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The long-time self-diffusion and phase behavior of a binary dispersion of hard spheres with a size ratio
of 1:9.3 were studied. Labeling one of the particle species in the mixtures with a fluorescent dye allows
for the measurement of its long-time self-diffusion coefficient using fluorescence recovery after photo-
bleaching. Extensive measurements are reported for a wide range of volume fractions and mixture com-
positions. For high volume fractions, the data can be described by empirical formulas in which interac-
tions of a tracer with particles of different sizes are effectively decoupled. The binary system shows a
fluid-crystal type phase separation. No fluid-fluid phase separation is observed. At high volume frac-
tions, two different glassy states are found. These two states could be distinguished by the separate mea-
surement of the mobility of the small and the large spheres. In one of the glassy states, the small spheres
remain mobile although the large spheres are structurally arrested. In the other, both particles are

arrested.

PACS number(s): 82.70.Dd, 66.10.—x, 64.70.Dv, 83.10.Pp

I. INTRODUCTION

Among the most striking aspects of the behavior of
binary hard-sphere mixtures are superlattice formation at
the freezing transition [1,2] and phase separation [3-5].
In order to understand these phenomena, the concept of
depletion attraction has been introduced [6,7]. Until now
most of the attention has been focused on the static prop-
erties of these asymmetric mixtures, and much less is
known about their dynamical properties. In this work as-
pects of both statics and dynamics of a binary colloidal
dispersion composed of hard spheres with a size ratio of
1:9.3 are addressed. We previously determined the phase
diagram of this mixture [8]. Phase separation into a fluid
and a crystalline phase, and two different glass states
were found. In this paper, in addition to a discussion of
the phase behavior, we present a systematic investigation
of the long-time self-diffusion coefficient D, ; of both the
small and large spheres for a wide range of volume frac-
tions and mixture compositions.

So far, the study of self-diffusion in dispersions of
differently sized particles has mostly been limited to di-
lute systems of highly charged spheres, in which hydro-
dynamic interactions are negligible. Moreover, the con-
centration and composition of the mixtures have not been
varied in a systematic way. Most of the earlier experi-
ments used dynamic light scattering (DLS) to measure
particle dynamics, and were thereby limited to the
analysis of the large particles that scatter most of the
light. With this technique, long-time self-diffusion [9], as
well as short- and intermediate-time self-diffusion [10,11],
have been measured for systems composed of a small
number of large charged spheres in a dispersion of many
small charged spheres. Also, some measurements have
been reported of an effective short-time diffusion
coefficient of dense binary hard-sphere dispersions with
diffusing wave spectroscopy (DWS) [12]. Finally, with
forced Rayleigh scattering (FRS) [13], the long-time self-
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diffusion coefficients of both particle species in dilute
binary dispersion of charged spheres have been obtained.

In this work we use the technique fluorescence
recovery after photobleaching (FRAP) to measure D, ; of
both particles as a function of concentration and mixture
composition. Separate measurement of each particle
species is made possible by labeling that component with
a fluorescent dye. The fact that FRAP is not reliant on
scattering, nor hindered by it, constitutes a considerable
advantage over DLS, and in particular allows the study
of the small particles’ dynamics. FRAP is also better
suited to measure the long-time limit and, indeed, very
slow diffusion processes are measurable. This is also the
most important limitation, namely that short times are
not accessible.

The particle dynamics in hard-sphere dispersions are
strongly influenced by both direct and hydrodynamic in-
teractions. Theoretical expressions for D, given by
Batchelor [14], are available to leading order in the
volume fractions of the components, and are tested
against our results. At higher concentrations, where par-
ticle motions become very strongly coupled, no theoreti-
cal results are available. Instead, we present an empirical
expression that provides a good description of the data.
At the highest concentrations glassy states are found,
which are evidenced by incomplete decay of the correla-
tion functions that are measured with FRAP, indicating
that long-time self-diffusion has effectively stopped. The
measurements provide evidence of the existence of two
different glassy states which occur in different parts of the
phase diagram. In one of these, both particles are frozen
in. In the other, however, only the large spheres show
structural arrest while the small particles have complete
relaxation, though in a nonsingle exponential fashion.

In Sec. II the theoretical background of self-diffusion
in colloidal dispersions is briefly described, and the re-
sults of Batchelor’s theory are applied to the present sys-
tem. Then in Sec. III details on particle preparation,
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characterization, and experimental procedures are given.
Results are presented and discussed in Sec. IV, and con-
clusions are summarized in Sec. V.

II. THEORETICAL BACKGROUND

Brownian motion of colloidal particles is the result of
fluctuating forces which these particles experience from
collisions with molecules of the medium in which they
are suspended. The velocity of a spherical particle fluctu-
ates on a time scale of order 75 =m /6mnya, where m is
its mass, a its radius, and 7, the shear viscosity of the sol-
vent. 7p is called the Brownian time scale. For times
longer than 75 the motion of particles is diffusive. A
measure for the diffusive motion of a certain particle (the
tracer) is its mean-square displacement (Ar%(¢)) as a
function of time z. For independent particles this is a
linear function of time,

(Ar%(t))=6Dyt , t>>1p . (1

Here D, is the single particle diffusion coefficient given
by the well-known Stokes-Einstein formula

_ kT
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where k is Boltzmann’s constant, and 7 the absolute tem-
perature. When the dispersion is not dilute, the mean-
square displacement is influenced both by direct interac-
tions and hydrodynamic interactions. These interactions
depend on the configuration of particles around the
tracer. For hard spheres, the tracer will feel a change in
configuration when it diffuses over a distance comparable
to its radius. This sets the interaction time scale 7,
which for hard spheres is a2/D,. On this time scale the
mean-square displacement is in general no longer a linear
function of time. The self-diffusion coefficient can still be
defined through

(Ar¥(t))=6D (1)t , (3)

but is now a function of time. However, at times both
short and long compared to 7; the mean-square displace-
ment is again linear in time. For short times 75 <<t <<7;
the particle moves in a constant configuration of neigh-
boring particles and is only influenced by hydrodynamic
interactions which usually operate on a time scale compa-
rable to 75. This defines the short-time self-diffusion
coefficient D g:

_ (Ar¥n)
6t ’

For times ¢ >>7; the particle distorts the configuration of
neighboring particles so that direct interactions as well as
hydrodynamic interactions determine its mean-square
displacement. This defines the long-time self-diffusion
coefficient D,  :

D¢ Tp <<t <<T1[ . (4)

2
D, = lim ~AZW) 5)

t— o 6t

In order to measure long-time diffusion in mixtures,
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the experimental time scale should be long enough to al-
low particles of each type to interact many times with
particles of all other types. This means that the interac-
tion time scale 7; is set by the slowest particle. For the
system used in this work this corresponds to 7;,=0.1 s.
In a FRAP experiment the long-time limit is ensured by
making the fringe spacing, which sets the length scale of
the measurement, much larger than the size of the largest
particle.

Theoretical calculations of the long-time self-diffusivity
of multicomponent colloidal dispersions in the literature
are scarce. There seem to be two approaches available at
present. The first, due to Batchelor [14], calculates the
friction that is felt by a tracer particle when it is slowly
pulled through a multicomponent dispersion by means of
a small external force. This theory is exact for hard
spheres up to the pair interaction level, taking into ac-
count both hydrodynamic interactions and the extra fric-
tion due to the distortion of the pair distribution func-
tion. The second approach that we want to mention uses
memory functions that are designed to give the exact
short-time results, but which approximate the long-time
behavior [11]. This theory is applicable to dilute but
strongly interacting dispersions of highly charged spheres
at low ionic strength. Because of the long range nature of
the direct interactions in such systems the theory does
not take hydrodynamic interactions into account.

Since the present work was done on hard-sphere
dispersions, where hydrodynamic interactions play an
important role, we shall compare our results with
Batchelor’s theory [14]. His results for the long-time
self-diffusion coefficient can be written as

(i)
s,L

valid up to first order in the volume fractions ¢,. Here
the superscript (i) refers to a particle of type i. The
coefficients K}, depend solely on the size ratio A=ay /a;,
and are always negative. They describe the reduction of
the diffusivity of an i particle due to interactions with
particles of type k. For the short-time limit the result is
identical in form to Eq. (6) but with different values for
the coefficients, which have been tested in Ref. [12].
Note that the summation in (6) excludes the term k =i.
Equation (6) therefore describes tracer particles with a
vanishing volume fraction. It can be made applicable to
a two-component mixture by considering a three-
component system with the tracer particle being identical
to the second component but different from the third (say
k =j). Thus
(i)

7;5)—521+K,~',~(7»=1)¢,-+K,-'j(k=aj/ai b, 5 @)
where the dependence on A is denoted explicitly. The
diffusion coefficient of a j particle is found by exchanging
the indices i and j. For K;; Batchelor found the mono-
disperse value of —2.10. For the present size ratio of 9.3
the values of K;; and K; can be found from his work by
interpolating the numerical values in Ref. [14] to A=9.3
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and 1/9.3, respectively. Substituting for the indices i =S
(small) and j =L (large) the results are

(S)
s,L

Dé)S)

=1—2.10¢5—1.07¢, , (8a)

=1-2.10¢, —2.384 . (8b)

For higher volume fractions three- and more-particle in-
teractions become important, leading to correction terms
of order ¢? and higher. The corresponding coefficients
are unknown and approximations for D;’}d are known
only for monodisperse spheres.

III. EXPERIMENTAL DETAILS

A. Preparation of the colloidal systems

Four types of colloidal particles were prepared: A
fluorescently labeled particle FS and its nonfluorescent
counterpart S, both having a radius of 39 nm, were used
as the small particles. The large particles were the
fluorescent FL and the nonfluorescent L particles, both of
which had a radius of 365 nm. For the silica synthesis we
followed the method described by Stober, Fink, and Bohn
[15]. The cores of the particles were labeled with the
fluorescent dye fluorescein isothiocyanate (FITC) follow-
ing the procedure of Van Blaaderen and Vrij [16]. A con-
cise description of the synthesis is given in the following.

The particles were synthesized by adding freshly dis-
tilled tetraethoxysilane (TES, Fluka) to a mixture of dis-
tilled ethanol and ammonia (25%, Baker) under stirring.
The initial amounts of reactants were chosen such as to
obtain particles somewhat smaller than the desired final
size. To obtain the fluorescent particles we added, in ad-
dition to the TES, a 1:10-mol/mol mixture of FITC and
3-(aminopropyl)triethoxysilane (APS, Janssen) that had
been allowed to react for 24 h under stirring. The
amount of FITC that was used corresponded to 1.7 X 10°
and 9.4 X 10° molecules per particle for the FS and FL
systems, respectively. After the silica particles had
grown to completion (in one day) their size was deter-
mined using dynamic light scattering (for the small parti-
cles) or static light scattering (for the large particles).
Then the particles were grown further by seeding the re-
action mixture with extra TES in order to cover the dye
molecules with a layer of pure silica. The relative
amounts of the TES additions were chosen such that the
resulting particles in corresponding systems (FS and S on
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the one hand, and FL and L on the other) would grow to
nearly the same size. The sizes were measured again and
were fine tuned in a last step by adding a small amount of
TES in order to obtain exactly equally sized particles in
the corresponding systems.

All four colloidal systems were transferred to a solu-
tion of 0.0100-M LiCl in dimethylformamide (DMF,
Baker). For the large particles this was accomplished
simply by repeated sedimentation under gravity and
redispersion. The small particles, however, are sensitive
to aggregation when centrifugated in ethanol at the high
speeds that are required to sediment them. Therefore,
the ethanol was gradually replaced with DMF by distilla-
tion under reduced pressure. Then an amount of 0.1-M
LiCl solution in DMF was added to adjust the ionic
strength approximately to 0.01 M. Finally, the disper-
sion was centrifugated once at 3000 rpm and redispersed
in DMF (0.0100-M LiCl). A concentrated stock disper-
sion was prepared of each particle by sedimentation and
removal of an amount of solvent. Other volume fractions
were then prepared by diluting a weighted amount of
stock dispersion with a weighted amount of DMF
(0.0100-M LiCl).

B. Characterization of the dispersions

Results of the characterization of the four colloidal
particles are collected in Table I. Static light scattering
(SLS) was used to measure the size of the large particles
in very dilute suspensions in ethanol at a wavelength of
546 nm. A 546-nm bandpass filter was used to eliminate
the (small) fluorescent contribution to the scattered radia-
tion. The measured scattering curves were fitted to
theoretical curves calculated with the Mie scattering
coefficients. From transmission electron micrographs the
polydispersities o, defined as the standard deviation in
the radius divided by the mean radius, were determined
from several hundreds of particles.

Dynamic light scattering (DLS) was done on dilute
samples in DMF (0.01-M LiCl) at 25.0°C using the
647.1-nm line from a Krypton laser (Spectra Physics
model 2020), and at scattering angles ranging from 35° to
120°. These experimental diffusion coefficients are aver-
ages over many particles, where each particle contributes
as ~(radius)®. In order to obtain an unweighted average,
the value found can be corrected for the polydispersity in
the way described in the Appendix. For the small parti-
cle systems this makes a significant difference: D, is a fac-
tor of 1.078 larger than the bare DLS result. The DLS-
data in Table I have been corrected in this way. The par-

TABLE 1. Results of particle characterization. DMF contains 0.0100-M LiCl.

Particle L FL S FS
a(SLS) (nm) 36545 365+5
a(DLS) (nm) (DMF) 360+10 370+8 39+1 39+1
(ethanol) 35+1 35+1
D, (1072 m?/s) (DMF) 0.739+0.015 6.3740.18 6.3910.16
o 0.03 0.03 0.12 0.12
particle density (g/cm?) 2.0340.05 2.00 2.03 2.08
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ticle radii were then calculated from this corrected D us-
ing the Stokes-Einstein relation (2).

For completeness we mention that the fluorescent ma-
terial is contained inside a core of radius 34 nm for the
FS particles and 186 nm for the FL particles. The ab-
sorption and emission maxima are at about 500 and 540
nm, respectively. The refractive index of all the particles
was 1.45, which is relatively close to that of DMF (1.43).

Also included in Table I are the DLS radii of particles
FS and S dispersed in ethanol. These were found to be
systematically 4 nm smaller compared to the DMF case.
This very probably reflects the presence of a solvation
layer which is considerably thicker in DMF, and gives
rise to an increased hydrodynamic radius (see further Sec.
I C).

Because of the presence of a solvation layer and be-
cause of the hydrodynamic nature of the measurements
presented in this paper, we used a hydrodynamic volume
fraction as a measure of concentration. Effective hydro-
dynamic volume fractions ¢ of the four stock dispersions
were determined with the following procedure. First, a
dry silica volume fraction ¢ ; was determined from mea-
surements of the dispersion density and the dry silica
weight fraction. Weight fractions were found by drying a
weighted amount of dispersion at 80°C under nitrogen
and reweighing, and were corrected for the small amount
of LiCl present. This procedure also yields the dry parti-
cle density which is included in Table I. Then a series of
dilutions was prepared in the low volume fraction range
(¢ =0-0.02). Their viscosities were measured using an
Ubbelohde capillary viscometer (Schott-Gerate) thermos-
tatted at 25.0°C. The intrinsic viscosity

sil

was determined using quadratic regression. For un-
charged spheres [7] has the Einstein value of 2.5. The
hydrodynamic volume fraction is then obtained as
¢=([11/2.5)dg. For the large spheres the factor
[n]/2.5 was about 1.2. For the small particles we found
a larger value of 1.5, reflecting the relatively larger con-
tribution of the solvation layer. All volume fractions ¢
reported in this paper are hydrodynamic volume frac-
tions determined in this way. The relative error in the
volume fractions is estimated to be 0.5%, or about 0.002
at $=0.4.

C. Particle interactions

In DMF the surfaces of the silica particles acquire a
negative charge due to deprotonation of silanol groups.
This surface charge is screened by a cloud of Lit and
Cl™ ions in the solution. The thickness of this electrical
double layer is characterized by the Debye screening
length 1/k, with «? given by

__2e20NA
kT

where c is the 1-1 electrolyte concentration, e the elemen-
tary charge, N, Avogadro’s number, £ the solvent per-
mittivity, k Boltzmann’s constant, and T the absolute

2

K (10)
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temperature. At the present ionic strength (0.01 M), 1/«
has the value 2.2 nm, taking into account that the degree
of dissociation of LiCl in DMF at 25°C equals 0.88 [17].
This is small compared to the radii of both the small and
large spheres, making their repulsions essentially hard
sphere like. The particles will then behave as hard
spheres, provided that the short ranged attractive van der
Waals force is unimportant. This is the case for the
present system due to the presence of a solvation layer
around the particles. For silica in water it has been
found, by means of surface force measurements, that the
van der Waals force is effectively screened by a hydration
layer of 3- or 4-nm thickness on each surface [18-20].
The hydration layer is probably formed by water mole-
cules coordinated by surface silanol groups and adsorbed
counterions [19,20], and it presents a steep force barrier
located at a larger separation than the distance where van
der Waals forces become active. From our finding of a
4-nm increase in the hydrodynamic radius of the small
particles in going from ethanol to DMF and from their
large hydrodynamic volume (Sec. I1I B), we conclude that
DMTF gives rise to a similar solvation layer. The absence
of a significant van der Waals attraction also explains
why the silica sols remain stable in DMF even at LiCl
concentrations higher than 0.3 M. A solvation layer of 4
nm should even incorporate most of the double layer.
Furthermore, van der Waals forces are not expected to be
very strong due to the small difference in refractive index
between particles and solvent (0.02). We conclude, there-
fore, that silica spheres in DMF (0.01-M LiCl) are good
model hard-sphere systems.

D. Binary mixtures and their phase behavior

Binary mixtures with size ratio a;/ag=9.3 were
prepared by mixing weighted amounts of the stock
dispersions in a range of different proportions with either
the small or large spheres being fluorescently labeled.
Note that, in order to measure self-diffusion coefficients
with FRAP, the fluorescent component need not neces-
sarily be present only in trace amounts. A mixture of FL
and S will be referred to as FLinS (fluorescent large
spheres in a dispersion of small spheres). Analogously,
FSinL stands for a mixture of FS and L. A wide range of
compositions ¢; /¢s was used. By subsequent dilutions
of a mixture at a certain composition with the solvent, a
straight line is traced toward the origin in the phase dia-
gram. In this way the entire phase diagram was covered
twice: once for FLinS and once for FSinL. In some cases
mixtures were concentrated by centrifugation in order to
reach regions higher up in the phase diagram. For the
mixtures the uncertainties in the volume fractions are
again estimated at A¢; /¢; =0.005.

The mixtures were contained in tubes of relatively
large diameter (5—10 mm), and their phase behavior was
observed over one or two days. In addition, small
amounts were transferred to glass vials of thickness 0.2 or
0.4 mm, width 4 mm, and length 100 mm (Vitro Dynam-
ics) which were sealed at both ends to prevent evapora-
tion of the solvent. These were monitored over a. pro-
longed period of time and were also used for the FRAP
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measurements (see Sec. IIIE). The large spheres sedi-
ment at a considerable rate (1 mm/h) in the more dilute
samples. However, at larger volume fractions, say
¢, +é5>0.3, the rate of sedimentation is much smaller,
and samples do not show significant sedimentation even
after several days, allowing sufficient time for observa-
tion. This is due not only to an increase in solvent
backflow but also, especially in samples rich in small
spheres, to a decreased difference between the density of
the large spheres and the effective density of the solvent
containing the small spheres.

E. Fluorescence recovery after photobleaching

To determine long-time self-diffusion coefficients,
fluorescence recovery after photobleaching (FRAP) was
used [21-23]. In this technique a laser light interference
fringe pattern is created in the dispersion by crossing two
laser beams under an angle 26. The wave vector k of the
fringes is

.

n sin@ , (11)
where A is the wavelength of the laser light. First, with a
short and intense pulse, part of the FITC molecules is ir-
reversibly destroyed (photobleached). This leaves a
sinusoidal profile of unbleached molecules in the disper-
sion which fades away as a result of Brownian motion of
the colloidal particles. All particles remain statistically
identical since bleaching does not affect the way they in-
teract. The decay of the bleached pattern is then moni-
tored by oscillating the same fringes over the bleached
pattern, but with a much lower intensity to avoid further
bleaching. This is achieved by modulating the path
length of one of the beams by means of a piezoelectric
modulator with a typical frequency of 1 kHz. The mea-
sured fluorescent intensity then oscillates at the same fre-
quency as the monitoring and bleached fringes fall into
and out of phase, with the amplitude decreasing as the
pattern fades. After electronic filtering at the modulation
frequency, the resulting FRAP signal S (¢) is proportional
to the long-time self-intermediate scattering function, and
decays exponentially as

S(t)<exp{—D, k*} . (12)

The proof that FRAP measures long-time self-diffusion in
monodisperse systems, given in Ref. [23], can be straight-
forwardly carried over to binary systems. The small
values of k used (2X10°-8X10° m™!) correspond to
large wavelengths (8—30 um), and ensure that the long-
time limit is measured.

The setup that was used is described in Ref. [23], with
the only modification that we used a photodiode as the
detector instead of a photomultiplier tube. A Spectra
Physics series 2000 argon laser provided the 488-nm
light. The bleaching power was 200 mW, with bleach
times ranging between 0.2 and 1 s depending on the sam-
ple. We verified that the bleach times did not influence
the results. During the monitoring phase the intensity
was reduced by a factor of 500-2000. The beam diame-
ter was typically 2 mm. Samples were measured in the
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thin glass vials mentioned in Sec. III D. The measured
signals were fitted to Eq. (12) including an additional con-
stant to fit a small noisy background or a nondecaying
component.

In each sample, 15—-20 measurements were recorded at
different positions in the cuvette. The results were aver-
aged to obtain D;; with a resulting statistical error of
3% for particles FS and 6% for FL. The larger error in
the results of the large spheres is caused by the weaker
fluorescent signal from these particles. Diffusion
coefficients were normalized on D, the value at infinite
dilution as measured with DLS (see Table I). Since am-
bient temperatures during the FRAP measurements were
slightly below 25°C (22-23°C), a small correction to D,
was made through the solvent viscosity using Eq. (2).
For the temperature dependence of the viscosity we
found 7y(mPa s)=0.822-0.010(7'—25.0°C) using an Ub-
belohde viscometer.

A final correction to the data was made to allow for the
fact that DLS and FRAP measure different moments of
the particle size distribution (the sixth and third, respec-
tively). In the Appendix it is shown how the nth moment
average can be related to a flat average depending on the
polydispersity, Eq. (A7). For the small spheres with a po-
lydispersity of 0.12 this leads to a small but noticeable
difference. D, measured with DLS (Table I) was already
corrected in this way, as discussed in Sec. III B. The D,
values were corrected in the same way, using Eq. (A7)
with n=3. This means that the bare values have been
multiplied by a factor of 1.030. Using these corrections,
the measured diffusion coefficients are seen to extrapolate
nicely to D;; /Dy=1 at low volume fractions (see Sec.
IV B). Note, however, that this procedure can only be
applied at the level of D,. As soon as particle interac-
tions come into play the influence of polydispersity is a
different matter, although recent Brownian dynamics
simulations [24] showed that, at least for one-component
hard-sphere dispersions, a not too large polydispersity
has only a marginal influence on D ; .

IV. RESULTS AND DISCUSSION

We start this section with a description of the phase
behavior and the determination of the phase diagram.
The results of the long-time self-diffusion measurements
are presented and discussed in Sec. IV B. Finally, mea-
surements in the metastable region of the phase diagram
are treated in Sec. IV C.

A. Phase behavior

In Fig. 1 the phase diagram of the binary mixture is
shown. The nature of the different phases is indicated.
The determination of the phase lines of this system has
been described in Ref. [8]. In the largest part of the dia-
gram the two components formed a fluid mixture (F) that
remained homogeneous for many days after mixing. In
the region indicated by F + C, mixtures phase separated
into a colloidal fluid and a colloidal crystal formed by the
large spheres. Some time after homogenization, crystals
became visible in the bulk fluid due to Bragg reflections.
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FIG. 1. Phase diagram of the binary hard-sphere mixture.
Dots represents mixtures remaining homogeneous fluids, open
triangles are samples separating into a fluid and a crystal, filled
triangles are completely crystalline, and filled squares are glass
states. The solid line indicates the fluid-solid binodal, and
dashed lines are glass transition lines.

They nucleated homogeneously throughout the samples
and then settled under gravity within a day or so, form-
ing a crystalline sediment that was well separated from
the fluid.

Although actual crystallization was observed only in a
limited part of the phase diagram, it was possible to con-
struct the fluid-solid binodal by a determination of the
compositions of coexisting phases. This procedure has
been described in Ref. [8], and the binodal found is
represented by the solid line in Fig. 1. For the one-
component system the volume fractions of freezing and
melting ¢, and ¢,, were found to be 0.4971+0.004 and
0.547+0.004, respectively, as measured on both the large
sphere systems L and FL. These values compare quite
well with the well-known hard-sphere values of 0.494 and
0.545 [25]. This indicates that the hydrodynamic volume
fraction used in this work (see Sec. III B) is also a good
estimate of the thermodynamic volume fraction. In mix-
tures, tie lines [shown in Fig. 1(b) of Ref. [8]] connect a
composition of a solid phase on the melting line (¢, ;,
¢m,s) with the composition of the fluid phase on the
freezing line (¢, ¢ ) with which it is in equilibrium.
The melting line was assumed to lie at almost zero ¢, ¢
because in the large sphere crystals there is very little
space left open for the small spheres. This extreme segre-
gation was nicely visible by eye in mixtures FSinL. Here
the mixtures, being moderately yellow, separated into an
almost white crystalline sediment and a fluid that was
strongly colored yellow.

The shape of the F + C coexistence region agrees quali-
tatively with that predicted by recent theories of the de-
pletion effect [26,27]. However, as discussed in Ref. [8],
the fluid-solid binodal is located at considerably higher
¢ than these theories predict.

The time needed for crystals to become visible depend-
ed strongly on the amount of small spheres present.
Whereas in the one-component system this took no more
than 15 min, the appearance of crystallites was delayed to
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almost two days in the mixture with ¢;/¢¢=2.650. In
mixtures with larger amounts of small spheres, crystals
did not become visible within the time span available for
observation before significant sedimentation took place
(at least four days). Such samples were examined under a
polarization microscope for the possible presence of very
small crystallites, but none were found. Since these mix-
tures are situated above the binodal, they must be meta-
stable. In the region in the phase diagram that is indicat-
ed by an M, the systems behaved like fluids, and complete
relaxation of the FRAP signal of both components was
observed.

At the highest concentrations samples became very
viscous, and remained amorphous. These appeared to be
glass states, since an arrest of the long-time self-diffusion
of the large spheres was observed [28]. This was evi-
denced by an incomplete decay of the FRAP signal, indi-
cating that the bleached pattern does not fade away in a
finite time. Furthermore, the speckles in the scattering
pattern of the large spheres were static, implying that
these particles are dynamically arrested. An example of a
FRAP measurement is shown in Fig. 2(a). Notice that
the time scale of the experiment is extremely long. In
Fig. 1 glass states are separated from homogeneous fluid
phases by glass transition lines indicated by the dashed
lines. When the long-time self-diffusion of the small
spheres was measured, a marked difference in dynamical
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FIG. 2. Correlation functions of glassy samples measured
with FRAP. (a) Large spheres measured at k=463320 m ™! in
a mixture of ¢; =0.0592 and ¢5=0.499 in the G, (Gy) state. (b)
Small spheres measured at Kk =206060 m~' in a mixture of
¢, =0.0609 and ¢5=0.516 in the G.(Gs) state. (c) Small
spheres measured at k =203 700 m ™! in a mixture of ¢, =0.379
and ¢5=0.239 in the G, (Fy) state.
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behavior was found between glasses formed in systems
that are rich in small spheres and those that are rich in
large spheres. In the former case, the FRAP signals of
the small spheres did not decay to zero [Fig. 2(b)], indi-
cating glasslike behavior just like the large spheres. This
glass state is therefore indicated by G;(Gg). In the latter
case, however, the FRAP signals of the small spheres al-
ways showed complete relaxation [Fig. 2(c)], whereas in
this region FRAP signals of large spheres always ap-
proached a nonzero value. Also, the scattering speckles
were static. This implies that the small particles still
behave like a fluid when the large ones are already glass-
like. Therefore, this glass state is indicated by G (Fy).
We do not know the exact location of the boundary be-
tween the G;(Gg) and G (Fy) states in Fig. 1, nor is it
clear that there even exists a sharp boundary between the
two glass states. The dynamics of the glass states will be
analyzed more closely in Sec. IV C.

B. Long-time self-diffusion

In this section we adopt the following notation: In the
symbol DS“}_ the subscripts s and L indicate the type of
diffusion coefficient (long-time self). In mixtures, the su-
perscript placed between parentheses refers to the type of
particle (small or large) of which the diffusion coefficient
is given. If no superscript appears, then a one-
component system is implied.

In Fig. 3, D, /D, is plotted versus the volume frac-
tion in monodisperse suspensions containing either the
small particies FS or the large particles FL. Despite the
large difference in size the two sets of data coincide well,
as expected for hard spheres. The data also agree well
with earlier experimental results on hard-sphere disper-
sions [22,29]. In addition to the data in the literature, we
have been able to measure D, of the small spheres to
quite low volume fractions, thanks to the high fluores-
cence yield of these particles. This allowed us to give a
reliable estimate of the low volume fraction behavior:
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DS,L _
D——l—(2.02i0.10)¢ . (13)

0

The first order in volume fraction coefficient, which de-
scribes the reduction of Dg; due to pair interactions,
agrees well with the theoretical value of —2.10 [14,30].
For the large spheres, which gave a smaller fluorescent
signal, we find the same value although with a larger un-
certainty: —2.040.2. At high volume fractions D, ; be-
comes very small, until at ¢ =0.604 the measured FRAP
signal did not decay to zero even over a very long-time
span, so that D;; =0. This implies that somewhere be-
tween volume fractions 0.573 and 0.604 a point is reached
where the correlation function takes an infinite time to
relax. This is the glass transition volume fraction, which
for hard spheres is close to 0.58 [31].

For binary mixtures that remained homogeneous, the
long-time self-diffusion coefficients of the small spheres in
the presence of large spheres (FSinL) are plotted in Fig.
4(a), and for the large spheres in the presence of small
spheres (FLinS) in Fig. 4(b). The data of the one-
component dispersions are included for comparison. The
diffusivities are plotted versus the volume fraction of the
labeled species, for several ratios ¢; /¢s. It should be
noted that, since the data were measured as series of dilu-
tions at a constant ¢; /¢, the volume fraction of the un-
labeled particles increases in constant proportion to the
volume fraction of the labeled particles. All curves
extrapolate to D) /D{’ =1 at low volume fractions, as
they should. DS(’L decreases monotonously with volume
fraction, and more quickly so as the amount of unlabeled
particles is increased. All curves are linear for volume
fractions where Ds(,’z /DY’ >0.7. It is surprising that
linearity is found up to relatively high volume fractions,
where a linear approximation in expansions such as those
in Eq. (8) is not expected to be valid anymore.

From the linear initial slope the first order in volume
fraction coefficient 4 can be obtained, which is defined as
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s,L __

Dy (14

1+4%%, , i=S,L .
In terms of Batchelor’s theory, Eq. (8), the quantities
A and A4 should depend linearly on the ratios
¢ /ds and @5 /¢ , respectively:
, &

T

In Fig. 5 the data and theoretical lines have been plotted
in this way. The first order behavior of the small spheres

follows the theory very well. A weighted least squares fit
to the data yields

(S)
s,L

DgS)

AV=K!+K (15)

(1.9710.08)+(1.10:}:0.08)¢—L

¢s

which should be compared to the theoretical result in Eq.
(8a). For the large spheres we also find the linear
behavior of 4 L;

=1- ¢S ’ (16)
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(L)
Ds,L
DBL)

(1960, 13)+ (1. 1440.09)25.

73

=1- ¢r -

(17)

Comparison with the theoretical result, Eq. (8b), shows
that the intercept, which is determined by L-L interac-
tions, has the expected value. However, the slope, deter-
mined by L-S interactions, is a factor of 2 smaller than
the theory predicts, resulting in a diffusion coefficient
that is somewhat larger than expected.

The lack of agreement for the large sphere’s diffusion
coefficients probably has its origin in the experimental
circumstance that there is a huge difference between the
numbers of large and small particles. This is a conse-
quence of the extreme difference in the volumes of the
two species: for all practical values of ¢; /¢ the number
of small spheres exceeds the number of large spheres by a
factor of more than 100. As a result, even in a dispersion
as dilute as ¢; +¢¢=0.01, a large sphere is very unlikely
to interact with only one small particle at a time. For
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FIG. 5. First order in volume fraction coefficients of D{} as
defined in Eq. (14). (a) Data for small spheres versus ¢; /ds. (b)
Data for large spheres versus ¢s/¢;. Lines are the theoretical
results from Ref. [14] given in Eq. (8).

this reason the theoretical value K1g= —2.38, in which
only pair interactions have been taken into account, is
probably not applicable. It seems more likely, therefore,
that the measured value K ;= —1.14 corresponds to the
friction of a large sphere moving through a dispersion of
small spheres which is in itself dilute in the sense that the
small spheres undergo almost exclusively two-particle in-
teractions.

It is difficult to estimate how this should influence
Ds‘i). A theoretical prediction for the present experiment
should include the distortion of the pair distribution
function for the correlations between the small and large
spheres, as a large sphere is pulled through the disper-
sion, and interacts with many small spheres simultane-
ously, not just a single one. Such a theory is not yet
available.

One effect that is due to interactions of large spheres
with many small spheres simultaneously is an effective at-
traction between the large spheres. This depletion attrac-
tion [6,7] does not provide an explanation for the larger
diffusion coefficient found experimentally, however.
Several theoretical approaches have incorporated the
effect of interparticle interactions on D ; (in addition to
the hard-core repulsion) up to the pair level [14,32,33].
Venkatesan, Hirtzel, and Rajagopalan [32] showed that,
without hydrodynamic interactions, the first order in ¢
coefficient can become significantly less negative than
—2. However, including hydrodynamics results in a
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value more negative. Cichocki and Felderhof [33], who
gave the most accurate treatment, modeled interactions
by a square well or step potential. They showed that in
almost all cases an attraction decreases D;; relative to
the hard-sphere case. Only if the relative width of the
well is not too small (> 1.041) and if, at the same time,
the attraction is very weak there is a slight increase.
Both conditions are fulfilled in some of our low volume
fraction experiments, but the predicted increase is far too
small to explain our result.

In a binary mixture with given concentrations, it would
of course be desirable to know the diffusion coefficients of
both particle types. Such information can be extracted
from Fig. 4 by comparing data on a mixture in which the
small spheres are labeled, with another mixture with ap-
proximately the same ¢; /¢y, in which the large spheres
are labeled. Our data contain four of such complementa-
ry data sets. They are plotted in Figs. 6(a)-6(d) as
DS(,’Z /D versus the total volume fraction. These graphs
enable one to compare the reduction of the mobility of
the large spheres (triangles) with that of the small spheres
(squares) with increasing volume fraction, in a dispersion
with a fixed composition. In a dispersion with a small
proportion of large spheres [¢; /¢5=0.118, Fig. 6(a)] it
is seen that the diffusion coefficient of the small spheres
(relative to D) is generally smaller than that of the large
spheres. This difference increases to about 50% at high
concentrations. Evidently, the presence of the many
small spheres obstructs the motion of a small sphere
more than it obstructs the motion of a large sphere. At a
somewhat larger proportion of large spheres
[¢. /¢5=0.35, Fig. 6(b)] the reduction of the mobility is
just about the same for both spheres over the entire range
of volume fractions. For ¢; /¢5~=1.1 in Fig. 6(c) we see
that, at higher concentrations, the relative diffusion
coefficient of the large spheres has decreased and is now
smaller than that of the small spheres. Finally, at
¢ /$5=2.5 [Fig. 6(d)], the mobility of the small spheres
has considerably increased and is now well above that of
the large spheres. Hence the exchange of a number of
small spheres for a few large spheres, having the same to-
tal volume, increases the mobility of the remaining small
spheres and decreases the mobility of the large spheres.
The increase in the mobility of a small sphere is the result
of a large increase in the free volume available to a small
sphere. This is because 800 small spheres have a much
larger excluded volume than a single large sphere, al-
though the total particle volume is the same. The fact
that at the same time the mobility of the large spheres de-
creases means that their mobility is hindered more
strongly by the obstructing effect of the other large
spheres than by the friction caused by the small ones.

As mentioned above, a tracer particle, whether it is
small or large, interacts much more frequently with small
particles than with large ones, since the former are much
more abundant and much more mobile (they have a
larger D,). Between collisions with large particles the
tracer effectively diffuses through a dispersion containing
only small particles. Therefore, a small tracer particle is
interacting most of the time with a neighbor cage of other
small particles, while the large particles are obstacles
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which it has to diffuse around. A large tracer particle, on
the other hand, is so large that is can only be encaged by
other large spheres, while the small spheres merely slow
down its motion inside the cage. In this view, the in-
teractions between the tracer and small spheres become
decoupled from the interactions between the tracer and
large spheres as a result of the large difference in time
and length scales. These considerations led us to a model
to describe the Ds(,iz), data in a way that is somewhat simi-
lar in spirit to an idea of Medina-Noyola [34]. He sug-
gested to separate D, ; for a one-component system into
a factor D, g, accounting for the hydrodynamic interac-
tions that operate on a short-time scale, and a factor ac-
counting for collisions between particles, that take place
on a much longer time scale. First, imagine a single small
tracer particle placed in a dispersion containing only
large spheres, and suppose we know its diffusion
coefficient Ds(i) (¢5—0,¢; ). Then add many other small
spheres up to an overall volume fraction of ¢5. Between
interactions with the large spheres, the tracer now
diffuses through a dispersion of other small spheres with
an effective volume fraction of about ¢g/(1—¢; ) due to
the excluded volume of the large spheres. Motion
through the dispersion of small spheres reduces the
tracer’s diffusion coefficient by a factor of
D, [¢s/(1—¢;)]/Dy, which is just the one-component
hard-sphere value. The resulting diffusion coefficient is
then

1.2
(a) ¢/$,=0.12
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$s

(S)(¢s,¢1, (S)(¢s"0 ér) (18)

D,
If, on the other hand, the tracer is a large sphere, then its
diffusion coefficient, when placed in a dispersion of other
large spheres, is given by the one-component value
(L)((b . ). Again, small spheres are added. Between col-
lisions with the lar%e spheres the tracer is slowed down
by a factor of D% [és/(1—¢;),¢; —0]/D{E which is
the (relative) diﬂ‘usmn coefﬁcxent of a single large sphere
in a dispersion of small spheres. Hence

bs

Dy(¢r)
1—¢, °

(L) _D(L)
¢S’¢L) DO

¢ —0

(19)

Equations (18) and (19) can be used to predict D) . ina
mixture of any composition, starting from two 11m1t1ng
cases. The second factor on the right-hand sides of Egs.
(18) and (19} is the one-component quantity, which can be
taken from Fig. 3. The first factor in either equation can-
not strictly be measured, but can be estimated from the
mixture with the smallest proportion of small, respective-
ly large spheres. D!Y(¢5—0,¢,) can thus be obtained
from the data on FSinL at ¢; /¢s=4.424, divided by the
second factor in (18) which is close to unity for this com-
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position, and is shown in Fig. 7(a). The factor
DP¢s/(1—,),¢,—0] follows from the data on
FLinS at ¢; /¢5=0.119, divided by the second factor in
(19), which is again almost 1, and is plotted in Fig. 7(b).

The predictions of Egs. (18) and (19) at finite ¢; /dg
are shown in Figs. 8(a) and 8(b) for several ¢; /¢ togeth-
er with the corresponding experimental points. It is seen
that the small spheres’ diffusion coefficient is predicted
accurately up to high volume fractions. For large
spheres, Eq. (19) follows the data well for mixtures with
¢; /s <0.5, including the downward curvature. How-
ever, for mixtures with a larger proportion of small
spheres, DS(,I;J) is overestimated considerably at higher
volume fractions. Since the physical picture that led to
Egs. (18) and (19) regards the interactions of a tracer with
both types of particles as decoupled, the extra friction on
the large spheres must be due to coupled interactions.

The model that we used to interpret particle mobilities
and led to Eqgs. (18) and (19) is admittedly too simple in
that it ignores many-body hydrodynamics and some mul-
tiparticle interactions. Also, it applies only to mixtures
of particles with a large difference in size. Nevertheless,
it performs rather well, and provides a grip on a compli-
cated problem for which no theories yet exist.

Combining theory and simulation, Kim and Torquato
[35] obtained some results for the diffusion coefficient of a
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[35] for a single sphere in a porous medium of large spheres
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sphere in a dispersion of small spheres. See text for details.
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small but finite-sized tracer sphere in a porous medium
modeled by a packing of hard spheres. Their results for a
size ratio of 9 (from their Fig. 4) are included in Fig. 7(a)
(indicated by +), and are seen to follow our data closely.
Since their approach did not incorporate hydrodynamic
interactions, and treated the large spheres as stationary
instead of diffusive, the agreement might partly be the re-
sult of a cancellation of errors, but it could also mean
that these effects have only a small influence on DS(S,‘} Ex-
periments on small spheres diffusing through a crystal of
(unlabeled) large spheres always resulted in a double ex-
ponential decay of the FRAP signal, one of the modes be-
ing very slow. Because of the polycrystalline nature of
the dispersion it was not possible to separate the contri-
butions from particles diffusing along grain boundaries,
and those diffusing through the crystal.

C. Mobility in metastable states

In Sec. IV A a distinction was made between three re-
gions in the phase diagram that are situated above the
fluid-solid binodal. Being in the two-phase region, all
three are metastable states. In this section we will more
closely consider the dynamics in these states.

Both of the glass states showed structural arrest, and
this is the reason that they are unable to reach their true
equilibrium states. In the metastable fluid state (M in
Fig. 1), however, both particles in the mixture had a
correlation function that always decayed monoexponen-

1.2

(a)

-
(=}

) 8)
D, /D,
°c o 9o
» ()] -]
T T T

o,
°
o
=
o
»
>
o

°
N
T
.

°
o©°
°
o
° i
o
N
o
w
o
F-N

0.5

(b)

0.0 0.1 0.2 0.3 0.4 0.5

o

FIG. 8. Comparison between the measured D;; (the points
are the same as in Fig. 4) and predictions (solid lines). (a) Small
spheres, Eq. (18); (b) large spheres, Eq. (19).



52 LONG-TIME SELF-DIFFUSION IN BINARY COLLOIDAL ...

tially to zero. We cannot provide the complete explana-
tion of why these mixtures failed to crystallize. It is con-
ceivable that the rate of crystallization in mixtures with a
small proportion of large spheres is very small, since it re-
quires a considerable structural reordering. The forma-
tion of a crystal would require bringing together large
particles from over large distances, and the simultaneous
removal of many small particles from the interstices,
making nucleation an unlikely event. The process would
be slowed down even further by the very slow diffusion of
the large spheres. From Fig. 4 it can be seen that D/}
for systems in the metastable region is more than a factor
of 50 smaller than its value at infinite dilution. For a simi-
lar size ratio, crystallization was observed in Ref. [5] at
very low ¢;, but only on the walls of the container, and
at a much smaller ¢g.

The most apparent difference in dynamic behavior be-
tween the two glass states was already mentioned in Sec.
IV A: although the large spheres are arrested in both
states, the small spheres are arrested only in the G, (Gy)
state, but still mobile in G, (Fg). A more detailed
analysis revealed other differences. In both states the
correlation function of the small spheres appears to have
a fast relaxational mode and a much slower one (Fig. 2).
For the G (Fg) systems the two modes already appeared
in samples slightly below the glass transition line, where
the large spheres were still fluidlike (judged from the fluc-
tuating speckles). All these FRAP signals could be fitted
well to double-exponential curves. In order to compare
the rates of relaxation with those in the fluid phase and
with each other, a diffusion coefficient was assigned to
each mode. The nonzero diffusion coefficients thus ob-
tained are plotted in Fig. 9 vs ¢ for two mixtures, each
in or near one of the two glassy states, together with
those measured in the fluid region of the phase diagram.
A clear difference between the two glass states is immedi-
ately seen. As a mixture is compressed into a G (Gg)
glass (squares), it- develops a relaxational mode that is
faster than in the fluid just below the glass transition.
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FIG. 9. DY vs ¢5 on compressing a mixture into the G (Fs)
state (¢, /s =1.588, circles) and on compressing a mixture into
the G, (Gy) state (¢, /d5=0.118, squares). In points with error
bars the relaxation was double exponential, and a diffusion
coefficient was assigned to each mode. Solid symbols are glasses,
open symbols fluids.
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The same was seen in the one-component small sphere
glass. The G (Fs) state (circles), on the other hand, ap-
pears to develop a slower mode when the glass transition
line is approached. Notice also that the diffusion
coefficient of the small spheres just below the G (Fg)
glass transition is at least an order of magnitude larger
than just below the G, (Gy) transition.

The appearance of a slower mode in the G, (Fg) state
must be associated with the slowing down of the large
spheres starting to form a glasslike structure. Evidently,
both particle types need not always form a glass (i.e., be-
come structurally arrested) simultaneously. As soon as
the small spheres form a glass, the large ones will obvi-
ously become arrested as well, since they are completely
embedded by them. This should happen in mixtures with
a high volume ratio of small spheres, like in G, (Gg).
However, the reverse is not true: when the large spheres
have formed a static network, the cavities that are left
open in the structure can still be wide enough to accom-
modate the motion of small particles. The two modes
seen in Fig. 2(c) can then be explained by a relatively fast
intracavity motion and a much slower diffusion from one
cavity to another. As suggested by Fig. 9, both modes
become slower as the glass is compressed. The origin of
the partial decay of the FRAP signal for the small
spheres in the G (Gy) state is not clear.

Our diffusion measurements for the two glass states are
rather preliminary so far. Clearly, a more detailed inves-
tigation, for example taking smaller steps in the volume
fraction and by doing simultaneous DLS measurements
on the large spheres, is needed for a better understanding.

V. CONCLUSIONS

We studied the phase diagram of, and long-time self-
diffusion in, a binary colloidal dispersion with a size ratio
of 1:9.3. This mixture shows a phase separation into a
colloidal fluid and a colloidal large sphere crystal. Fur-
thermore, an extended, long-lived metastable fluid region
and two different glassy states are found [8]. The long-
time self-diffusion coefficient of both particle species was
extensively studied as a function of composition and total
volume fraction. The first order in volume fraction
coefficient of the one-component dispersions was found to
be —2.0+0.1. The low volume fraction behavior of the
diffusivity of the small spheres in mixtures with large
spheres was also completely in line with Batchelor’s low
volume fraction theory [14]. The experimental result is
given in Eq. (16). The diffusion coefficient of the large
spheres in mixtures with small spheres, Eq. (17), could
not be explained by the theory. Due to the large
difference in size between the particles, however, pair in-
teractions between a large sphere and the many small
spheres are expected to be very rare, so that the theory
does not strictly apply. Theories incorporating many-
particle interactions are not yet available for comparison
with the data. For higher volume fractions, Eqs. (18) and
(19) were therefore proposed, in which the friction experi-
enced by a tracer particle due to the presence of the small
spheres becomes effectively decoupled from the friction
due to the large spheres. These formulas represent the
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diffusivities reasonably well for the large spheres, and
quite accurately for the small spheres.

The glassy states were identified by an incomplete de-
cay of the correlation functions measured with FRAP.
One type of glass state occurs in mixtures that are rich in
small spheres. Here the small spheres form a glass that
embeds the large spheres and arrests their motion as well.
The other type of glass state, occurring in systems that
are rich in large spheres, is unusual. Although the large
spheres were structurally arrested, the small spheres still
show a complete relaxation of the FRAP correlation
function. Evidently, the small spheres are able to move
through the cavities in the relatively open structure that
is formed by the large spheres.
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APPENDIX

Here we calculate how the measured diffusion
coefficient (in the limit of infinite dilution) is affected by
the way in which a measuring technique weighs the con-
tribution of a particle with radius a to the signal. DLS
weighs a particle with its volume squared (~a®) and
therefore measures the sixth moment of the size distribu-
tion P(a). FRAP weighs a particle with the number of
dye molecules it carries. It therefore measures either the
second or third moment of P (a), depending on whether a
thin shell (~a?) or the core (~a3) of the particle is la-
beled, respectively. We can write the measured correla-
tion function fP° of a dilute polydisperse suspension as

J da P(a)b (k,a)exp{ —Dy(a)k?t)
[ da P(a)b (k,a)

frolk, )= , (A1)

where b (k,a) describes the contribution to the signal of a

A. IMHOF AND J. K. G. DHONT 52

particle of size a. The weight function b may also depend
on the scattered wave vector k; for example, in DLS it
also incorporates the form factor. We assume that P(a)
is sharply peaked, so that, writing

exp{ —Dy(a)k?t}=exp{ —D§" (k)k’t}
Xexp{ —[Do(a)—D§"(k)]k?t} ,

we can exFand the second exponent in powers of

Dy(a)—DJ° (k) up to second order. After reexponentia-
tion, we then obtain

fPUk,t)=exp{ — DB Kk)k*t+Lohk*?} , (A2)
with

[ da P(a)b(k,a)D(a)
DRl (k)= (A3)
[ da P(a)b(k,a) .
[ da P(a)b(k,a)[Dy(a)—DE (k)]
oy = 4)
[ da P(a)b(k,a)

DB (k) is the polydisperse diffusion coefficient that is
measured. In expression (A3) we now expand
b(k,a)Dy(a) around the average radius @ up to second
order in @ —a. The result is

22 2
DRk =Dy(a)+ 22— | &

m P (b(k,a)Dy(@))
,a a

82
—Dy(@)=5b(k,a) | , (AS)
aa

with the polydispersity o defined by

o?=—= [da PlaYa—a).

a

(A6)

Now we use that Dy(a)~1/a and b(k—0,a)~a" with
n=2, 3, and 6, depending on the measuring technique,

and find
DR (k—0)=Dy(@)[1—(n—1)0?] . (A7)

This equation is used in Secs. III B and IIIE to obtain
Dy(@) from DLS and FRAP measurements.
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