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We study the phase behavior and structure of highly asymmetric binary hard-sphere mixtures. By first
integrating out the degrees of freedom of the small spheres in the partition function we derive a formal
expression for the effective Hamiltonian of the large spheres. Then using an explicit paidejgetion
potential approximation to this effective Hamiltonian in computer simulations, we determine fluid-solid coex-
istence for size ratiog=0.033, 0.05, 0.1, 0.2, and 1.0. The resulting two-phase region becomes very broad in
packing fractions of the large spheres @becomes very small. We find a stable, isostructural solid-solid
transition forg=<0.05 and a fluid-fluid transition fog<0.10. However, the latter remains metastable with
respect to the fluid-solid transition for all size ratios we investigate. In the im0 the phase diagram
mimics that of the sticky-sphere system. As expected, the radial distribution furgfti9rand the structure
factor S(k) of the effective one-component system show no sharp signature of the onset of the freezing
transition and we find that at most points on the fluid-solid boundary the val8gkdfat its first peak is much
lower than the value given by the Hansen-Verlet freezing criterion. Direct simulations of the true binary
mixture of hard spheres were performed fpr 0.05 in order to test the predictions from the effective Hamil-
tonian. For those packing fractions of the small spheres where direct simulations are possible, we find remark-
ably good agreement between the phase boundaries calculated from the two approaches—even up to the
symmetric limitg=1 and for very high packings of the large spheres, where the solid-solid transition occurs.
In both limits one might expect that an approximation which neglects higher-body terms should fail, but our
results support the notion that the main features of the phase equilibria of asymmetric binary hard-sphere
mixtures are accounted for by the effective pairwise depletion potential description. We also compare our
results with those of other theoretical treatments and experiments on colloidal hard-sphere mixtures.
[S1063-651%99)07805-9

PACS numbes): 82.70.Dd, 61.20.Gy, 64.70p

I. INTRODUCTION of the state point and the size rafi], it initiated renewed
interest in this system. Despite all the work that has since

The theory of the structure and phase behavior of simpléeen devoted to this issue, it remains an unresolved question
(atomig fluids relies heavily on our knowledge of the hard- as to whether a stable fluid-fluid demixing transition exists in
sphere system, which serves as a standard reference systbard-sphere mixtures. The physical mechanism beftpod-
for determining the properties of more realistic models. Assible) demixing in hard-sphere mixtures is the depletion ef-
such the hard-sphere system has been studied in great detf@itt. This is based on the idea that clustering of the large
during the past few decades and its phase behavior is nosapheres allows more free volume for the small ones which
well understood. In particular, it was shown by computermay lead to an increase in the entropy, i.e., to a lowering of
simulations that a system of identical hard spheres has the free energy. The depletion effect is known to lead to
well-defined freezing transitiofl,2] driven by purely en- demixing in colloid-polymer mixtures but it is not known
tropic effects. Pure hard spheres do not undergo a liquid-gaghether this is sufficiently strong to bring about demixing in
transition since this requires a source of attractive interacadditive mixtures of hard spheres. In such mixtures the pair-
tions. The state of affairs for the binary hard-sphere mixturavise potential between species 1 and 2 is described by a
is less clear-cut and the phase behavior is still hotly debatedliametero;, which is the mean of those for like-like inter-
This system plays a simildreferencg role for binary mix-  actions: o,=(011+ 0,,)/2. Colloid-polymer mixtures are
tures of simple fluids and also serves as a model for mixtureasually treated by a model which assumes the polymer-
of colloids and polymers, or other colloidal systems. Thepolymer interactions to be ideal so that the hard-sphere di-
main issue is whether a binary fluid mixture of large andameters are nonadditive. Here we focus on additive binary
small hard spheres is miscible for all size ratios and compohard-sphere mixtures, thereby ignoring recent work on bi-
sitions or whether a fluid-fluid demixing transition takes nary hard-core mixtures of nonspherical partidl8s5] and
place and, if it does, whether such a transition is stable opolydispersity{ 7], and we mention briefly results for nonad-
metastable with respect to the fluid-solid transition. The disditive mixtures where these are relevant.
cussion was instigated in 1991 by Biben and Hansen, who One might suppose that computer simulations should
showed within an integral equation theory that the binaryhave resolved the issues concerning the phase behavior.
hard-sphere mixture exhibits a spinodal instability in a high-However, direct simulations of highly asymmetric binary
density fluid when the size ratio of the two species is moremixtures are prohibited by slow equilibration when the pack-
extreme than 1:53]. As this result was in contradiction with ing fraction of the small spheres becomes substantial and
a classic study by Lebowitz and Rowlinson, who had conthere have been no systematic attempts to calculate phase
cluded that the mixture is stable against demixing regardlesdiagrams for the asymmetric cases which are of most inter-

1063-651X/99/566)/574428)/$15.00 PRE 59 5744 ©1999 The American Physical Society



PRE 59 PHASE DIAGRAM OF HIGHLY ASYMMETRIC BINARY . .. 5745

est. On the theoretical side it is now well accepted that thoséhat approach relates to the present. Finally, in Sec. VII C we
approaches which attempt to treat both species on an equeilake some concluding remarks. Some of our results have
footing, e.g., integral equation theories or virial expansiondeen presented in short communicati¢p89].
of the mixture equation of state, yield results which are no-
toriously sensitive to the details of the approximations. The
(nonjexistence and location of the spinodal instability is par-
ticularly susceptible but the location of the fluid-solid phase In the early days of liquid state physics it was not clear
boundary is also very sensitive to the choice of approximawhether attraction was necessary to drive a freezing transi-
tion. In the present paper we adopt a different strategy whiction in simple fluids. In 1957 Wood and Jacobddr and
takes advantage of the large-size asymmetry: we integratlder and Wainwrighf2] showed by computer simulations
out the degrees of freedom of the small spheres and obtain dhat a system of purely repulsive hard spheres has a well-
effective Hamiltonian for the larger ones. The effective defined freezing transition. These results were disputed for a
Hamiltonian consists of zero-body, one-body, two-body, andong period, but nowadays it is generally accepted that a
higher-body interactions which depend on the density of thesystem of identical hard spheres does have a fluid-solid tran-
small spheres. We employ a simplified version, which consition [10]. The origin of this freezing transition is purely
sists of only pairwise additive depletion potentials betweerentropic and occurs because the entropy of the crystalline
the larger spheres, in Monte Carlo simulations. We find gphase is higher than that of the fluid phase at sufficiently
fluid-fluid demixing transition for size ratios of 1:10 or more high densities.
extreme. However, this transition is metastable with respect In a simple picture of a solid all molecules are confined to
to the fluid-solid transition which occurs at strikingly small cells centered at lattice sites. This confinement results in a
values of the packing fraction of the large spheres. Morelecrease in entropy. At sufficiently high density, however,
surprisingly, perhaps, we also find an isostructural solid-solidhe molecules in a dense fluid will be more jammed than in a
transition at high packing fractions of the large spheres. Thisolid, where the molecules can move freely within cells. This
transition becomes stable for a size rati®.05. The richness increase in free volume per molecule in a solid results in a
of the predictions from the approximate effective Hamil- gain in entropy that can outweigh the loss in entropy in-
tonian leads us to attempt direct simulations of the true bicurred by confining the molecules to cells.
nary hard-sphere mixture. Theaee feasible for size ratios The location of this hard-sphere freezing transition was
=0.05, provided the density of the small spheres is fairlydetermined from simulations by Hoover and Ree, who found
low. We find remarkably good agreement between the resultéhat the packing fractions of the coexisting fluid and face-
of the two sets of simulations even in the solid pligisand  centered cubic solid phagécc) are given by7,™'9=0.494
for relatively large size ratiof0.2) where one might expect and 7°°=0.545, which corresponds to a pressure
the approximation of pairwise additivity to fail. The successPo>/kgT=11.69 with o the diameter of the hard spheres
of our comparison implies that an effective Hamiltonian ap-[11]. We also note that it has been shown recently that at
proach based on a pairwise depletion potential descriptionoexistence the fcc crystal is indeed more stable than the
should provide an accurate, albeit approximate, account diexagonal close-packetcp) crystal[12].
the main features of the phase behavior of highly asymmetric In the last decade, it was found that binary hard-sphere
hard-sphere mixtures. mixtures show extremely rich phase behavior. A density
The paper is organized as follows: In Sec. Il we give anfunctional treatment of Barrat, Baus, and Hansen showed
historical overview of research on additive binary hard-that starting from the pure limit, the freezing transition of the
sphere mixtures. This is not intended as a comprehensivixture changes from a spindlelike transition via an azeotro-
review; rather, it should provide a more detailed introductionpic to an eutecticlike one when the two species become more
to earlier work and motivation for our present approach. Indissimilar in size[13]. In the case of spindlelike phase be-
Sec. lll the effective Hamiltonian is derived by integrating havior, a narrow coexistence is found between a fluid and a
out the degrees of freedom of one of the species in a binargubstitutionally disordered fcc crystal. Here “narrow” refers
mixture. We emphasize that this derivation is not restrictedo the width of this coexistence region expressed in terms of
to a binary hard-sphere mixture; it applies to any two-the composition difference between the two coexisting
component mixture where the species interact via shortphases. When the spheres become more dissimilar in size,
ranged pairwise potentials. The theory is applied to additivehe fluid-solid region broadens and an azeotropic point ap-
binary hard-sphere mixtures in Sec. IV where explicit formu-pears. At higher packing fractions a coexistence region be-
las are introduced for the one-body and two-bddgpletion  tween two substitutionally disordered fcc solids appears in
potentia) contributions. Results of computer simulations the phase diagram when the spheres become sufficiently dis-
based on the approximate effective Hamiltonian are presimilar. When this miscibility gap in the solid phase inter-
sented in Sec. V. The phase diagrams and the pairwise covenes with the fluid-solid coexistence the phase diagram be-
relation functions are calculated for a range of size ratios. Itomes eutecticlike. Computer simulations, other density
Sec. VI we present the results of the direct simulations of thdunctional approaches, and a scaled particle approach re-
true binary mixture and compare the phase diagrams withealed that these predictions are qualitatively corfédt
those obtained from the effective Hamiltonian. Section VII A 19]: the transition from a spindle to azeotropic type of phase
makes comparisons between our present results and thosediigram is predicted at a size ratie= 0, /0;=0.94[13,14
experiment and previous theories or simulations, while inand the transition from azeotropic to eutectigat0.92[13]
Sec. VIIB we make a connection with the so-called freeor 0.875[14]. The diameters of the large and small spheres
volume theory of binary hard-sphere mixtures, showing howare, respectivelyg; and o,. Note that only substitutionally

Il. HISTORICAL OVERVIEW
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disordered fcc solids are found for these size ratios. spinodal instability is very sensitive to the precise expression
In recent experiments, however, complex crystalline ordeused for the free volumg33]. In 1995 Rosenfeld employed
is found forg=0.58 and 0.6320]. For sterically stabilized his fundamental-measures density functional theory to asym-
polymethylmetacrylatéPMMA) spheresAB, andAB;3 su-  metric binary hard-sphere systems, and predicted a fluid-
perlattice structures are found, whekedenotes the larger fluid demixing transition for a size ratig=<0.25[34].
species. The presence of these superlattice structures asThese early theories for asymmetric binary hard-sphere
stable phases was subsequently confirmed by computenixtures did not consider the crystalline solid phase explic-
simulations for 0.4&q=<0.625[21] and by density func- itly. However, experiments on colloidé&hearly hard-sphere
tional approache$22]. In addition, it was shown that the particles suggest that any demixing transition is strongly
fluid phase never undergoes fluid-fluid demixing for thesecoupled to the freezing transition. Unfortunately, surface
size ratios. Thus the phase behavior of binary hard-sphererystallization and sedimentation effects preclude making
mixtures is well understood fag>0.4. definite conclusions. For instance, Sanwalal. performed
This state of affairs should be contrasted with the case oéxperiments on mixtures of polystyrene spheres with a diam-
more asymmetric binary hard-sphere mixtures, the phase beter ratio of 0.235], and observed cluster formation in the
havior of which is still under debate. For instance, it is still sediment at the bottom of their samples. In contrast, when
unclear whether gstable fluid-fluid demixing transition can they suspended the mixture in a density-matched solvent,
exist for any binary hard-sphere mixture. In 1964, Lebowitzneither sedimentation nor flocculation was seen. In the ex-
and Rowlinson showed, using the Percus-YeWiek) clo-  periments of van Duijneveldet al, a phase instability was
sure of the Ornstein-Zernik@Z) equations, that the homo- found in a fairly narrow concentration range of small and
geneous fluid phase of a binary mixture of large and smallarge silica particles witlyy=0.1667[36]. However, in these
hard spheres is stable with respect to demixing, regardless ekperiments conclusions could only be drawn during the first
the diameter ratio, composition, or pressiifig. A similar  few hours, as sedimentation becomes important at longer
prediction emerged from the generalization of Mansooritimes. Thus the authors could not determine whether the
et al. of the Carnahan-Starling equation of state for mixturesphases formed initially in the samples outside this narrow
i.e., no spinodal instability was found in the fluid ph&28]. concentration range were stable fluid phases or metastable
Computer simulations of binary hard-sphere mixturesgor fluids or glasses. They also concluded that the crystallization,
=0.6 [24], 0.909[25], 0.5 and 0.3326], 0.33[27], 0.909, observed in the sediment after several weeks, could be
0.6, 0.33, 0.2, and 0.0R8], performed for packings where caused either by slow concentration-dependent kinetics or by
ergodicity problems do not prevent equilibration, did notdensification to the freezing point arising from sedimenta-
provide any evidence for a demixing transition, and it wastion. Experiments on mixtures of polystyrene particles with
therefore generally believed that binary hard-sphere mixturesize ratios 0.068 q<0.294 by Kaplaret al. showed the ex-
never phase separate into two fluid phases. In 1990, howstence of either a single homogeneous disordered phase, a
ever, Biben and Hansen showed that the pair distributiomoexistence between two disordered phases, a coexistence
function diverges at contact, within the Percus-Yevick ap-between a disordered phase and a crystal on the sample wall,
proximation, in the extreme asymmetric limit—0 [29]. or coexistence between two disordered bulk phases and a
One year later, the same authors showed that the Rogersurface crystallization37]. However, bulk crystallization
Young (RY) closure, which for the pure hard-sphere systemwas never observed. A possible reason why no surface crys-
is known to be more accurate than the Percus-Yevick clotallization was found in the experiments of van Duijneveldt
sure, yields a fluid spinodal instability wher=0.2[3]. They et al. is the fast settling of silica spheres compared to poly-
attributed the fluid spinodal to the stickiness of the largestyrene particles. Dinsmoret al. reported results on mix-
particles arising from the so-callatepletion effectThis ef-  tures of polystyrene particles with 0.083<0.149(38]. In
fect, which has long been known to drive phase separation iaddition to surface crystallization, they observed fluid-solid
colloid-polymer mixtures[30,31], induces effective attrac- phase separation at higher packing fractions of small spheres.
tions between largécolloidal) spheres at small separations When they increased the packing fraction of the small
due to an unbalanced pressure of smyadllymerig spheres. spheres even further, they observed that the clusters in the
An alternative description of the same effect is that a freesediment rapidly form a “loose” gel instead of a crystal.
volume of the small spheres is gained due to the overlap dihdependently, Imhof and Dhont found a fluid-solid type of
the excluded volume of clustering large spheres; the resulphase separation in experiments on silica spheres with
ing gain of entropy of the small spheres drives this cluster=0.1075[39]. Moreover, two types of glassy states, distin-
ing, and thus induces effective attractions between the largguished by the different mobilities of the small spheres, were
spheres. In 1993, this latter picture of the depletion effecfound at high packing fractions of the large spheres. In both
was employed by Lekkerkerker and Stroobants in a phenoneases the large ones form a glasslike structure whereas the
enological approach based on scaled particle expressions femall ones are mobiléluidlike) in one case and rather im-
the free volumd32]. In qualitative agreement with the re- mobile in the other.
sults of Ref.[3], these authors found a fluid-fluid spinodal Inspired by these experimental results, Poon and Warren
[32]. However, the spinodal instability in R€f32] shifts to  [40] and Dinsmoreet al. [41] extended the free volume ap-
higher packing fractions of the small spheres when the sizproach of Lekkerkerker and Stroobartd32] to the solid
ratio becomes more asymmetric, while the opposite trend iphase and concluded that the fluid-fluid demixing transition
to be expected since the depletion effect becomes strongshould be metastable with respect to a broad fluid-solid co-
for more asymmetric hard-sphere mixtures. Moreover, it wagxistence region. In addition they found that the presence of
shown by Amokrane and Regnaut that the location of thesmall spheres causes crystallization of large spheres next to a
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hard wall at concentrations well below those correspondingential (using the random phase approximajiotiney found

to bulk phase separation, in agreement with the experimentahat the depth of the depletion potential increases linearly
observations. A broad fluid-solid coexistence has also beewith (low) polymer concentration, as predicted by the
found in density functional calculations based on the modi-Asakura-Oosawa approximatipf6]. Laser radiation experi-
fied weighted density approximation for a binary hard-spherements were used to measure the minimum laser intensity that
mixture with q=0.1[42]. Recently Caccamo and Pellicane is required to blow off a large polystyrene latex particle from
showed, using a single-phase entropic freezing criterion anthe wall as a function of polymer concentratifB’]. These

the thermodynamically self-consistent Rogers-Young theorylaser intensities were translated into depletion forces and
that for a single state point the phase instability in binaryagain good agreement was found with the Asakura-Oosawa
hard-sphere mixtures witg=0.1 is consistent with fluid- depletion force. Depletion forces of colloidal hard spheres
solid phase separatidd3]. Another freezing criterion was trapped in a vesicle were measured by Dinsnetral. [58].
employed by Saija and Giaquintd4]. A different approach, They found that the large particles are more likely to be
based on results for the first five virial coefficients of thetrapped close to regions of the surface which have a large
binary hard-sphere mixture, was adopted by Coussaert anglirvature and they argue the importance of their results for
Baus[45,44. In addition to a fluid-solid transition they find biological system$58]. Very recently, Rudhardét al. [59]

a thermodynamically stable fluid-fluid transition for size ra- measured the depletion force on a large polystyrene sphere
tios as large ag=0.15 andq=0.33[45], if the fourth and immersed in a solution of small, noncharged polymers as a
fifth virial coefficients are taken from results of Saghal.  function of thedistanceto a flat glass surface and pblymer
[47]. However, in a subsequent erratum which uses theoncentration using total internal reflection microscopy.
fourth and fifth virial coefficients from Enciset al. [48],  They also find good agreement with theoretical predictions
they find that the fluid-fluid transition is at such high packing[59]. Finally, we mention that the depletion potential was
fractions that they argue it should be metastable with respegheasured recently using optical tweez¢6§] and good

to a broad fluid-solid transition fag=0.2 and a narrow one agreement with the Asakura-Oosawa depletion potential was
for g=0.1[46]. Yet another theoretical treatment by Vega claimed.

predicts a narrow fluid-solid coexistence fg0 [49]. In Of course, one should bear in mind that real colloidal
summary the predicted phase behavior of asymmetric binargnixtures or colloid-polymer mixtures are not strictly binary
hard-sphere mixtures is very sensitive to the details of théard-sphere mixtures, and so there are possible influences
theoretical approaches, and the character of the fluid-fluifkom screened Coulomb forces, polydispersity, etc., which
and fluid-solid transitions and their interplay remains poorlymake direct comparison between experiment and theory
understood. based on idealized models a matter for some caution.

In this paper we explore an alternative route to the phase In view of all the theoretical and experimental effort
behavior of asymmetric binary hard-sphere mixtures. It isvhich has been expended on determining depletion poten-
based on our present knowledge of the depletion force betials it is somewhat surprising, perhaps, that these potentials
tween two big spheres immersed in a fluid of small particleshave not been used to calculate the phase behavior of binary
When the separation of the big spheres is less than the diarhard-sphere mixtures. One might envisage performing simu-
eter of the small ones, there is an unbalanced pressure of tietions or carrying out theoretical studies for an effective
“sea” of small spheres which gives rise to the attractive one-component system in which the big spheres interact via
depletion force between the big spheres. As mentioned abowepairwise potentiades= ¢11+ Pgep, Whereey is the hard-
this mechanism was first described by Asakura and Oosawsphere potential between the two big spheres gpd is the
for colloid-polymer mixtured30]. The depletion force was depletion potential obtained from the theoretical or simula-
investigated in detail by Attard and co-workers within tion treatments described above. Recall ipat, depends on
hypernetted-chain-based approximati¢6] and in simula-  the density of the small spheres. Such a strategy was em-
tions [51]. Mao et al. calculated the depletion force up to ployed by Gaset al.[61] in a pioneering investigation of the
third order in the density of the smaller sphef88], having  phase behavior of colloid-polymer mixtures. However, a sys-
first made the Derjaguin approximation to relate the forcetematic derivation of an effective Hamiltonian, obtained by
between the two big spheres to that which arises when thiategrating out the degrees of freedom of the small spheres,
small particles are confined between two planar walls. Thewas not carried out, and so the status of the effective pair-
found good agreement with the simulation results épr wise depletion potential description has remained uncertain.
=0.1 of Bibenet al. [53]. Gazelmannet al. [54] have re-  Moreover, Ref[61] specializes to the case of ideal polymers,
cently assessed various theoretical treatments of the deplfsr which the Asakura-Oosawa potential is appropriate,
tion force and the corresponding depletion potentigl{r). rather than the case of additive binary hard-sphere mixtures.
Depletion potentials have also been “measured” experimen{We make contact with the results of Rg61] in later sec-
tally. Kaplanet al. performed experiments for a large spheretions) In the present work we derive an effective Hamil-
near a wall in a suspension of small spheres. By tracking theonian by formally integrating out the degrees of freedom of
Brownian trajectory of the large sphere with video micros-the small spheres. We show that this Hamiltonian has zero-
copy, they were able to determine the potential depth, whiclvody, one-body, two-body, and higher-body terms. The two-
they estimated to be of the order of a f&yT for a size ratio  body (pairwise term is precisely that which is given by the
of 0.028[55]. Ye et al. measured the structure factor of the depletion potential description and we show that the zero-
big colloidal particles in a neutron scattering experiment orbody and one-body terms play no role in determining phase
colloid-polymer mixtures. By fitting these structure factors toequilibria. Ignoring the higher-body terms we perform simu-
those calculated from the Asakura-Oosawa depletion pair pdations with the effective pairwise potential defined above
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and ¢qep Obtained from Ref[54]. We thus determine the F(Ni,u2,V)=F.N;,N5,V)— usN,, 3
phase behavior of binary hard-sphere mixtures for size ratios
g=1.0,0.2, 0.1, 0.05, and 0.033. As the results of these ef-W
fective one-component calculations predict several strikin
features at relatively low values of the density of small
spheres we were motivated to perform direct simulations of exﬁ—ﬂF]:NZO exf — B(Fc—uaN2)]

the binary hard-sphere system in order to test these predic- 2

tions. The results from the two sets of simulations are in 1

remarkably good agreement for those values @hd pack- —3,\,1Tr1 exd — B(H{1+Q)], (4)
ing fractions for which direct simulations are possible, Ni!A7

thereby justifying the use of the effective pairwise depletion,
description.

where we omitted the explicit dependence. Equivalently,
e can write

o

where ) is defined in terms of the fugacityz,
= A, *exp(Buy,) of species 2 as
% Ny
z

Ill. GENERAL THEORY OF BINARY MIXTURES 2
e —pQ= X [T exd —B(HitH2)l ()

A. Mapping onto an effective one-component system

Here we formally map a system with interaction Hamil- Note that() depends not only oiN;, z,, andV, but also on
tonian H that describes a binary mixture onto an effectivethe instantaneous coordinat®s for i=1,2,... N; of the
one-component system with Hamiltoniadf™ by integrating  canonically treated component 1. In fact, the right hand side
out the degrees of freedom of one species. We are concern@f Eg. (5) can be interpreted as the grand partition sum of a
with a classical fluid of two species, labeled 1 and 2, in afluid of species 2 in the external field of a fixed configuration
macroscopic volum¥. For particle numbersl; andN,, the ~ Of Ny particles of species 1. Thus we write

total HamiltonianH=K+H is a sum of kinetic energiK Q=0Q{R};N;,2,,V). (6)
and interaction energid =H;+H >+ H,,, given by ) )
N ) The reason why thisN;,ux»,V,T) ensemble is conve-
Niop2 2P nient can be seen from E), as the right hand side is the
Z 2_ = 2_rnz canonical partition sum of a one-component system of spe-
cies 1 with an effective interaction Hamiltonian
Nt Hef=H,,+ 0. @

Hll_E $11(Rjj),
<] Once ), and thusH®", is known for all values ofz,, the
N, thermodynamics and the phase behavior of the mixture can
szIE boalTj be determined from standard techniques for one-component
systems. We focus therefore on the calculation (&f
Throughout we assume the volurkieo be macroscopically

B> large.
Hip=2 % didRi=r)). ®

Here m; andm, are the masse®; andp; the linear mo-
menta, andy; andr; the positions of the particles of species Mayer functionsf and g associated with the pair potentials
1 and 2, respectlvely The spherically symmetric pair poten- b1, and by, respectivel
tials are denoted;;, ¢,,, andey,, while R;;=R;—R; and 12 22, €sp Y
Fp=ri—rj. fij=f(Ri.rj)=exd —Bé(Ri—r))]—-1,

At fixed inverse temperatur@= 1/kgT, the relevant ther- _ _ _ o
modynamic potential of the canonicaN{,N,,V,T) en- 9u=9(rc.1) =exfd = BbaAri=r)]-1. ®
semble is the Helmholtz free energy(N1,N,,V,T), given  |n terms of these Mayer functions, we rewrite E6) as

B. Mayer expansion ofQ

In order to calculate) explicitly, we first introduce the

by = N2 N N
2
- 1 1 o ex{~p0l= 2 | drtell 11 <1+f.,>H (1+gu)

oL~ AFel =y e T e AL @) 2 . 2

z
where Aj=h/\2mmkgT denotes the thermal wavelength :1+22f dle (1+fil)+§2f dr,dr,
of speciesi=1,2 as follows from the integration over the vooi=l v
momenta. The trace Tris short for the volume integral N,
JvdRM1 over the coordinates of the particles of species 1, X T (14 ,)(1+f5)(1+gq)
and similarly for Te. =1

It proves more convenient to consider the system in the N Ny

(N1,us,V,T) ensemble, in which the chemical potential Z fdr dr.dr 1+ (1+f
p2=(dF/dN2)y, v,1 of species 2 is fixed instead of the T3 142 3H (1+Ti)(1+Ti2)

corresponding number of particled,. The associated ther- 2
modynamic potential is denotd@(N;,u,,V,T), and is re- X(1+fi3)(1+0912)(1+913) (14029 + O(Z5).
lated toF. by the Legendre transform 9)
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We now introduce a diagrammatic technidéé], in which (i) each black circle represents a factgiand an integral of; over
the volumeV, (ii) each line between two black circles represergsand, andiii ) each open big circle connected with a black
circle represents ahbond and a summation over all different particles of species 1 at posRofs i=1, ... N;. Then the
expansion of Eq(9) is equivalent to

exfd — BQ]=1+{the sum of all distinct diagrams consisting of one or more black circles and some or no

g bonds and of one or more open big circles with one or mdrebond$ (10
|
or, explicitly, connected oneé.e., those which are extensive \fj. Thus
we can write
—80) =
exp(ﬁ) —ﬁQ=.+H+Q—I+A+ ~~~~~~
1 o
Fet ot 0N 4 * P f ol 4
O 4
(O—)'+ o)+ ol 4 s F ol

+
L
[ ]
+
.l
4

+
+

WY T,
w®

G+ A o
o+ & 12
¥ + ¥ PN 12
% % Each of the diagrams above can be classified according to the
+ + + > O )
numbern of open big circles in it. This amounts to a decom-
% position of Q) that can be written as
+O((0—)+ o o) Ny
. ._I —,BQZ—E BQ,, (13
+ o 4+ o— + + n=0
o o . wheren labels the number of particles of species 1 that si-
A + O + O—I + multaneously interact with the “sea” of particles of species
2 at fugacityz,. Below we show that}, corresponds to
e ;I O’XI n-body interactions between the large spheres, and we give
O + + + explicit, albeit formal, expressions f6k,, for n=0,1,2,3. For
. . convenience later we introduce the notation
<.3§I + OC: + cﬂ + NN,
H(lg):izl 21 $1ARi—T)), (14)
LA S AN :
which describes the interaction betwes particles of spe-
& + M + M + cies 2 andh=1 of species 1.
gI g C. Expressions forQ,
+ + It can be shown explicitly that the sum of diagrams with-
out any open big circle, i.e., representingB()y, can be
O((O— )+ o o)+----n. (1)  reexponentiated to give
whereO((O—)"+(»)™) denotes all diagrams involvingor ex — BQol= >, mTrz exd — BH=Ey(2,,V),
more distinct particles of species 1 amtblack circles with N=0 T¥2* (15

or without g bonds.

Using the Goldstone theoref2], i.e., using In(Xx)  where the grand partition sufo(z,,V) is that of a pure
=3,_1(—)""!x"n, the only diagrams that survive after system of species 2 at fixed fugacity in a thermodynamic
taking the logarithm of the diagrammatic expansion are thejolumeV. Extensivity requires that
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Qo(z,,V)=—Vp(z,), (16)  tation of w; stems from the analogy between HB0) and
the Widom-insertion theoreff62]; i.e., w,(z,) is seen to be
wherep(z,) is the negative of the grand-potential density, ora contribution to the chemical potential of species 1 due to
the pressure, of this one-component system. the presence of a sea of species 2 at fugagityThis latter
The diagrams involving only one open big circle, repre-interpretation is, of course, consistent with the linear depen-
senting— B(1,, are recovered exactly by the identification dence orN, in Eq. (19).

It can also be shown explicitly that the exponential of the

El(ZZ’V))Nl sum of connected dia involvi big circles i

exd — 8O, = =27 1 grams involving two open big circles is

1= A] (ﬂo(zz,V) @ given by

whereE, is defined in Eq(15) and where Ni = Rz V)/E(zo V
eXF{-ﬂQZ]ZH 2( ij 142, ) 0( 21 ), (21)

2 <] E3z,,V)IE3(2,,V)
mizV)= 3 | arteext - prdlext - prod
No=0 No!'Jv

whereZ ; is given in Eq.(18) and
(18) 1189 q.(18)

is the grand partition sum of a system of volumeonsisting
of a single particle of species 1 and a “sea” of particles of
species 2 at fugacitg,. It follows from Eq.(17) that(}, can

o _Np
z
= 2
EaRiji22,V)= FJ drMzexy — BH{3]
Np=0 N2: Jv

be written as xexd — BH2,. (22)
O1(N1,25)=Nyw(2,), (199  One recognizes th& ,(R;; ;2;,V) is the grand partition sum
_ _ of a system in a volum¥ containingtwo particles of species
wherew, is defined by 1 (at positionsR; andR;) and a “sea” of particles of species

2 at fugacityz,. It follows directly from Eq.(21) that
exT — Bus(2)] gacz Y from Ea.(21

Ny
o] N2 . .
z Q,({R};N,,2,)= ws(Rii 125) (23
:{2 o7 | drzexd — H{E lexd — AH,] o{RhiNs 2= 2 walRi 2
N,=0 N2 Jv
" 1 is a pairwise sum of the pair potential, defined by

22
> 2

X
Ny=0 Na!

drN2exd — BH = =
[ artexit—priza (R, 123 V) Eo(23.V)

exd — Bwa(Rjj;2) 1= — —
E<exp[—ﬁH<112>]>Z2_ (20) A= PRz Ei(z,,V)/E§(25,V)

(exd = BHE(Ri)]),

The bracketg - - -)Zz denote a statistical average in the res- — . (29)
ervoir of particles of species 2. It follows directly from Eqgs. <eXF[_BH(112)]>§2
(17) and(19) that w4(z,) is actually the grand-potential dif-
ference between a sea of small spheres at fugagityith Arguments along the same lines yield, for the exponential
and without a single particle of species 1. Another interpre-of the three-body contributiof2 s,
|
Ni ) =3
E3(Rijk:22,V) 51(z2,V)
exil — Q1= I1 | == E R VSR VER : (25
i<j<k Eo(z2,V)  EaRij:22,V)E(Rik:22,V)E2(Rjk;22,V)
|
where theZ, for n=0,1, and 2 are defined in Egél5), exfd — Bws(Rij 1]
(18), and (22), and whereE3(R;  «;Z,,V) is the grand-
canonical partition sum of the sea of species 2 at fugasity = eXF[—BHg)(Ri,j,k)Dzz
in the external field of three particles of species 1 at positions W
Ri k. It follows directly from Eq.(25) that y N (exd —BHZ 1), -
Ny (mm=().(ik).(0) { exd — BHE (Rmn) 1)z,
Q3Zi<,2<k @3(Rijki22), (26) In principle this process can be continued for any integer
n, with the result

where the three-body potential; can be rewritten in terms Ny
of the corresponding interaction Hamiltoniakty for n QL ({R};Ny,25) = > on(Ri|, . i322), (28)

=1,2,3 as i1<ip<---<ip
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where the interactiom, betweem particles of species 1 can was shown[64,65 that a system of charged colloids sus-
be expressed in terms of grand-canonical averages of th@ended in a solvent with coions and counterions can be
Boltzmann factors associated with the Hamiltoni&ﬂlg) mapped onto an effective one-component colloidal system
with 1=<m=n, as we showed explicitly fon=1,2,3. Of by integrating out the degrees of freedom of the coions and
course, we are still left with the problem of calculating counterions. The usual Derjaguin-Landau-Verwey-Overbeek
for n=1, but the present analysis shows that the effectivdscreened-Coulombpotential was recovered for the two-

Hamiltonian(7) for species 1 is of the form body term, as expected. However, the charge neutrality con-
straint gives a nontrivial dependence of the one-body term on
N1 the colloid density which has dramatic consequences for the

He= —p(z)V+Niw1(25) + 2, [¢11(Rij) + 02(Rij 122)] phase behavior at low salt concentratidfd,65. (iv) We
=) see from Eq(24) thatw,(R;; ;2,) is the grand-potential dif-

Ny ference between the sea, of fugadty containing two par-
+ 2 o3(Rij;z)+ -, (290  ticles of species 1 at a finite separatiBy) and at infinite
i<j<k

separationR;;=c. In other wordsw, is the work done in
bringing a particle of species 1 from infinity, but still in the
reservoir of fixedz,, to a finite distance from another particle
of species 1 located at the origin.

where the ellipsis represents the terflg for n=4, and
where we used Eq$16), (19), (23), and(26).

We make four remarks on the results obtained so(far.
We wish to emphasize that the derivationtf™ holds for
any two-component mixture with integrable pair interactions, IV. APPLICATION TO A BINARY MIXTURE
and is not restricted to binary hard-sphere mixtures. The rate OF HARD SPHERES

of convergence of the expansion of the effective Hamiltonian | the previous section we showed that we can describe a
depends on the particular form of the pair potentials and  classical binary fluid by an effective one-component Hamil-
¢22; one could expect a relatively fast convergence fortonian[Eq. (29)]. In this section we apply this approach to
short-ranged potentials, although correlations will generallfthe particular case of a mixture of large and small hard
cause the effective interactions to be longer ranged than thépheres with diameters; and o,, respectively. The size
bare pair potentialsh;, and ¢z,. (i) As a check on the ratio is denotedj= o, /0, <1. The pair potentialgs;;(r) are
results obtained it is instructive to consider the following: the usual additive hard-sphere potentials, i.e., infinite for 0
exfl —BQ] is the grand-partition sum of a fluid of species <r< g+ ¢;)/2 and zero otherwise. The zeroth-order term

2 in the external field of a fixed configuration B, part- () is equal to the grand potential of a pure system of small
icles of species 1 and the decomposition @f given in  hard spheres at fugacits:

Eq. (13) is equivalent to the factorization expBQ]

=H[’:‘ioexp:—,89n]. For N;=0, i.e., no particles of species Oo(2,,V)=—=Vpud2,), (30

1 in the sea of species 2, we recover from Etp) that )

exd—BQl=exgd - B]=E4z,V). For N;=1 we where phs(zz) is the_pressure of the small hard-sphere sys-
find exd—BQ]=exH—BlexH —BL=Eo(E1/E0)=E,, tem..Thls pressure is accurately despnbed by the Carnahan-
where we used Eqg15) and (17). Similarly, we find, for _Starllng equatlon _of state for the fluid statPT vaIueszpt_)f
Ny=2, exg—BQl=Ey(E1/E0)4E.E)(E)?=E, and interest. An explicit scaled par_t|cle expression f(z,) is

for Ny=3 that exp—BQ]="Es. For arbitraryN,, we indeed given by Henderson, and consists of a volume, a surface, and

find that exp—BQ] can always be factorized into zero-, & @1-independent terrik(z,) [66]:

one-, two-, three-,..., and N;-body terms so that exp _ 3 2
[~BQ]=Ey, as required. This scheme to factorize the par- N1®1(22) = Prd Z2)V71(1+0)°+ ynd Z2,Ry) mo 1Ny
tition function is actually similar in spirit to that of Re63], +K(z,)Nq, (31

where it is applied to a one-component imperfect dai.

The termsQ o= —p(z,)V andQ;=N,w,(z,,V) that repre- Where y,{(z,,R;) is the surface tension of a hard-sphere
sent the zero- and one-body terms in the effective Hamilfluid at a hard-spherical wall with a radiu’,; =o,/2, and
tonian (29) do not depend on the instantaneous coordinatesh:mriNl/GV is the large-sphere packing fractid67].

{R} of the particles of species 1, and therefore do not affeciThe two-body term(), can be written as a sum of pair po-
the structure of the (uniform) system. Moreover, these two tentialsw,; see Eq(23). In the case of hard spheres this pair
terms do not affect thphase behavioof the two-component potential can be identified with the depletion potential:
system because of the trividl, dependence or, equivalently,

the trivial dependence on densjiy=N,/V: Qy/V is in- w2(Rij122) = daed Rij 122). (32
dependent ofp;, and 1, /V depends only linearly om;. ] . ]
Since two coexisting phases must have the same chemicAftard [50] has derived an exact expression for the depletion
potential of species 2, and hence the samehe two terms ~ force between two large spheres and this has been employed
under consideration do not affect the common tangent coril? simulation studies of depletidib1]. Recently, Macet al.
structions, as explained further in the Appendix. This in-calculated the depletion potential within the Derjaguin ap-
nocuous character d, and Q, is to be contrasted with Proximation up to third order iny;, and found excellent
analogous terms for systems with long-ranged Coulomb inagreement with simulations for=0.1 and forz; as large as
teractions, for which the Mayer expansion diverges so tha®.34[52,53. Here 7}, is the packing fraction of a reservoir of
the present derivation does not apply directly. Recently, ismall hard spheres at fugacity. In this work, we use the
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FIG. 1. The effective large-sphere pair potential, i.e., the sum o
the depletion potentidB3) and the large hard-sphere potentigl,
of a binary hard-sphere mixture with size rat@ q=0.2 and(b)
g=0.1, for several small-sphere reservoir packing fractighs

simpler expression given by &m®lmannet al. which, up to
third order in75, is equally accurate and read4]

1+
BaedRy) =~ 5 [3XCrht 95+ 120) (1)

+(36x+30x?)(75)%]  for —1<x<0,

(33

wherex=R;;/o,—1/q—1. Contact corresponds ®&;=o0;
or x=—1. The total effective pair potential is from E@9):

Pert= P11+ ¢depv (34
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FIG. 2. The radial distribution functiog(r/o) for the effective
one-component system with packing fractiops=0.35, 7,=0.25,
'and g=0.1 calculated using the depletion potentiaB) with and
without the small repulsive barrier. Note that this state point falls
well inside the fluid-solid coexistence regifsee Fig. 4b)].

to realize that other diagrams {&; are not necessarily zero,
even forq<<0.154, so that the neglect of all three-body and
higher-body terms is an approximation. At this stage it is not
evident thatg plays the(formal) role of a small parameter.

Thus we arrive at the effective one-component Hamil-
tonian

Ny

Heff=Ho+i2<j be(Rij), (35)

where, as mentioned in Sec. lll,

Ho=—Pnd Z)[1— 71(1+0)°IV+ y1d Zo,Ry) o IN;
+K(z)N, (36)

where ¢, is the bare hard-sphere potential between twdis irrelevant for the phase behavior of the fluid, and where

large spheres. Examples @ are shown in Fig. 1 for size

deii IS defined in Eq(34). We have now mapped the binary

ratiosq=0.2 and 0.1 at several values of reservoir packinghard-sphere mixture onto afapproximate effective one-
fraction 75 . This pair potential contains a deep and narrowcomponent system of large spheres, which can be treated
potential well close to the surface of the large sphere, folwith standard techniques.

lowed by a small repulsive barrier. The range of the potential

is equal tog times the large sphere diameter. For simplicity
(see[54]) we setpgye=0 for Rjj> o+ 0,, and thus we ne-

V. RESULTS OF SIMULATIONS OF THE EFFECTIVE
HAMILTONIAN

glect longer-ranged and weaker oscillations; we expect these

to be unimportant for the phase behavior of the mixture. It is

A. Phase diagram

worthwhile noting that exact expressions for the depletion At first sight, one might think that the phase behavior of

potential were given in Ref54] within the context of the
Derjaguin approximation. However, these expressions give
poor account of the simulation results of REE3] for q
=0.1 and#5,>0.3, thereby casting doubts on the validity of
the Derjaguin approximation for these valuesgadnd 75 .

the effective one-component system characterized by Egs.
4) and (35) can be determined by standard perturbation
theory using the pure hard-sphere system at the same pack-
ing fraction as a reference system. Using first-order pertur-
bation theory fog=0.1, we did not find any indication of a

In all our effective one-component calculations we setfluid-fluid spinodal for packing fractiong,<<0.5. This result

Q,=0 for n=3. This approximation was tested fqe=0.1

in computer simulations by Bibeet al., who found that the
three-body term, denote@; above, contributes less than
0.5% at#,=0.3[53]. The neglect ofv; can be made plau-
sible by geometric arguments fgr<0.154, since then three
or more nonoverlapping large spheres cannot simultaneous

was also found in Ref54]. However, our simulations of the
system described by given in Eq.(34) yield radial dis-
tribution functionsg(r) that differ enormously from those of
the reference hard-sphere fluid at the sappeThis is illus-
trated in Fig. 2, where we plog(r) for 5,=0.35, 75
k0.25, andg=0.1. We find thatg(o,)~42, which should

overlap with a small one; i.e., the first and dominant diagranbe compared with the much lower contact vatu8 for the

in the three-body terrf) ; vanishes. However, it is important

hard-sphere reference system. Similar large contact values,
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which may signal a strong tendency for clustering, have been
observed in previous simulation and integral equation studies
[53,68, and also in experiments on colloidal hard-sphere
mixtures[69]. The enormous difference betweg(r) of the
reference hard-sphere system and that of the effective system
signals the breakdown of perturbation theory, and thus we
resort to full numerical simulations for the free enefgyf
the effective system.
Before describing these simulations we compg(e) for
a depletion potential with and without the repulsive barrier.
Figure 2 shows that the contact value and most other struc-
tural features are not sensitive to the repulsive barrier, apart
from a small well near =1.070,, which does reflect the
presence of the barrier. We conclude that small differences in
the choice of depletion potential—such as our omission of
the very weak oscillations foR;;> (o, + 0,)—should not
have a drastic effect on the resulting phase equilibria. It
probably suffices to have a good account of the potential
well close to contact, while the first repulsive barrier, as well 5
as the longer-ranged oscillations, should play only a minor FIG. 3. Reduced free e”e{W*:B[F_(QOJFQl)]"l/V ver-
role. Note that the peaks g(r) nearr/o,=1.74 and 2.0 are SUS7: for 4=0.1 at severaly,. The curves fory,=0.54 are the
similar to those found at state point “C” of Reff53] where solid branc_hes, whll_e the curves for lowgy are the fluid branches.
it is argued that these arise from a particular local organizal\ote the difference in scale fo, = 0.31. For clarity, we subtracted
tion of particles equivalent to that in the sticky-sphere model e fitin7, to the data fory;=0.31(see inset For a giveny,
In order to determine the phase diagram of the effectivecommon tangent constructions can be made to determine the values
. of 7, at coexistence.
one-component system, we first calculate the thermodynamic
potential F, defined in Eq(4), as a function oN,, V, and
Z,. We actually determine the dimensionless free energyonian Hfﬁ. The integrand in Eq(38) can, for a fixed\, be
densityf = (7/6)oSF/V as a function of, andz,. For con- measured in a standard MC calculation; for the numedical
venience we often replace the dependenceohy that on integration, we use a ten-point Gauss-Legendre quadrature
the reservoir packing fraction, . As the free energy cannot [75].
be measured directly in a Monte CaflIC) simulation, we In order to map out the phase diagrd,,z,) must be
use thermodynamic integration to relate the free energy ofietermined from\ integrations for many state points
the effective system to that of a reference hard-sphere syste(y,,  z.). We chose therefore to simulate relatively small sys-

at the same large-sphere packing fractipn To this end we  tems, withN,=108. As an illustration we plot, in Fig. 3as

introduce the auxiliary effective Hamiltonian a function of 5, at severalyh, for g=0.1. For 7,>0.06 we
Ny find that the solid branch dfbecomes nonconvex, indicative
Heff="> [#12(Rij) + N daed Rij)1, (37)  of a spinodal instability. For,>0.29 another spinodal in-
i<

stability is found, but now in the fluid branch. This instability

. . . . can be seen clearly in the inset of Fig. 3, wheieshown at
where 0=\ <1 is a dimensionless coupling parameter: at

A =0 the auxiliary Hamiltonian is that of the pure system of 772.20'31' For clarity, we have subtracted a linear fitzg, .
: ERP ; which does not affect the common tangent construction.
N, large hard spheres, while at=1 it is the effective

o r . .
Hamiltonian of interestfor fixed z, andV). It is a standard Note that each_pomt n therk,775) plane is obtained by an
result[70—72 that mdependent)\ integration. In order to construct the _fuII
phase diagram we employ common tangent constructions at
F(Ny,V,2,)=F(N;,V,2,=0) fixed z, to obtain the coexisting phases. We fitted polynomi-
als tof and computed the pressure and chemical potential at

1 N1 each#,. The densities of the coexisting phases can then be

+ J d)\< > baed Rij)> , (38)  determined by equating the pressures and chemical potentials

0 ' Ny.V.zy A in both phases. For more details we refer the reader to the
Appendix.

whereF(N.,V,z,=0) is the free energy of the pure refer-  The above procedure has been carried out to determine
ence system of large hard spher&s=0), for which we use the phase diagram for size rati@s=0.2, 0.1, 0.05, and

the Carnahan-Starling expressidiig] for the fluid, and the 0.033. In Fig. 4, we show the resulting phase diagrams in the
analytic form for the equation of state proposed by Hia#]  (,,75) plane. This representation, which is the natural one
for the solid phase. In the latter case an integration constanfiven our approach, implies that the tie lines connecting co-
is determined such that the known fluid-solid coexistence oéxisting state points are horizontal. The shaded areas repre-
the pure hard-sphere system is recovele]. The angular  sent the(metastablgfluid-fluid and solid-solid two-phase re-
brackets(- - -)n, vz, » denote a canonical average over thegions. At#,=0 and for allq we recover the known freezing
system ofN; particles interacting via the auxiliary Hamil- transition of the pure hard-sphere system.
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FIG. 4. Phase diagram of binary hard-sphere mixtures with size r@jog=0.20, (b) g=0.10, (c) g=0.05, and(d) q=0.033 as a
function of the large-sphere packing fractien and the small sphere reservoir packing fractighas obtained from simulations of the
effective one-component HamiltonialR.and S denote the stable fluid and soliftc) phaseF + S,F +F, andS+ S denote, respectively, the
stable fluid-solid, the metastable fluid-fluid, and the solid-solid coexistence regions. The dasheddimeitotes the spinodal instability on
the solid branch. Note that the solid-solid coexistenceqfsi0.05 becomes stable and that all the tie lines are horizomegldrawr).

Forg=0.2, an enormous widening of the fluid-solid tran- into the fluid-solid region. Here there is no trend that sug-
sition is observed whemy), increases sufficiently. This im- gests a stable fluid-fluid curve @& 0.033. Forg=0.2 we do
plies that the coexisting fluid and solid phases becomeot find a spinodal instability in the fluid branch foy,
progressively more dilute and dense, respectively, upon in< (.46, while we do find a spinodal instability in the solid
creasing7, . This widening is consistent with findings by branch for 5,>0.12. However, in Fig. 5 we show that as
Gastet al.[61] in perturbation theory studies of the Asakura- soon as the spinodal instability appears in the solid phase,
Oosawa depletion potential mod&0,31, and has also been this instability is very broad and disappears in the fluid
observed in experiments on colloid mixtures, where smalphase. We were not able therefore to find a metastable solid-
amounts of small spheres induce a rapid decrease in the lafolid coexistence using the common-tangent construction.
tice constant of the crystfB9]. The shape of the coexistence Rather, we plot in Fig. @) the spinodal(dashed curve
curve forz5>0.1 implies that the fluid phase only persists to which is given by @Zf/(p,ﬁ)zo_ The presence of this spin-

odal instability on the solid branch may be important for the
The calculations also reveal the existence of a fluid-fluidkinetics of the phase separation of the mixt[86,76.

very low values ofz;.

transition forg<<0.1. However, this fluid-fluid coexistence is

More surprisingly perhaps, the phase diagrams also show

metastable with respect to the broad fluid-solid transition foithe existence of an isostructural solid-solid transition dor
=<0.1. Forg=0.1, the solid-solid coexistence region is found
critical point of the metastable fluid-fluid coexistence curveto be metastable with respect to the freezing transition, al-
occurs at a value ofy, that is about twice that of the fluid- though the critical point of the solid-solid binodal is very
solid curve at the same,. Thus the fluid-fluid curve does close to the stable fluid-solid phase boundary. For smeller
not move deeper into the fluid-solid coexistence region uporihe most striking feature is the downward shift of the solid-
decreasingy, i.e., upon decreasing the range of the potentialsolid with respect to the fluid-solid binodal, so that there is a
regime with a stable solid-solid coexistence ¢p£0.05. Si-

for a Yukawa pair potential decreasing the range of the atmultaneously, the solid-solid critical point shifts closer to
traction lowers, in temperature, the fluid-fluid coexistenceclose packing upon decreasiggThese results are consistent

all g and 5. It is of interest to note that for aj<0.1 the

This situation is in contrast to the findings of REf1] where
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TABLE II. The coexisting densities at the fluid-solid, solid-
solid, and fluid-fluid transitions for a binary mixture of hard spheres
with size ratiog=0.1 and varying packing fractiong, of small
spheres in the reservoir as obtained from simulations with the ef-
fective Hamiltonian.

Bf* . | Fluid-solid
7 7y (fluid) 71 (solid)
0.00 0.494 0.545
0.02 0.491 0.555
0.04 0.487 0.567
0.05 0.487 0.574
0.055 0.487 0.605
08 0.06 0.483 0.683
0.08 0.480 0.692
FIG. 5. Reduced free energyf* = g[F—(Qy+Q,)]mos/6v  0.09 0.472 0.700
versusy, for q=0.2 at several}, . The curves forp;=0.54 are the  0.10 0.459 0.706
solid branches, while the curves for lowgy are the fluid branches. 0.12 0.426 0.715
0.13 0.370 0.718
with those of Refs[72,77] for square-well and Yukawa flu- 0.15 0.264 0.720
ids, where the authors find a solid-solid transition when they 17 0.110 0.725
rang(.e.of the potential is sufficiently short. The coemstmgazo 0.00863 0.727
ggglseltslels Iliorlﬂza?].g,li)/.l, 0.05, and 0.033 are tabulated ing 5, 0.00424 0.728
Within the context of the Percus-Yevick approximation, it 0.34 0.00274 0.730
has been shown that the binary hard-sphere mixture in the . _
limit of q—0 is equivalent to the one-component Baxter __ Solid-solid _
sticky-sphere modef78]. The latter is obtained from the 72 7, (solid I 7, (solid 2
square-well model by considering the lim#/o;—0,8e (g 0.613 0.669
—o0 with r:(1/12)(01/5)exq—,36] finite, Whgree ands o7 0.556 0.687
are the well depth and_ the well width, re_spectlvely. Note that, 5g 0.553 0.691
7 plays the role of a dlmensmnless ponllnear temperature. |6.09 0.555 0.698
the (n4,7) plane the stickyor adhesivehard-sphere model 0.10 0555 0.705
exhibits a vertical solid-solid binodal at close packing for 012 0546 0.714
infinite, while for any finiter it exhibits a coexistence be- 013 0541 0.715
tween a close-packed solid and an infinitely dilute gas, with™ ' '
all other phases at best metastable and probably unstable R
[72]. This pathological behavior of the adhesive hard-sphere , . Fluid-fiud _
75 7, (fluid 1) 7, (fluid 2)
TABLE |. The coexisting densitiegexpressed in terms of the 0.29 0.140 0.408
packing fractionz, of the large spherg¢st the fluid-solid transition .30 0.0461 0.435
for a binary .mixture _of hard spheres with si_ze ratje=0.2 ar_1d 0.31 0.0207 0.444
varying packlng_ fractl_ons:r;’2 gf small sphgres in t_he reservoir as g 3, 0.00874 0.452
obtained from simulations with the effective Hamiltonian. 0.34 0.00672 0.458
Fluid-solid
7 71 (fluid) 71 (solid) model is consistent with Stell's analysis of the 12th virial
0.00 0.494 0.545 coefficient, which was shown to be divergéng]. It follows
0.03 0.487 0.568 from Eq. (33) that the depletion potential far—0 and 75
0.06 0.492 0.576 >0 gives rise to a well deptiBe~ 75/q, to a well width
0.09 0.484 0.605 dlo1~q, and hence tor~ (1/q)exd — 7,/q] where we ne-
0.12 0.478 0.653 glect irrelevant terms of order unity. Under the condition that
0.15 0.466 0.673 75>qIn(1/g*¥) and >0, this gives rise tor—0 for g
0.18 0.440 0.689 —0, i.e., to the “ground state” of the adhesive hard-sphere
0.21 0.381 0.699 model. If, however, 7, is taken so small thatz)
0.27 0.131 0.711 <qIn(@/g®*") for g—0, then the high-temperature limit
0.30 0.0652 0.715 T— is obtained, corresponding to the one-component hard-
0.33 0.0252 0.720 sphere system with its “normal” hard-sphere freezing tran-
0.36 0.00639 0.724 sition. One can thus envisage two differapt>0 limiting

proceduresfi) the Baxter-like limit in whichr is nonzero by
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TABLE Ill. The coexisting densities at the fluid-solid, solid- TABLE IV. The coexisting densities at the fluid-solid, solid-
solid, and fluid-fluid transitions for a binary mixture of hard spheressolid, and fluid-fluid transitions for a binary mixture of hard spheres
with size ratioq=0.05 and varying packing fractions, of small  with size ratioq=0.033 and varying packing fractiong, of small
spheres in the reservoir as obtained from simulations with the efspheres in the reservoir as obtained from simulations with the ef-

fective Hamiltonian. fective Hamiltonian.
Fluid-solid Fluid-solid
7% 71 (fluid) 7, (solid) 75 7, (fluid) 71 (solid)
0.00 0.494 0.545 0.00 0.494 0.545
0.02 0.490 0.566 0.01 0.489 0.557
0.04 0.490 0.573 0.02 0.488 0.566
0.045 0.487 0.580 0.03 0.489 0.576
0.05 0.487 0.717 0.04 0.469 0.725
0.06 0.473 0.722 0.05 0.442 0.726
0.08 0.320 0.726 0.06 0.349 0.727
0.10 0.093 0.727 0.07 0.205 0.728
0.12 0.0061 0.728 0.08 0.06695 0.729
0.15 1.75¢10°4 0.730 0.10 8.816¢10°° 0.731
0.17 4.9410°° 0.731 0.15 0.00 0.733
0.19 3.30x1077 0.735
0.21 2.3x10°7 0.740 Solid-solid
75 71 (solid 2) 7, (solid 2
Solid-solid 0.025 0.676 0.7159
7 7 (solid 3 7 (solid 2 0.028 0.666 0.7164
0.04 0.658 0.707 0.03 0.664 0.7175
0.045 0.619 0.715 0.04 0.562 0.7253
0.05 0.587 0.717
0.06 0.558 0.722 Fluid-fluid
75 7, (fluid 1) 7, (fluid 2)
Fluid-fluid 0.12 0.0943 0.434
7 7 (fluid 1 7 (fluid 2 0.13 0.0161 0.449
0.165 0.0622 0.437 0.14 0.0108 0.455
0.17 0.0540 0.447 0.15 0.004 0.457
0.18 0.0170 0.475
0.19 0.0058 0.483

cannot be expected to be accurate der 1. In the limit g

=1, the actual depletion potential between two hard spheres
restricting attention to sufficiently smaf#f, or (ii) the Stell- suspended in a fluid of hard spheres with exactly the same
like so-calledf, limit where 7 is fixed resulting inT=0  diameter is given by—kgT In[g(r)], i.e., the potential of
unlessnr2=0 [79] It is the latter procedure that is relevant mean force[54]_ We therefore Computeg(r) in a simula-

for a comparison with the limiting|— 0 behavior of binary  tjon for a system of pure hard spheres at a packing fraction
hard-sphere mixtures. The resulting phase diagram, in ther |y Fig. 7, we compare the depletion potenti@8) with
(71,75) plane, of the effective one-component system with 'yt rq(r)] for 7,=0.1, 0.2, and 0.3. There is reasonably
an infinitesimalq is shown in Fig. 6. There is a vertical good agreement except in the repulsive barriersfbe0.3.

solid-solid binodal at close packing in the limjt— 0. How- We then performed simulations of the effective one-

g . .
ever, for all 7,>0 the phase diagram shows CoeX'Stencecomponent system interacting with the depletion potential

between a close-packed solid and an infinitely dilute gas 33) for g= : : . .
; or g=1. Figure 8 shows that the fluid-solid coexistence
while all other phases are metastap@]. Clearly, all trends £1ar)dly \?aries wghné and remains narrow. This phase dia-

as a function ofg featured in Fig. 4 are consistent with the ) . _
fact that the phase diagram approaches that of the adhesig&@m agrees rather well with the theoretical prediction rep-
hard-sphere model in Stell's double lingjt-0 and 7},—0 resented by the dashed curve. The latter is obtained by equat-
- 2 ing the pressure and the chemical potential of species 1 in the
In order to test the range of validity of the depletion po- solid and fluid phases and by equating the chemical potential

tential picture, we also studied the extreme limitpf 1, of species 2 to that of the reservoir. This amounts to solvin
where the system of “large” spherdspecies 1is in equi- P . ' 9
the four equations

librium with a reservoir of “small” spheregspecies 2
which have exactly the same diameter and a packing fraction

75 . The depletion potential33) is based on the Derjaguin

approximation which becomes exact in the limi=0, but BPhan( 7% = BP g ™9,
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FIG. 6. Phase diagram of binary hard-sphere mixtures for an F|G. 8. Phase diagram of binary hard-sphere mixtures with size
extremely small but nonzero size ratip based on the effective ratio q=1.0, based on the effective one-component Hamiltonian,
one-component Hamiltonian, plotted as a function of the largeplotted as a function of the large-sphere packing fractigrand the
sphere packing fractiom; and the small-sphere reservoir packing small-sphere reservoir packing fractios} . The dashed lines de-
fraction 77r2 . For 7]r2=0, the onIy transition is the freezing transition note the theoretical phase boundaries—see text.
of pure hard spheres denoted by two asterisks. #0¢0 a very
broad freezing transition is found, corresponding to coexistence of ¢y
an infinitely dilute fluid (»;=0) and a close-packed solidy{
=0.7404). In addition, an infinitesimally narrow solid-solid transi-
tion exists at close packing fay,>0.

and the pressur® depend only on the total packing
fraction ™9 and %°°". The ideal gas contributions to the
chemical potentials take into account the distinguishability of
the two species; the total chemical potential of the “small”

i i i i spheres in the system is dictated by that of the reservoir, i.e.,
Iny2" % Buda( 7% =Inm "+ Bugd "), ,up2 The good agreement betweenythe theoretical phase dia-
L solid ex / _solid gram and the one based on the depletion potentialzfor
Biz=Inm "+ Bupa( 777, =<0.4 is indicative of the good performance of depletion po-
o fuid ex fluid tentials, even in regimes where one could expect the deple-
Bua=Inn;""+ Bucg 7)), tion picture to fail. In Sec. VI we reconfirm this remark. The
_ L . . sharp bending of the theoretical fluid-solid phase boundary
for mde four goﬁi‘(!(noﬁrlligﬁgszlsohda”d f?i?zhd with ™= 91" o ards lowz, for ,=0.45 can be understood if one real-
+app - and 7>>= 77 9 for fixed values ofuy. The 765 that the state pointyg , 75) = (0,0.494) is the end point

theoretical resu!t should be near exact since the very accuratg poth curves, i.e., where the reservoir freezes.
Carnahan-Starling and Hall expressions for the pressure and
excess chemical potentials in the fluid and solid phase, re-
spectively, are used. Note that the excess chemical potential B. Structure
The structure of hard-sphere mixtures has been studied
extensively by integral equation theories and by simulations
[80]. Here we present results for the radial distribution func-
tion g(r) and the structure factdd(k) obtained from simu-
lations withN, = 1000 large spheres, interacting with the ef-
fective pair potential given by Eq$33) and (34), i.e., the
same pair potential used to calculate the phase diagrams. In
Fig. 9 we showg(r) for q=0.1 at several values afy, for
An(@()) (3 5,=0.05,(b) 7,=0.10,(c) ,=0.20, and(d) 7,=0.30.
At each#, we find the following features for increasing :
(i) the contact value ofi(r) increasesiii) the minimum near
r=1.070, becomes more pronounced as the repulsive bar-
rier grows, andiii ) the peak at/o;=2 becomes more pro-
nounced. Similar results were found in integral equation
20 theories and simulation studies of the true binary hard-sphere
mixture[53,68,80. Comparing the state points considered in
FIG. 7. The depletion potential33) of a binary hard-sphere Fig. 9 with .the p.has.e dlagr_ams plotted in Figb} we r'r,‘d
mixture with size ratiog=1.0 and small-sphere reservoir packing that the fluid-solid binodal is crossed, for eagh, as 7, is
fractions 7,=0.10 (thick solid line, 0.20 (thick dashed ling and ~ Increased between 0.15 and 0.20. There is, howewesslear
0.30 (thick dash-dotted line The thin lines denote-In[g(r)] of a  Signature of this freezing transition g(r). As the coexist-
system of pure hard spheres at a packing fractien0.10 (thin ence line is crossed the form gfr) obtained from the simu-
solid line), 0.20(thin dashed ling and 0.30thin dash-dotted line  lations does not change discontinuously. This would seem to

0.5 T T T T

Bduep(r)




5758 DIJKSTRA, van ROIJ, AND EVANS PRE 59

8 | +—— 1, =0.00 7
=—-—on, =0.10

ol e——on, =0.15 |
——n, =020

a(r/o,) g(r/o,)

0 . . . L
1.0 1.2 1.4 1.6 1.8 2.0 22 2.4 22 24

rlo,
10 T T T T v : 12 T v T T T T
(b) A @ |
8 ——n, =0.00 T —— 1, =0.00
oo d g
a(t/o) ° — 1, =0.20 a(is) ol +——am, =020

L ' L I

0 . . . I L

I 0 L
1.0 1.2 1.4 1.6 1.8 2.0 22 2.4 1.0 1.2 14 1.8 2.0 2.2 2.4
rlo,

1.6
rlo,

FIG. 9. The radial distribution functiog(r/o,) for the effective one-component system, based on the depletion poi@3ialith size
ratio q=0.1, small-sphere reservoir packing fractiops=0.00, 0.10, 0.15, and 0.20, and with large-sphere packing fract@ns,
=0.05,(b) #;=0.10,(c) ,=0.20, and(d) 7,=0.30. In each case the states with=0.20 lie in the solid-fluid coexistence region. ()
the state withn,=0.15 is just inside this coexistence region.

preclude using the form of the simulatgdr) as a criterion come too large[54]. For the most dilute systeny,
to determine freezing in binary mixtures. In the thermody-=0.05,S(k) is monotonically increasing witk at smallk
namic limit g(r) in the two-phase region would be the for 7,=<0.15 but for 7,=0.20—a point in the fluid-solid
Concentl‘ation-weighted sum of the radial distribution fUnC'Coexistence region_there is pronounced Sma”_ang|e scatter-
tions of the coexisti_ng fluid anq §o|id_phasc_es. prever, thcs;ng [an increase o8(k) ask— 0] which reflects the growth
nature ofg(r) obtained from finite simulations in a two- of dense clusters of the large spheres. For higher values of
phgse region depean on several factors making its |nterprg7-1 again we do not observe this increase¢k) at smallk
tation rather complicated. Note that the peak near ntj we enter the two-phase region. However, when this
=1.73r; found in Fig. 2 (at 7,=0.35,7,=0.25) is not  gccurs the structure factor becomes quite noisy.
present at the state points investigated in Fig. 9. It appears Another significant feature which is observed within the
that this pf_irticular feature only develops deep inside the twosjngle (fluid) phase is thak,,, the position of the first peak
phase region. in S(k), shifts to values that are higher than the value for
The structure factog(k) is shown in Fig. 10 for the same pyre hard spheres ag is increased at fixedy;. This seems
state points. This was calculated directly, usi®fk) g pe a feature of potentials with short-ranged attraction giv-
=N"Yp(k)p(—k)), where p(k)==", exp(k-R;). For ing rise to a sharply peakeg(r) and is accounted for quali-
each, considered we observe an increase of (#drapo- tatively by the RPA. The height of the first peak does not
lated value of S(k=0) with increasingz,. An increase of vary rapidly with 5 and we find that freezing occurs when
S(k=0) was also found in experiments on hard-sphere colS(k,,) ~1.04 for n;=0.05 and~1.52 for ,=0.30. These
loid mixtures[69] and in other simulations of binary hard- values of the peak height amuchsmaller than the peak
sphere mixtures based on effective pair potentigd®. As  height S(k,,)=2.85 which, according to the Hansen-Verlet
75 is increased the depletion potential becomes more attrac¢one-phasecriterion[70], is supposed to signal the onset of
tive; i.e., the well deepens, and simple random phase ag¥eezing in simple fluids. Note that upon increasing the
proximation (RPA) arguments indicate th&(k=0) should value of S(k=0) is decreased arfi(k,,), and the heights of
then increase—provided the repulsive barrier does not behe subsequent maxima, is increased. These features simply
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FIG. 10. The structure factdB(k) for the effective one-component system, based on the depletion pot@8jalith size ratioq
=0.1, small-sphere reservoir packing fractiafls=0.00, 0.10, 0.15, and 0.20, and large-sphere packing fractjpn&) 0.05, (b) 0.10,(c)
0.20, and(d) 0.30. These are the same state points as in Fig. 9.

reflect the effect of increased packing of the large spheres ig,<0.15 forq=0.2 and to7,<0.1 for g=0.1, where the

this effective one-component fluid. freezing is(essentially that of pure hard spheres. However,
In Fig. 11 we plotg(r) for the less extreme size rattp  this is not known in advance.

=0.2 at severaly, for (a) 7,=0.10, (b) 7,=0.20, and(c)

7,=0.30. Upon increasingy, at fixed », we observe fea- VI. RESULTS OF DIRECT SIMULATIONS

tures that are similar to those for=0.10; namely,(i) the OF THE MIXTURE

contact value ofg(r) increases(ii) the minimum nearm ) . . )
= 1.157, becomes more pronouncébte that the minimum In the previous section, we determined the phase behavior

is broader than fog=0.1, reflecting the difference in the Of & binary mixture of hard spheres using an effective one-
depletion potentials—see Fig.),1and (iii) the peak atr component Hamiltonian based on pairwise additive depletion
:20-1 becomes more pronounced_ Once again there is n@OtGﬂtiﬁ'S. It is important to keep in mind that this Hamil-
clear signature irg(r) that phase separation has occurred.tonian does not constitute an exact treatment of the binary
The structure factors for the same state points are shown iBystem, since three- and higher-body interactions were ne-
Fig. 12. The main features are similar to those fpr glected. One might expect the pairwise approximation to
=0.1: S(k=0) increases with increasing, for fixed , and ~ break down at sufficiently high densiti¢s.g., in the solid

for states within the fluid-solid coexistence region the datgphase or for less extreme size ratids.g.,q>0.154, where
become noisier. Upon increasing , the position of the first three nonoverlapping large spheres can overlap with a small
maximumk,, again shifts to larger values. Finally we note one[61]), thereby casting doubt on the specific predictions
that, as forq=0.1, the values oBS(k,,) at the fluid-solid (in particular those for the solid-solid transitjorMoreover,
transition are much lower, for the three valuesgfthanthe  the potentiakpye, used in the simulations is approximated by
value given by the Hansen-Verlet criteripr0]. Only when  an empirical form that does not take into account the pres-
freezing occurs at high values of the packing fractign, ence of longer-ranged oscillation8]. To the best of our
=0.45, should we expect this criterion to be valid. For theknowledge these approximations—and therefore the deple-
present system this would restrict its validity to the regimetion potential picture as a whole—have never been tested
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FIG. 11. The radial distribution functiog(r/c-) for the effec- FIG. 12. The structure factoS(k) for the effective one-
tive one-component system, based on the depletion potéB8al component system, based on the depletion potef@&lwith size
with size ratioq=0.2, small-sphere reservoir packing fractiofis ~ ratio q=0.2, small-sphere reservoir packing fractions=0.00,
=0.00, 0.10, 0.20, 0.25 and 0.30, and large-sphere packing frad.10, 0.20, 0.25, and 0.30, and large-sphere packing fractigns
tions 7;: (@ 0.10, (b) 0.20, and(c) 0.30. Note that fluid-solid co- (&) 0.10,(b) 0.20, andc) 0.30. These are the same state points as in
existence occurs when,=0.285 for (a), 7,=0.255 for(b), and  Fig. 11.
75=0.23 for ().

feasible for highly asymmetric binary hard-sphere mixtures

directly by making a comparison with results of a full treat- because of the ergodicity problems mentioned in the Intro-
ment of the true binary mixture. Given the richness of theduction. However, the results in Fig. 4 show such interesting
predicted phase diagrams and the experimental and compphase behavior gsurprisingly low 7, that we were moti-
tational effort that is being put into the determination of thevated to perform direct simulations in this regime, using a
depletion potential, it is important to perform such test. It hasscheme, to be discussed below, designed to deal with this
been argued by many authors that direct simulations are neégime, but not with the whole phase diagram. Our scheme
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complements the direct simulations performed recently by 03 - - \ . - -
Buhot and Kraut{68]. Their new algorithm is designed to _*sé‘;“':fa")ms (@
deal with small-size ratios but it does not seem feadio8} —_~ Free volume (Ref. [32)) n,=0.10
to implement the algorithm for most of the state points of

interest here 4+ 7,>0.25). 02|
The scheme we use to calculate the “exact” phase dia-

grams of binary hard-sphere mixtures by direct simulation n,

employs the identity

1,=0.20 -
¥ 1,=0.30

0.1 f n,=0.50 |

ﬁF(vavizZ):BF(N11V122:O)

z dBF(N1,V,z5)
+J Zdzé(ﬁ—l,z (39) n,=0.74
Z W FEES =TT .
0'%.00 0.05 0.10 0.15 ,0.20 0.25 0.30 0.35
The system at,=0 is the pure system of large hard spheres. N2
Hence the first term of the right hand side of E9) is
given accurately by the Carnahan-Starl[i@g] free energy in 0.10 T ' ©)
the fluid phase and by that of H&lf4] in the solid phase, as _*‘Z'gf‘z'fa"f"s _0.31
discussed already. The integrand in the second term can be — —~ Free volume (Ret. [32)) =0
rewritten using Egs(4) and(5) as 1,041
dBF(N.,V,2,) _ (N2)2, “0) . 1,=0.51
0z, Z 2 005 i
n,=0.61
Where<N2>22 denotes the average number of small particles
in the (N,,V,z,) ensemble. This quantity can be measured n,=0.74
directly in a grand-canonical simulation of the “adsorption”
of small spheres from a reservoir at fugadgyonto a system
of N; large spheres in a volumé Note that this scheme is 0.00 o5 020
almost identical to the widely known-integration scheme

presented in Eq(38) and in Ref.[81]. M2
Before discussing the results of the direct simulations, we

wish to make tW_O remarks. First, the Scheme propo§ed hixture with size ratioa) q=0.10 and(b) g=0.05 versus that of
Eqs'(39_) and(40) ,'S merely a bl'!lk analog of using th,e Gibbs the reservoiry), for several large-sphere packing fractiops The
adsorption equation to determine the surface tension, Whefgerisks denote simulation data while the solid lines denote the
(N2),, plays the role of the adsorptioR,that of the surface esulits obtained from the expressions of Henderson for the one-
tension, andN;, V, andq characterize the “substrate.” Sec- body term[66]. Dashed lines denote the results of the free volume
ond, it is important to realize thgN,),, is not identical to  approach32]

the unweightgd average adsorption frpm the reservoir. onto fbrm reliable simulations, one should recognize thatthe
system ofstatic large hard spheres, since not all configura- '

. o . pure large-sphere free enert z,=0) is taken from accu-
tions of large spheres carry the same statistical weight. | ind d d(i) th : |
fact, this weight is proportional to ekp SH®"], a quantity fate independent Sourcges, 74 and(ii) the aximum vajue

. o - . of (N,),_ is about 5<10* due to the small-size ratios. We
that is not known exactly as it involves empirical pair poten- 2 i . )
tials and unknown higher-order interactions, as we have segfiSO Plot7, as predicted by the scaled particle expressions
above. Consequently, the grand-canonical simulations thd@r the zero- and one-body terms and the predictions of the

measure(N2>Zz must be combined with aimultaneousca-  [ree volume approach of R¢B2]; these comparisons will be

nonical average over the large-sphere configurations Thigiscussed in more detail in Sec. VII.
g ge-sp 9 ' Using the simulation data foy, as a function ofp}, or z,,

requirement still leads to ergodicity problems at high, r2 =
alt?mugh the upper bound Wghich dilappendlen Vv ang% we galculateF(l_\Il,V,zz) from Eq. (39) by numerical inte-
) . ' ' » . gration. OnceF is known we employ common tangent con-
is sufficiently high even fog as small as 0.05 to permit us to ; ) . ;
study interesting regimes structions at fixedz, to obtain the phase boundaries shown
V\ye now retugr]n togthe c.alculation & from Eqgs.(39) and by the symbols in Fig. 14. The main observation is the strik-
(40). In Fig. 13 lotr— 703N /6V qf. i f ingly good overall agreement with the effective one-
r ). In Fig. » We p072_m?2< 2)2,/6V, as a function o component results for the three values of the size ratio,
72, as measured in a simulation with =32 for severaly;.  =0.2, 0.1, and 0.05, that we consider. Such good agreement
Results are shown foq=0.1 andq=0.05. Here we con-  throughout the fluid-solid coexistence curve tp0.2 and
verted z, into 75 using the Carnahan-Starling expressionat high », for q=0.1 and 0.05 is rather unexpected, as one
2,05= (675 m)exd (87— 972 +375)(1—75) %], which is  might expect the depletion picture to break down in these
essentially exact in the regime of interest. Althoubh regimes. The only significant difference is that the isostruc-
=32 may seem too small a number of large spheres to petural solid-solid transition fog=0.1 at#,~0.06 turns out to

FIG. 13. The small-sphere packing fractign of a hard-sphere
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be stable with respect to fluid-solid coexistence, in contrast
to the effective one-component prediction. The present re-
sults provide further evidence for a fluid-solid coexistence
broadening with increasing’, for all g, and do not support
the narrowing predicted by some theoretical approaches
[46,49. Unfortunately, ergodicity problems prevented us
from reaching the fluid-fluid demixing regime by direct
simulation, so that this feature of the effective one-
component results could not be tested. Nevertheless, the
quantitative agreement at the accessible valueg otioes

not give any indication that breakdown of the depletion po-
tential picture will occur at higher,—at least not until the
small spheres freeze.

As we computed the average number of small particles,
<N2>22, in the (N,,V,z,) ensemble by direct simulation of
the true binary mixture, we can convert our phase diagrams
from the (4, 75) plane to the §,,7,) plane. In Fig. 15, we
show the converted phase diagrafopen squares and aster-
isks) for g=0.2, 0.1, and 0.05. Note that the tie lines are no
longer horizontal.

In Fig. 16, we show snapshots of typical configurations of
a binary hard-sphere mixture with a size ratie=0.1 at
small-sphere packing fractiong,=0.121 and large-sphere
packing fractionsy; =0.30 and»,;=0.72. These state points
lie in single-phase regions but the densities are close to the
coexisting fluid (7;=0.355) and solid §;=0.712) densities
at this value ofz}, . In the solid phase, the large hard spheres
form a face-centered-cubic lattice structure, while the small
spheres are still disordered and fluidlike. Note that in both
the fluid and solid phaseg, is considerably smaller than
75 ; in the present case, for the coexisting fluid is 0.069
while 7, in the coexisting solid is 0.0174. These values are,
of course, reflected in the pronounceegative slope of the
tie lines in Fig. 15.

The coexisting densities obtained from direct simulations
of the binary mixture are tabulated in Tables V, VI, and VII.

VIl. DISCUSSION

A. Comparison with experiments and previous
simulation studies

In order to compare our phase diagrams with experimen-
tal data and other simulation studies, we need to convert the
reservoir packing fractiomy, of the small spheres to that in
the binary mixturen,. In the case of direct simulations, we
computed the average number of small particles explicitly in

FIG. 14. Phase diagram of binary hard-sphere mixtures witdin® (N1,V,Z;) ensemble and this allows us to convert the

phase diagrams directly to thep{,#,) plane. Figure 15

size ratios(a) q=0.2, (b) g=0.1, and(c) q=0.05 as a function of -
the large-sphere packing fraction and the small-sphere reservoir shows the converted phase diagrams de¥0.2, 0.1, and
packing fractiony,. F and S denote the stable fluid and solid 0.05. However, ergodicity problems prevented us from going
(fcc) phaseF +S, F+F, andS+S denote, respectively, the stable to high 75, and only a small part of the phase diagram could
fluid-solid, the metastable fluid-fluid, and thenetastable solid-  pe studied directly by simulations of the true binary mixture.
solid coexistence regions. The solid and dashed lines are the eﬁeEJsing the effective Hamiltonian approach we could map out
tive one-component results; the squares and the Z?Stwed by the phase diagram for highey,. In principle, the phase
lines to guide the eyedenote, respectively, the fluid-solid and the . ‘ . .

diagrams based on the effective Hamiltonian can be con-

solid-solid transition obtained from direct simulations of the true . ) .
binary mixture. verted by employing the exact thermodynamic relation
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FIG. 15. Phase diagram of binary hard-sphere mixtures with size fajigs=0.2,(b) q=0.1,(c) q=0.05, andd) q=0.033 as a function
of the large-sphere packing fraction and the small-sphere packing fractign. F andSdenote the stable fluid and solfttc) phase.
F+S, F+F, andS+S denote, respectively, the stable fluid-solid, the metastable fluid-fluid an¢hrtestable solid-solid coexistence
regions. The squares and the asteri§kined by lines to guide the eyalenote, respectively, the fluid-solid and the solid-solid phase
boundaries obtained from direct simulations of the true binary mixture. The accompanying tie lines, which connect the coexisting densities
(packing fractions are also shown. Iiib), (c), and(d) the dashed lines are the phase boundaries obtained from the effective Hamiltonian
approach converted using E@-3). Note the differences in the vertical scales between the figures.
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(N2)z,= - By dlnz, ByndZ2,R1) =~ 2702 (-7
Ny
0718(22 Qn) -2 r+7( T)Z_ll( r)3
\"omnz [ (41) BK(2,)= 772 72 72 CIn(1— )

2(1=75)°

where we have used Eql), (13) and the notatior - - .>22 see Eqs(19), (30), and(31). The conversion of, into 7}
introduced in Sec. VI. In our calculation of the phase dia-Can be made using the Carnahan-Starling expressiof]
grams we ignored the zero- and one-body teflgsandQ,, = (675 m)ex (87— 975 +375)(1—7) °]. By neglecting

as these terms are irrelevant for the phase behavior and ribe two- and more-body interactions, the average number of
direct information was obtained fofN,),,. However, the —particles of species 2 can then be approximated by
following scaled particle expressions can be employed for

the quantities entering the zero- and one-body teiBe IB(Qo+ Q1) IBPdZo)[1— 71(1+ @)%V

alnz, dlnz,

<N2>22: -

6 7ot (7524 (75)°
BPrd22) = — e e

_ ABYndz2 R TOINL+ BK(Z2)N,]
of  (1-ny? '

dlnz,

; (42)

(43
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TABLE V. The coexisting densitieexpressed in terms of the
packing fractions of large«;) and small ¢7,) spheresat the fluid-
solid transition for a binary mixture of hard spheres with size ratio
gq=0.2 and varying packing fractiong), of small spheres in the
reservoir as obtained from direct simulations of the true binary mix-

ture.
Fluid-solid
75 71 (fluid) 7, (fluid) 7, (solid)  #, (solid)
0.00 0.494 0.00 0.545 0.00
5.021x 103 0.491 0.0010 0.549 0.00064
3.796x 10 2 0.487 0.0089 0.559 0.00515
6.055< 102 0.484 0.015 0.574 0.00783
7.669<10 2 0.480 0.021 0.587 0.00962
8.923x 1072 0.476 0.026 0.608 0.00953
0.107 0.467 0.033 0.635 0.00950
0.121 0.463 0.039 0.650 0.00967
0.131 0.456 0.045 0.662 0.00970
0.140 0.446 0.050 0.669 0.00999
0.147 0.448 0.053 0.676 0.01007
0.153 0.439 0.058 0.681 0.01014
0.159 0.436 0.061 0.683 0.01074
0.181 0.421 0.076 0.693 0.01261
0.208 0.404 0.096 0.703 0.01476
0.231 0.367 0.118 0.708 0.01770
0.257 0.248 0.173 0.711 0.02228
0.279 0.171 0.219 0.713 0.02723
FIG. 16. Snapshots of typical configurations of a binary hard-0-298 0.112 0.259 0.717 0.03155
sphere mixture with a size ratig=0.1 at small-sphere reservoir 0.318 0.087 0.285 0.719 0.03666

packing fractiony,=0.121 and large-sphere packing fracti
7,=0.30, which corresponds to a stable fluid phase, dndzy,
=0.72, which corresponds to a stable sdfict) phase. viation. A possible reason for this deviation might be the
polydispersity of the small spheres, which we plan to study

We tested this approximate conversion against the data ol future work. Another reason might be the slow equilibra-
tained from direct simulations of the true binary mixture. INntion or Kkinetics of the phase transition resu|ting from ge|a-
Fig. 13, we ploty; versus, for size ratiosy=0.1 and 0.05 tjon, vitrification, or amorphizatioi83—84. (i) The open
for several large-sphere packing fractiongs In general we squares, denoting the experimental state points that exhibit
found very good agreement with the expressidB) [82].  fluid-solid coexistence, are well inside our fluid-solid coex-
For comparison we also ploy, as predicted by the free istence region, and extend to high if there is no meta-
volume approach of Ref32]; these results will be discussed stable fluid-fluid or solid-solid binodaliii) The triangles,
in more detail in Sec. VII B. Using Eq43), we now convert  representing the observed glassy states, are all close to or
our phase diagrams based on the effective Hamiltonian amwithin the metastable fluid-fluid or solid-solid binodal which
proach from the §,,75) plane to the ¢,7,) plane. These we calculated. A similar link between the formation of non-
are also plotted, together with the conversions of the direcequilibrium phases and the presence of metastable phase co-
simulations, in Fig. 15. As expected on the basis of Figs. 1®xistence has been observed in experiments on colloid-
and 14, the agreement between the two sets of results aftpolymer mixtures, and has been explained by a simple model
the different conversions is good. for the diffusion-limited kinetics of phase orderifg6]. It

We now compare oug= 0.1 phase diagram with the ex- should be noted that crystallization was only observed in
perimental data froni38] and[39]. In Fig. 17 we plot the these experiments39] in a limited region of the phase dia-
phase diagram obtained from the effective Hamiltonian apgram (where ;> 7,). The authors of Ref[39] also mea-
proach in the ¢4, 7,) plane, using the conversion based onsured the long-time self-diffusion of the large hard spheres in
Eq. (43), along with the experimental state points. the mixture, and found an enormous decrease in the diffusion

Imhof and Dhont performed experiments for chargedconstant when small spheres are added. It is therefore not
silica spheres with diameters 365 nm and 39 (sige ratio  surprising that the crystallization rates become extremely
g=0.1075) dispersed in dimethylformamifi&d]. The poly- small (or zerg at sufficiently high packing fractions of the
dispersity of the large and small spheres is about 0.03 ansimall spheres.
0.12, respectively. The following correlations are striking, Dinsmoreet al.reported experiments on charge-stabilized
and require further attentioni) The crosses, denoting a polystyrene microspheres, dispersed in water, with a small-
(metagstable fluid state, are, fay,<0.08, close to our stable sphere diameter of 69 nm and large-sphere diameters ranging
fluid phase boundary. At highey,, there is substantial de- from 137 to 825 nnj38]. In contrast with the experiments of
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TABLE VI. The coexisting densities at the fluid-solid and solid-solid transitions for a binary mixture of
hard spheres with size ratip=0.1 and varying packing fractions, of small spheres in the reservoir as
obtained from direct simulations of the true binary mixture.

Fluid-solid

75 7, (fluid) 7, (fluid) 7, (solid) 7, (solid)
0.00 0.494 0.000 0.545 0.0000
3.796x 1072 0.483 0.014 0.576 0.0099
6.055x 102 0.470 0.024 0.595 0.0151
7.669x 1072 0.468 0.032 0.681 0.0121
8.923x 1072 0.457 0.039 0.703 0.0126
0.107 0.417 0.052 0.709 0.0151
0.121 0.355 0.069 0.712 0.0174
0.131 0.331 0.079 0.717 0.0188
0.140 0.308 0.088 0.718 0.0204
0.147 0.291 0.096 0.719 0.0217
0.153 0.279 0.102 0.720 0.0226
0.159 0.230 0.115 0.721 0.0235

Solid-solid

75 7, (solid 1) 7, (solid 1) 7, (solid 2 7, (solid 2
6.055< 102 0.619 0.0134 0.662 0.0105
7.669x 1072 0.587 0.0206 0.684 0.0120
8.923x 1072 0.583 0.0249 0.694 0.0134
0.107 0.575 0.0317 0.708 0.0154
0.121 0.567 0.0369 0.710 0.0176

Imhof and Dhont39], these authors did not find any crys-  In Ref. [53], it is shown that forq=0.1 the RY and
tallization problems at highy,. In Fig. 17, we plot the ex- Ballone-Pastore-Galli-Gazzillo(BPGG integral equation
perimental state points that exhibit a clear fluid-solid coextheories give a spinodal instability in the fluid phase, while
istence in the bulk for binary mixtures witl)=0.1136 and the PY equation always predicts complete miscibility of the
0.0833. We find that all the state points fgr=0.1136 lie  two species. For comparison we plot the RY and the BPGG
well inside, while the state points fay=0.0833 lie slightly  spinodals in Fig. 17. We find that the BPGG spinodal lies
below the fluid-solid binodal calculated far=0.1. Thus, well inside our fluid-fluid coexistence region, while the RY
these experimental results are consistent with what we wouldpinodal lies below the fluid-solid binodal. We also mention
expect from the trend in Fig. 15. that the state point “A” (y;,=0.244,7,=0.072) studied in

TABLE VII. The coexisting densities at the fluid-solid and solid-solid transitions for a binary mixture of
hard spheres with size ratip=0.05 and varying packing fractiong, of small spheres in the reservoir as
obtained from direct simulations of the true binary mixture.

Fluid-solid
75 7, (fluid) 7, (fluid) 7, (solid) 7, (solid)
0.00 0.4938 0.0000 0.545 0.0000
5.021x 103 0.4916 0.0022 0.550 0.0018
3.796x 102 0.4915 0.0165 0.584 0.0127
6.055< 10 2 0.4219 0.0318 0.722 0.0116
Solid-solid
75 71 (solid 1) 7, (solid 1) 7, (solid 2 7, (solid 2
3.796x 10 2 0.6042 0.0119 0.7073 0.0075
6.055< 102 0.5776 0.0211 0.7212 0.0116
7.669x 102 0.5691 0.0277 0.7255 0.0146

8.923 1072 0.5640 0.0329 0.7261 0.0172
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0.4 . . . B. Connection with free volume theory
0=0.1 and colloid-polymer mixtures

There is a close connection between the hard-sphere mix-
tures studied in this paper and mixtures of colloidal hard
spheregwith diametero;) and nonadsorbing polymegwith
radius of gyratiorRy and diameterr,=2R;). Such colloid-
polymer mixtures resemble binary hard-sphere mixtures in
the sense that the colloid-colloid and colloid-polymer inter-
action is hard-sphere like, with contact distanees= o,
and o,= (o1t 05,)/2, respectively. An important difference
between such systems and additive binary mixtures of hard
spheres is the interpenetrable character of the polymer-
polymer interaction, which in the simplesgideal) case is
described byr,,=0. This simple model for colloid-polymer

FIG. 17. Phase diagram of binary hard-sphere mixtures with dnixtures is nonadditive, in contrast to the additive hard-
size ratiog=0.1 as a function of the large-sphere packing fractionsphere mixture studied in this paper. In RF7], the ther-

7, and the small-sphere packing fractign. F andSdenote the modynamic potential oN; colloidal hard spheres in a vol-
stable fluid and solidfcc) phasesF + S and S+ S denote, respec- ume V in contact with a reservoir of ideal polymers at
tively, the s_table fluid-solid and t_he solid-soli_d coe_xistence regiOI:]SfugaCity Z, is written as

The solid lines denote, respectively, the fluid-solid and the solid-

solid phase boundaries obtained from simulations based on the ef-

fective Hamiltonian approach and the conversi@B). The open

triangles, crosses, and open squares are experimental state points  F(N1,V,25) =F(N1,V,2,=0) =TI}V freg)z,=0, (44)
taken from Ref[39] whereq=0.1075, representing glassy states,

(metastable fluid phases, and fluid-solid demixing, respectively.

The solid squares and asterisks denote the experimental state pOi’i}%ereH’Z is the osmotic pressure of the polymer reservoir

taken from Ref[38], representing fluid-solid demixing for a binary . C )
colloidal hard-sphere mixture with size ratip=0.0833 andq and Where<Vfree>22=0 is the statistically averaged free vol

=0.1136, respectively. The plusses and the open circles joined by @me (or nonexcluded volumeof a test polymer in the sys-

dashed line denote the theoretical BPGG and RY spinodal, respetem of N; colloids at polymer fugacity,=0. Using scaled-

tively, taken from Ref[53]. particle (or Percus-Yevick expressions, the so-called free
volume approach represented by E44) predicts a fluid-

the simulations of Ref53] lies outside our fluid-solid coex- fluid demixing transition forq=o,/0,=0.35 [87]. The
istence region. For this state point good agreement is founfechanism behind this phase separation is the depletion ef-
between the pair distribution function of the larger speciedect, which results in the Asakura-Oosawa effective attrac-
obtained from the BPGG integral equations, from simula-tion between the colloidal particles arising from the presence
tions of the true binary mixture, and from simulations usingof polymers[30,31. One should realize, however, that the
the effective depletion potentifs3]. On the other hand, the depletion effect is enhanced significantly by the nonadditiv-
state point ‘C’ (y,=0.1, ,=0.32) lies well inside our ity of the interactions, which allows the number density of
metastable fluid-fluid binodal, which might explain the ob- polymers, and thereby the strength of the depletion interac-
served two-stage demixing dynamics. It is tempting to arguéion, to be much larger than in additive mixturgs].
that the rapid clustering found at the first stage reflects the Expression(44) was also used by Lekkerkerker and
fluid-fluid binodal, while the subsequent slow relaxation of Stroobants to study additive binary hard-sphere sys{8@is
clusters signals the crystallization process. In order to make a connection with their work, we rederive
We note finally that simulations of the full two- Edq.(44), starting from the exact resul{89) and (40). This
component system have been carried out recently for severegderivation identifies clearly the approximations involved in
values ofq for the single state poing,= 7,=0.1215[68]. Eq. (44). The first approximation involves the logg- Taylor
These authors computed the radial distribution function ofxpansion of the second term in the right hand side of Eq.
the large sphereg,4(r) in the mixture and in a pure system (39),
of large hard spheres. By comparing the integratedr) in
the mixture with that of the pure system, the authors inferred
no, weak, and strong tendencies to demix der0.1,0.05, fzzd ,( dBF(N1,V,z))
| ———

n

dBF(N1,V,z;)

!
iz

and 0.033, respectively. These inferences are consistent with
the phase boundaries we calculate from the effective Hamil-
tonian: from Fig. 15 we see that the state point lies below the
fluid-solid binodal forq=0.1, while forq=0.033 it lies in- +0(25). (45)
side the metastable fluid-fluid region. At=0.05 the state

point would be in the fluid-solid region, and so we identify

the observed clustering as crystallization rather than th&he first,0(z,), term in Eq.(45) can be rewritten with Egs.
fluid-fluid demixing which was implied if68]. (4) and(9) as

2

!
F?ZZ zé: 0
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The accuracy of the linear low, approximation 7,
= a(z,=0,7,) n,—with the scaled particle expressions for
0 a(z,=0,n7,)—as employed in the free volume approach of
Ref.[32], can be tested by comparison with the simulation
Ni results foryn, as a function ok, and »,. The dashed line in
Tf1| exf —BHq] | dri]] (1+ fil)] Fig. 13 represents this linear relation while the symbols de-
\% i=1 . . .
note the simulation results and the solid curves those from
Tryexg —BHy] approximation(43). Agreement with results of direct simu-
:_22<Vfree>zé:01 (46) lations is poorer than for the gpp_roximat_icQAS) and be-
comes, as expected, worse with increasiglg for every
value of ;. Moreover, the diffferences between simulation
and theory begin at lower, when 7, is higher[82]. The
main difference between the linear lI@y-approximation of
the free volume approach and approximati48) is the pres-

_ _ 2 ence of the second term on the right hand side of (€§),
BF(N1,V.2)= BF(N1,V.2,=0) = 2x{Viree)z, 0+ O(22), which can be interpreted as the adsorption of small spheres
(47)  onto the surface of the large sphefés]. ,

: . 2 It is important to note that neglecting tl@&(z5) terms in
which r?d_uces to EqA4) if _the 0(z) te_rms_ are neglected Eq. (45) actually involves two approximation§;) The inter-

and BII; is replaced byz,, its low-density limit. However, 0o between the smaller specias fonds is neglected,
the free volume apprroach r°f ReB2] employs the Percus- \ynich is justified for ideal polymers buiot for hard spheres.
Yevick result for BI1; [ BI1;= Bpys; see Eq.(43)2], which  This assumption implies that the two-body tees is the
contains terms to all order im, while otherO(z;) terms,  Asakura-Oosawa pair potential, which is often used to de-
arising from the integration, are not taken into account. Inscribe colloid-polymer mixture$30,31. However, it does
other words, the free volume approach of H8R] involves  not imply that three- and more-body interactions between the
nonsystematicO(z5) and higher-order terms. Furthermore, colloidal particles are neglected. The free volume itself in-
when we calculate the phase diagram that results from Egludes the effects of these higher-order interactigins An

(44) but with BII} replaced byz,, we find a much worse equal statistical weight is assigned to &llonoverlappiny
agreement with our simulation results fg=0.1 and 0.2 large-sphere configurations, whereas the weight should be
than when the Percus-Yevick result is usedgéf’, . Appar-  proportional to exp-BH; i.e., the weight should involve
ently, the nonsystematic procedure of repladptpy BIT, in  the effective interactions.

Eq. (47) gives rise to a better representation of the spinodal. We remark that when,—0 the depletion potentiaB3)

This can be motivated, perhaps, by considering a further rereduces to the Asakura-Oosawa pair potential calculated in
derivation of Eq.(44) starting from the exact expressions the Derjaguin approximation, appropriate to small values of
(39 and (40). We first introduce the quantityr(z,,7,) . Since the interesting +(;,75) regime forq—0 corre-
=1,(25,m1)/ 75(2,), i.e., the ratio of the density of small sponds to very smaly,, our phase diagrams for very asym-
spheres in the mixture to that in the reservoir, for givenmetric additive hard-sphere mixtures should resemble those
fugacity z, and packing fractiony; of the large spheres. of very asymmetric nonadditive colloid-polymer mixtures.
It is a trivial exercise to prove that(N,)/z, Indeed, the fluid-solid transition for nonadditive colloid-
=Va(z,,7,)dBI1%/ dz,, which upon inserting into Eq$39)  polymer mixtures withq=0.1 and 0.2, calculated by Gast
and(40) and performing the integral by parts yields the exactet al. within a second-order perturbation theory treatment of

dBF(N1,V,2))
Z —
2 3z,

r—
227

:—22

which defines formally the free volum(evf,ee}zé:o intro-

duced already. It is easily seen from E(R9), (40), (45), and
(46) that

result the Asakura-Oosawa pair potential—see Fig. 6[®f]—
resembles the phase diagrams of our Fig. 4. These authors
F(N1,V,z5)=F(N1,V,z,=0)—115(2y) a(z,, 71)V also reported a fluid-fluid transition fay=0.2, but not for
g=0.1. A solid-solid transition was not reported in R1].
+VJZZd 2| 222 g
0 2 115(23) 0z} . 48 C. Conclusions

i ) In summary, we have investigated the phase behavior and
If one now aproximates(z;,77,) by its lowz, value a(z;  syrycture of highly asymmetric binary hard-sphere mixtures.
=0,7;)—which can be interpreted as the free volume frac-on expression for the effective Hamiltonian of the large
tion of a small test sphere in a system of large spheres &neres was derived by formally integrating out the degrees
packing fractiony,—it is easily seen that the last term in Eq. of freedom of the small spheres. We showed that this Hamil-
(48) vanishes, while the remaining expressiondenticalto  gnian consists of zero-body, one-body, two-body, and
Eq. (44). However, when the full, but unknown, expression higher-pody terms. The two-body term is the usual depletion
for a(z,,7,) is used, the integral in Eq48) is expected to  potential, and the zero-body and one-body terms play no role
give at leasD(25) contributions, whicha priori, could be as  in determining the phase behavior. Using an accurate ap-
important asO(zg) contributions from the termlaV in Eq. proximation for the effective pair potential and neglecting
(48). Thus, we conclude again that the free volume approachigher-body terms, we determined, by standard one-
of Ref.[32] contains nonsystemat'@(zg) contributions to  component simulation methods, the phase behavior of binary
the free energy. hard-sphere mixtures, finding a broad fluid-solid coexistence
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for mixtures with a size ratig=<1, a metastablefluid-fluid the period of the oscillations are the same for all three dis-
transition forg<0.10, and a stable solid-solid coexistencetribution functions and depend on the packing fractions and
for q<0.05. The structure of the effective one-componentSizes of both speciefd0]. It is difficult to see howg(r)
system was studied by computing the radial distributioncoOmputed from the effective depletion potential, which is
function and the structure factor. There is no sharp change igvaluated at infinite dilution of the large spheres, can incor-
these functions as the fluid-solid binodal is crossed. HowPorateall the features of the trug,(r). This topic also
ever, for states in the two-phase regifk) exhibits an in- Warrants further investigation.

crease ak—0 and becomes very noisy, features that might

be identified with clustering of the large spheres. In addition ACKNOWLEDGMENTS
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direct simulations of the true binary mixtueee feasible in

these regimes. We performed such direct simullationsqflor APPENDIX: COMMON TANGENT CONSTRUCTION
=0.05,'O.1, anq 0.2, and fqr the range of packing fractions IN THE (Ny,p,,V,T) ENSEMBLE

accessible to direct simulations, we found remarkably good

agreement with the phase diagrams resulting from the effec- The Helmholtz free energy of a binathard-corg mix-

tive one-component simulations. Bearing in mind the sensiture with particle numbersl; andN, in a volumeV is given
tivity to details found in earlier attempts to determine theby F.(N;,N;,V), where we omitted the explicit temperature
phase diagrams of highly asymmetric binary hard-spherélependence. It proves convenient, however, to consider the
mixtures, the quantitative consistency between the results afystem in thel;,u,,V,T) ensemble, in which the chemical
these completely independent calculations lends strong supotential ., of species 2 is fixed instead of the correspond-
port to the reliability of our phase diagrams — at least foring particle numbeiN,. The associated thermodynamic po-
those regimes where direct simulations can be performedential is denotedr(N4,u,,V,T), and is related t& . by the

We conclude that the use of the effective pairwise depletiorLegendre transform

description is well justified for the size ratias=0.05, 0.1,

and 0.2. It follows that this description should remain reli-
able for more asymmetric cases, i.§5<0.05. (Indeed one
might argue that this description should become more accu-

rate, since higher-body terms should be less important anflee \ye describe how phase equilibria can be determined
the detailed form of the depletion potential is better estabq knowledge ofF. SinceF is extensive for macroscopi-
lished [54] for very-small-size ratio$.Thus, we are rather cally largeN; andV, we can write

confident about our predictions fqe=0.033, for example. In
particular, we predict that the fluid-fluid transition will re-

This work was made possible by financial support

F(valu‘ZIV):FC(N11N21V)_IJ‘2N2' (Al)

main metastable with respect to the fluid-solid transition as 6V
q—0. F(N1,p2,V)=—=F(u2,71), (A2)
We close with some final, hopefully provocative, re- Oy

marks: (i) The fluid-solid coexistence regions in Fig. 15

(even for relatively mild asymmetry, sag=0.2) are ex- 3 . . . .
tremely broad. This means that caution must be exercise\ghere 771_77‘7.1N1/6y IS the packing fraction of SPecies 1
when studying the properties of asymmetric binary harg2nd f(#2,7,) is a dimensionless free energy density of the
spherefluids so as not to enter the two-phase region. Weblnary mixture at a_che_mlcal potentiab. The pressure of
suspect that several published theoretical and, perhaps, sim‘iﬁ]—e binary system is given by

lation studies correspond to a bulk two-phase region. The

repercussions should be investigated furthig). The pair-

wise depletion potential description appears to account satis- P(u,,v1)= —(
factorily for the phase equilibria for surprisinglgrge values

of g. It is not clear why this should be the case and further

investigations are required to assess the regime of validity of __ ( &F(Nl"“Z’V))

&FC(vaNZ ,V)

the pairwise approximation(iii) Although the effective Vv Ny

Hamiltonian does appear to provide an accurate account of

the phase behavior of asymmetric binary hard-sphere mix- -6 If(my,m7)

tures, it has not been ascertained how accurate this is for =——| f(n2, 1)~ 771((9—) 1
describing the structure, i.e., for the radial distribution func- moY e,

tion of the large sphereg,4(r). For the true binary mixture (A3)

it is known that all three radial distribution functions
011(r), g25(r), and g45(r) exhibit the same characteristic
asymptotic ¢ —) decay. The exponential decay length andand the chemical potential, of species 1 is given by
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t(n,m,) @  fu,m,) ©

\ y |

b a b a_d c
" LU LL P PR B L P
f(uym,) (b) f(u,m,) (d)
b a a
n, n, —n n, Up - n,

FIG. 18. The dimensionless free energy dens(ty,, 7,) versus the packing fraction,. Schematic illustration of the common tangent
construction to determine the phase coexistence in binary mixt{@eSymmetry conserved coexistengkiid-fluid or isostructural solid-
solid coexistence (b) symmetry broken coexisten¢iuid-solid coexistence (c) a stable symmetry conserved and a stable symmetry broken
coexistence, an(t) a metastable symmetry conserved coexistédashed lingand a stable symmetry broken coexisteftbén solid line.

F(N1,N,,V) IF(Nq,u0,V) Geometrically this representation corresponds to the so-
ma(pz,v1)= (T) = (T) called common tangent construction for determinigfgand
! N2V ! #2V P This is illustrated in Fig. 18, where we plot schemati-
af(wy,m1) cally f(u,,7,) for a symmetry-conserving transitide.g.,
:(5—771) , (A4)  fluid-fluid or isostructural solid-solid transitiorand for a
) symmetry-breaking transitiorfe.g., fluid-solid transition
The physical interpretation of the common tangent construc-
where, in the second steps, we uaegz(aFC/aNz)leva_ tion, denoted by the thin solid lines in Fig. 18, is the usual

The pressure and the chemical potentials of both species af&€; i-€., the system in the regimg@< 7,< 7} can lower its
important quantities in the determination of phase boundarieB€e energy by forming a linear combination of phases
at first-order transitions, where two phases with differentandb.

packing fractions of species(and 2 coexist. The conditions It is also possible that two or more spinodal instabilities of
for the coexistence of two phases, sayndb, with packing the free energy curve are present. This is illustrated in Figs.
fractions % and %2 and chemical potentigk, (or fugacity ~ 18(c) and 18d). In Fig. 18c), we illustrate the existence of a
z,), are mechanical equilibriunP?(u,,73)= Pb(Mz,n?) stable symmet_ry-conse(\{ing transition and a stable
and chemical equilibriumu2(u,, 73 = 1212, 7). Invok- symmetry-breaking transition. In Fig. (B, we see once

ing these two conditions with EqéA3) and (A4) yields again the existenc'e of a sy_mmetry-conserving trans[tion and
a symmetry-breaking transition, but here the former is meta-

stable with respect to the latter. Finally it is straightforward
to show that adding terms ©which are linear inp,, whose

of of f(ua, 7)) —f(uy, 77‘1’) coefficients are functions d,, does not affect the values of
3_711 a:_ﬁm b: a_ b (AS5) the packing fractions at coexistence. One can make the com-
7 m T mon tangent construction with or without these terms.
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