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Measurements are presented of the long-time self-diffusion coefficient and of the low shear 
limiting viscosity of dispersions of charge stabilized colloidal silica spheres. Long-time 
self-diffusion coefficients were measured using fluorescence recovery after photobleaching 
(FRAP), the theory of which is presented and generalized to Gaussian laser beams. The 
particles, suspended in solutions of LiCl in dimethylformamide, interacted via a screened 
Coulomb potential, the range of which was varied through the ionic strength. Measurements 
were made up to volume fractions beyond freezing where a coexistence occurred between a 
colloidal crystal and a colloidal fluid. It is often speculated that the long-time self-diffusion 
coefficient and the low shear viscosity of a dispersion are related through a simple Stokes- 
Einstein-like relation, but this expectation is not confirmed by the experiments. A slightly 
modified relation, however, does seem to provide a reasonable empirical description of the data. 

I. INTRODUCTION 

The measurement of particle motions in concentrated 
colloidal dispersions provides an important test of statisti- 
cal mechanical and hydrodynamic many-body theories. 
The most frequently applied technique to study micro- 
scopic dynamics is dynamic light scattering (DLS) . With 
this technique, information is obtained primarily about tlie 
relaxation of concentration fluctuations, which is a collec- 
tive process. Only in some cases has it been possible to 
measure the single particle dynamics using DLS since it 
places rather stringent demands on the system under 
study. Kops-Werkhoven et al. ’ used the large polydisper- 
sity of a refractive index matched hard-sphere system 
which has the disadvantage of obscuring the interpretation 
of data. Van Megen et aL2 and Ottewill et aL3 used 
strongly scattering hard-sphere tracer particles in a con- 
centrated dispersion of index matched hard-sphere host 
particles. Recently, Hlrtl et a1.4 reported on analogous ex- 
periments on a tracer/host system of charged spheres. It is 
clear, however, that it is often not possible to find a suitable 
tracer system since the particles should have identical in- 
teractions, although their scattering properties must be 
quite different. 

In this paper, we use fluorescence recovery after pho- 
tobleaching (FRAP) to measure the long-time self- 
diffusion coefficient (0,“). The advantage of using this 
technique is that it does not place the aforementioned re- 
strictions on the system. Since it does not rely on scatter- 
ing, the results are much less sensitive to polydispersity in 
the particle size. Furthermore, with FRAP, one is certain 
to do measurements in the long-time limit, which can be a 

matter of some concern in DLS. Measurements of 0,” with 
FRAP have been reported for charged spheres as a func- 
tion of ionic strength at a given volume fraction5 and for 
both hard and charged spheres at different ionic strengths 
as a function of volume fraction.6 

In this work, we investigate the relation between 0,” 
and the low shear limiting viscosity qp+o of dispersions of 
fluorescently labeled charged silica spheres suspended in 
solvents differing in ionic strength. It is well known that for 
a Brownian particle suspended in a liquid, there exists a 
simple relation between the particle’s diffusion coefficient 
Do and the friction factor f, the Einstein relation’ 

Do=kT/f, (1) 

where k is Boltzmann’s constant and T is the absolute 
temperature. For a sphere of radius a suspended in a liquid 
of viscosity vo, the friction factor is given by Stokes’s for- 
mula 

f =67TTj&l. (2) 

A combination of the two then leads to the Stokes-Einstein 
relation 

kT 
Do=- 

637-7~. 
(3) 

This relation is only valid for dilute dispersions, where 
interactions between Brownian particles can be neglected. 
Is there a relation between diffusion and viscosity for in- 
teracting systems, similar to Eq. ( 3 )? It was recently found 
experimentally6 that for hard spheres, there is a remark- 
able similarity between 0,” and the inverse of the low shear 
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viscosity v+c of the dispersion over a large range of vol- 
ume fractions. For micelles, this similarity has also been 
noted.’ Physically the following interpretation can be 
given. If a Brownian particle is moving through a concen- 
trated dispersion for some time, it is feeling on average a 
net friction force arising not only from the solvent, but 
from the interactions with other Brownian particles as 
well. Assuming that the total friction force now obeys the 
Stokes Eq. (2), with q0 replaced by the dispersion viscosity 
q(4), one obtains 

where the dependence on volume fraction 6 has been made 
explicit. The subscript p-0 implies that the viscosity 
should be taken in the limit of infinitely small shear rates. 
For atomic and molecular liquids, this relation is widely 
used and known from experiment to be rather accurate, 
although the factor of 6 in Eq. (4) should be replaced by a 
factor of about 3.9 In electrolyte solutions, the reciprocal 
relation. between self-diffusion and viscosity is known as 
the Walden rule. Theoretically, there has been some effort 
to derive such a relation for both atomic fluids” and col- 
loidal dispersions. l1 

The aim of this paper is to establish the accuracy of the 
“generalized Stokes-Einstein relation” (4) for systems 
with various pair interaction potentials. In Sec. II, we will 
first give a short account of Brownian motion and relevant 
particle interactions. We shall also present a theoretical 
description of the FRAP experiment, which is an extension 
of the existing theory.12 We first show that the kind of 
diffusion measured with FRAP is self-diffusion and we 
then calculate the FRAP signal for the case of a Gaussian 
laser beam profile. Section III contains the experimental 
details and Sec. IV contains the results and discussion. 
Finally, in Sec. V, the conclusions are summarized. 

It. THEORY 

A. Self-diffusion 

A colloidal particle suspended in a liquid will execute 
a Brownian motion due to the impacts of many solvent 
molecules. The phase coordinates of the solvent molecules 
fluctuate on a much shorter time scale than those of the 
Brownian particle because of the large mass and size dif- 
ference. The velocity of a particle of mass m fluctuates with 
a characteristic fluctuation time 

m 
rfj=-) 

f 
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where r(t) is the position coordinate of the Brownian par- 
ticle at time t. For interacting particles, things are more 
complicated. First, particles influence each other by dis- 
turbing the solvent flow field through which they move. 
These hydrodynamic interactions operate on a time scale 
rH which is usually of the same order as r8, so that they 
act instantaneously on the Brownian time scale. Also, the 
particles can have potential interactions with each other 
such as (shielded) Coulomb, excluded volume, and van 
der Waals interactions. To include these in the discussion, 
a time scale r1 is usually introduced. The interaction time 
scale is a typical time needed for a particle to diffuse over 
such a distance that it feels a substantial change of the 
potential interaction forces from the other particles; this 
distance is of the order of the location of the main peak of 
the pair-correlation function. On times r&t < rl, the par- 
ticle diffuses, on the average, in a potential minimum of the 
neighboring particles, so that its mean-square displacement 
is only influenced by hydrodynamic forces. This defines the 
so-called short-time self-diffusion coefficient @ 

(II.(~)--r(O) I’)=SDft, rB<t4rf. (7) 

On this time scale, the particle moves over only a very 
small fraction of its radius. On time scales greater than rl, 
also the direct interactions between particles play an im- 
portant role. A particle then needs to distort the configu- 
ration of neighboring particles, causing it to slow down. 
The mean-square displacement then defines the long-time 
self-diffusion coefficient 0,” 

(/r(t)-r(0) 12)=6Dft, tsrl. (8) 

Experiments with DLS’ seem to indicate that this limit is 
reached already after, typically, a few tenths of a second, 
although at higher volume fractions, this means that the 
particle has moved over only about one particle radius. 
The long-time self-diffusion coefficient is the quantity that 
is measured with FRAP, as will be shown later on. 

There are relatively little theoretical results for 0,” as 
the problem of calculating it is extremely complicated, es- 
pecially because of the hydrodynamic interactions in- 
volved. For hard spheres, Batchelor,13 and later Cichocki 
and Felderhof with a more accurate description of hydro- 
dynamic interactions, calculated the first order in volume 
fraction 4 coefficient l4 

where f is the Stokes friction factor. In this time interval, 
the particle moves only over a small fraction of its radius. 
Over times t>)~~, its velocity is completely relaxed so that 
it moves diffusively. TV defines the Brownian or diffusive 
time scale. The mean-square displacement is now a linear 
function of time 

D,L=Do(l-2.10$). (9) 

In addition, there are a few theoretical results for higher 
volume fractions that neglect hydrodynamic interactions15 
and Brownian dynamics computer simulations,16 all for 
hard spheres. Finally, the interesting proposal by Medina- 
Noyola” should be mentioned, which decouples hydrody- 
namic effects from potential interactions 

(6) 

D,“= @@/Do, (10) 

where @ is the long-time self-diffusion coefficient if one 
neglects hydrodynamic interactions. This method yields er- 
roneous results at low 4, but is expected to be rather ac- 
curate at higher 4. 
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As mentioned in the Introduction, one possible ap- 
proach for high volume fractions would be to generalize 
the Stokes-Einstein relation, as in Eq. (4). However, for 
low volume fractions of hard spheres, Einstein’ showed 
that 

rl=770(1+2.54). (11) 

Comparison with Eq. (9) shows that Eq. (4) cannot be 
exact. Moreover, the factor 2.5 in Eq. ( 11) is independent 
of the type of interaction between the particles, in contrast 
to the first order in 4 term in Eq. (9). Nevertheless, it is 
hoped that for higher volume fractions, there does exist a 
Stokes-Einstein-like relation between T and 0,“. 

B. Particle interactions 

For charged spheres, the relevant interactions are de- 
scribed by the hard core repulsion and the Derjaguin- 
Landau-Verwey-Overbeek (DLVO) potential consisting 
of an electrostatic repulsion and a van der Waals attrac- 
tion. l8 When the particles are at a center to center distance 
r, we write 

Ur)=Vdr)+V,dr) 

with the repulsive part V(r) approximated as 

(12) 

V&9 = 
L 

CO, (r<2a) 
2re&+ln{l+exp[--K(r-22a)]}, (r)2a) 

(13) 

and the attractive part as 
2 rz--4a2 

V,(r)=-2 &+g+ln - 
I ( )I 

. (14) 

Here, E is the solvent permittivity, $,, is the particle surface 
potential, A is the Hamaker constant, and K is the inverse 
Debye screening length. K is determined by the concen- 
trations ci and charges zi of the ionic species in solution as 
follows: 

with e the elementary charge and NA Avogadro’s number. 
The particle charge Q can be written as 

2 sinh(rJ12) +A tanh($/4) , 1 (16) 

where $= &e/kT. 
The Debye screening length and the particle hard-core 

diameter set the range and softness of the pair-interaction 
potential. In our experiments, we will vary K by adding salt 
[see Eq. (15)]. Relation ( 16) will be used to determine the 
charge on the particles from electrophoretic mobility mea- 
surements. 

C. Fluorescence recovery after photobleaching 

In FRAP, first a well-defined part of the sample is 
illuminated by an intense laser light pulse. This irreversibly 
destroys the fluorescence of a certain fraction of the fluo- 
rophore molecules, which are chemically attached to the 

/ 1 PHOTO-TUBE 

i--1_L. FILTER 

e 
-_._.------ 

I _.---- 
SHUTTER 

GLASS FIBER 

CONTROLLER jli=J 1 1 

A,,,’ /REFERENCEI 

1 -yI<ELS CELL 

SAMPLE 

Erl 
F 

BEAMSPLlnER POLAR,ZER 

FIG. 1. A schematic picture of the FRAP setup. 

surface or inside the core of the Brownian pariicles. This 
process is called photobleaching. After the short pulse, the 
intensity of the incident radiation is greatly reduced, so 
that subsequent bleaching is insignificant. The fluorescent 
intensity is now monitored as a function of time. The 
bleach pattern gradually fades away as a result of diffusion 
of the labeled species, giving rise to a change in the mea- 
sured fluorescent intensity. The rate at which this process 
takes place is related to the species’ diffusion coefficient. 

The FRAP technique was originally used with a spot 
as the bleach pattern, l9 but later improvements used a sinu- 
soidal fringe pattern created by either a diffraction grat- 
ing” or by interference of two laser beams.12 The appara- 
tus used here is essentially the one developed by Davoust 
et al. l2 and is depicted schematically in Fig. 1. The 
bleached pattern is realized by splitting a laser beam and 
recombining the two resulting beams under some small 
angle 28 using a beam splitter and a mirror. The resulting 
sinusoidal intensity profile is shown at the top of Fig. 2. 
Photobleaching leaves an (approximately) sinusoidal dye 
concentration distribution (the middle of Fig. 2). It is a 
consequence of the diffusion equation that the bleach pat- 
tern remains sinusoidal with an amplitude decreasing ex- 
ponentially in time. After bleaching, the pattern is moni- 
tored by the same fringe pattern with a reduced intensity 
(the lower part of Fig. 2). This reduction is brought about 
by suddenly changing the voltage over the Pockels cell. 
This causes the plane of polarization of the exiting beam to 
rotate to a new orientation for which the analyzer is less 
transparent. In Fig. 2, the crests in the monitoring inten- 
sity coincide with troughs in unbleached dye concentra- 
tion. Since these regions give the most fluorescence, the 
total fluorescent intensity is seen to rise exponentially. 
During the monitoring phase the fluorescent intensity is 
recorded by a photomultiplier tube via a glass fiber and a 
filter that admits only the fluorescent wavelengths. 

A further improvement on the original FRAP tech- 
nique consists of giving one of the two incident beams a 
phase difference by reflecting it off a piezoelectrically 
driven mirror which oscillates in a direction normal to its 
surface.12 This causes the monitoring fringe pattern to 
move periodically over the bleach pattern with a well- 
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FIG. 2. A sketch of the bleaching (top) and reading (bottom) intensity (21) 
profiles and the unbleached dye concentration (middle). 

-$M(t)= -ahf(t) O<t<At, 

where a is the photolytic rate constant. It follows that after 
the bleach pulse, the number of unbleached molecules in 

known frequency (typically 1 kHz). The measured fluo- 
particle i at position ri(O) equals 

rescent intensity is now modulated with this frequency as 
the bleach pattern and the monitoring fringes fall into and 

n[ri(O)]=ncexp{--oAt1b[ri(O)]}, i=l,...,N, 

out of phase. The envelope of the intensity is extracted =noexp( --Kexp{-2w-*[xf(O)cos* 8+y;(O)]} 
from the total fluorescence by a lock-in amplifier. This 
process reduces the noise caused by the often large back- XC~+COS[~~C~CO)II)* (22) 

ground fluorescence. The constant K=aAte which measures the extent of 
In the following, a detailed theoretical analysis of bleaching, is sometimes called the mean bleaching effi- 

FRAP is given taking into account the Gaussian beam ciency index. Note that n is a function of position, which is 
profile that is present for most lasers working in the TEM, to be evaluated at the initial position of a particle i. This 
mode. A simpler analysis assuming infinitely wide beams function is called the bleach pattern and is in fact the initial 
has been given in Ref. 12. We shall also show rigorously condition for the diffusion process. 
that with FRAP, true self-diffusion is measured. This is a After the bleach pulse, the sample is illuminated by the 
direct consequence of the fact that after bleaching, the par- (time and position dependent) monitoring intensity 
ticles remain identical with respect to their interactions. I,( r,t’ ), again given by Eq. ( 17). The fluorescent intensity 

In the following description, we take the origin at the emitted by a particle at position ri( t) is proportional to the 
point of intersection of the crossed beams, with the z di- number of fluorescent molecules n[ri(O)] contained in it 
rection along the bisector and the x direction in the plane and to the local intensity I,[ri( t) ,t’]. Summing the contri- 
defined by the beams. It can then be easily shown that the butions of all particles, one obtains for the instantaneous 
intensity field of the interference pattern is given by fluorescent intensity emitted by the sample 

I(r,t’)=P exp[ -2w-*(x2 cos* 0+y2)] 
NP 

IJtJ’)=Q C n[ri(O)lI,Iri(t),t’l, t>& (23) 

x{l+cos[kdc+~(t’)l), (17) 
i=l 

where Q is the product of the quantum efficiencies for light 
where w is the e-* radius of the Gaussian beams. Further- absorption and emission. It has been tacitly assumed that 
more, the variation of the intensity over one particle is negligible, 

ko=2 sin 0 

which is always the case in FRAP. Note that the expres- 

(18) 
sion in Eq. (23) does not contain any interference terms 
because the fluorescent light is incoherent. 

and #(t’) describes the time-dependent phase difference 
between the two beams, which is usually sinusoidal. For 
not too large 19, the z dependence of 1(r,t’) is negligible. 
The fringe spacing L equals 2r/k, and is thus given by 

A 
L=- 

2 sin 8 ’ 
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It is also useful to define the number of fringes N as the 
quotient of the e-* width (in the x direction) of the region 
where the two beams overlap and the fringe spacing, so 
that from Eqs. (17), (18), and (19) 

N=2(2) /(&)=Ftane=+$ij. (20) 

Now consider a system of Np identical Brownian par- 
ticles in a volume I’, each initially containing n,, unb- 
leached molecules of a fluorescent dye. The bleach pulse 
has position-dependent intensity Ib(r) given by Eq. ( 17) 
with 4(f) r0 and a duration At, which is so short that the 
particles do not move significantly from their initial posi- 
tions ri(0) during bleaching. We assume irreversible first 
order kinetics for the photobleaching process, so that 
the number of unbleached molecules M around position r 
satisfies 
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We may reasonably assume that bleaching of fluoro- 
phore molecules does not influence the pair-interaction po- 
tential of the particles, so that all the particles remain sta- 
tistically identical after bleaching. For large Np in Eq. 
(23 ), we may then write If as an ensemble average over 
the initial positions and the positions at time t of all par- 
ticles 

t 

If( t,t’) = Qn$ 
s s 

dr’ dr n(r’>l,(r,t’) 
V V 

XP(r’It=O)P(r’,rIt). (24) 

Here, we have written r’=ri(0) and t=ri( t). Further- 
more, P(r’ 1 t=O) is the probability density of finding a 
given particle at position r’ at time t=O and P(r’,rl t) is 
the conditional probability density that, given a certain 
particle at r’ at time zero, it is found at r at time t. The 
occurrence of the latter function implies that the type of 
diffusion measured with FRAP is indeed self-diffusion. If 
the system was in equilibrium before bleaching, then P( r’ ] t 
=O) = l/V, where V is the volume of the system. Im(r,t’) 
and n(r) are both independent of the z coordinate over a 
distance d, the thickness of the sample cell, so that the z 
integration in Eq. (24) can be performed right away yield- 
ing a factor of d. We are then left with a two-dimensional 
integral over R = (x,y) . Since the system remains statisti- 
cally invariant under translations in the x and y directions, 
we have P( R’,R 1 t) =P( R- R’ ] t). We then get 

I/(St’)=Qpd~R2 W’Jb2 ~n(R’U,(R,t’) 

xP(R-R’ 1 t), (25) 

where p=NJV is the particle number density. Upon ap- 
plying the convolution theorem for Fourier transforms to 
the pair of functions n (R’ ) and P( R - R’ I t) , we obtain 

If( t,t’ ) = 2pQpd 
s 

ds n(s)l,(-s,t’Mql t)- (26) 

Here, the Fourier transform of a function f(r) is defined 
by 

f(q)= (2rr)-“‘2 s dr f(r)e“i”, (27) 

where n is the dimension, in this case 2. Equation (26) is 
the general expression for the fluorescence recovery signal 
in terms of the Fourier transforms of the bleach pattern 
n (R) , the monitoring intensity I,( R,t’ > , and the probabil- 
ity density P( R I t) for the displacement R of a Brownian 
particle in time 1. 

The transport process that we want to study with 
FRAP is described by a Smoluchowski type equation for 
the function P( R 1 t). Since the fringe spacing L given by 
Eq. ( 19) is always much larger than the particle diameter, 
the relevant process is long-time self-diffusion described by 

(28) 

where D is the long-time self-diffusion coethcient and S is 
the Dirac delta distribution. This problem may be easily 
solved by Fourier transformation into q space with the 

- result 

P(qIt)=(2T)-1e-042’. (29) 

Equation (26) may now be integrated explicitly yielding 

If(W) =A I;(K,N,Dt) +Iy(K,N,Dt)cos 4 
I 

Xexp[ -Dkfjt /( 1+8Dfi)s2 “)] 

with 

A=Qfh&. 

3 I- /- 

(f) 

I (30) 

$KN,Dt) =, J d$ J dv exp[ --Kf(&,brl,N) 1 

Xev[--2(v2+<2) I, 

I:(K,N,Dt) =: d{ IT s I 
dv exp[ --Kf(~Ww’O 1 

From Eq. (30), we see that the total fluorescent inten- 
sity consists of two parts. The first is a constant “back- 
ground” fluorescence. The second part is modulated by the 
cosine of the phase angle 4( t’) and can thereby be picked 
up by the lock-in amplifier. It falls off almost exponentially 
when w/cos 8 is large compared to Dt. Since w/cos t? is the 
width of the region of overlapping beams and 6Dt is the 
mean square displacement, the ratio of the two measures 
the diffusion of particles into and out of the overlap region, 
which competes with the diffusion of particles diffusing 
into and out of fringes. We shall now derive a condition 
under which the former process is negligible. Note that we 
can generally write exp[-x2/( 1 +s)]=exp( -x2) 
X exp[x2S/( 1 +S)]. This is approximately equal to 
xexp(-x2) if x26/(l-ta) CO.01 or equivalently l/S 
> 100x2- 1. When this is applied to the exponential in Eq. 
(30), it becomes a simple exp( - Dk2,t) under the con- 
straint that 

W2/8Dt COS2 8> lOODk$- 1. 

This can be solved for Dkf$ yielding 

(31) 

2ij2 kOw 21’2a 
Dk$<--=- 

40 cam e 40 
N. (32) 

For good data fitting, one needs to measure the exponent 
up to, say, Dk$= 3, which implies that the number of 
fringes should be about 30 or more. It is seen that under 
the same constraint, all the exponentials in I’$ and IT can 
be simplified yielding the final result 
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+I:(K,N)cos c,b(t’)e-Dk& (33) 

dq q-4 --K.fX,;rl,N) 1 

Xexp[ -2G*+77*)1, (3W 

~KN)=; j- 4 j- dv exp[ -Kf(~,r19N) 1 

Xexp[ -2(~*+r7*)]cos(?~N~). (34b) 

Note that n,pdw*/cos 8 is approximately the (average) 
number of fluorescent molecules in the volume that is illu- 
minated by both beams at the same time. The integrals 
g(K,N) and 1: (K,N) determine the ratio of decaying to 

0.8 

2 0.6 
?i 
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2 0.4 -------________ N= 
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O 2 (cl 4 6 8 lo 

K 

FIG. 3. The functions (a) e(K,N); (b) q(K,N); and (c) S/N for 
several values of N (solid lines) and from Ref. 12 (dashed line). 

total fluorescence and can be calculated either numerically 
or analytically after Taylor expansion of the first exponent 
in the integrands. 

We see from Eq. (33) that only a part of the fluores- 
cence, given by IT, is measured after lock-in detection, but 
the unmodulated fluorescence I,* gives rise to noise caused 
by the Poisson statistics over the total number of photons 
collected by the detector. This noise is uniform over all 
frequencies and proportional to the square root of the 
number of photons. It is therefore useful to study the 
signal-to-noise ratio S/N 

II: 1 
S’N- [I$(K,N)]“*’ (35) 

InFig.3,e,Iy, and S/N are plotted as functions of K for 
various values of N and compared with the results that 
were obtained by Davoust et al. ‘* for infinitely wide laser 
beams. It is seen that for these functions, the limit of a 
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large number of fringes is reached already for N > 2. In this 
limit, the results obtained here do not reduce to the results 
of Davoust et al.” Also, these authors find that it would be 
best to use K-2, where the signal-to-noise ratio is maxi- 
mal. For Gaussian beams, the curve becomes relatively flat 
for K> 3 and the maximum is shifted to K-9.5, but is 
much less pronounced. The discrepancy between our re- 
sults and those of Ref. 12 is probably the result of an 
unallowed interchange of the integration and the limit 
w+ 03. In the above discussion, w is kept finite, while in 
Ref. 12, w is set equal to infinity from the start, introducing 
an error in their results. 

TABLE I. Particle characterization results. 

Radius (nm) (SLS) 211&l 
(DLS) 213*3 
U-EM) 187 Polydispersity 0.040 

Refractive index 1.451 (ethanol/2-bromoethanol) 
(A=546 nm) 1.449 (DMF/2-bromoethanol) 
Density ( g/cm3) 2.02 *0.03 

We want to stress here that the aforementioned as- 
sumptions and restrictions-no z dependence of the inten- 
sity, no light scattering, no movement of the particles dur- 
ing the bleach pulse, and first order kinetics of the 
bleaching process-were made only to make quantitative 
calculation possible. These assumptions are not necessary 
for a good FRAP measurement, because it follows from 
Eq. (26) that if the fringe pattern is sinusoidal, then only 
one Fourier component of the concentration profile is 
picked out, of which the (exponential) decay is monitored. 
The processes mentioned only affect the exact form of S/N. 

vent. In this way, dispersions were obtained in pure DMF, 
in 1.006~ 1O-3 M LiCl in DMF, and in 0.1005 M LiCl in 
DMF, respectively. Even for the highest salt concentra- 
tion, the dispersions remained stable for over a year. 

In summary, the conclusions are that (i) FRAP mea- 
sures self-diffusion under the constraint that particle inter- 
actions are not affected by bleaching; (ii) at least 30 fringes 
are needed to obtain a single exponential decay; and (iii) 
for an optimal signal-to-noise ratio, the mean bleaching 
efficiency index K should be greater than, say, 2. 

For each of the three systems, concentrated stock dis- 
persions were obtained by letting the particles sediment 
and then decanting an amount of solvent. The volume frac- 
tions of these dispersions were determined by measuring 
the dispersion density in a measuring flask and the silica 
weight fraction by drying a weighted amount of dispersion 
at 80 “C under nitrogen and reweighing. For all measure- 
ments, samples of lower volume fraction were prepared by 
dilution of a weighted amount of stock dispersion with a 
weighted amount of solvent. In this way, the ionic strength 
of the solvent was kept constant throughout the volume 
fraction range (neglecting counterion dissociation). This is 
in contrast to the experiments in Ref. 6, where the salt 
concentration in the solvent increases with the volume 
fraction. 

III. EXPERIMENT 

A. Particle preparation and characterization 

Colloidal silica particles were synthesized following 
the procedure of Stober et al.” Using the usual seeded 
growth technique, the particles were first grown to a radius 
of 208 nm as determined by static light scattering. The 
resulting system consisted of 70 g of silica suspended in a 
mixture of 160 ml, 25% ammonia and 1840 ml of ethanol. 
These particles were fluorescently labeled using the method 
of Van Blaaderen et a1.22 To this end, 0.0849 g of fluores- 
cein isothiocyanate (FITC, Sigma) was dissolved in 0.938 
g distilled 3- (aminopropyl) triethoxysilane ( APS, Janssen) 
and the mixture was stirred for 24 h in a dried flask. Sub- 
sequently, the reaction product was dissolved in 9.0 ml of 
absolute ethanol. Then 3.5 ml of this solution and 10 ml of 
tetraethoxysilane (TES, Fluka) were added to the silica 
sol, which was then stirred for 24 h. In our case, this 
corresponded to about 50~ lo3 FITC molecules per parti- 
cle. The extra addition of TES facilitated incorporation of 
the fluorophore in the particles and made the particles 
grow to 211 nm as measured by static light scattering. The 
resulting particles therefore carry a thin outer shell of 
about 3 nm of silica containing all the fluorophore. 

The results of the particle characterization are pre- 
sented in Table I. Static light scattering (SLS) was per- 
formed on a Fica 50 photometer on very dilute suspensions 
in ethanol at a wavelength of 546 nm. A 546 nm bandpass 
filter was used to eliminate the (small) fluorescent contri- 
bution to the scattered radiation. The measured scattering 
curve was fitted to theoretical curves calculated using the 
Mie scattering coefficients. Dynamic light scattering 
(DLS) was done on dilute samples in DMF at 25.0 “C at a 
wavelength of 647.1 nm using a Krypton laser (Spectra 
Physics model 2020). Electron micrographs were made on 
a Philips EM301 electron microscope and analyzed with 
interactive image analysis (IBAS). About 350 particles 
were measured to obtain a mean radius and a polydisper- 
sity (defined by the standard deviation divided by the 
mean). For the silica system, one systematically finds a 
smaller particle radius which is attributed to shrinkage un- 
der the severe circumstances in the transmission electron 
microscopy (TEM) chamber. The refractive index of the 
particles was measured at 20 “C with an Abbe refractome- 
ter at the point of maximum transmission of 546 nm radi- 
ation of a sample dispersed in a suitably chosen solvent 
mixture (see Table I). The particle mass density was de- 
termined several times by drying a known weight of a con- 
centrated dispersion of known density. 

Excess reactants were removed by slow centrifugation 
and redispersion in ethanol. The dispersion was divided in 
three batches and the solvent was changed to dimethylfor- 
mamide (DMF, Baker) with different ionic strengths by 
repeated centrifugation and redispersion in the desired sol- 

Some relevant properties of the three dispersions in 
DMF with different salt concentration are given in Table 
II. Solvent viscosities were measured with an Ubbelohde 
capillary viscometer. Diffusion coefficients at infinite dilu- 
tion were measured with DLS on very dilute suspensions. 
The variation in Do can be explained completely by the 
variation in solvent viscosity, so there is no contribution of 
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TABLE II. Some dispersion properties. 

[LiCl] To DO Conductivity Mobility 
CM) (mPa) (lo-” m’/s) tea 

$0 

(S/m) ( 10-s m*/V s) (mV) (mCYm*) 

1.35 x 10-S 0.798 1.27kO.03 2.64 1.08x 1O-4 -2.35 c-130 < -1.4 
1.006 x 10-j 0.799 1.28*0.04 31.6 6.26~ 1O-3 -2.77 -83 -6.1 
1.005 x 10-l 0.867 1.20*0.03 230 2.9 x10-l 

electrolyte friction for the present values of ~a. The values 
of KU were calculated using Eq. ( 15). For the salt free 
system, KU was calculated using an effective l-l electrolyte 
concentration obtained from the solvent conductivity. For 
the 0.001 and 0.1 M systems, the noncomplete dissociation 
of LiCl in DMF has to be taken into account. For the 0.001 
M solution, the dissociation constant is 0.972.23 For the 0.1 
M system, we do not know the exact value, but it can be 
estimated at about 0.5 from conductivity. The exact value 
of KCI is inconsequential in this system since KC’ is already 
smaller than 1 nm. Conductivities and mobilities were 
measured on dilute suspensions (volume fraction - 0.00 1) 
using a Pen Kern system 3ooO. From these, the surface 
potential & could be calculated” and with Eq. ( 16) the 
particle charge Q. For the salt free system, only a mini- 
mum value for I+$, can be given, since for Ka-3, the mo- 
bility becomes an almost constant function of zeta poten- 
tial.” For the 0.1 M system, the mobility could not be 
measured as for an unknown reason the particles moved 
diagonally through the sample cell. In a Burton U tube, 
their mobility was too small to be measured. We prepared 
a sample in 0.01 M LiCl which also showed this effect, 
although to a much lesser extent. In samples with a lower 
salt concentration, this deviation did not occur. 

B. Phase diagrams 

At higher volume fractions, all three dispersions show 
a spontaneous phase separation into an ordered crystalline 
phase (evidenced by bright speckles caused by Bragg re- 
flections) and a disordered fluid-like phase. Depending on 
the volume fraction, the appearance of the speckles could 
be observed within a few seconds to a few minutes after 
vigorously shaking the suspension. The crystallites then 
start to sediment rather quickly, which completes the 
phase separation. This makes it possible to determine the 
relative sizes of the ordered and disordered phases follow- 
ing a procedure devised by Paulin et al.,25 which runs as 
follows: The particles in the fluid phase sediment along 
with the crystallites, although much more slowly. As has 
often been observed, these particles sediment into an or- 
dered lattice, giving rise to growth of the crystalline phase. 
If one monitors its growth over a period of many days, one 
observes a linear increase following a nonlinear change due 
to incomplete sedimentation and inefficient stacking of the 
crystallites. On extrapolating the linear part to zero time, 
the effect of sedimentation is ruled out and the true equi- 
librium crystal fraction is obtained. We carried out these 
experiments in a thermostatted room using long thin glass 
vials (Vitro Dynamics, Inc., Rockaway, NJ) of size 100 
x 4x0.4 mm3, in which the height of the sediment could 

be easily measured. We did not observe a disordered solid 
phase (a colloidal glass) in any of these experiments, since 
volume fractions were not high enough. 

C. Rheology 

The Contraves Low Shear 30 constant shear rheometer 
was used to measure dispersion viscosities. The apparatus 
was equipped with a concentric cylinder geometry of outer 
radius of 12 mm and gap width of 0.5 mm. In this config- 
uration, shear rates in the range 0.01-100 s-’ were attain- 
able. The temperature was kept constant at 25.0 “C! to 
within 0.1 “C! using a thermostatted bath that circulated 
water around the couette geometry. The apparatus was 
calibrated in the relevant viscosity range using Newtonian 
calibration oils (NM1 Delft, The Netherlands) of known 
viscosity. 

For each of the three systems, the flow curve (viscosity 
vs shear rate) was measured over a range of volume frac- 
tions. After homogenization of the sample, a measurement 
was started at the lowest shear rate, where a torque was 
still measurable and continued up to shear rates where 
considerable shear thinning occurred. In this way, it was 
made certain that the low shear Newtonian plateau was 
reached; the low shear limiting viscosity v+. is given by 
level of that plateau. An example is shown in Fig. 4 for the 
0.001 M LiCl system at various volume fractions. This 
graph displays the effect of shear thinning, caused by dis- 
to&on of the equilibrium microstructure, occurring at 

0.0 1 0.1 1 10 100 

shear rate (s-‘1 

FIG. 4. Some flow curves for the 0.001 M LiCl system. Volume fractions 
are (from upper to lower lines) 0.3103, 0.2931, 0.2795, 0.2601, 0.2188, 
0.1797, 0.1303, and 0.0878. 
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lower and lower shear rates as the volume fraction in- 
creases. The viscosities were eventually normalized by the 
solvent viscosities given in Table II. 

For the highest volume fractions, the viscosities di- 
verged at the lowest shear rates. In such cases, it took a 
long time for the readout to reach a stationary value. These 
effects were probably caused by nucleation/crystallization 
during the measurement. 

D. Fluorescence recovery after photobleaching 

A description of the FRAP setup we used was given in 
Sec. II C. The bleaching and exciting radiation of wave- 
length 488 nm was provided by an argon ion laser. For 
bleaching, we used light pulses of l-3 s duration at a typ- 
ical power of 200 mW..We found no influence of the bleach 
time on the measured diffusion coefficients. During the 
monitoring phase, the power was reduced by a factor of 
about 3000. The beam diameter was 1.5 mm. The fringe 
spacings we used were 23.8 pm for the more dilute samples 
and 12.1 and 10.0 pm for the concentrated ones. 

After careful homogenization, small samples were 
transferred to long, thin glass cuvettes (Vitro Dynamics, 
Inc., Rockaway, NJ) of thicknesses of 200 and 400 pm and 
width of 2 mm. For every sample, at least ten decay curves 
were measured, which were then fitted to an exponent ac- 
cording to Eq. (33). Using Eq. ( 18), the value of 0,” was 
calculated. All 0,” values have been normalized by the 
respective D,, as measured with DLS (see Table II). Since 
the samples could not be thermostatted, Do values were 
corrected for temperature differences from 25.0 “C using 
the Stokes-Einstein relation with a temperature dependent 
viscosity. Ambient temperatures during FRAP measure- 
ments were 22-25 “C in which range we found, using the 
Ubbelohde viscometer, dv,,/dT = 0.0 10 mPa/K. 

For the highest volume fractions, a spontaneous nucle- 
ation of a crystalline phase occurred in the cuvettes. In 
such cases, care had to be taken to let all crystallites sed- 
iment to make possible a measurement of 0,” in the coex- 
isting fluid phase. In the coexisting solid, 0,” values were 
too small to be measured at the fringe spacings we used due 
to limitations in the apparatus’ mechanical stability. A 
maximum value could be set, however, Of/Do < 0.004. 

IV. RESULTS AND DISCUSSION 

As a demonstration of the bleaching process, we 
bleached a spot (no fringes) of diameter 1.5 mm in a sam- 
ple of volume fraction 0.038 (no added salt) for a few 
seconds and then measured the emitted fluorescent inten- 
sity while exciting with the monitoring intensity. This is a 
measure of the total fluorescence emitted by the bleached 
spot and remains constant for a long time since diffusion 
over distances of the order of the beam diameter ( 1.5 mm) 
is extremely slow. Then the same spot was bleached again 
and the process was repeated a number of times. The re- 
sulting bleach curve is shown in Fig. 5 and suggests that 
bleaching happens in roughly two regimes. Relevant for 
FRAP are only the first few seconds during which time the 
number of unbleached molecules falls exponentially al- 
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FIG. 5. Bleach curve (fluorescent intensity vs bleach time at 200 mW 
excitation) for the 0 M LiCl sample at volume fraction 0.038. 

though, unfortunately, the percentage bleaching remains 
relatively small. For bleach times longer than a minute, 
this number decreases only very gradually. So it seems that 
the FITC molecules can occupy different sites in the silica 
matrix where they are quite differently stabilized against 
photobleaching. 

In Fig. 6, the results are shown of the measurement of 
the long-time self-diffusion coefficient and the low-shear 
limiting viscosity for the three ionic strengths. Figure 6(b) 
shows the same data as Fig. 6(a), but reciprocally to em- 
phasize the behavior at high volume fractions. For clarity, 
error bars have not been included in these graphs. How- 
ever, for the 0,” values, the error was always found to be 
-5%. The errors in the viscosities are also estimated at 
about 5%. For comparison, the hard-sphere data from Ref. 
6 are shown in Fig. 6 (c) . 

All curves are seen to extrapolate to unity at low vol- 
ume fractions. As the Df’s have been normalized by Do as 
found with dynamic light scattering, this constitutes an 
important check on the reliability of the data since in 
FRAP every disturbance, mechanical or other, will cause 
the bleach pattern to fade away too quickly, so that the 0,” 
values come out too high. We encountered this problem 
earlier using a much more heavily labeled system with 
- lo6 FITC molecules per particle. At the same experi- 
mental conditions, we observed 0,” rising to 30% in excess 
of Do at the lower volume fractions. Strong absorption of 
light during the bleach pulse probably gave rise to convec- 
tions due to local heating. This could not be remedied by 
using a lower light intensity as the signal then became too 
small. The particles used in this work were labeled with 
much fewer FITC molecules and did not give rise to such 
effects. 

The phase diagrams at the top of Fig. 6(b) show the 
fraction of the system occupied by the crystalline phase as 
a function of the overall volume fraction of particles. From 
the linear portion in the coexistence region, the values of 
the melting and freezing volume fractions can be found by 
extrapolation. They are given in Table III together with 
the well-known hard-sphere data from simulation.26 At the 
freezing volume fraction #r, a crystalline phase just begins 
to form in the fluid phase, whereas at the melting volume 
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fraction f$, , all particles have entered the crystalline phase. 
Figure 6(b) shows that the long-time self-diffusion coeffi- 
cient rises smoothly with volume fraction and then sud- 
denly levels off to a constant, minimal value at dr (as 
measured in the fluid phase). This is understandable, since 
on crossing the coexistence region, one just increases the 
amount of crystalline phase, whereas the volume fraction 

TABLE III. Freezing (#/) and melting (I$,) volume fractions of the 
colloidal systems and for hard spheres (HS) (Ref. 26). 

System Of 4, A5Pf 

OM 0.188 0.240 0.052 
0.001 M 0.290 0.332 0.042 
0.1 M 0.434 0.480 0.046 
HS 0.494 0.545 0.05 1 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 

w 
volume fraction 

FIG. 6. (a) Diffusion and viscosity data plotted against volume fraction. 
Open symbols are Of-/O,, filled symbols TJ~V; &pure DMF; 
O-0.001 M LiCl, and A-O.1 M LiCl in DMF. (b) The same as (a), 
but reciprocal with phase diagrams at the top. Lines are drawn to guide 
the eye. (c) The same as (b), but with hard-sphere data from Ref. 6. 

of particles in the fluid phase remains at the constant value 
of #,-. In the crystalline phase, where diffusion is expected 
to take place only along grain boundaries and through 
defect diffusion, the diffusion coefficients were unmeasur- 
ably small (D,“/D,, < 0.004). It is remarkable that 0,” in 
the coexisting fluid is only about ten times smaller than D,, . 
Evidently the particles are still relatively free to move at 
df. Earlier measurements of 0,” in a coexisting fluid 
phase6 showed a much slower diffusion than our measure- 
ments, probably because not enough care was taken to let 
all crystallites sediment out of the fluid phase. 

It is remarkable that the width of the coexistence re- 
gion ~$,--4~ is independent of the range of the pair poten- 
tial for our systems (see Table III), whereas it is usually 
expected to vary in proportion to c$~. Probably, &,,-#r 
begins to decrease only for much smaller values of KU than 
those for the systems used in the present study. This is also 
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what the phase diagram of a charged aqueous latex ob- 
served by Hachisu et aL2’ seems to indicate. It is also re- 
markable that the 0.1 M system with a double layer thick- 
ness below 1 nm does not crystallize at the hard sphere 
reference value (Table III). However, recently it has been 
convincingly shown by measurements with the surface 
force apparatus that silica in water has a tightly bound 
surface layer of water molecules with a thickness of about 
4 nm.28 DMF resembles water in many of its structural 
properties.29 It is therefore not unlikely that such a layer is 
also present in this solvent. This stabilizing layer explains 
why the particles do not flocculate at this high ionic 
strength and could increase the effective radius of the par- 
ticles. 

From Fig. 6, it is seen that there exists a finite zero 
shear rate viscosity even for volume fractions beyond the 
freezing volume fraction, at least for the 0.001 and 0.1 M 
systems. The same behavior is also shown by hard 
spheres. 3o Physically this means that dispersions that at 
equilibrium show a disorder-order transition can still sup- 
port a steady (though small) rate of deformation. 

It is seen from Fig. 6 that D,“/D, and qe/q qualita- 
tively follow the same trend, but that the latter has a stron- 
ger dependence on volume fraction. Also in Fig. 6(a) the 
Of/Do curves seem to be slightly more convex than the 
~7~77 curves. The generalized Stokes-Einstein relation 
therefore does not hold. However, the relative deviation is 
no more than a factor of the order of 2. The curves can be 
more closely compared if we rescale the volume fractions 
of the 0,” curves so that they give a good superposition 
with 77 at the divergent part (see Fig. 7). This figure shows 
that for the 0 M sample, there is a good superposition over 
the entire C$ range. For the higher salt concentrations, how- 
ever, there remains a systematic deviation between the 
curves of up to 25% for all but the highest volume frac- 
tions. The scaling factors used for the 0, 0.001, and 0.1 M 
systems were 0.850+0.030, 0.920*0.020, and 0.878 
f 0.020, respectively. For the hard sphere data from Ref. 6 
(resealing not shown), the factor would be 1.062*0.020. 
This does not clearly point to any systematic dependence 
on the range of interaction. 

We tried to explain the data by imagining the friction 
that is experienced by a particle to consist of two parts. 
One is the normal Stokes friction due to the solvent mol- 
ecules. The second contribution is due to neighboring par- 
ticles that cause a viscosity increase of n-- qo. For the 
latter part, there is no reason to expect a no-slip boundary 
condition since the particle is not surrounded by a station- 
ary shell of neighboring particles. Therefore, we write 
formally 

f=6qw+vdv-qo)a. (36) 

Within this iterative picture, we expect u to have a value 
in between 4 and b, since for a slip boundary condition, 
we should expect f to contain a factor of 4a which for no 
slip would be 6~. Using the Einstein relation D,“= kT/f, 
we find after rearrangement 

0.0 0.1 0.2 0.3 0.4 

(4 
volume fraction 

16 

8 

@I 
volume fraction 

FIG. 7. (a) and (b) The same as Fig. 6, but with volume fractions of Db 
resealed with factors 0.826, 0.920, and 0.878 for the 0, 0.001, and 0.1 M 
systems, respectively. 

DdD;- 1 

Mrlo - 1 
=v/6. (37) 

We interpolated the T,,/q curves to evaluate Y at the vol- 
ume fractions, where 0,” had been measured and obtained 
Fig. 8. Of course for low volume fractions, the quotient in 
Eq. (37) contains a very large error, so we do not display 
those data. It is seen that Y takes on a value of -3 for a 
large range of volume fractions except close to freezing, 
where Y tends to be somewhat smaller. The values of Y are 
smaller than 4, a fact that cannot be understood on the 
basis of the simple intuitive picture described above. How- 
ever, for the self-diffusion of an atom or a molecule in a 
pure molecular liquid, the value of Y, defined as D&T/ 
qa, is found experimentally to be - 3 as we11.9 This seems 
to point to yet another analogy between colloidal and mo- 
lecular systems. 

J. Chem. Phys., Vol. 100, No. 3, 1 February 1994 



lmhof et a/.: Diffusion and viscosity of dispersions 2181 

1 

0 A, 4, .\?I 

0.0 0.1 0.2 0.3 0.4 0.5 

volume fraction 

FIG. 8. Factor Y as defined by Eq. ( 37). (Squares) 0; (circles) 0.001; and 
(triangles) 0.1 M. Arrows indicate the respective freezing volume 
fractions. 

V. CONCLUDING REMARKS 

We measured the long-time self-diffusion coefficient 
0,” and the low-shear limiting viscosity 7+,-e of charge 
stabilized colloidal silica spheres dispersed in dimethylfor- 
mamide with various ionic strengths. Although DdD,” 
and q/v0 show a qualitatively similar dependence on vol- 
ume fraction, the results do not satisfy a simple Stokes- 
Einstein-like relation between the two quantities as is often 
anticipated in the literature. In view of the experimental 
result obtained earlier that for hard spheres such a relation 
seems quite accurate, it could be expected that its validity 
increases as the particles approach hard-sphere-like behav- 
ior. However, such a trend could not be demonstrated on 
decreasing the range of electrostatic repulsion. It would 
seem therefore that there is no fundamental reason for the 
existence of a generalized Stokes-Einstein relation such as 
in molecular systems. However, it was possible to describe 
the data reasonably well up to volume fractions close to 
freezing using the modified Eq. (36) with YZ~ for the 
friction factor. 

In addition, we were able to demonstrate convincingly 
a smooth decrease of 0,” with volume fraction up to the 
freezing volume fraction of at which point a constant value 
was reached that persists throughout the coexistence re- 
gion. This constant value was only about a factor of 10 
smaller than the free diffusion coefficient. This relatively 
high mobility could very well explain the very rapid crys- 

tallization (seconds to minutes) that is often observed in 
these types of dispersions. 
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