ze
body and one-body terms play no role in determining ph
equilibria. Ignoring the higher-body terms we perform sim
lations with the effective pairwise potential defined abo
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5748 PRE 59DIJKSTRA, van ROIJ, AND EVANS
and fdep obtained from Ref.@54#. We thus determine the
phase behavior of binary hard-sphere mixtures for size ra
q51.0, 0.2, 0.1, 0.05, and 0.033. As the results of these
fective one-component calculations predict several strik
features at relatively low values of the density of sm
spheres we were motivated to perform direct simulations
the binary hard-sphere system in order to test these pre
tions. The results from the two sets of simulations are
remarkably good agreement for those values ofq and pack-
ing fractions for which direct simulations are possib
thereby justifying the use of the effective pairwise deplet
description.

III. GENERAL THEORY OF BINARY MIXTURES

A. Mapping onto an effective one-component system

Here we formally map a system with interaction Ham
tonian H that describes a binary mixture onto an effecti
one-component system with HamiltonianHeff by integrating
out the degrees of freedom of one species. We are conce
with a classical fluid of two species, labeled 1 and 2, in
macroscopic volumeV. For particle numbersN1 andN2, the
total HamiltonianH5K1H is a sum of kinetic energyK
and interaction energyH5H111H121H22, given by

K5(
i 51

N1 Pi
2

2m1
1(

j 51

N2 pj
2

2m2
,

H115(
i , j

N1

f11~Ri j !,

H225(
i , j

N2

f22~r i j !,

H125(
i 51

N1

(
j 51

N2

f12~Ri2r j !. ~1!

Here m1 and m2 are the masses,Pi and pj the linear mo-
menta, andRi andr j the positions of the particles of specie
1 and 2, respectively. The spherically symmetric pair pot
tials are denotedf11, f22, andf12, while Ri j 5Ri2Rj and
r i j 5r i2r j .

At fixed inverse temperatureb51/kBT, the relevant ther-
modynamic potential of the canonical (N1 ,N2 ,V,T) en-
semble is the Helmholtz free energyFc(N1 ,N2 ,V,T), given
by

exp@2bFc#5
1

N1!L1
3N1

1

N2!L2
3N2

Tr1 Tr2 exp@2bH#, ~2!

where L i5h/A2pmikBT denotes the thermal waveleng
of speciesi 51,2 as follows from the integration over th
momenta. The trace Tr1 is short for the volume integra
*VdRN1 over the coordinates of the particles of species
and similarly for Tr2.

It proves more convenient to consider the system in
(N1 ,m2 ,V,T) ensemble, in which the chemical potenti
m25(]Fc /]N2)N1 ,V,T of species 2 is fixed instead of th

corresponding number of particles,N2. The associated ther
modynamic potential is denotedF(N1 ,m2 ,V,T), and is re-
lated toFc by the Legendre transform
s
-
g
l
f

ic-
n

,

ed
a

-

,

e

F~N1 ,m2 ,V!5Fc~N1 ,N2 ,V!2m2N2 , ~3!

where we omitted the explicitT dependence. Equivalently
we can write

exp@2bF#5 (
N250

`

exp@2b~Fc2m2N2!#

5
1

N1!L1
3N1

Tr1 exp@2b~H111V!#, ~4!

where V is defined in terms of the fugacityz2
5L2

23 exp(bm2) of species 2 as

exp@2bV#5 (
N250

` z2
N2

N2!
Tr2 exp@2b~H121H22!#. ~5!

Note thatV depends not only onN1 , z2, andV, but also on
the instantaneous coordinatesRi for i 51,2, . . . ,N1 of the
canonically treated component 1. In fact, the right hand s
of Eq. ~5! can be interpreted as the grand partition sum o
fluid of species 2 in the external field of a fixed configurati
of N1 particles of species 1. Thus we write

V5V~$R%;N1 ,z2 ,V!. ~6!

The reason why this (N1 ,m2 ,V,T) ensemble is conve
nient can be seen from Eq.~4!, as the right hand side is th
canonical partition sum of a one-component system of s
cies 1 with an effective interaction Hamiltonian

Heff5H111V. ~7!

Once V, and thusHeff, is known for all values ofz2, the
thermodynamics and the phase behavior of the mixture
be determined from standard techniques for one-compo
systems. We focus therefore on the calculation ofV.
Throughout we assume the volumeV to be macroscopically
large.

B. Mayer expansion ofV

In order to calculateV explicitly, we first introduce the
Mayer functionsf and g associated with the pair potentia
f12 andf22, respectively,

f i j [ f ~Ri ,r j !5exp@2bf12~Ri2r j !#21,

gkl[g~r k ,r l !5exp@2bf22~r k2r l !#21. ~8!

In terms of these Mayer functions, we rewrite Eq.~5! as

exp@2bV#5 (
N250

` z2
N2

N2! EV
drN2)

i 51

N1

)
j 51

N2

~11 f i j !)
k, l

N2

~11gkl!

511z2E
V
dr1)

i 51

N1

~11 f i1!1
z2

2

2 EV
dr1dr2

3)
i 51

N1

~11 f i1!~11 f i2!~11g12!

1
z2

3

3!EV
dr1dr2dr3)

i 51

N1

~11 f i1!~11 f i2!

3~11 f i3!~11g12!~11g13!~11g23!1O~z2
4!.

~9!
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We now introduce a diagrammatic technique@62#, in which ~i! each black circle represents a factorz2 and an integral ofr i over
the volumeV, ~ii ! each line between two black circles represents ag bond, and~iii ! each open big circle connected with a bla
circle represents anf bond and a summation over all different particles of species 1 at positionsRi for i 51, . . . ,N1. Then the
expansion of Eq.~9! is equivalent to

exp@2bV#511$the sum of all distinct diagrams consisting of one or more black circles and some or no
g bonds and of one or more open big circles with one or moref bonds% ~10!
r
th

the
-

si-
es

give

h-
or, explicitly,

~11!

whereO„(s—)n1(•)m
… denotes all diagrams involvingn or

more distinct particles of species 1 andm black circles with
or without g bonds.

Using the Goldstone theorem@62#, i.e., using ln(11x)
5(n51

` (2)n11xn/n, the only diagrams that survive afte
taking the logarithm of the diagrammatic expansion are
 e

connected ones~i.e., those which are extensive inV). Thus
we can write

~12!

Each of the diagrams above can be classified according to
numbern of open big circles in it. This amounts to a decom
position ofV that can be written as

2bV52 (
n50

N1

bVn , ~13!

wheren labels the number of particles of species 1 that
multaneously interact with the ‘‘sea’’ of particles of speci
2 at fugacityz2. Below we show thatVn corresponds to
n-body interactions between the large spheres, and we
explicit, albeit formal, expressions forVn for n50,1,2,3. For
convenience later we introduce the notation

H12
~n!5(

i 51

n

(
j 51

N2

f12~Ri2r j !, ~14!

which describes the interaction betweenN2 particles of spe-
cies 2 andn>1 of species 1.

C. Expressions forVn

It can be shown explicitly that the sum of diagrams wit
out any open big circle, i.e., representing2bV0, can be
reexponentiated to give

exp@2bV0#5 (
N250

` z2
N2

N2!
Tr2 exp@2bH22#[J0~z2 ,V!,

~15!

where the grand partition sumJ0(z2 ,V) is that of a pure
system of species 2 at fixed fugacityz2 in a thermodynamic
volumeV. Extensivity requires that
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V0~z2 ,V!52Vp~z2!, ~16!

wherep(z2) is the negative of the grand-potential density,
the pressure, of this one-component system.

The diagrams involving only one open big circle, repr
senting2bV1, are recovered exactly by the identification

exp@2bV1#5S J1~z2 ,V!

J0~z2 ,V! D
N1

, ~17!

whereJ0 is defined in Eq.~15! and where

J1~z2 ,V!5 (
N250

` z2
N2

N2! EV
drN2 exp@2bH12

~1!#exp@2bH22#

~18!

is the grand partition sum of a system of volumeV consisting
of a single particle of species 1 and a ‘‘sea’’ of particles
species 2 at fugacityz2. It follows from Eq.~17! thatV1 can
be written as

V1~N1 ,z2!5N1v1~z2!, ~19!

wherev1 is defined by

exp@2bv1~z2!#

5F (
N250

` z2
N2

N2! EV
drN2 exp@2bH12

~1!#exp@2bH22#G
3F (

N250

` z2
N2

N2! EV
drN2 exp@2bH22#G21

[^ exp@2bH12
~1!#&z2

. ~20!

The bracketŝ •••&z2
denote a statistical average in the re

ervoir of particles of species 2. It follows directly from Eq
~17! and~19! that v1(z2) is actually the grand-potential dif
ference between a sea of small spheres at fugacityz2 with
and without a single particle of species 1. Another interp
on
r

-

f

-

-

tation of v1 stems from the analogy between Eq.~20! and
the Widom-insertion theorem@62#; i.e., v1(z2) is seen to be
a contribution to the chemical potential of species 1 due
the presence of a sea of species 2 at fugacityz2. This latter
interpretation is, of course, consistent with the linear dep
dence onN1 in Eq. ~19!.

It can also be shown explicitly that the exponential of t
sum of connected diagrams involving two open big circles
given by

exp@2bV2#5)
i , j

N1 J2~Ri j ;z2 ,V!/J0~z2 ,V!

J1
2~z2 ,V!/J0

2~z2 ,V!
, ~21!

whereJ1 is given in Eq.~18! and

J2~Ri j ;z2 ,V!5 (
N250

` z2
N2

N2! EV
drN2 exp@2bH12

~2!#

3exp@2bH22#. ~22!

One recognizes thatJ2(Ri j ;z2 ,V) is the grand partition sum
of a system in a volumeV containingtwo particles of species
1 ~at positionsRi andRj ) and a ‘‘sea’’ of particles of specie
2 at fugacityz2. It follows directly from Eq.~21! that

V2~$R%;N1 ,z2!5(
i , j

N1

v2~Ri j ;z2! ~23!

is a pairwise sum of the pair potentialv2 defined by

exp@2bv2~Ri j ;z2!#5
J2~Ri j ;z2 ,V!/J0~z2 ,V!

J1
2~z2 ,V!/J0

2~z2 ,V!

5
^ exp@2bH12

~2!~Ri j !#&z2

^ exp@2bH12
~1!#&z2

2
. ~24!

Arguments along the same lines yield, for the exponen
of the three-body contributionV3,
exp@2bV3#5 )
i , j ,k

N1 S J3~Ri , j ,k ;z2 ,V!

J0~z2 ,V!

J1
3~z2 ,V!

J2~Ri j ;z2 ,V!J2~Rik ;z2 ,V!J2~Rjk ;z2 ,V!
D , ~25!
ger
where theJn for n50,1, and 2 are defined in Eqs.~15!,
~18!, and ~22!, and whereJ3(Ri , j ,k ;z2 ,V) is the grand-
canonical partition sum of the sea of species 2 at fugacityz2
in the external field of three particles of species 1 at positi
Ri , j ,k . It follows directly from Eq.~25! that

V35 (
i , j ,k

N1

v3~Ri , j ,k ;z2!, ~26!

where the three-body potentialv3 can be rewritten in terms
of the corresponding interaction HamiltoniansH12

(n) for n
51,2,3 as
s

exp@2bv3~Ri , j ,k!#

5^ exp@2bH12
~3!~Ri , j ,k!#&z2

3 )
~mn!5~ i j !,~ ik !,~ jk !

^ exp@2bH12
~1!#&z2

^ exp@2bH12
~2!~Rmn!#&z2

. ~27!

In principle this process can be continued for any inte
n, with the result

Vn~$R%;N1 ,z2!5 (
i 1, i 2,•••, i n

N1

vn~Ri 1 , . . . ,i n
;z2!, ~28!
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where the interactionvn betweenn particles of species 1 ca
be expressed in terms of grand-canonical averages of
Boltzmann factors associated with the HamiltoniansH12

(m)

with 1<m<n, as we showed explicitly forn51,2,3. Of
course, we are still left with the problem of calculatingvn
for n>1, but the present analysis shows that the effec
Hamiltonian~7! for species 1 is of the form

Heff52p~z2!V1N1v1~z2!1(
i , j

N1

@f11~Ri j !1v2~Ri j ;z2!#

1 (
i , j ,k

N1

v3~Ri jk ;z2!1•••, ~29!

where the ellipsis represents the termsVn for n>4, and
where we used Eqs.~16!, ~19!, ~23!, and~26!.

We make four remarks on the results obtained so far~i!
We wish to emphasize that the derivation ofHeff holds for
any two-component mixture with integrable pair interactio
and is not restricted to binary hard-sphere mixtures. The
of convergence of the expansion of the effective Hamilton
depends on the particular form of the pair potentialsf12 and
f22; one could expect a relatively fast convergence
short-ranged potentials, although correlations will genera
cause the effective interactions to be longer ranged than
bare pair potentialsf12 and f22. ~ii ! As a check on the
results obtained it is instructive to consider the followin
exp@2bV# is the grand-partition sum of a fluid of specie
2 in the external field of a fixed configuration ofN1 part-
icles of species 1 and the decomposition ofV given in
Eq. ~13! is equivalent to the factorization exp@2bV#

5)n50
N1 exp@2bVn#. For N150, i.e., no particles of specie

1 in the sea of species 2, we recover from Eq.~15! that
exp@2bV#5exp@2bV0#5J0(z2,V). For N151 we
find exp@2bV#5exp@2bV0#exp@2bV1#5J0(J1 /J0)5J1,
where we used Eqs.~15! and ~17!. Similarly, we find, for
N152, exp@2bV#5J0(J1 /J0)

2(J2J0)/(J1)
25J2, and

for N153 that exp@2bV#5J3. For arbitraryN1, we indeed
find that exp@2bV# can always be factorized into zero
one-, two-, three-, . . . , and N1-body terms so that exp
@2bV#5JN1

, as required. This scheme to factorize the p
tition function is actually similar in spirit to that of Ref.@63#,
where it is applied to a one-component imperfect gas.~iii !
The termsV052p(z2)V andV15N1v1(z2 ,V) that repre-
sent the zero- and one-body terms in the effective Ham
tonian ~29! do not depend on the instantaneous coordina
$R% of the particles of species 1, and therefore do not aff
the structureof the ~uniform! system. Moreover, these tw
terms do not affect thephase behaviorof the two-component
system because of the trivialN1 dependence or, equivalently
the trivial dependence on densityr15N1 /V: V0 /V is in-
dependent ofr1, and V1 /V depends only linearly onr1.
Since two coexisting phases must have the same chem
potential of species 2, and hence the samez2, the two terms
under consideration do not affect the common tangent c
structions, as explained further in the Appendix. This
nocuous character ofV0 and V1 is to be contrasted with
analogous terms for systems with long-ranged Coulomb
teractions, for which the Mayer expansion diverges so t
the present derivation does not apply directly. Recently
he
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was shown@64,65# that a system of charged colloids su
pended in a solvent with coions and counterions can
mapped onto an effective one-component colloidal sys
by integrating out the degrees of freedom of the coions
counterions. The usual Derjaguin-Landau-Verwey-Overb
~screened-Coulomb! potential was recovered for the two
body term, as expected. However, the charge neutrality c
straint gives a nontrivial dependence of the one-body term
the colloid density which has dramatic consequences for
phase behavior at low salt concentrations@64,65#. ~iv! We
see from Eq.~24! that v2(Ri j ;z2) is the grand-potential dif-
ference between the sea, of fugacityz2, containing two par-
ticles of species 1 at a finite separationRi j and at infinite
separationRi j 5`. In other wordsv2 is the work done in
bringing a particle of species 1 from infinity, but still in th
reservoir of fixedz2, to a finite distance from another partic
of species 1 located at the origin.

IV. APPLICATION TO A BINARY MIXTURE
OF HARD SPHERES

In the previous section we showed that we can describ
classical binary fluid by an effective one-component Ham
tonian @Eq. ~29!#. In this section we apply this approach
the particular case of a mixture of large and small ha
spheres with diameterss1 and s2, respectively. The size
ratio is denotedq5s2 /s1<1. The pair potentialsf i j (r ) are
the usual additive hard-sphere potentials, i.e., infinite fo
,r ,(s i1s j )/2 and zero otherwise. The zeroth-order te
V0 is equal to the grand potential of a pure system of sm
hard spheres at fugacityz2:

V0~z2 ,V!52Vphs~z2!, ~30!

wherephs(z2) is the pressure of the small hard-sphere s
tem. This pressure is accurately described by the Carna
Starling equation of state for the fluid state values ofz2 of
interest. An explicit scaled particle expression forv1(z2) is
given by Henderson, and consists of a volume, a surface,
a s1-independent termK(z2) @66#:

N1v1~z2!5phs~z2!Vh1~11q!31ghs~z2 ,R1!ps1
2N1

1K~z2!N1 , ~31!

where ghs(z2 ,R1) is the surface tension of a hard-sphe
fluid at a hard-spherical wall with a radiusR15s1/2, and
h15ps1

3N1/6V is the large-sphere packing fraction@67#.
The two-body termV2 can be written as a sum of pair po
tentialsv2; see Eq.~23!. In the case of hard spheres this pa
potential can be identified with the depletion potential:

v2~Ri j ;z2!5fdep~Ri j ;z2!. ~32!

Attard @50# has derived an exact expression for the deplet
forcebetween two large spheres and this has been emplo
in simulation studies of depletion@51#. Recently, Maoet al.
calculated the depletion potential within the Derjaguin a
proximation up to third order inh2

r , and found excellent
agreement with simulations forq50.1 and forh2

r as large as
0.34@52,53#. Hereh2

r is the packing fraction of a reservoir o
small hard spheres at fugacityz2. In this work, we use the
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simpler expression given by Go¨tzelmannet al. which, up to
third order inh2

r , is equally accurate and reads@54#

bfdep~Ri j !52
11q

2q
@3x2h2

r 1~9x112x2!~h2
r !2

1~36x130x2!~h2
r !3# for 21,x,0,

~33!

wherex5Ri j /s221/q21. Contact corresponds toRi j 5s1
or x521. The total effective pair potential is from Eq.~29!:

feff5f111fdep, ~34!

where f11 is the bare hard-sphere potential between t
large spheres. Examples offeff are shown in Fig. 1 for size
ratios q50.2 and 0.1 at several values of reservoir pack
fraction h2

r . This pair potential contains a deep and narr
potential well close to the surface of the large sphere,
lowed by a small repulsive barrier. The range of the poten
is equal toq times the large sphere diameter. For simplic
~see@54#! we setfdep50 for Ri j .s11s2, and thus we ne-
glect longer-ranged and weaker oscillations; we expect th
to be unimportant for the phase behavior of the mixture. I
worthwhile noting that exact expressions for the deplet
potential were given in Ref.@54# within the context of the
Derjaguin approximation. However, these expressions giv
poor account of the simulation results of Ref.@53# for q
50.1 andh2

r .0.3, thereby casting doubts on the validity
the Derjaguin approximation for these values ofq andh2

r .
In all our effective one-component calculations we

Vn50 for n>3. This approximation was tested forq50.1
in computer simulations by Bibenet al., who found that the
three-body term, denotedv3 above, contributes less tha
0.5% ath2

r .0.3 @53#. The neglect ofv3 can be made plau
sible by geometric arguments forq,0.154, since then thre
or more nonoverlapping large spheres cannot simultaneo
overlap with a small one; i.e., the first and dominant diagr
in the three-body termV3 vanishes. However, it is importan

FIG. 1. The effective large-sphere pair potential, i.e., the sum
the depletion potential~33! and the large hard-sphere potentialf11,
of a binary hard-sphere mixture with size ratio~a! q50.2 and~b!
q50.1, for several small-sphere reservoir packing fractionsh2

r .
o

g

l-
l

se
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ly

to realize that other diagrams inV3 are not necessarily zero
even forq,0.154, so that the neglect of all three-body a
higher-body terms is an approximation. At this stage it is n
evident thatq plays the~formal! role of a small parameter.

Thus we arrive at the effective one-component Ham
tonian

Heff5H01(
i , j

N1

feff~Ri j !, ~35!

where, as mentioned in Sec. III,

H052phs~z2!@12h1~11q!3#V1ghs~z2 ,R1!ps1
2N1

1K~z2!N1 ~36!

is irrelevant for the phase behavior of the fluid, and whe
feff is defined in Eq.~34!. We have now mapped the binar
hard-sphere mixture onto an~approximate! effective one-
component system of large spheres, which can be tre
with standard techniques.

V. RESULTS OF SIMULATIONS OF THE EFFECTIVE
HAMILTONIAN

A. Phase diagram

At first sight, one might think that the phase behavior
the effective one-component system characterized by E
~34! and ~35! can be determined by standard perturbat
theory using the pure hard-sphere system at the same p
ing fraction as a reference system. Using first-order per
bation theory forq50.1, we did not find any indication of a
fluid-fluid spinodal for packing fractionsh1,0.5. This result
was also found in Ref.@54#. However, our simulations of the
system described byfeff given in Eq.~34! yield radial dis-
tribution functionsg(r ) that differ enormously from those o
the reference hard-sphere fluid at the sameh1. This is illus-
trated in Fig. 2, where we plotg(r ) for h150.35, h2

r

50.25, andq50.1. We find thatg(s1)'42, which should
be compared with the much lower contact value'3 for the
hard-sphere reference system. Similar large contact val

f

FIG. 2. The radial distribution functiong(r /s1) for the effective
one-component system with packing fractionsh150.35, h2

r 50.25,
and q50.1 calculated using the depletion potential~33! with and
without the small repulsive barrier. Note that this state point fa
well inside the fluid-solid coexistence region@see Fig. 4~b!#.
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which may signal a strong tendency for clustering, have b
observed in previous simulation and integral equation stu
@53,68#, and also in experiments on colloidal hard-sphe
mixtures@69#. The enormous difference betweeng(r ) of the
reference hard-sphere system and that of the effective sy
signals the breakdown of perturbation theory, and thus
resort to full numerical simulations for the free energyF of
the effective system.

Before describing these simulations we compareg(r ) for
a depletion potential with and without the repulsive barri
Figure 2 shows that the contact value and most other st
tural features are not sensitive to the repulsive barrier, a
from a small well nearr 51.07s1, which does reflect the
presence of the barrier. We conclude that small difference
the choice of depletion potential—such as our omission
the very weak oscillations forRi j .(s11s2)—should not
have a drastic effect on the resulting phase equilibria
probably suffices to have a good account of the poten
well close to contact, while the first repulsive barrier, as w
as the longer-ranged oscillations, should play only a mi
role. Note that the peaks ing(r ) nearr /s151.74 and 2.0 are
similar to those found at state point ‘‘C’’ of Ref.@53# where
it is argued that these arise from a particular local organ
tion of particles equivalent to that in the sticky-sphere mod

In order to determine the phase diagram of the effec
one-component system, we first calculate the thermodyna
potentialF, defined in Eq.~4!, as a function ofN1 , V, and
z2. We actually determine the dimensionless free ene
densityf 5(p/6)s1

3F/V as a function ofh1 andz2. For con-
venience we often replace the dependence onz2 by that on
the reservoir packing fractionh2

r . As the free energy canno
be measured directly in a Monte Carlo~MC! simulation, we
use thermodynamic integration to relate the free energy
the effective system to that of a reference hard-sphere sy
at the same large-sphere packing fractionh1. To this end we
introduce the auxiliary effective Hamiltonian

Hl
eff5(

i , j

N1

@f11~Ri j !1lfdep~Ri j !#, ~37!

where 0<l<1 is a dimensionless coupling parameter:
l50 the auxiliary Hamiltonian is that of the pure system
N1 large hard spheres, while atl51 it is the effective
Hamiltonian of interest~for fixed z2 andV). It is a standard
result @70–72# that

F~N1 ,V,z2!5F~N1 ,V,z250!

1E
0

1

dlK (
i , j

N1

fdep~Ri j !L
N1 ,V,z2 ,l

, ~38!

whereF(N1 ,V,z250) is the free energy of the pure refe
ence system of large hard spheres (l50), for which we use
the Carnahan-Starling expressions@73# for the fluid, and the
analytic form for the equation of state proposed by Hall@74#
for the solid phase. In the latter case an integration cons
is determined such that the known fluid-solid coexistence
the pure hard-sphere system is recovered@11#. The angular
bracketŝ •••&N1 ,V,z2 ,l denote a canonical average over t

system ofN1 particles interacting via the auxiliary Hami
n
s
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tonianHl
eff . The integrand in Eq.~38! can, for a fixedl, be

measured in a standard MC calculation; for the numerical
integration, we use a ten-point Gauss-Legendre quadra
@75#.

In order to map out the phase diagramf (h1 ,z2) must be
determined from l integrations for many state point
(h1 ,z2). We chose therefore to simulate relatively small sy
tems, withN15108. As an illustration we plot, in Fig. 3,f as
a function ofh1 at severalh2

r for q50.1. Forh2
r .0.06 we

find that the solid branch off becomes nonconvex, indicativ
of a spinodal instability. Forh2

r .0.29 another spinodal in
stability is found, but now in the fluid branch. This instabili
can be seen clearly in the inset of Fig. 3, wheref is shown at
h2

r 50.31. For clarity, we have subtracted a linear fit inh1,
which does not affect the common tangent constructi
Note that each point in the (h1 ,h2

r ) plane is obtained by an
independentl integration. In order to construct the fu
phase diagram we employ common tangent construction
fixed z2 to obtain the coexisting phases. We fitted polynom
als to f and computed the pressure and chemical potentia
eachh1. The densities of the coexisting phases can then
determined by equating the pressures and chemical poten
in both phases. For more details we refer the reader to
Appendix.

The above procedure has been carried out to determ
the phase diagram for size ratiosq50.2, 0.1, 0.05, and
0.033. In Fig. 4, we show the resulting phase diagrams in
(h1 ,h2

r ) plane. This representation, which is the natural o
given our approach, implies that the tie lines connecting
existing state points are horizontal. The shaded areas re
sent the~metastable! fluid-fluid and solid-solid two-phase re
gions. Ath2

r 50 and for allq we recover the known freezing
transition of the pure hard-sphere system.

FIG. 3. Reduced free energyb f * 5b@F2(V01V1)#s1
3/V ver-

sush1 for q50.1 at severalh2
r . The curves forh1>0.54 are the

solid branches, while the curves for lowerh1 are the fluid branches
Note the difference in scale forh2

r 50.31. For clarity, we subtracted
a linear fit inh1 to the data forh2

r 50.31~see inset!. For a givenh2
r

common tangent constructions can be made to determine the v
of h1 at coexistence.
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FIG. 4. Phase diagram of binary hard-sphere mixtures with size ratios~a! q50.20, ~b! q50.10, ~c! q50.05, and~d! q50.033 as a
function of the large-sphere packing fractionh1 and the small sphere reservoir packing fractionh2

r as obtained from simulations of th
effective one-component Hamiltonian.F andSdenote the stable fluid and solid~fcc! phase.F1S,F1F, andS1S denote, respectively, the
stable fluid-solid, the metastable fluid-fluid, and the solid-solid coexistence regions. The dashed line in~a! denotes the spinodal instability o
the solid branch. Note that the solid-solid coexistence forq<0.05 becomes stable and that all the tie lines are horizontal~not drawn!.
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For q<0.2, an enormous widening of the fluid-solid tra
sition is observed whenh2

r increases sufficiently. This im
plies that the coexisting fluid and solid phases beco
progressively more dilute and dense, respectively, upon
creasingh2

r . This widening is consistent with findings b
Gastet al. @61# in perturbation theory studies of the Asakur
Oosawa depletion potential model@30,31#, and has also bee
observed in experiments on colloid mixtures, where sm
amounts of small spheres induce a rapid decrease in the
tice constant of the crystal@39#. The shape of the coexistenc
curve forh2

r .0.1 implies that the fluid phase only persists
very low values ofh1.

The calculations also reveal the existence of a fluid-fl
transition forq<0.1. However, this fluid-fluid coexistence
metastable with respect to the broad fluid-solid transition
all q andh2

r . It is of interest to note that for allq<0.1 the
critical point of the metastable fluid-fluid coexistence cur
occurs at a value ofh2

r that is about twice that of the fluid
solid curve at the sameh1. Thus the fluid-fluid curve does
not move deeper into the fluid-solid coexistence region up
decreasingq, i.e., upon decreasing the range of the potent
This situation is in contrast to the findings of Ref.@71# where
for a Yukawa pair potential decreasing the range of the
traction lowers, in temperature, the fluid-fluid coexisten
e
n-

ll
at-

d

r

n
l.

t-
e

into the fluid-solid region. Here there is no trend that su
gests a stable fluid-fluid curve atq,0.033. Forq50.2 we do
not find a spinodal instability in the fluid branch forh2

r

,0.46, while we do find a spinodal instability in the sol
branch forh2

r .0.12. However, in Fig. 5 we show that a
soon as the spinodal instability appears in the solid pha
this instability is very broad and disappears in the flu
phase. We were not able therefore to find a metastable s
solid coexistence using the common-tangent construct
Rather, we plot in Fig. 4~a! the spinodal~dashed curve!
which is given by (]2f /]h1

2)50. The presence of this spin
odal instability on the solid branch may be important for t
kinetics of the phase separation of the mixture@36,76#.

More surprisingly perhaps, the phase diagrams also s
the existence of an isostructural solid-solid transition forq
<0.1. Forq50.1, the solid-solid coexistence region is foun
to be metastable with respect to the freezing transition,
though the critical point of the solid-solid binodal is ve
close to the stable fluid-solid phase boundary. For smalleq
the most striking feature is the downward shift of the sol
solid with respect to the fluid-solid binodal, so that there i
regime with a stable solid-solid coexistence forq<0.05. Si-
multaneously, the solid-solid critical point shifts closer
close packing upon decreasingq. These results are consiste
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with those of Refs.@72,77# for square-well and Yukawa flu
ids, where the authors find a solid-solid transition when
range of the potential is sufficiently short. The coexisti
densities forq50.2, 0.1, 0.05, and 0.033 are tabulated
Tables I, II, III, and IV.

Within the context of the Percus-Yevick approximation,
has been shown that the binary hard-sphere mixture in
limit of q→0 is equivalent to the one-component Bax
sticky-sphere model@78#. The latter is obtained from the
square-well model by considering the limitd/s1→0,be
→` with t5(1/12)(s1 /d)exp@2be# finite, wheree and d
are the well depth and the well width, respectively. Note t
t plays the role of a dimensionless nonlinear temperature
the (h1 ,t) plane the sticky~or adhesive! hard-sphere mode
exhibits a vertical solid-solid binodal at close packing fort
infinite, while for any finitet it exhibits a coexistence be
tween a close-packed solid and an infinitely dilute gas, w
all other phases at best metastable and probably uns
@72#. This pathological behavior of the adhesive hard-sph

FIG. 5. Reduced free energyb f * 5b@F2(V01V1)#ps1
3/6V

versush1 for q50.2 at severalh2
r . The curves forh1>0.54 are the

solid branches, while the curves for lowerh1 are the fluid branches

TABLE I. The coexisting densities~expressed in terms of th
packing fractionh1 of the large spheres! at the fluid-solid transition
for a binary mixture of hard spheres with size ratioq50.2 and
varying packing fractionsh2

r of small spheres in the reservoir a
obtained from simulations with the effective Hamiltonian.

Fluid-solid
h2

r h1 ~fluid! h1 ~solid!

0.00 0.494 0.545
0.03 0.487 0.568
0.06 0.492 0.576
0.09 0.484 0.605
0.12 0.478 0.653
0.15 0.466 0.673
0.18 0.440 0.689
0.21 0.381 0.699
0.27 0.131 0.711
0.30 0.0652 0.715
0.33 0.0252 0.720
0.36 0.00639 0.724
e

e
r

t
In

h
ble
re

model is consistent with Stell’s analysis of the 12th vir
coefficient, which was shown to be divergent@79#. It follows
from Eq. ~33! that the depletion potential forq→0 andh2

r

.0 gives rise to a well depthbe;h2
r /q, to a well width

d/s1;q, and hence tot;(1/q)exp@2h2
r /q# where we ne-

glect irrelevant terms of order unity. Under the condition th
h2

r .q ln(1/q(11c)) andc.0, this gives rise tot→0 for q
→0, i.e., to the ‘‘ground state’’ of the adhesive hard-sphe
model. If, however, h2

r is taken so small thath2
r

,q ln(1/q(11c)) for q→0, then the high-temperature lim
t→` is obtained, corresponding to the one-component ha
sphere system with its ‘‘normal’’ hard-sphere freezing tra
sition. One can thus envisage two differentq→0 limiting
procedures:~i! the Baxter-like limit in whicht is nonzero by

TABLE II. The coexisting densities at the fluid-solid, solid
solid, and fluid-fluid transitions for a binary mixture of hard spher
with size ratioq50.1 and varying packing fractionsh2

r of small
spheres in the reservoir as obtained from simulations with the
fective Hamiltonian.

Fluid-solid
h2

r h1 ~fluid! h1 ~solid!

0.00 0.494 0.545
0.02 0.491 0.555
0.04 0.487 0.567
0.05 0.487 0.574
0.055 0.487 0.605
0.06 0.483 0.683
0.08 0.480 0.692
0.09 0.472 0.700
0.10 0.459 0.706
0.12 0.426 0.715
0.13 0.370 0.718
0.15 0.264 0.720
0.17 0.110 0.725
0.20 0.00863 0.727
0.31 0.00424 0.728
0.34 0.00274 0.730

Solid-solid
h2

r h1 ~solid 1! h1 ~solid 2!

0.06 0.613 0.669
0.07 0.556 0.687
0.08 0.553 0.691
0.09 0.555 0.698
0.10 0.555 0.705
0.12 0.546 0.714
0.13 0.541 0.715

Fluid-fluid
h2

r h1 ~fluid 1! h1 ~fluid 2!

0.29 0.140 0.408
0.30 0.0461 0.435
0.31 0.0207 0.444
0.32 0.00874 0.452
0.34 0.00672 0.458
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restricting attention to sufficiently smallh2
r or ~ii ! the Stell-

like so-calledb0 limit where h2
r is fixed resulting int50

unlessh2
r 50 @79#. It is the latter procedure that is releva

for a comparison with the limitingq→0 behavior of binary
hard-sphere mixtures. The resulting phase diagram, in
(h1 ,h2

r ) plane, of the effective one-component system w
an infinitesimalq is shown in Fig. 6. There is a vertica
solid-solid binodal at close packing in the limith2

r→0. How-
ever, for all h2

r .0 the phase diagram shows coexisten
between a close-packed solid and an infinitely dilute g
while all other phases are metastable@72#. Clearly, all trends
as a function ofq featured in Fig. 4 are consistent with th
fact that the phase diagram approaches that of the adhe
hard-sphere model in Stell’s double limitq→0 andh2

r→0.
In order to test the range of validity of the depletion p

tential picture, we also studied the extreme limit ofq51,
where the system of ‘‘large’’ spheres~species 1! is in equi-
librium with a reservoir of ‘‘small’’ spheres~species 2!
which have exactly the same diameter and a packing frac
h2

r . The depletion potential~33! is based on the Derjagui
approximation which becomes exact in the limitq50, but

TABLE III. The coexisting densities at the fluid-solid, solid
solid, and fluid-fluid transitions for a binary mixture of hard sphe
with size ratioq50.05 and varying packing fractionsh2

r of small
spheres in the reservoir as obtained from simulations with the
fective Hamiltonian.

Fluid-solid
h2

r h1 ~fluid! h1 ~solid!

0.00 0.494 0.545
0.02 0.490 0.566
0.04 0.490 0.573
0.045 0.487 0.580
0.05 0.487 0.717
0.06 0.473 0.722
0.08 0.320 0.726
0.10 0.093 0.727
0.12 0.0061 0.728
0.15 1.7531024 0.730
0.17 4.9431026 0.731
0.19 3.3031027 0.735
0.21 2.3031027 0.740

Solid-solid
h2

r h1 ~solid 1! h1 ~solid 2!

0.04 0.658 0.707
0.045 0.619 0.715
0.05 0.587 0.717
0.06 0.558 0.722

Fluid-fluid
h2

r h1 ~fluid 1! h1 ~fluid 2!

0.165 0.0622 0.437
0.17 0.0540 0.447
0.18 0.0170 0.475
0.19 0.0058 0.483
e

e
s,

ive

n

cannot be expected to be accurate forq→1. In the limit q
51, the actual depletion potential between two hard sphe
suspended in a fluid of hard spheres with exactly the sa
diameter is given by2kBT ln@g(r)#, i.e., the potential of
mean force@54#. We therefore computedg(r ) in a simula-
tion for a system of pure hard spheres at a packing frac
h2

r . In Fig. 7, we compare the depletion potential~33! with
2kBT ln@g(r)# for h2

r 50.1, 0.2, and 0.3. There is reasonab
good agreement except in the repulsive barrier forh2

r 50.3.
We then performed simulations of the effective on
component system interacting with the depletion poten
~33! for q51. Figure 8 shows that the fluid-solid coexisten
hardly varies withh2

r and remains narrow. This phase di
gram agrees rather well with the theoretical prediction r
resented by the dashed curve. The latter is obtained by eq
ing the pressure and the chemical potential of species 1 in
solid and fluid phases and by equating the chemical poten
of species 2 to that of the reservoir. This amounts to solv
the four equations

bPHall~hsolid!5bPCS~hfluid!,

s

f-

TABLE IV. The coexisting densities at the fluid-solid, solid
solid, and fluid-fluid transitions for a binary mixture of hard spher
with size ratioq50.033 and varying packing fractionsh2

r of small
spheres in the reservoir as obtained from simulations with the
fective Hamiltonian.

Fluid-solid
h2

r h1 ~fluid! h1 ~solid!

0.00 0.494 0.545
0.01 0.489 0.557
0.02 0.488 0.566
0.03 0.489 0.576
0.04 0.469 0.725
0.05 0.442 0.726
0.06 0.349 0.727
0.07 0.205 0.728
0.08 0.06695 0.729
0.10 8.81631025 0.731
0.15 0.00 0.733

Solid-solid
h2

r h1 ~solid 1! h1 ~solid 2!

0.025 0.676 0.7159
0.028 0.666 0.7164
0.03 0.664 0.7175
0.04 0.562 0.7253

Fluid-fluid
h2

r h1 ~fluid 1! h1 ~fluid 2!

0.12 0.0943 0.434
0.13 0.0161 0.449
0.14 0.0108 0.455
0.15 0.004 0.457
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lnh1
solid1bmHall

ex ~hsolid!5 lnh1
fluid1bmCS

ex ~hfluid!,

bm25 lnh2
solid1bmHall

ex ~hsolid!,

bm25 lnh2
fluid1bmCS

ex ~hfluid!,

for the four unknownsh1,2
fluid , and h1,2

solid with hfluid5h1
fluid

1h2
fluid andhsolid5h1

solid1h2
solid for fixed values ofm2. The

theoretical result should be near exact since the very accu
Carnahan-Starling and Hall expressions for the pressure
excess chemical potentials in the fluid and solid phase,
spectively, are used. Note that the excess chemical pote

FIG. 6. Phase diagram of binary hard-sphere mixtures for
extremely small but nonzero size ratioq, based on the effective
one-component Hamiltonian, plotted as a function of the lar
sphere packing fractionh1 and the small-sphere reservoir packin
fractionh2

r . Forh2
r 50, the only transition is the freezing transitio

of pure hard spheres denoted by two asterisks. Forh2
r .0 a very

broad freezing transition is found, corresponding to coexistenc
an infinitely dilute fluid (h150) and a close-packed solid (h1

.0.7404). In addition, an infinitesimally narrow solid-solid trans
tion exists at close packing forh2

r .0.

FIG. 7. The depletion potential~33! of a binary hard-sphere
mixture with size ratioq51.0 and small-sphere reservoir packin
fractionsh2

r 50.10 ~thick solid line!, 0.20 ~thick dashed line!, and
0.30 ~thick dash-dotted line!. The thin lines denote2 ln@g(r)# of a
system of pure hard spheres at a packing fractionh50.10 ~thin
solid line!, 0.20~thin dashed line!, and 0.30~thin dash-dotted line!.
te
nd
e-
ial

mex and the pressureP depend only on the total packin
fraction hfluid and hsolid. The ideal gas contributions to th
chemical potentials take into account the distinguishability
the two species; the total chemical potential of the ‘‘sma
spheres in the system is dictated by that of the reservoir,
m2. The good agreement between the theoretical phase
gram and the one based on the depletion potential forh2

r

<0.4 is indicative of the good performance of depletion p
tentials, even in regimes where one could expect the de
tion picture to fail. In Sec. VI we reconfirm this remark. Th
sharp bending of the theoretical fluid-solid phase bound
towards lowh1 for h2

r >0.45 can be understood if one rea
izes that the state point (h1 ,h2

r )5(0,0.494) is the end poin
of both curves, i.e., where the reservoir freezes.

B. Structure

The structure of hard-sphere mixtures has been stu
extensively by integral equation theories and by simulatio
@80#. Here we present results for the radial distribution fun
tion g(r ) and the structure factorS(k) obtained from simu-
lations withN151000 large spheres, interacting with the e
fective pair potential given by Eqs.~33! and ~34!, i.e., the
same pair potential used to calculate the phase diagram
Fig. 9 we showg(r ) for q50.1 at several values ofh2

r for
~a! h150.05,~b! h150.10,~c! h150.20, and~d! h150.30.
At eachh1 we find the following features for increasingh2

r :
~i! the contact value ofg(r ) increases,~ii ! the minimum near
r 51.07s1 becomes more pronounced as the repulsive b
rier grows, and~iii ! the peak atr /s152 becomes more pro
nounced. Similar results were found in integral equat
theories and simulation studies of the true binary hard-sph
mixture @53,68,80#. Comparing the state points considered
Fig. 9 with the phase diagrams plotted in Fig. 4~b!, we find
that the fluid-solid binodal is crossed, for eachh1, ash2

r is
increased between 0.15 and 0.20. There is, however,no clear
signature of this freezing transition ing(r ). As the coexist-
ence line is crossed the form ofg(r ) obtained from the simu-
lations does not change discontinuously. This would seem

n

-

of

FIG. 8. Phase diagram of binary hard-sphere mixtures with s
ratio q51.0, based on the effective one-component Hamiltoni
plotted as a function of the large-sphere packing fractionh1 and the
small-sphere reservoir packing fractionh2

r . The dashed lines de
note the theoretical phase boundaries—see text.
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FIG. 9. The radial distribution functiong(r /s1) for the effective one-component system, based on the depletion potential~33! with size
ratio q50.1, small-sphere reservoir packing fractionsh2

r 50.00, 0.10, 0.15, and 0.20, and with large-sphere packing fractions~a! h1

50.05,~b! h150.10,~c! h150.20, and~d! h150.30. In each case the states withh2
r 50.20 lie in the solid-fluid coexistence region. In~d!

the state withh2
r 50.15 is just inside this coexistence region.
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preclude using the form of the simulatedg(r ) as a criterion
to determine freezing in binary mixtures. In the thermod
namic limit g(r ) in the two-phase region would be th
concentration-weighted sum of the radial distribution fun
tions of the coexisting fluid and solid phases. However,
nature ofg(r ) obtained from finite simulations in a two
phase region depends on several factors making its inter
tation rather complicated. Note that the peak nearr
51.73s1 found in Fig. 2 ~at h150.35,h2

r 50.25) is not
present at the state points investigated in Fig. 9. It app
that this particular feature only develops deep inside the t
phase region.

The structure factorS(k) is shown in Fig. 10 for the sam
state points. This was calculated directly, usingS(k)
5N21^r(k)r(2k)&, where r(k)5( i 51

N1 exp(ik•Ri). For
eachh1 considered we observe an increase of the~extrapo-
lated! value ofS(k50) with increasingh2

r . An increase of
S(k50) was also found in experiments on hard-sphere c
loid mixtures @69# and in other simulations of binary hard
sphere mixtures based on effective pair potentials@53#. As
h2

r is increased the depletion potential becomes more att
tive; i.e., the well deepens, and simple random phase
proximation~RPA! arguments indicate thatS(k50) should
then increase—provided the repulsive barrier does not
-

-
e

re-

rs
-

l-

c-
p-

e-

come too large @54#. For the most dilute systemh1

50.05,S(k) is monotonically increasing withk at smallk
for h2

r <0.15 but for h2
r 50.20—a point in the fluid-solid

coexistence region—there is pronounced small-angle sca
ing @an increase ofS(k) ask→0# which reflects the growth
of dense clusters of the large spheres. For higher value
h1 again we do not observe this increase ofS(k) at smallk
until we enter the two-phase region. However, when t
occurs the structure factor becomes quite noisy.

Another significant feature which is observed within t
single ~fluid! phase is thatkm , the position of the first peak
in S(k), shifts to values that are higher than the value
pure hard spheres ash2

r is increased at fixedh1. This seems
to be a feature of potentials with short-ranged attraction g
ing rise to a sharply peakedg(r ) and is accounted for quali
tatively by the RPA. The height of the first peak does n
vary rapidly withh2

r and we find that freezing occurs whe
S(km);1.04 for h150.05 and;1.52 for h150.30. These
values of the peak height aremuch smaller than the peak
height S(km).2.85 which, according to the Hansen-Verl
~one-phase! criterion @70#, is supposed to signal the onset
freezing in simple fluids. Note that upon increasingh1 the
value ofS(k50) is decreased andS(km), and the heights of
the subsequent maxima, is increased. These features si
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FIG. 10. The structure factorS(k) for the effective one-component system, based on the depletion potential~33! with size ratioq
50.1, small-sphere reservoir packing fractionsh2

r 50.00, 0.10, 0.15, and 0.20, and large-sphere packing fractionsh1: ~a! 0.05,~b! 0.10,~c!
0.20, and~d! 0.30. These are the same state points as in Fig. 9.
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reflect the effect of increased packing of the large sphere
this effective one-component fluid.

In Fig. 11 we plotg(r ) for the less extreme size ratioq
50.2 at severalh2

r for ~a! h150.10, ~b! h150.20, and~c!
h150.30. Upon increasingh2

r at fixed h1 we observe fea-
tures that are similar to those forq50.10; namely,~i! the
contact value ofg(r ) increases,~ii ! the minimum nearr
51.15s1 becomes more pronounced~note that the minimum
is broader than forq50.1, reflecting the difference in th
depletion potentials—see Fig. 1!, and ~iii ! the peak atr
52s1 becomes more pronounced. Once again there is
clear signature ing(r ) that phase separation has occurre
The structure factors for the same state points are show
Fig. 12. The main features are similar to those forq
50.1: S(k50) increases with increasingh2

r for fixed h1 and
for states within the fluid-solid coexistence region the d
become noisier. Upon increasingh2

r , the position of the first
maximumkm again shifts to larger values. Finally we no
that, as forq50.1, the values ofS(km) at the fluid-solid
transition are much lower, for the three values ofh1, than the
value given by the Hansen-Verlet criterion@70#. Only when
freezing occurs at high values of the packing fraction,h1
>0.45, should we expect this criterion to be valid. For t
present system this would restrict its validity to the regim
in

o
.
in

a

h2
r <0.15 for q50.2 and toh2

r <0.1 for q50.1, where the
freezing is~essentially! that of pure hard spheres. Howeve
this is not known in advance.

VI. RESULTS OF DIRECT SIMULATIONS
OF THE MIXTURE

In the previous section, we determined the phase beha
of a binary mixture of hard spheres using an effective o
component Hamiltonian based on pairwise additive deple
potentials. It is important to keep in mind that this Ham
tonian does not constitute an exact treatment of the bin
system, since three- and higher-body interactions were
glected. One might expect the pairwise approximation
break down at sufficiently high densities~e.g., in the solid
phase! or for less extreme size ratios~e.g.,q.0.154, where
three nonoverlapping large spheres can overlap with a s
one @61#!, thereby casting doubt on the specific predictio
~in particular those for the solid-solid transition!. Moreover,
the potentialfdep used in the simulations is approximated b
an empirical form that does not take into account the pr
ence of longer-ranged oscillations@8#. To the best of our
knowledge these approximations—and therefore the de
tion potential picture as a whole—have never been tes
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directly by making a comparison with results of a full trea
ment of the true binary mixture. Given the richness of t
predicted phase diagrams and the experimental and com
tational effort that is being put into the determination of t
depletion potential, it is important to perform such test. It h
been argued by many authors that direct simulations are

FIG. 11. The radial distribution functiong(r /s1) for the effec-
tive one-component system, based on the depletion potential~33!
with size ratioq50.2, small-sphere reservoir packing fractionsh2

r

50.00, 0.10, 0.20, 0.25 and 0.30, and large-sphere packing
tions h1: ~a! 0.10, ~b! 0.20, and~c! 0.30. Note that fluid-solid co-
existence occurs whenh2

r .0.285 for ~a!, h2
r .0.255 for ~b!, and

h2
r .0.23 for ~c!.
e
u-

s
ot

feasible for highly asymmetric binary hard-sphere mixtu
because of the ergodicity problems mentioned in the In
duction. However, the results in Fig. 4 show such interest
phase behavior at~surprisingly! low h2

r that we were moti-
vated to perform direct simulations in this regime, using
scheme, to be discussed below, designed to deal with
regime, but not with the whole phase diagram. Our sche

c-

FIG. 12. The structure factorS(k) for the effective one-
component system, based on the depletion potential~33! with size
ratio q50.2, small-sphere reservoir packing fractionsh2

r 50.00,
0.10, 0.20, 0.25, and 0.30, and large-sphere packing fractionsh1:
~a! 0.10,~b! 0.20, and~c! 0.30. These are the same state points a
Fig. 11.
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complements the direct simulations performed recently
Buhot and Krauth@68#. Their new algorithm is designed t
deal with small-size ratios but it does not seem feasible@68#
to implement the algorithm for most of the state points
interest here (h11h2.0.25).

The scheme we use to calculate the ‘‘exact’’ phase d
grams of binary hard-sphere mixtures by direct simulat
employs the identity

bF~N1 ,V,z2!5bF~N1 ,V,z250!

1E
0

z2
dz28S ]bF~N1 ,V,z28!

]z28
D . ~39!

The system atz250 is the pure system of large hard spher
Hence the first term of the right hand side of Eq.~39! is
given accurately by the Carnahan-Starling@73# free energy in
the fluid phase and by that of Hall@74# in the solid phase, as
discussed already. The integrand in the second term ca
rewritten using Eqs.~4! and ~5! as

S ]bF~N1 ,V,z2!

]z2
D52

^N2&z2

z2
, ~40!

where^N2&z2
denotes the average number of small partic

in the (N1 ,V,z2) ensemble. This quantity can be measur
directly in a grand-canonical simulation of the ‘‘adsorption
of small spheres from a reservoir at fugacityz2 onto a system
of N1 large spheres in a volumeV. Note that this scheme i
almost identical to the widely knownl-integration scheme
presented in Eq.~38! and in Ref.@81#.

Before discussing the results of the direct simulations,
wish to make two remarks. First, the scheme proposed
Eqs.~39! and~40! is merely a bulk analog of using the Gibb
adsorption equation to determine the surface tension, w
^N2&z2

plays the role of the adsorption,F that of the surface

tension, andN1 , V, andq characterize the ‘‘substrate.’’ Sec
ond, it is important to realize that^N2&z2

is not identical to
the unweighted average adsorption from the reservoir on
system ofstatic large hard spheres, since not all configu
tions of large spheres carry the same statistical weight
fact, this weight is proportional to exp@2bHeff#, a quantity
that is not known exactly as it involves empirical pair pote
tials and unknown higher-order interactions, as we have s
above. Consequently, the grand-canonical simulations
measurê N2&z2

must be combined with asimultaneousca-
nonical average over the large-sphere configurations. T
requirement still leads to ergodicity problems at highh2

r ,
although the upper bound, which depends onN1 , V, andq,
is sufficiently high even forq as small as 0.05 to permit us t
study interesting regimes.

We now return to the calculation ofF from Eqs.~39! and
~40!. In Fig. 13, we ploth25ps2

3^N2&z2
/6V, as a function of

h2
r , as measured in a simulation withN1532 for severalh1.

Results are shown forq50.1 andq50.05. Here we con-
verted z2 into h2

r using the Carnahan-Starling expressi
z2s2

35(6h2
r /p)exp@(8h2

r 29h2
r213h2

r3)(12h2
r )23#, which is

essentially exact in the regime of interest. AlthoughN1
532 may seem too small a number of large spheres to
y

f

-
n

.

be

s

d

e
in

re

a
-
In

-
en
at

is

r-

form reliable simulations, one should recognize that~i! the
pure large-sphere free energy~at z250) is taken from accu-
rate independent sources@73,74# and~ii ! the maximum value
of ^N2&z2

is about 53104 due to the small-size ratios. W

also ploth2 as predicted by the scaled particle expressio
for the zero- and one-body terms and the predictions of
free volume approach of Ref.@32#; these comparisons will be
discussed in more detail in Sec. VII.

Using the simulation data forh2 as a function ofh2
r or z2,

we calculateF(N1 ,V,z2) from Eq. ~39! by numerical inte-
gration. OnceF is known we employ common tangent co
structions at fixedz2 to obtain the phase boundaries show
by the symbols in Fig. 14. The main observation is the str
ingly good overall agreement with the effective on
component results for the three values of the size ratioq
50.2, 0.1, and 0.05, that we consider. Such good agreem
throughout the fluid-solid coexistence curve forq50.2 and
at highh1 for q50.1 and 0.05 is rather unexpected, as o
might expect the depletion picture to break down in the
regimes. The only significant difference is that the isostr
tural solid-solid transition forq50.1 ath2

r ;0.06 turns out to

FIG. 13. The small-sphere packing fractionh2 of a hard-sphere
mixture with size ratio~a! q50.10 and~b! q50.05 versus that of
the reservoirh2

r for several large-sphere packing fractionsh1. The
asterisks denote simulation data while the solid lines denote
results obtained from the expressions of Henderson for the o
body term@66#. Dashed lines denote the results of the free volu
approach@32#.
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FIG. 14. Phase diagram of binary hard-sphere mixtures w
size ratios~a! q50.2, ~b! q50.1, and~c! q50.05 as a function of
the large-sphere packing fractionh1 and the small-sphere reservo
packing fractionh2

r . F and S denote the stable fluid and soli
~fcc! phase.F1S, F1F, andS1S denote, respectively, the stab
fluid-solid, the metastable fluid-fluid, and the~meta!stable solid-
solid coexistence regions. The solid and dashed lines are the e
tive one-component results; the squares and the asterisks~joined by
lines to guide the eye! denote, respectively, the fluid-solid and th
solid-solid transition obtained from direct simulations of the tr
binary mixture.
be stable with respect to fluid-solid coexistence, in contr
to the effective one-component prediction. The present
sults provide further evidence for a fluid-solid coexisten
broadening with increasingh2

r for all q, and do not support
the narrowing predicted by some theoretical approac
@46,49#. Unfortunately, ergodicity problems prevented
from reaching the fluid-fluid demixing regime by dire
simulation, so that this feature of the effective on
component results could not be tested. Nevertheless,
quantitative agreement at the accessible values ofh2

r does
not give any indication that breakdown of the depletion p
tential picture will occur at higherh2

r —at least not until the
small spheres freeze.

As we computed the average number of small partic
^N2&z2

, in the (N1 ,V,z2) ensemble by direct simulation o

the true binary mixture, we can convert our phase diagra
from the (h1 ,h2

r ) plane to the (h1 ,h2) plane. In Fig. 15, we
show the converted phase diagrams~open squares and aste
isks! for q50.2, 0.1, and 0.05. Note that the tie lines are
longer horizontal.

In Fig. 16, we show snapshots of typical configurations
a binary hard-sphere mixture with a size ratioq50.1 at
small-sphere packing fractionsh2

r 50.121 and large-spher
packing fractionsh150.30 andh150.72. These state point
lie in single-phase regions but the densities are close to
coexisting fluid (h150.355) and solid (h150.712) densities
at this value ofh2

r . In the solid phase, the large hard sphe
form a face-centered-cubic lattice structure, while the sm
spheres are still disordered and fluidlike. Note that in b
the fluid and solid phasesh2 is considerably smaller than
h2

r ; in the present caseh2 for the coexisting fluid is 0.069
while h2 in the coexisting solid is 0.0174. These values a
of course, reflected in the pronounced~negative! slope of the
tie lines in Fig. 15.

The coexisting densities obtained from direct simulatio
of the binary mixture are tabulated in Tables V, VI, and V

VII. DISCUSSION

A. Comparison with experiments and previous
simulation studies

In order to compare our phase diagrams with experim
tal data and other simulation studies, we need to convert
reservoir packing fractionh2

r of the small spheres to that i
the binary mixture,h2. In the case of direct simulations, w
computed the average number of small particles explicitly
the (N1 ,V,z2) ensemble and this allows us to convert t
phase diagrams directly to the (h1 ,h2) plane. Figure 15
shows the converted phase diagrams forq50.2, 0.1, and
0.05. However, ergodicity problems prevented us from go
to highh2

r , and only a small part of the phase diagram cou
be studied directly by simulations of the true binary mixtu
Using the effective Hamiltonian approach we could map
the phase diagram for higherh2

r . In principle, the phase
diagrams based on the effective Hamiltonian can be c
verted by employing the exact thermodynamic relation

h

ec-
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densities
tonian

PRE 59 5763PHASE DIAGRAM OF HIGHLY ASYMMETRIC BINARY . . .
FIG. 15. Phase diagram of binary hard-sphere mixtures with size ratios~a! q50.2,~b! q50.1,~c! q50.05, and~d! q50.033 as a function
of the large-sphere packing fractionh1 and the small-sphere packing fractionh2 . F andS denote the stable fluid and solid~fcc! phase.
F1S, F1F, andS1S denote, respectively, the stable fluid-solid, the metastable fluid-fluid and the~metastable! solid-solid coexistence
regions. The squares and the asterisks~joined by lines to guide the eye! denote, respectively, the fluid-solid and the solid-solid ph
boundaries obtained from direct simulations of the true binary mixture. The accompanying tie lines, which connect the coexisting
~packing fractions!, are also shown. In~b!, ~c!, and~d! the dashed lines are the phase boundaries obtained from the effective Hamil
approach converted using Eq.~43!. Note the differences in the vertical scales between the figures.
ia

d

fo

r of
^N2&z2
52

]bF~N1 ,V,m2!

]bm2
52

]b~V01V1!

] ln z2

2K ]bS (
n52

N1

VnD
] ln z2

L
z2

, ~41!

where we have used Eqs.~4!, ~13! and the notation̂•••&z2

introduced in Sec. VI. In our calculation of the phase d
grams we ignored the zero- and one-body termsV0 andV1,
as these terms are irrelevant for the phase behavior an
direct information was obtained for̂N2&z2

. However, the
following scaled particle expressions can be employed
the quantities entering the zero- and one-body terms@66#:

bphs~z2!5
6

ps2
3

h2
r 1~h2

r !21~h2
r !3

~12h2
r !3

, ~42!
-

no

r

bghs~z2 ,R1!52
9~h2

r !2

2ps2
2

11h2
r 22h2

r q

~12h2
r !3

,

bK~z2!5
22h2

r 17~h2
r !2211~h2

r !3

2~12h2
r !3

2 ln~12h2
r !;

see Eqs.~19!, ~30!, and ~31!. The conversion ofz2 into h2
r

can be made using the Carnahan-Starling expressionz2s2
3

5(6h2
r /p)exp@(8h2

r 29h2
r213h2

r3)(12h2
r )23#. By neglecting

the two- and more-body interactions, the average numbe
particles of species 2 can then be approximated by

^N2&z2
.2

]b~V01V1!

] ln z2
5

]bphs~z2!@12h1~11q!3#V

] ln z2

2
]@bghs~z2 ,R1!ps1

2N11bK~z2!N1#

] ln z2
. ~43!
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We tested this approximate conversion against the data
tained from direct simulations of the true binary mixture.
Fig. 13, we ploth2

r versush2 for size ratiosq50.1 and 0.05
for several large-sphere packing fractionsh1. In general we
found very good agreement with the expression~43! @82#.
For comparison we also ploth2 as predicted by the free
volume approach of Ref.@32#; these results will be discusse
in more detail in Sec. VII B. Using Eq.~43!, we now convert
our phase diagrams based on the effective Hamiltonian
proach from the (h1 ,h2

r ) plane to the (h1 ,h2) plane. These
are also plotted, together with the conversions of the dir
simulations, in Fig. 15. As expected on the basis of Figs.
and 14, the agreement between the two sets of results a
the different conversions is good.

We now compare ourq50.1 phase diagram with the ex
perimental data from@38# and @39#. In Fig. 17 we plot the
phase diagram obtained from the effective Hamiltonian a
proach in the (h1 ,h2) plane, using the conversion based o
Eq. ~43!, along with the experimental state points.

Imhof and Dhont performed experiments for charg
silica spheres with diameters 365 nm and 39 nm~size ratio
q50.1075) dispersed in dimethylformamide@39#. The poly-
dispersity of the large and small spheres is about 0.03
0.12, respectively. The following correlations are strikin
and require further attention:~i! The crosses, denoting a
~meta!stable fluid state, are, forh2,0.08, close to our stable
fluid phase boundary. At higherh2, there is substantial de

FIG. 16. Snapshots of typical configurations of a binary ha
sphere mixture with a size ratioq50.1 at small-sphere reservoi
packing fractionh2

r 50.121 and large-sphere packing fraction~a!
h150.30, which corresponds to a stable fluid phase, and~b! h1

50.72, which corresponds to a stable solid~fcc! phase.
b-

p-

ct
3
ter

-

nd
,

viation. A possible reason for this deviation might be t
polydispersity of the small spheres, which we plan to stu
in future work. Another reason might be the slow equilibr
tion or kinetics of the phase transition resulting from ge
tion, vitrification, or amorphization@83–85#. ~ii ! The open
squares, denoting the experimental state points that ex
fluid-solid coexistence, are well inside our fluid-solid coe
istence region, and extend to highh1 if there is no meta-
stable fluid-fluid or solid-solid binodal.~iii ! The triangles,
representing the observed glassy states, are all close t
within the metastable fluid-fluid or solid-solid binodal whic
we calculated. A similar link between the formation of no
equilibrium phases and the presence of metastable phas
existence has been observed in experiments on coll
polymer mixtures, and has been explained by a simple mo
for the diffusion-limited kinetics of phase ordering@86#. It
should be noted that crystallization was only observed
these experiments@39# in a limited region of the phase dia
gram ~whereh1.h2). The authors of Ref.@39# also mea-
sured the long-time self-diffusion of the large hard sphere
the mixture, and found an enormous decrease in the diffus
constant when small spheres are added. It is therefore
surprising that the crystallization rates become extrem
small ~or zero! at sufficiently high packing fractions of th
small spheres.

Dinsmoreet al. reported experiments on charge-stabiliz
polystyrene microspheres, dispersed in water, with a sm
sphere diameter of 69 nm and large-sphere diameters ran
from 137 to 825 nm@38#. In contrast with the experiments o

-

TABLE V. The coexisting densities@expressed in terms of the
packing fractions of large (h1) and small (h2) spheres# at the fluid-
solid transition for a binary mixture of hard spheres with size ra
q50.2 and varying packing fractionsh2

r of small spheres in the
reservoir as obtained from direct simulations of the true binary m
ture.

Fluid-solid
h2

r h1 ~fluid! h2 ~fluid! h1 ~solid! h2 ~solid!

0.00 0.494 0.00 0.545 0.00
5.02131023 0.491 0.0010 0.549 0.00064
3.79631022 0.487 0.0089 0.559 0.00515
6.05531022 0.484 0.015 0.574 0.00783
7.66931022 0.480 0.021 0.587 0.00962
8.92331022 0.476 0.026 0.608 0.00953
0.107 0.467 0.033 0.635 0.00950
0.121 0.463 0.039 0.650 0.00967
0.131 0.456 0.045 0.662 0.00970
0.140 0.446 0.050 0.669 0.00999
0.147 0.448 0.053 0.676 0.01007
0.153 0.439 0.058 0.681 0.01014
0.159 0.436 0.061 0.683 0.01074
0.181 0.421 0.076 0.693 0.01261
0.208 0.404 0.096 0.703 0.01476
0.231 0.367 0.118 0.708 0.01770
0.257 0.248 0.173 0.711 0.02228
0.279 0.171 0.219 0.713 0.02723
0.298 0.112 0.259 0.717 0.03155
0.318 0.087 0.285 0.719 0.03666
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TABLE VI. The coexisting densities at the fluid-solid and solid-solid transitions for a binary mixtur
hard spheres with size ratioq50.1 and varying packing fractionsh2

r of small spheres in the reservoir a
obtained from direct simulations of the true binary mixture.

Fluid-solid

h2
r h1 ~fluid! h2 ~fluid! h1 ~solid! h2 ~solid!

0.00 0.494 0.000 0.545 0.0000

3.79631022 0.483 0.014 0.576 0.0099

6.05531022 0.470 0.024 0.595 0.0151

7.66931022 0.468 0.032 0.681 0.0121

8.92331022 0.457 0.039 0.703 0.0126

0.107 0.417 0.052 0.709 0.0151

0.121 0.355 0.069 0.712 0.0174

0.131 0.331 0.079 0.717 0.0188

0.140 0.308 0.088 0.718 0.0204

0.147 0.291 0.096 0.719 0.0217

0.153 0.279 0.102 0.720 0.0226

0.159 0.230 0.115 0.721 0.0235

Solid-solid

h2
r h1 ~solid 1! h2 ~solid 1! h1 ~solid 2! h2 ~solid 2!

6.05531022 0.619 0.0134 0.662 0.0105

7.66931022 0.587 0.0206 0.684 0.0120

8.92331022 0.583 0.0249 0.694 0.0134

0.107 0.575 0.0317 0.708 0.0154

0.121 0.567 0.0369 0.710 0.0176
s-
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Imhof and Dhont@39#, these authors did not find any cry
tallization problems at highh2. In Fig. 17, we plot the ex-
perimental state points that exhibit a clear fluid-solid co
istence in the bulk for binary mixtures withq50.1136 and
0.0833. We find that all the state points forq50.1136 lie
well inside, while the state points forq50.0833 lie slightly
below the fluid-solid binodal calculated forq50.1. Thus,
these experimental results are consistent with what we wo
expect from the trend in Fig. 15.
-

ld

In Ref. @53#, it is shown that forq50.1 the RY and
Ballone-Pastore-Galli-Gazzillo~BPGG! integral equation
theories give a spinodal instability in the fluid phase, wh
the PY equation always predicts complete miscibility of t
two species. For comparison we plot the RY and the BP
spinodals in Fig. 17. We find that the BPGG spinodal l
well inside our fluid-fluid coexistence region, while the R
spinodal lies below the fluid-solid binodal. We also menti
that the state point ‘‘A’’ (h150.244,h250.072) studied in
e of
s

TABLE VII. The coexisting densities at the fluid-solid and solid-solid transitions for a binary mixtur
hard spheres with size ratioq50.05 and varying packing fractionsh2

r of small spheres in the reservoir a
obtained from direct simulations of the true binary mixture.

Fluid-solid
h2

r h1 ~fluid! h2 ~fluid! h1 ~solid! h2 ~solid!

0.00 0.4938 0.0000 0.545 0.0000
5.02131023 0.4916 0.0022 0.550 0.0018
3.79631022 0.4915 0.0165 0.584 0.0127
6.05531022 0.4219 0.0318 0.722 0.0116

Solid-solid
h2

r h1 ~solid 1! h2 ~solid 1! h1 ~solid 2! h2 ~solid 2!

3.79631022 0.6042 0.0119 0.7073 0.0075
6.05531022 0.5776 0.0211 0.7212 0.0116
7.66931022 0.5691 0.0277 0.7255 0.0146
8.92331022 0.5640 0.0329 0.7261 0.0172
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the simulations of Ref.@53# lies outside our fluid-solid coex
istence region. For this state point good agreement is fo
between the pair distribution function of the larger spec
obtained from the BPGG integral equations, from simu
tions of the true binary mixture, and from simulations usi
the effective depletion potential@53#. On the other hand, the
state point ‘C’ (h150.1, h250.32) lies well inside our
metastable fluid-fluid binodal, which might explain the o
served two-stage demixing dynamics. It is tempting to arg
that the rapid clustering found at the first stage reflects
fluid-fluid binodal, while the subsequent slow relaxation
clusters signals the crystallization process.

We note finally that simulations of the full two
component system have been carried out recently for sev
values ofq for the single state pointh15h250.1215@68#.
These authors computed the radial distribution function
the large spheresg11(r ) in the mixture and in a pure system
of large hard spheres. By comparing the integratedg11(r ) in
the mixture with that of the pure system, the authors infer
no, weak, and strong tendencies to demix forq50.1,0.05,
and 0.033, respectively. These inferences are consistent
the phase boundaries we calculate from the effective Ha
tonian: from Fig. 15 we see that the state point lies below
fluid-solid binodal forq50.1, while forq50.033 it lies in-
side the metastable fluid-fluid region. Atq50.05 the state
point would be in the fluid-solid region, and so we identi
the observed clustering as crystallization rather than
fluid-fluid demixing which was implied in@68#.

FIG. 17. Phase diagram of binary hard-sphere mixtures wit
size ratioq50.1 as a function of the large-sphere packing fract
h1 and the small-sphere packing fractionh2 . F andSdenote the
stable fluid and solid~fcc! phases.F1S andS1S denote, respec-
tively, the stable fluid-solid and the solid-solid coexistence regio
The solid lines denote, respectively, the fluid-solid and the so
solid phase boundaries obtained from simulations based on th
fective Hamiltonian approach and the conversion~43!. The open
triangles, crosses, and open squares are experimental state
taken from Ref.@39# whereq50.1075, representing glassy state
~meta!stable fluid phases, and fluid-solid demixing, respective
The solid squares and asterisks denote the experimental state p
taken from Ref.@38#, representing fluid-solid demixing for a binar
colloidal hard-sphere mixture with size ratioq50.0833 andq
50.1136, respectively. The plusses and the open circles joined
dashed line denote the theoretical BPGG and RY spinodal, res
tively, taken from Ref.@53#.
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B. Connection with free volume theory
and colloid-polymer mixtures

There is a close connection between the hard-sphere
tures studied in this paper and mixtures of colloidal ha
spheres~with diameters1) and nonadsorbing polymers~with
radius of gyrationRg and diameters252Rg). Such colloid-
polymer mixtures resemble binary hard-sphere mixtures
the sense that the colloid-colloid and colloid-polymer inte
action is hard-sphere like, with contact distancess115s1

ands125(s11s2)/2, respectively. An important differenc
between such systems and additive binary mixtures of h
spheres is the interpenetrable character of the polym
polymer interaction, which in the simplest~ideal! case is
described bys2250. This simple model for colloid-polyme
mixtures is nonadditive, in contrast to the additive ha
sphere mixture studied in this paper. In Ref.@87#, the ther-
modynamic potential ofN1 colloidal hard spheres in a vol
ume V in contact with a reservoir of ideal polymers
fugacity z2 is written as

F~N1 ,V,z2!5F~N1 ,V,z250!2P2
r ^V free&z250 , ~44!

whereP2
r is the osmotic pressure of the polymer reservo

and wherê Vfree&z250 is the statistically averaged free vo

ume ~or nonexcluded volume! of a test polymer in the sys
tem of N1 colloids at polymer fugacityz250. Using scaled-
particle ~or Percus-Yevick! expressions, the so-called fre
volume approach represented by Eq.~44! predicts a fluid-
fluid demixing transition forq5s2 /s1>0.35 @87#. The
mechanism behind this phase separation is the depletion
fect, which results in the Asakura-Oosawa effective attr
tion between the colloidal particles arising from the prese
of polymers@30,31#. One should realize, however, that th
depletion effect is enhanced significantly by the nonaddi
ity of the interactions, which allows the number density
polymers, and thereby the strength of the depletion inter
tion, to be much larger than in additive mixtures@88#.

Expression ~44! was also used by Lekkerkerker an
Stroobants to study additive binary hard-sphere systems@32#.
In order to make a connection with their work, we rederi
Eq. ~44!, starting from the exact results~39! and ~40!. This
rederivation identifies clearly the approximations involved
Eq. ~44!. The first approximation involves the low-z2 Taylor
expansion of the second term in the right hand side of
~39!,

E
0

z2
dz28S ]bF~N1 ,V,z28!

]z28
D 5z2S ]bF~N1 ,V,z28!

]z28
D U

z
2850

1O~z2
2!. ~45!

The first,O(z2), term in Eq.~45! can be rewritten with Eqs
~4! and ~9! as
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z2S ]bF~N1 ,V,z28!

]z28
D U

z
2850

52z2

Tr1H exp@2bH11#E
V
dr1)

i 51

N1

~11 f i1!J
Tr1 exp@2bH11#

52z2^Vfree&z
2850 , ~46!

which defines formally the free volumêVfree&z
2850 intro-

duced already. It is easily seen from Eqs.~39!, ~40!, ~45!, and
~46! that

bF~N1 ,V,z2!5bF~N1 ,V,z250!2z2^Vfree&z
28501O~z2

2!,

~47!

which reduces to Eq.~44! if the O(z2
2) terms are neglected

and bP2
r is replaced byz2, its low-density limit. However,

the free volume approach of Ref.@32# employs the Percus
Yevick result for bP2

r @bP2
r 5bphs; see Eq.~43!#, which

contains terms to all order inz2, while otherO(z2
2) terms,

arising from the integration, are not taken into account.
other words, the free volume approach of Ref.@32# involves
nonsystematicO(z2

2) and higher-order terms. Furthermor
when we calculate the phase diagram that results from
~44! but with bP2

r replaced byz2, we find a much worse
agreement with our simulation results forq50.1 and 0.2
than when the Percus-Yevick result is used forbP2

r . Appar-
ently, the nonsystematic procedure of replacingz2 by bP2

r in
Eq. ~47! gives rise to a better representation of the spinod
This can be motivated, perhaps, by considering a further
derivation of Eq.~44! starting from the exact expression
~39! and ~40!. We first introduce the quantitya(z2 ,h1)
[h2(z2 ,h1)/h2

r (z2), i.e., the ratio of the density of sma
spheres in the mixture to that in the reservoir, for giv
fugacity z2 and packing fractionh1 of the large spheres
It is a trivial exercise to prove that ^N2&/z2

5Va(z2 ,h1)]bP2
r /]z2, which upon inserting into Eqs.~39!

and~40! and performing the integral by parts yields the ex
result

F~N1 ,V,z2!5F~N1 ,V,z250!2P2
r ~z2!a~z2 ,h1!V

1VE
0

z2
dz28 P2

r ~z28!S ]a~z28 ,h1!

]z28
D . ~48!

If one now aproximatesa(z2 ,h1) by its low-z2 valuea(z2
50,h1)—which can be interpreted as the free volume fra
tion of a small test sphere in a system of large sphere
packing fractionh1—it is easily seen that the last term in E
~48! vanishes, while the remaining expression isidentical to
Eq. ~44!. However, when the full, but unknown, expressi
for a(z2 ,h1) is used, the integral in Eq.~48! is expected to
give at leastO(z2

2) contributions, which,a priori, could be as
important asO(z2

2) contributions from the termP2
r aV in Eq.

~48!. Thus, we conclude again that the free volume appro
of Ref. @32# contains nonsystematicO(z2

2) contributions to
the free energy.
n

q.

l.
e-

t

-
at

h

The accuracy of the linear low-z2 approximation h2

5a(z250,h1)h2
r —with the scaled particle expressions f

a(z250,h1)—as employed in the free volume approach
Ref. @32#, can be tested by comparison with the simulati
results forh2 as a function ofz2 andh1. The dashed line in
Fig. 13 represents this linear relation while the symbols
note the simulation results and the solid curves those fr
approximation~43!. Agreement with results of direct simu
lations is poorer than for the approximation~43! and be-
comes, as expected, worse with increasingh2

r , for every
value ofh1. Moreover, the diffferences between simulatio
and theory begin at lowerh2

r when h1 is higher @82#. The
main difference between the linear low-z2 approximation of
the free volume approach and approximation~43! is the pres-
ence of the second term on the right hand side of Eq.~43!,
which can be interpreted as the adsorption of small sph
onto the surface of the large spheres@89#.

It is important to note that neglecting theO(z2
2) terms in

Eq. ~45! actually involves two approximations:~i! The inter-
action between the smaller species (g bonds! is neglected,
which is justified for ideal polymers butnot for hard spheres.
This assumption implies that the two-body termv2 is the
Asakura-Oosawa pair potential, which is often used to
scribe colloid-polymer mixtures@30,31#. However, it does
not imply that three- and more-body interactions between
colloidal particles are neglected. The free volume itself
cludes the effects of these higher-order interactions.~ii ! An
equal statistical weight is assigned to all~nonoverlapping!
large-sphere configurations, whereas the weight should
proportional to exp@2bHeff#; i.e., the weight should involve
the effective interactions.

We remark that whenh2
r→0 the depletion potential~33!

reduces to the Asakura-Oosawa pair potential calculate
the Derjaguin approximation, appropriate to small values
q. Since the interesting (h1 ,h2

r ) regime for q→0 corre-
sponds to very smallh2

r , our phase diagrams for very asym
metric additive hard-sphere mixtures should resemble th
of very asymmetric nonadditive colloid-polymer mixture
Indeed, the fluid-solid transition for nonadditive colloid
polymer mixtures withq50.1 and 0.2, calculated by Gas
et al. within a second-order perturbation theory treatment
the Asakura-Oosawa pair potential—see Fig. 6 of@61#—
resembles the phase diagrams of our Fig. 4. These aut
also reported a fluid-fluid transition forq50.2, but not for
q50.1. A solid-solid transition was not reported in Ref.@61#.

C. Conclusions

In summary, we have investigated the phase behavior
structure of highly asymmetric binary hard-sphere mixtur
An expression for the effective Hamiltonian of the larg
spheres was derived by formally integrating out the degr
of freedom of the small spheres. We showed that this Ham
tonian consists of zero-body, one-body, two-body, a
higher-body terms. The two-body term is the usual deplet
potential, and the zero-body and one-body terms play no
in determining the phase behavior. Using an accurate
proximation for the effective pair potential and neglecti
higher-body terms, we determined, by standard o
component simulation methods, the phase behavior of bin
hard-sphere mixtures, finding a broad fluid-solid coexiste
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for mixtures with a size ratioq<1, a metastablefluid-fluid
transition for q<0.10, and a stable solid-solid coexisten
for q<0.05. The structure of the effective one-compon
system was studied by computing the radial distribut
function and the structure factor. There is no sharp chang
these functions as the fluid-solid binodal is crossed. Ho
ever, for states in the two-phase regionS(k) exhibits an in-
crease ask→0 and becomes very noisy, features that mig
be identified with clustering of the large spheres. In addit
we find that the Hansen-Verlet freezing criterion does
provide an accurate estimate for the onset of freezing ov
large fraction of the fluid-solid phase boundary.

Since these effective one-component calculations p
dicted interesting phase behavior at such low packing fr
tions of the small spheres, we were motivated to show
direct simulations of the true binary mixtureare feasible in
these regimes. We performed such direct simulations foq
50.05, 0.1, and 0.2, and for the range of packing fractio
accessible to direct simulations, we found remarkably go
agreement with the phase diagrams resulting from the ef
tive one-component simulations. Bearing in mind the sen
tivity to details found in earlier attempts to determine t
phase diagrams of highly asymmetric binary hard-sph
mixtures, the quantitative consistency between the result
these completely independent calculations lends strong
port to the reliability of our phase diagrams — at least
those regimes where direct simulations can be perform
We conclude that the use of the effective pairwise deple
description is well justified for the size ratiosq50.05, 0.1,
and 0.2. It follows that this description should remain re
able for more asymmetric cases, i.e.,q<0.05. ~Indeed one
might argue that this description should become more ac
rate, since higher-body terms should be less important
the detailed form of the depletion potential is better est
lished @54# for very-small-size ratios.! Thus, we are rathe
confident about our predictions forq50.033, for example. In
particular, we predict that the fluid-fluid transition will re
main metastable with respect to the fluid-solid transition
q→0.

We close with some final, hopefully provocative, r
marks: ~i! The fluid-solid coexistence regions in Fig. 1
~even for relatively mild asymmetry, say,q50.2) are ex-
tremely broad. This means that caution must be exerc
when studying the properties of asymmetric binary ha
spherefluids, so as not to enter the two-phase region. W
suspect that several published theoretical and, perhaps, s
lation studies correspond to a bulk two-phase region. T
repercussions should be investigated further.~ii ! The pair-
wise depletion potential description appears to account s
factorily for the phase equilibria for surprisinglylarge values
of q. It is not clear why this should be the case and furth
investigations are required to assess the regime of validit
the pairwise approximation.~iii ! Although the effective
Hamiltonian does appear to provide an accurate accoun
the phase behavior of asymmetric binary hard-sphere m
tures, it has not been ascertained how accurate this is
describing the structure, i.e., for the radial distribution fun
tion of the large spheres,g11(r ). For the true binary mixture
it is known that all three radial distribution function
g11(r ), g22(r ), and g12(r ) exhibit the same characterist
asymptotic (r→`) decay. The exponential decay length a
t
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the period of the oscillations are the same for all three d
tribution functions and depend on the packing fractions a
sizes of both species@90#. It is difficult to see howg(r )
computed from the effective depletion potential, which
evaluated at infinite dilution of the large spheres, can inc
porate all the features of the trueg11(r ). This topic also
warrants further investigation.
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APPENDIX: COMMON TANGENT CONSTRUCTION
IN THE „N1 ,µ2 ,V,T… ENSEMBLE

The Helmholtz free energy of a binary~hard-core! mix-
ture with particle numbersN1 andN2 in a volumeV is given
by Fc(N1 ,N2 ,V), where we omitted the explicit temperatu
dependence. It proves convenient, however, to consider
system in the (N1 ,m2 ,V,T) ensemble, in which the chemica
potentialm2 of species 2 is fixed instead of the correspon
ing particle numberN2. The associated thermodynamic p
tential is denotedF(N1 ,m2 ,V,T), and is related toFc by the
Legendre transform

F~N1 ,m2 ,V!5Fc~N1 ,N2 ,V!2m2N2 . ~A1!

Here we describe how phase equilibria can be determi
from knowledge ofF. SinceF is extensive for macroscopi
cally largeN1 andV, we can write

F~N1 ,m2 ,V!5
6V

ps1
3

f ~m2 ,h1!, ~A2!

whereh15ps1
3N1/6V is the packing fraction of species

and f (m2 ,h1) is a dimensionless free energy density of t
binary mixture at a chemical potentialm2. The pressureP of
the binary system is given by

P~m2 ,v1!52S ]Fc~N1 ,N2 ,V!

]V D
N1 ,N2

52S ]F~N1 ,m2 ,V!

]V D
N1 ,m2

5
26

ps1
3 F f ~m2 ,h1!2h1S ] f ~m2 ,h1!

]h1
D

m2

G ,

~A3!

and the chemical potentialm1 of species 1 is given by
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FIG. 18. The dimensionless free energy densityf (m2 ,h1) versus the packing fractionh1. Schematic illustration of the common tange
construction to determine the phase coexistence in binary mixtures.~a! Symmetry conserved coexistence~fluid-fluid or isostructural solid-
solid coexistence!, ~b! symmetry broken coexistence~fluid-solid coexistence!, ~c! a stable symmetry conserved and a stable symmetry bro
coexistence, and~d! a metastable symmetry conserved coexistence~dashed line! and a stable symmetry broken coexistence~thin solid line!.
a
rie
n

so-

ti-

uc-
al

of
igs.
a
ble

and
ta-
rd

f
om-
m1~m2 ,v1!5S ]Fc~N1 ,N2 ,V!

]N1
D

N2 ,V

5S ]F~N1 ,m2 ,V!

]N1
D

m2 ,V

5S ] f ~m2 ,h1!

]h1
D

m2

, ~A4!

where, in the second steps, we usedm25(]Fc /]N2)N1 ,V,T .
The pressure and the chemical potentials of both species
important quantities in the determination of phase bounda
at first-order transitions, where two phases with differe
packing fractions of species 1~and 2! coexist. The conditions
for the coexistence of two phases, say,a andb, with packing
fractionsh1

a and h1
b and chemical potentialm2 ~or fugacity

z2), are mechanical equilibriumPa(m2 ,h1
a)5Pb(m2 ,h1

b)
and chemical equilibriumm1

a(m2 ,h1
a)5m1

b(m2 ,h1
b). Invok-

ing these two conditions with Eqs.~A3! and ~A4! yields

] f

]h1
U

h
1
a
5

] f

]h1
U

h
1
b
5

f ~m2 ,h1
a!2 f ~m2 ,h1

b!

h1
a2h1

b
. ~A5!
re
s
t

Geometrically this representation corresponds to the
called common tangent construction for determiningh1

a and
h1

b . This is illustrated in Fig. 18, where we plot schema
cally f (m2 ,h1) for a symmetry-conserving transition~e.g.,
fluid-fluid or isostructural solid-solid transition! and for a
symmetry-breaking transition~e.g., fluid-solid transition!.
The physical interpretation of the common tangent constr
tion, denoted by the thin solid lines in Fig. 18, is the usu
one; i.e., the system in the regimeh1

b,h1,h1
a can lower its

free energy by forming a linear combination of phasesa
andb.

It is also possible that two or more spinodal instabilities
the free energy curve are present. This is illustrated in F
18~c! and 18~d!. In Fig. 18~c!, we illustrate the existence of
stable symmetry-conserving transition and a sta
symmetry-breaking transition. In Fig. 18~d!, we see once
again the existence of a symmetry-conserving transition
a symmetry-breaking transition, but here the former is me
stable with respect to the latter. Finally it is straightforwa
to show that adding terms toF which are linear inh1, whose
coefficients are functions ofz2, does not affect the values o
the packing fractions at coexistence. One can make the c
mon tangent construction with or without these terms.
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