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Phase behavior of nonadditive hard-sphere mixtures

Marjolein Dijkstra
H. H. Wills Physics Laboratory, University of Bristol, Bristol BS8 1TL, United Kingdom

~Received 24 July 1998!

We show the existence of a fluid-fluid demixing transition in binary mixtures of nonadditive asymmetric
hard-sphere mixtures by performing Gibbs ensemble Monte Carlo simulations for a size ratio of 0.1 and
varying degrees of nonadditivity. We compare our results with the theoretical binodals obtained from the
equation of state proposed by Barboy and Gelbart@J. Chem. Phys.71, 3053 ~1979!# and we find reasonable
agreement for sufficiently large values of the nonadditivity parameter. Upon decreasing the nonadditivity
parameter, we find that the fluid-fluid demixing region shifts to higher pressures and becomes narrower. For
sufficiently small nonadditivities, we do not find a fluid-fluid demixing transition for total packing fractions
,0.5. @S1063-651X~98!02412-X#

PACS number~s!: 64.70.2p, 61.20.Gy, 82.70.Dd
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I. INTRODUCTION

During the past few years evidence has accumulated
the existence of entropy-driven fluid-fluid demixing tran
tions. One way in which phase separation can occur in
athermal mixture is if the hard-core interactions in the m
ture are ‘‘nonadditive,’’ i.e.,sAB.(sAA1sBB)/2, wheres i j
denotes the distance of closest approach of particles of t
i and j . Loosely speaking, this phase separation can be
derstood from the fact that the pure phases can fill the sp
more effectively than the mixture. An extreme case of no
additivity was studied by Widom and Rowlinson, who co
sideredsAA5sBB50 andsAB5s.0 @1#. For this system,
they showed the existence of a demixing transition. Si
larly, a demixing transition is found in the simplest model
colloid-polymer mixtures. In this model the colloids wit
diametersB and the polymers with a radius of gyrationRg
and a diametersA52Rg are assumed to interact with har
core potentials. As the polymers are interpenetrable,
range of the repulsion between two polymers is assume
be sAA50, while sAB5 1

2 (sA1sB) and sBB5sB @2#. A
semiphenomenological theory for this model predicts a flu
fluid demixing transition forq5sA /sB>0.35 @3#.

A special case is a mixture ofadditive hard spheres, for
which sAB5(sAA1sBB)/2. For these mixtures, using th
Percus-Yevick closure in the Ornstein-Zernike equation@4#,
no spinodal instability is found in the fluid phase for any s
ratio, while the Rogers-Young closure does give evidence
spinodal instability when the size ratioq,0.2 @5#. A fluid-
fluid demixing transition was also found by Rosenfeld with
a self-consistent density functional theory provided the s
ratio q,0.25 @6#. However, the predictions depend heav
on the assumptions or details of the theories and it rem
an open question whether a fluid-fluid demixing transiti
exists in a binary mixture of additive hard spheres.

As the mechanism of a demixing transition in hard-sph
systems must be purely entropic, the demixing transit
cannot be explained by~un!favorable energetic interactions
The mechanism behind this instability is often explained
the depletioneffect. This depletion effect is based on th
gain of free volume of the small spheres due to clustering
the large spheres. The depletion effect can also be un
PRE 581063-651X/98/58~6!/7523~6!/$15.00
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stood as an unbalanced osmotic pressure, which arises w
the large spheres are so close together that no small pa
fits in between. In 1954, this depletion effect was alrea
recognized to drive the phase separation in colloid-polym
mixtures @2#. However, the depletion effect in colloid
polymer mixtures is extremely enhanced by nonadditivi
An indication of this enhancement is that, for instance, in
case of colloid-polymer mixtures a fluid-fluid demixing tra
sition is predicted forq>0.35 @3#, while no fluid-fluid de-
mixing is found for additive hard-sphere mixtures with
size ratiosq>0.35 @5,6#. Note also that in the case o
additive hard-sphere mixtures an upper bound for the s
ratio is found, while in the case of colloid-polymer mixture
a lower bound is found. The depletion effect in additi
hard-sphere mixtures becomes stronger for smaller size
tios, while the depletion effect due to packing effects in no
additive hard-sphere mixtures is enhanced when the sph
become more similar. It is therefore not clear to what ext
this phase separation of colloid-polymer mixtures is cau
by nonadditivity and whether the depletion effect can lead
a fluid-fluid phase separation inadditive hard-sphere mix-
tures.

Attempts at direct confirmation of the fluid-fluid demixin
transition for additive hard-sphere mixtures by compu
simulations are hampered by slow equilibration. Evidence
a purely entropy-driven demixing transition between tw
fluid phases is found only for a binary mixture of large a
small parallel cubes on a lattice and for a binary mixture
thin and thick spherocylinders@7,8#. However, in the case o
the parallel cubes only fluid phases are considered and
therefore not clear whether this transition is stable or me
stable with respect to the freezing transition. For the syste
of parallel cubes and the spherocylinders the deple
mechanism is enhanced by the shape of the individual s
cies. Similarly, one might argue now that a demixing tran
tion can be induced by introducing a small degree of non
ditivity. Indeed it has been shown recently that by using
equation of state for nonadditive binary hard-sphere m
tures, a small degree of nonadditivity@2sAB /(sA1sB)
;1.01# leads to a fluid-fluid demixing forq,0.2 @9#. In this
article we investigate the effect of nonadditivity on the flui
fluid demixing transition and in particular whether
7523 © 1998 The American Physical Society
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small amount of nonadditivity can indeed induce a fluid-flu
demixing transition.

II. SIMULATIONS

We consider a binary mixture of nonadditive hard sphe
with diameterssA51 andsB510. The ranges of the repu
sion between the particles, i.e., the distance of closest
proach, are given by

sAA5sA ,

sBB5sB , ~1!

sAB5
1

2
~sA1sB!~11D!,

whereD.0 is the nonadditivity parameter. In order to d
termine the coexistence curve of the two fluid phases
rectly, we carry out Gibbs ensemble Monte Carlo simu
tions @10#. In this method the two coexisting phases a
simulated in separate simulation boxes that may excha
volume and particles at a given temperature in order to fu
the phase equilibrium requirements of equal pressure
chemical potentials. During the simulation ordinary Mon
Carlo steps are performed in both phases in order to eq
brate both systems internally. However, the acceptance
for exchanging a large particle is small in a dense system
small particles, as a large particle will almost always over
with one of the small particles. In order to speed up equ
bration we use collective particle moves that employ a g
eralization of the configurational-bias Monte Carlo sche
of Ref. @8#. In this approach we first choose randomly a lar
sphere in one box and try to insert this particle at a rand
position in the other box. When the particle overlaps w
another large sphere the trial move is immediately rejec
If no such overlap is found, the small spheres overlapp
with the large sphere in its new position are removed and
then moved to the volume vacated by the large sphere in
first box using a generalization of the Rosenbluth sampli
The trial move is then accepted with a probability det
mined by the ratio of the Rosenbluth weights of the new a
old configurations. For more technical details, we refer
reader to Ref.@8#. In our simulations we perform the follow
ing trial moves:~i! random displacement of a particle in on
of the boxes,~ii ! small particle exchange between the box
~iii ! large particle exchange between the boxes using
configurational-bias Monte Carlo scheme, and~iv! volume
exchange between the boxes.

In each simulation we measure the compositionx of the
large spheres in both boxes, given byx5NB /(NB1NA),
whereNB andNA are, respectively, the number of large a
small spheres in that box. In addition, the numerical value
the pressure was determined by virtual volume changes.
method is based on the fact that the pressure is minus
volume derivative of the Helmholtz free energy, which c
be related to the acceptance ratio of virtual volume chan
as described in Ref.@11#.

Most runs consist of 104– 105 cycles per particle per ther
modynamic state point. In each cycle we attempt a displa
ment of a particle in one of the boxes and we try to excha
s
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volume and a particle between the boxes. For the part
exchange we select with equal probability the box wher
particle is removed and the species of the particle that will
transferred. The system size varies from about 100 to
large spheres with 400–1200 small spheres.

III. THEORY

Most studies of nonadditive binary hard-sphere mixtu
are restricted to the symmetric case, i.e.,sA5sB . In the
case of equal diameters, a nonadditivity ofD50.05 is al-
ready sufficient to induce phase separation@12#. For the
asymmetric case an equation of state was derived by Ba
and Gelbart. This expresses the pressureP in powers ofya
5na /(12h), with na5Na /V the number density of spe
cies a, V the total volume of the system, andh the total
packing fraction@1#. To third order inya this equation of
state reads

P

kBT
5(

a
ya1(

a,b
Aabyayb1 (

a,b,g
Aabgyaybyg . ~2!

The coefficientsAab andAabg are such that the low-densit
expansion of Eq.~2! coincides with the third-order viria
expansion of nonadditive hard-sphere mixtures, given by

P

kBT
5n1(

a,b
Babnanb1 (

a,b,g
Babgnanbng ,

Bab5
2

3
psab

3 , ~3!

Baag5
1

9
p2@ 1

6 inf~sa,2sag!623 inf~sa,2sag!4sag
2

1 16
3 inf~sa ,2sag!3sag

3 #,

with

inf~sa,2sag!5H sa for sa,2sag

2sag otherwise
~4!

andn5(aNa /V. Comparing Eqs.~2! and ~3! leads to

Aab5Bab2
p

6

sa
31sb

3

2
, ~5!

Aaag5Baag2
p

9
~Aaasg

312Aagsa
3 !2

p2

36
sa

3
sg

31sb
3

3
.

~6!

For D50, the resulting equation of state reduces to the co
pressibility equation of state of the Percus-Yevick appro
mation for all q @13#. Integrating the equation of state wit
respect tov51/n5V/(NA1NB) gives the Helmholtz free
energy per particlef (x,v) with x5NB /(NA1NB). How-
ever, in order to compute the phase equilibria, it is con
nient to consider the Gibbs free energy per particleg(x,P),
which can easily be obtained by using a Legendre trans
mation
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g~x,P!5 f ~x,v !1Pv~x,P!. ~7!

The spinodal can now be determined from the condition

S ]2g

]x2D
P

50 ~8!

and the critical point is determined by Eq.~8! and

S ]3g

]x3D
P

50. ~9!

The binodals can be obtained by equating the pressure
the chemical potentials of both species in the two coexis
phases.

IV. RESULTS

One way to plot the coexisting curves is a representa
in the bPsB

3-x plane, whereb51/kBT. At low pressures
~below the critical point!, we find no demixing, while for
pressures higher than the critical point, the fluid can ph
separate into two phases with different compositionx but
equal pressure. We first compute the critical point of
fluid-fluid demixing transition for a nonadditive hard-sphe
mixture with size ratioq50.1 from Eqs.~2!, ~8!, and~9!. In
Fig. 1 we plot the resulting total packing fractionhcrit5hA
1hB at the critical point as a function of the nonadditivi
parameterD. As pure hard spheres freeze at a packing fr
tion of 0.495, we expect that the fluid range in binary ha
sphere mixtures corresponds toh,0.5 and this value is in-
dicated by the dashed line in Fig. 1. We find thathcrit
increases upon decreasingD. For D,0.0032,hcrit becomes
larger than 0.5 and we do not expect fluid-fluid demixing
hard-sphere mixtures withD in this range and with a size
ratio of q50.1. In the limitD→0, hcrit approaches rapidly

FIG. 1. Total packing fraction at the critical pointhcrit5hA

1hB for a nonadditive hard-sphere mixture with size ratioq50.1
versus the nonadditivity parameterD. The simulations results ar
denoted by the crosses, while the solid line is the results of
theory.
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1. Recall that forD50, the theory reduces to the compres
ibility equation of state of the Percus-Yevick approximati
for which there is no demixing@4#. We plot our critical
points, which are estimated by using a fit of the coexiste
curves from Gibbs ensemble simulations, in the same fig
For D.0.4 we find good agreement between theory a
simulation, but for lower values ofD the simulations yield
systematically higher values forhcrit . ForD,0.2 we do not
find a demixing transition forhcrit,0.5, while the theory
predicts that a small amount of nonadditivity (D.0.013) can
induce a fluid-fluid demixing transition forhcrit,0.5.

In Fig. 2 we plot the pressurebPcritsB
3 at the critical

point versusD for a nonadditive hard-sphere mixture wit
size ratioq50.1. We find thatbPcritsB

3 increases rapidly
with decreasingD. The reduced pressure at the critical po
obtained from simulations is also plotted and we find high
values forbPcritsB

3 than those predicted by theory. In th
limit D50 the pressure diverges.

Figure 3 shows the theoretical critical compositionxcrit
5NB /(NA1NB) versusD for a size ratioq50.1. We find that
xcrit decreases approximately linearly upon decreasingD un-
til small values ofD. As it is difficult to get an accurate
estimate ofxcrit in the present simulations for nonadditiv
mixtures, we did not compare these with the theoretical
sults. It is now interesting to consider the limiting behavi
of xcrit for D→0 in more detail. It turns out thatxcrit has a
well-defined value asD→0, viz.,xcrit50.0010, even though
hcrit→1 in this limit. Other theories for hard-sphere mix
tures predict the valuesxcrit.0.0056@3#, 0.02@5#, and 0.002
@6# for this size ratio andD50, while a recent simulation
study predicts a critical point athB50.27 andhA50.22,
which corresponds to a composition ofxcrit50.0012 @14#.
Note that the total packing fraction at this critical point
smaller than 0.5. However, in the same simulation stud
was also shown that the fluid-fluid transition was metasta
with respect to a broad fluid-solid transition.

We calculate fromf (x,v) or, equivalently,g(x,P) the

e

FIG. 2. Reduced pressure at the critical pointbPcritsB
3 for a

nonadditive hard-sphere mixture with size ratioq50.1 versus the
nonadditivity parameterD. The simulations results are denoted b
the crosses, while the solid line is the result of the theory.
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phase equilibria and compare the results with those of
computer simulations for a size ratioq50.1 and nonadditivi-
ties D50.5, 0.4, 0.3, and 0.2. In Fig. 4 we show the resu
ing dimensionless pressurebPsB

3 of the coexisting phases a
a function of the compositionx. The theoretical binodals ar
shown in the same plot. For largeD we find reasonable
agreement. However, the simulation pressures are co
tently higher than the pressures predicted by theory. By
creasing the nonadditivity parameterD, we observe the fol-
lowing features:~i! The binodals shift to higher pressure
~ii ! the coexistence regions become narrower, and~iii ! the
binodals shift to lower values ofx5NB /(NA1NB). For D
,0.2, we do not find a demixing transition below a to

FIG. 3. Composition at the critical pointxcrit5sB /(sA1sB)
for a nonadditive hard-sphere mixture with size ratioq50.1 versus
the nonadditivity parameterD.

FIG. 4. Simulation results for the fluid-fluid coexistence in t
pressure-composition plane of a nonadditive hard-sphere mixtu
size ratioq50.1 with a nonadditivity parameterD50.5 ~circles!,
0.4 ~squares!, 0.3 ~diamonds!, and 0.2~triangles!. The full lines
denote the binodals obtained by using the theoretical equatio
state 2 and the corresponding critical points are denoted by
asterisks.
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packing fraction ofh;0.50. This might be an indication tha
the fluid-fluid demixing transition becomes metastable w
respect to the freezing transition or it may not exist at all
densities belowh,0.50 and forD,0.2. A possible reason
for the apparent absence of a spinodal instability is the n
rowing of coexistence region with decreasingD. Unfortu-
nately, equilibration problems prevented us from increas
the packing fraction further, so that we could not investig
whether a metastable fluid-fluid demixing transition exi
above the freezing transition. Moreover, slow equilibrati
prevented us from decreasingD further, so that the additive
hard-sphere mixture (D50) could not be studied directly, a
expected from the outset of our study.

V. DISCUSSION

We present the results of a computer simulation study
binary mixtures of nonadditive hard spheres with a size ra
of q50.10. Fluid-fluid demixing transitions are found i
mixtures with nonadditivityD50.5, 0.4, 0.3, and 0.2. Rea
sonable overall agreement is found for 0.2<D<0.5 with the
binodals calculated from a theoretical equation of state
nonadditive binary hard-sphere mixtures. We find that
critical point shifts to higher pressures and that the coex
ence region becomes smaller upon decreasing the nona
tivity parameterD from 0.5 to 0.2.

For D,0.2, we do not find a demixing transition below
total packing fraction ofh;0.50 and we expect that th
demixing transition disappears into the solid atD;0.2. If we
assume the same monotonic behavior for smallerD, we ex-
pect no stable demixing transition in the fluid phase a
expect that the critical point, if there is any, shifts deeper i
the solid phase upon decreasingD. However, we also find
that the fluid-fluid demixing region becomes narrower up
decreasingD from 0.5 to 0.2. From the assumption that th
same monotonic behavior holds for smallerD, it could be
possible that the fluid-fluid demixing region disappears co
pletely.

It is interesting to compare our results of the nonaddit
hard-sphere mixtures with previously obtained results of
binary mixture of thick and thin spherocylinders with diam
eterssB510 andsA51 and equal lengthL @8#. In the latter
system, a clear isotropic fluid-isotropic fluid demixing tra
sition was found. In Fig. 5 the phase diagram resulting fr
Gibbs ensemble Monte Carlo simulations are shown
L/sB515, 10, 8, 5, and 3 in the pressure-composition pla
Upon decreasingL ~and hence upon approaching the bina
hard-sphere mixture withq50.1) the demixing region shifts
to higher pressures and becomes narrower. A similar beh
ior was found in mixtures of nonadditive hard spheres,
which the nonadditivity parameterD was decreased~see
above!. For lengthL52sB , no demixing transition is found
below a total packing fraction ofh50.581, which is above
the packing fraction of the freezing transition of a pure flu
of thick rods. In this case it was not possible to investig
whether a metastable demixing region occurs above
freezing transition for lengthL,2sB and, once again, the
binary additive hard-sphere mixture (L50) could not be in-
vestigated directly. If we assume the same monotonic beh
ior for smallerL, we expect no stable demixing transition
the fluid phase and expect that the critical point, if there
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any, shifts again deeper into the solid phase upon decreas
L.

Thus, extrapolating the results of both the nonadditiv
hard-sphere mixtures and the spherocylinder mixtures to
additive hard-sphere mixtures (D→0 andL→0) and assum-
ing that the same monotonic behavior holds for allD andL
yields the conclusion that the demixing transition in the flu
phase is either metastable with respect to the freezing tr
sition or disappears completely. A possible reason for t
absence of the spinodal instability might be the narrowing
the coexistence region when one approaches the addi
hard-sphere mixture.

However, more and more evidence becomes available
favor of the existence of a spinodal instability in the flui
phase for additive hard-sphere mixtures with size ra
q50.10 at a total packing fractionh,0.50@4,6,7,14#. It thus
appears that a monotonic extrapolation from the spheroc
inder mixture (L→0) or the nonadditive hard-sphere mix
ture (D→0) to the additive hard-sphere mixture is not just
fied and that the critical point should turn over to lowe
pressures and packing fractions upon decreasingD and L
even further. It would therefore be interesting to understa
this turnover or change of trend of the critical points in mo
detail. This issue will be addressed in future work.

One way to study this turnover of the critical points is t
map the two-component system onto an effective on
component system by integrating out the degrees of freed
of the smaller species. To lowest order the resulting effecti

FIG. 5. Simulation results of the isotropic-fluid–isotropic-fluid
coexistence in the pressure-composition plane of a mixture of h
spherocylinders with diameterssB510 andsA51 and equal length
L515sB ~open squares!, 10sB ~closed circles!, sB ~stars!, 5sB

~closed squares!, and 3sB ~crosses!.
ing
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Hamiltonian of the bigger species can be written in terms
an effective pair potential~depletion potential! for the larger
particles. For hard particles these effective pair potent
show an attractive well when the large particles are in c
tact and the range of the attraction is determined by the
of the smaller species. Recent studies show that a minim
range of attraction (;1/6 times the diameter of the particle!
is needed for the existence of a stable fluid-fluid~liquid-
vapor! transition @15,16#. For shorter-ranged attractions th
liquid-vapor transition becomes metastable with respec
the freezing transition. In the case of additive hard-sph
mixtures with size ratioq5sA /sB50.10, the range of the
depletion attraction is about 0.10sB and no stable fluid-fluid
transition is expected. For hard spherocylinders the rang
attraction is increased upon increasing the length of
spherocylinders and one can expect that the fluid-fluid
mixing transition becomes stable with respect to the freez
transition for sufficiently long rods. However, changing t
spheres into spherocylinders results in an orientational
pendence of the pair potential between the particles. T
orientational dependence might be the reason for the cha
of trend of the critical points as a function ofL. In the case
of nonadditivity, the range of attraction is also increas
upon increasing the nonadditivity parameterD and one can
again expect that the fluid-fluid demixing transition becom
stable with respect to the freezing transition for sufficien
largeD. Moreover, it is clear that as the size ratioq increases
the physical behavior of additive and nonadditive ha
sphere mixtures becomes increasingly different, which
plains why a lower bound is found for the size ratioq for the
simple, nonadditive model of colloid-polymer mixtures (q
.0.35) and an upper bound in the case of additive ha
sphere mixtures (q,0.2020.25).

In conclusion, by extrapolating the results for asymmet
nonadditive hard-sphere mixtures with finite nonadditiv
parameterD towardsD→0, one might conclude that the de
mixing transition of the additive hard-sphere mixtures (D
50, q50.10) becomes metastable with respect to freez
or does not exist at all. A similar conclusion could be draw
from mixtures of spherocylinders as described in Fig. 5 a
Ref. @9#, where the lengthL of the spherocylinders plays
role equivalent toD here. However, given the mounting ev
dence for the existence of fluid-fluid demixing in the bina
hard-sphere mixture, these extrapolations are probably
valid and a change of trend of the critical point as a funct
of D andL is to be expected.
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