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Phase behavior of nonadditive hard-sphere mixtures
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We show the existence of a fluid-fluid demixing transition in binary mixtures of nonadditive asymmetric
hard-sphere mixtures by performing Gibbs ensemble Monte Carlo simulations for a size ratio of 0.1 and
varying degrees of nonadditivity. We compare our results with the theoretical binodals obtained from the
equation of state proposed by Barboy and GelparChem. Phys71, 3053(1979] and we find reasonable
agreement for sufficiently large values of the nonadditivity parameter. Upon decreasing the nonadditivity
parameter, we find that the fluid-fluid demixing region shifts to higher pressures and becomes narrower. For
sufficiently small nonadditivities, we do not find a fluid-fluid demixing transition for total packing fractions
<0.5.[S1063-651X%98)02412-X

PACS numbgs): 64.70—p, 61.20.Gy, 82.70.Dd

[. INTRODUCTION stood as an unbalanced osmotic pressure, which arises when
the large spheres are so close together that no small particle
During the past few years evidence has accumulated fdits in between. In 1954, this depletion effect was already
the existence of entropy-driven fluid-fluid demixing transi- recognized to drive the phase separation in colloid-polymer
tions. One way in which phase separation can occur in amixtures [2]. However, the depletion effect in colloid-
athermal mixture is if the hard-core interactions in the mix-polymer mixtures is extremely enhanced by nonadditivity.
ture are “nonadditive,” i.e.oag>(0aat 0gp)/2, Whereo; An indication of this enhancement is that, for instance, in the
denotes the distance of closest approach of particles of type&gse of colloid-polymer mixtures a fluid-fluid demixing tran-
i andj. Loosely speaking, this phase separation can be ursition is predicted forg=0.35[3], while no fluid-fluid de-
derstood from the fact that the pure phases can fill the spad®ixing is found for additive hard-sphere mixtures with
more effectively than the mixture. An extreme case of nonsize ratiosq=0.35 [5,6]. Note also that in the case of
additivity was studied by Widom and Rowlinson, who con- additive hard-sphere mixtures an upper bound for the size
sideredoap=0gg=0 andoag=0c>0 [1]. For this system, ratio is found, while in the case of colloid-polymer mixtures
they showed the existence of a demixing transition. Simi lower bound is found. The depletion effect in additive
larly, a demixing transition is found in the simplest model of hard-sphere mixtures becomes stronger for smaller size ra-
colloid-polymer mixtures. In this model the colloids with tios, while the depletion effect due to packing effects in non-
diametera and the polymers with a radius of gyratié®ty  additive hard-sphere mixtures is enhanced when the spheres
and a diameter,= 2R, are assumed to interact with hard- become more similar. It is therefore not clear to what extent
core potentials. As the polymers are interpenetrable, théhis phase separation of colloid-polymer mixtures is caused
range of the repulsion between two polymers is assumed toy nonadditivity and whether the depletion effect can lead to
be oaa=0, while oag=3(oa+0g) and ogg=0g [2]. A a fluid-fluid phase separation iadditive hard-sphere mix-
semiphenomenological theory for this model predicts a fluidtures.
fluid demixing transition folg=o/0z=0.35[3]. Attempts at direct confirmation of the fluid-fluid demixing
A special case is a mixture @fdditive hard spheres, for transition for additive hard-sphere mixtures by computer
which oag=(oant ogg)/2. For these mixtures, using the simulations are hampered by slow equilibration. Evidence of
Percus-Yevick closure in the Ornstein-Zernike equafidlp  a purely entropy-driven demixing transition between two
no spinodal instability is found in the fluid phase for any sizefluid phases is found only for a binary mixture of large and
ratio, while the Rogers-Young closure does give evidence fosmall parallel cubes on a lattice and for a binary mixture of
spinodal instability when the size ratgp<0.2 [5]. A fluid-  thin and thick spherocylindefs,8]. However, in the case of
fluid demixing transition was also found by Rosenfeld within the parallel cubes only fluid phases are considered and it is
a self-consistent density functional theory provided the sizgéherefore not clear whether this transition is stable or meta-
ratio q<0.25[6]. However, the predictions depend heavily stable with respect to the freezing transition. For the systems
on the assumptions or details of the theories and it remaingf parallel cubes and the spherocylinders the depletion
an open question whether a fluid-fluid demixing transitionmechanism is enhanced by the shape of the individual spe-
exists in a binary mixture of additive hard spheres. cies. Similarly, one might argue now that a demixing transi-
As the mechanism of a demixing transition in hard-spherdion can be induced by introducing a small degree of nonad-
systems must be purely entropic, the demixing transitiorditivity. Indeed it has been shown recently that by using an
cannot be explained bgun)favorable energetic interactions. equation of state for nonadditive binary hard-sphere mix-
The mechanism behind this instability is often explained bytures, a small degree of nonadditivif2oag/(oat op)
the depletion effect. This depletion effect is based on the ~1.01] leads to a fluid-fluid demixing foq<0.2[9]. In this
gain of free volume of the small spheres due to clustering oérticle we investigate the effect of nonadditivity on the fluid-
the large spheres. The depletion effect can also be undefluid demixing transition and in particular whether a
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small amount of nonadditivity can indeed induce a fluid-fluidvolume and a particle between the boxes. For the particle
demixing transition. exchange we select with equal probability the box where a
particle is removed and the species of the particle that will be

II. SIMULATIONS transferred. The system size varies from about 100 to 200

large spheres with 400—1200 small spheres.
We consider a binary mixture of nonadditive hard spheres

with diameterso,=1 arjdch=_ 10. The ranges of the repul- IIl. THEORY
sion between the particles, i.e., the distance of closest ap-
proach, are given by Most studies of nonadditive binary hard-sphere mixtures
are restricted to the symmetric case, i€,=0og. In the
OAA= O A, case of equal diameters, a nonadditivity & 0.05 is al-
ready sufficient to induce phase separat[dZ]. For the
Ogg=0g, (1) asymmetric case an equation of state was derived by Barboy

and Gelbart. This expresses the presduiia powers ofy,,
1 =n,/(1—#), with n,=N_,/V the number density of spe-
oas=5(0at0op)(1+4), cies a, V the total volume of the system, arwl the total
packing fraction[1]. To third order iny, this equation of

whereA>0 is the nonadditivity parameter. In order to de- state reads

termine the coexistence curve of the two fluid phases di-
rectly, we carry out Gibbs ensemble Monte Carlo simula-
tions [10]. In this method the two coexisting phases are
simulated in separate simulation boxes that may exchange - .
volume and particles at a given temperature in order to fulfill’ "€ CO€fficient®,; andA,,, are such that the low-density
the phase equilibrium requirements of equal pressure an@*Pansion of Eq(2) coincides with the third-order virial
chemical potentials. During the simulation ordinary Monte&XPansion of nonadditive hard-sphere mixtures, given by

Carlo steps are performed in both phases in order to equili-

kB_T = ; Yot QEB Aaﬁyayﬁ+ a,EB,Y Aaﬁvyayﬁyv‘ @

brate both systems internally. However, the acceptance ratio ﬁ:n+ BapNaNg+ > BapyNalpn,
for exchanging a large particle is small in a dense system of B a,B aBy
small particles, as a large particle will almost always overlap
with one of the small particles. In order to speed up equili- 2
; ; ; } B, s==m0o ., 3
bration we use collective particle moves that employ a gen ap= 3 "%

eralization of the configurational-bias Monte Carlo scheme

of Ref.[8]. In this approach we first choose randomly a large
sphere in one box and try to insert this particle at a random B
position in the other box. When the particle overlaps with
another large sphere the trial move is immediately rejected.

If no such overlap is found, the small spheres overlapping
with the large sphere in its new position are removed and arg;p,
then moved to the volume vacated by the large sphere in the

ngwz[g (04,20 4,)° =3 inf(0,4,20,,) 0%,

16 ; 3
+ 3 Inf(oa,Zaay)?’a'w],

first box using a generalization of the Rosenbluth sampling. o, for 0,<20,
The trial move is then accepted with a probability deter- inf(04,20,,)= . 7 4
mined by the ratio of the Rosenbluth weights of the new and 20,y otherwise

old configurations. For more technical details, we refer the .
reader to Ref[8]. In our simulations we perform the follow- andn=2,N,/V. Comparing Eqs(2) and(3) leads to
ing trial moves:(i) random displacement of a particle in one 3, 3
- . To,to

of the boxes(ii) small particle exchange between the boxes, A,s=Bas— —x B (5)
(iii) large particle exchange between the boxes using the 6 2
configurational-bias Monte Carlo scheme, and volume s 3
exchange between the boxes. T 3 3 3051t op

In each simulation we measure the compositioof the Acay=Baay™ §(Am07+ 2A0y0,) 36%« 3
large spheres in both boxes, given Ry Ng/(Ng+N,), (6)
whereNg andN, are, respectively, the number of large and
small spheres in that box. In addition, the numerical value ofFor A =0, the resulting equation of state reduces to the com-
the pressure was determined by virtual volume changes. Thigressibility equation of state of the Percus-Yevick approxi-
method is based on the fact that the pressure is minus theation for allq [13]. Integrating the equation of state with
volume derivative of the Helmholtz free energy, which canrespect tov =1/n=V/(Nay+ Ng) gives the Helmholtz free
be related to the acceptance ratio of virtual volume changesnergy per particlef (x,v) with x=Ng/(Na+Ng). How-
as described in Refl1]. ever, in order to compute the phase equilibria, it is conve-

Most runs consist of 10-1 cycles per particle per ther- nient to consider the Gibbs free energy per partigle, P),
modynamic state point. In each cycle we attempt a displacewnhich can easily be obtained by using a Legendre transfor-
ment of a particle in one of the boxes and we try to exchangenation
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FIG. 1. Total packing fraction at the critical poinj.;= 7a
+ ng for a nonadditive hard-sphere mixture with size rajie 0.1 FIG. 2. Reduced pressure at the critical pqm?cmo-g for a
versus the nonadditivity parametar. The simulations results are nonadditive hard-sphere mixture with size ratje-0.1 versus the
denoted by the crosses, while the solid line is the results of theonadditivity parameteA. The simulations results are denoted by
theory. the crosses, while the solid line is the result of the theory.

g(x,P)=f(x,v)+Pv(x,P). (77 1. Recall that forA =0, the theory reduces to the compress-
ibility equation of state of the Percus-Yevick approximation
The spinodal can now be determined from the condition  for which there is no demixing4]. We plot our critical
points, which are estimated by using a fit of the coexistence

9%g curves from Gibbs ensemble simulations, in the same figure.
—| =0 (8  For A>0.4 we find good agreement between theory and
IX°) p simulation, but for lower values ok the simulations yield
- o ] systematically higher values foy,,;; . For A<0.2 we do not
and the critical point is determined by E@®) and find a demixing transition fory.;;<0.5, while the theory
5 predicts that a small amount of nonadditivity % 0.013) can
3_9 -0 ) induce a fluid-fluid demixing transition fof,;;<<0.5.
a3 o ' In Fig. 2 we plot the pressurﬂPcritag at the critical

point versusA for a nonadditive hard-sphere mixture with

The binodals can be obtained by equating the pressure arfige ratiog=0.1. We find thatBP.. o increases rapidly
the chemical potentials of both species in the two coexistingvith decreasing\. The reduced pressure at the critical point
phases. obtained from simulations is also plotted and we find higher
values for BP0 than those predicted by theory. In the
V. RESULTS Iimit_A=O the pressure diverg_es. N N
Figure 3 shows the theoretical critical compositiog;;
One way to plot the coexisting curves is a representation=Ng/(Ny+Ng) versusA for a size ratioq=0.1. We find that
in the ,BPo-g-x plane, whereB=1/kgT. At low pressures x.; decreases approximately linearly upon decreadinm-
(below the critical point we find no demixing, while for til small values ofA. As it is difficult to get an accurate
pressures higher than the critical point, the fluid can phasestimate ofx.,;; in the present simulations for nonadditive
separate into two phases with different compositiobut  mixtures, we did not compare these with the theoretical re-
equal pressure. We first compute the critical point of thesults. It is now interesting to consider the limiting behavior
fluid-fluid demixing transition for a nonadditive hard-sphereof x.,;; for A—0 in more detail. It turns out that,;; has a
mixture with size ratiog=0.1 from Eqs.(2), (8), and(9). In  well-defined value ad —0, viz., Xj;=0.0010, even though
Fig. 1 we plot the resulting total packing fractiop, ;= 7 7erit— 1 in this limit. Other theories for hard-sphere mix-
+ 75 at the critical point as a function of the nonadditivity tures predict the values,,;;==0.0056[3], 0.02[5], and 0.002
paramete\. As pure hard spheres freeze at a packing frac{6] for this size ratio andA =0, while a recent simulation
tion of 0.495, we expect that the fluid range in binary hard-study predicts a critical point ag=0.27 andz,=0.22,
sphere mixtures corresponds 46<0.5 and this value is in- which corresponds to a composition ®f;;=0.0012[14].
dicated by the dashed line in Fig. 1. We find that,;; Note that the total packing fraction at this critical point is
increases upon decreasing For A<0.0032, 5.i; becomes smaller than 0.5. However, in the same simulation study it
larger than 0.5 and we do not expect fluid-fluid demixing forwas also shown that the fluid-fluid transition was metastable
hard-sphere mixtures witA in this range and with a size with respect to a broad fluid-solid transition.
ratio of q=0.1. In the limitA—0, 7., approaches rapidly We calculate fromf(x,v) or, equivalently,g(x,P) the
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packing fraction ofp~0.50. This might be an indication that
0.20 ; ; ; ; the fluid-fluid demixing transition becomes metastable with
respect to the freezing transition or it may not exist at all for
densities belowp<0.50 and forA<0.2. A possible reason
for the apparent absence of a spinodal instability is the nar-
rowing of coexistence region with decreasing Unfortu-
nately, equilibration problems prevented us from increasing
the packing fraction further, so that we could not investigate
whether a metastable fluid-fluid demixing transition exists
above the freezing transition. Moreover, slow equilibration
prevented us from decreasidgfurther, so that the additive
hard-sphere mixtureA=0) could not be studied directly, as
expected from the outset of our study.

crit

V. DISCUSSION

We present the results of a computer simulation study of
binary mixtures of nonadditive hard spheres with a size ratio
FIG. 3. Composition at the critical point. = og/(oat og) of' q=0.10.. FIuid—ﬂuiq'd'emixing transitions are found in

for a nonadditive hard-sphere mixture with size ratie0.1 versus ~ Mixtures with nonadditivityd=0.5, 0.4, 0.3, and 0.2. Rea-
the nonadditivity parametex. sonable overall agreement is found for€.2<0.5 with the
binodals calculated from a theoretical equation of state for
phase equilibria and compare the results with those of ouponadditive binary hard-sphere mixtures. We find that the
computer simulations for a size ratig=0.1 and nonadditivi- critical p(_)lnt shifts to higher pressures and that the coeX|st-_
tiesA=0.5, 0.4, 0.3, and 0.2. In Fig. 4 we show the result-ENC€ region becomes smaller upon decreasing the nonaddi-
ing dimensionless pressugP o3 of the coexisting phases as UVity parameterA from 0.5 t0 0.2. L
a function of the compositior. The theoretical binodals are ForA<Q.2, we QO not find a demixing transition below a
shown in the same plot. For largk we find reasonable total_packlng f_rgcnon ofn~0.5_0 and We_expect that the
agreement. However, the simulation pressures are consid€Mixing transition disappears into the solidiat 0.2. If we
tently higher than the pressures predicted by theory. By de2SSUme the same monotonic behavior for smaliewe ex-

creasing the nonadditivity paramet&r we observe the fol- pect no stable d_e_mixing_ tra_msition_in the ﬂL_'id phase gnd
lowing features:(i) The binodals shift to higher pressures, expect that the critical point, if there is any, shifts deeper into

(i) the coexistence regions become narrower, iyl the the solid phase upon decreasing However, we also find
binodals shift to lower values of=Ng/(Na+Ng). For A that the fluid-fluid demixing region becomes narrower upon

<0.2, we do not find a demixing transition below a total decreasing\ from 0.5 to 0.2. From the assumption that the
same monotonic behavior holds for smalley it could be

possible that the fluid-fluid demixing region disappears com-
a0 , ‘ . i pletely.
et It is interesting to compare our results of the nonadditive
hard-sphere mixtures with previously obtained results of the
binary mixture of thick and thin spherocylinders with diam-
etersog=10 ando,=1 and equal length [8]. In the latter
] system, a clear isotropic fluid-isotropic fluid demixing tran-
sition was found. In Fig. 5 the phase diagram resulting from
- Gibbs ensemble Monte Carlo simulations are shown for
L/og=15, 10, 8, 5, and 3 in the pressure-composition plane.
Upon decreasing. (and hence upon approaching the binary
hard-sphere mixture witg=0.1) the demixing region shifts
to higher pressures and becomes narrower. A similar behav-
] ior was found in mixtures of nonadditive hard spheres, in
which the nonadditivity parametek was decreasedsee
0 s : . : above. For lengthL=20¢g, no demixing transition is found
X ) ’ below a total packing fraction of=0.581, which is above
the packing fraction of the freezing transition of a pure fluid
FIG. 4. Simulation results for the fluid-fluid coexistence in the of thick rods. In this case it was not possible to investigate

pressure-composition plane of a nonadditive hard-sphere mixture d¥hether a metastable demixing region occurs above the
size ratiog=0.1 with a nonadditivity parametex=0.5 (circleg, ~ freezing transition for length. <20 and, once again, the
0.4 (squarey 0.3 (diamond3, and 0.2(triangles. The full lines  binary additive hard-sphere mixture € 0) could not be in-
denote the hinodals obtained by using the theoretical equation ofestigated directly. If we assume the same monotonic behav-
state 2 and the corresponding critical points are denoted by thi®r for smallerL, we expect no stable demixing transition in
asterisks. the fluid phase and expect that the critical point, if there is

25 h
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Hamiltonian of the bigger species can be written in terms of

3.0 RO ' ' ' ' an effective pair potentialdepletion potentialfor the larger
\ f particles. For hard particles these effective pair potentials
VNG show an attractive well when the large particles are in con-
Nex tact and the range of the attraction is determined by the size
of the smaller species. Recent studies show that a minimum
20 ¢ range of attraction 1/6 times the diameter of the partitle
s T is needed for the existence of a stable fluid-fldiduid-
BPay *—% L= 80: vapo) transition[15,16. For shorter-ranged attractions the
w-—4Ll=50, liquid-vapor transition becomes metastable with respect to
%=X L= 30, . L s
10 " . § the freezing transition. In the case of additive hard-sphere
"1-/" mixtures with size ratiqj= o 5/0z=0.10, the range of the
depletion attraction is about 0.&Q and no stable fluid-fluid
s\&*ff_ﬁ—_fjf:::t——r—* transiti_on i_s e_xpected. For harq spher(_)cylinders the range of
AT i PSR AN B ——g—-a attraction is increased upon increasing the length of the
0.0 . '

00 01 02 03 04 05 06 07 spherocylinders and one can expect that the fluid-fluid de-
mixing transition becomes stable with respect to the freezing
transition for sufficiently long rods. However, changing the
FIG. 5. Simulation results of the isotropic-fluid—isotropic-fluid SPheres into spherocylinders results in an orientational de-
coexistence in the pressure-composition plane of a mixture of har@eéndence of the pair potential between the particles. This
spherocylinders with diameters;= 10 ando,= 1 and equal length ~ orientational dependence might be the reason for the change
L=1505 (open squards 100 (closed circley og (star3, 505  Of trend of the critical points as a function bf In the case
(closed squarg@sand 3rg (crosses of nonadditivity, the range of attraction is also increased
upon increasing the nonadditivity parameterand one can
any, shifts again deeper into the solid phase upon decreasi ain expect that the fluid-fluid ('demixing't'ransition bgcpmes
L stable with respect to the freezing transition for sufficiently

Thus, extrapolating the results of both the nonadditivelargeA' Moreover, itis clear that as the size rafjincreases

hard-sphere mixtures and the spherocylinder mixtures to th‘ahe physpal behavior of gddmve_ and r.10nadd|t|ve' hard-
additive hard-sphere mixtureA{~0 andL—0) and assum- sphere mixtures becomes_, increasingly dn‘_ferent! which ex-
ing that the same monotonic behavior holds forfalandL p_Ialns why a IOV\.’?r bound is found er the size rau!tbor the
yields the conclusion that the demixing transition in the quidS'mpIe’ nonadditive model of _coIIO|d-ponmer mixtureg (
phase is either metastable with respect to the freezing trarfo'gs) and an upper bound in the case of additive hard-
sition or disappears completely. A possible reason for théphere mlxtu'reso[<0.20— 0'25).' .
absence of the spinodal instability might be the narrowing of In conclusion, by extrapolating the results for asymmetric

the coexistence region when one approaches the additiv%onadditive hard-sphere mixtures with finite nonadditivity

hard-sphere mixture paramete\ towardsA— 0, one might conclude that the de-

However, more and more evidence becomes available iH“Xing transition of the additive hard--sphere mixture’s (.
favor of the existence of a spinodal instability in the fluid —O: 9=0.-10) becomes metastable with respect to freezing

phase for additive hard-sphere mixtures with size ratic®" does not exist at all. A similar conclusion could be drawn

—0.10 at a total packing fraction< 0.50[4,6,7,14. It thus from mixtures of spherocylinders as descrlb_ed in Fig. 5 and
gppears that a mgnoton?c extraZoIation from the spherocleef' [9],_where the length. of the sp_herocylmders plays a
inder mixture L—0) or the nonadditive hard-sphere mix- role equivalent tc_A here. How_ever,_gwen t_h_e mounting evi-
ture (A—0) to the additive hard-sphere mixture is not justi- dence for the existence of fluid-fluid demixing in the binary
fied and that the critical point should turn over to lower har_d-sphere mixture, these extrapo_la_mons are probably_ hot
pressures and packing fractions upon decreadingnd L valid and a change of trend of the critical point as a function

even further. It would therefore be interesting to understantﬁ)f A andL is to be expected.
this turnover or change of trend of the critical points in more
detail. This issue will be addressed in future work.

One way to study this turnover of the critical points is to  This work was supported by the EC-TMR Program under
map the two-component system onto an effective oneGrant No. ERBFMBICT972446. We thank Reman Roij
component system by integrating out the degrees of freedomnd Bob Evans for a critical reading of the manuscript and
of the smaller species. To lowest order the resulting effectivestimulating discussions.
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