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We report computer simulations of a two-dimensional system of semiflexible polymers consisting
of infinitesimally thin hard segments connected by joints of variable flexibility. As the density is
increased, we observe a transition from the isotropic phase to a “nematic” phase with quasi-long-
range orientational order. This transition appears to be of the Kosterlitz-Thouless type. We observe
that, whereas at low densities the most rigid polymers have the lowest compressibility, the opposite
is true at high densities. We argue that such behavior is to be expected. Finally, we study the
scaling behavior of the elastic constants for splay and bend in the nematic phase and find good
agreement with the relevant theoretical predictions.

PACS number(s): 64.70.Md, 61.25.Hq, 61.20.Ja

I. INTRODUCTION

The study of semiflexible polymers was initiated by
Flory in 1956 [1]. Still, the statistical behavior of bulk
systems of semiflexible polymers is incompletely under-
stood. Flory modeled the polymers by self-avoiding ran-
dom walks on a three-dimensional lattice and defined the
equilibrium flexibility as the fraction of bonds that are
bent. In his mean-field calculation, he obtained a first-
order phase transition from an isotropic phase to an ori-
entationally ordered state, when the flexibility exceeds a
critical value. Other mean-field theories [2-4] also pre-
dict this phase transition for three-dimensional lattice
polymers. However, these results have been disputed on
the basis of several exactly solvable models for three-
dimensional polymers which show a continuous phase
transition [5,6]. It would seem that computer simulations
could be used to investigate the phase behavior of semi-
flexible polymers. However, somewhat surprisingly, long-
range orientational order has thus far not been observed
in computer simulations of two- and three-dimensional
athermal lattice polymers [7-10]. In particular, in the
simulations of Baumgartner (7] (athermal polymers on a
square and cubic lattice), Kolinsky et al. [8] (tetrahedral
lattice), and Rodriguez et al. [9] (bond fluctuation model
in two dimensions) only a transition to ordered domains
is observed. The linear dimension of these domains is
of the order of the contour length of the polymer. Only
upon inclusion in the model of an attractive interaction
between two nearest neighbor segments oriented parallel
is an isotropic-nematic phase transition observed [7,8].
The reason why the athermal semiflexible polymers do
not seem to form an orientationally ordered phase may,
at least in part, be due to the fact that the simulations
referred to above were all performed on lattice models. It
is therefore interesting to consider an off-lattice system
of coatinuously deformable polymers. Theories for the
phase behavior of off-lattice semiflexible polymers all do
predict an isotropic to nematic phase transition [11,12]
in three dimensions. Recently, a continuous isotropic-
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nematic phase transition was predicted [13] for a two-
dimensional system of semiflexible polymers.

In this paper, we present a simulation study of a two-
dimensional off-lattice model of semiflexible polymers. In
particular, we investigate whether this system exhibits an
isotropic to nematic phase transition. We performed a se-
ries of grand canonical Monte Carlo (GCMC) simulations
[14] of semiflexible polymers with varying flexibility. For
infinitely stiff polymers, i.e., needles, simulations have
been performed earlier by Frenkel and Eppenga [15]. In
these simulations, an isotropic to “nematic” phase tran-
sition of the Kosterlitz-Thouless type was observed.

We found that, for the simulations reported in this
paper, the conventional Monte Carlo schemes (Metropo-
lis sampling and reptation) were not sufficiently efficient
to ensure rapid equilibration. For a faster equilibration
of the polymers we used the configurational bias Monte
Carlo (CBMC) method [16,17]. This method will be dis-
cussed in Sec. II. For more technical details on the im-
plementation of the CBMC method in the GCMC simu-
lation, we refer to the Appendix. In Sec. III we present
the results and discussion.

II. MODEL AND COMPUTATIONAL
TECHNIQUE

We  performed GCMC  simulations of a
two-dimensional system of semiflexible polymers. The
chains consist of ten infinitesimally thin hard segments
connected to each other. The bending energy for a joint
between two segments, 7 and 7 — 1, is

i 1
u"gi—ﬁ'\'i = EC (0‘7':'—1‘7/{)2 ) (1)

where 0y, ,w, is the angle between the unit vectors w;_;
and W; that specify, respectively, the orientations of the
segments 7 — 1 and ¢. The bending elastic modulus C is
the bending energy per unit length. The segment length
was chosen as our unit of length. The persistence length
l, is related to the bending elastic modulus C:
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C
lP - kBT ‘ (2)
In a GCMC simulation, the chemical potential, the tem-
perature, and the “volume” of the system are fixed quan-
tities. The side of the periodic box used in our simula-
tions was 30 segment lengths. In our Monte Carlo simu-
lations we had to ensure that no trial move would result
in a hard-core overlap of the polymer segments. To test
whether a trial move generated such an overlap, we used
the criterion described in Ref. [15]. The following trial
moves were performed.

(1) Reptation: Remove a segment from one end of the
polymer. Generate one trial segment at either end of
the polymer in such a way that the probability of find-
ing a given angle with the previous segment is given by
the Boltzmann weight associated with the bond bending.
Accept this segment if it has no overlap with another seg-
ment. If the move is not accepted, reset the segment to
its original position.

(2) Regrow a whole polymer at a random position and
with a random orientation using the CBMC method [16].
Below, the procedure is only briefly sketched. For more
technical details we refer to the Appendix. The con-
struction of a chain proceeds segment by segment. To
add a segment, we generate a fixed number of trial seg-
ments according to the internal (bond-bending) Boltz-
mann factors. The Boltzmann factors, associated with
the nonbonded interaction, are either zero (if the seg-
ment overlaps with another) or one (if there is no over-
lap). We refer to the Boltzmann factors associated with
nonbonded interaction as “external” to distinguish them
from the “internal” Boltzmann factors associated with
bond bending. We select the new segment with a proba-
bility that is proportional to the external Boltzmann fac-
tor. The new polymer conformation will now be accepted
with a certain probability that can be derived from the
condition of detailed balance (see Ref. [16]).

(3) Remove or insert a polymer in the system. For
the insertion of the polymer we used the same procedure
as above. This trial move, insertion or removal, will be
accepted with a probability that satisfies the condition
of detailed balance and is described in more detail in the
Appendix.

In our simulations we calculated the average density
p, the pressure P, and the elastic constants for the splay
and the bend, respectively, K; and K3, as a function of
the imposed chemical potential p and of the chosen per-
sistence length [p. The pressure is calculated by virtual
volume changes. In this method, we use the fact that the
pressure can be obtained by differentiation of the ther-
modynamic potential with respect to the volume. To this
end we must compute the acceptance ratio [18] of virtual
trial moves that decrease and increase the volume of the
system. For hard convex bodies, the acceptance of vir-
tual expansions is always one and the method reduces
to that described in Ref. [19]. However, in the present
case for polymers there is a small but finite probability
to reject virtual expansions. For the sake of comparison,
we also computed the pressure by integrating the Gibbs-
Duhem equation. This equation shows the relationship

between a change in the temperature and pressure to a
change in the chemical potential:

S

v
- 54T + 4P . (3)

dp =
We can now compute the pressure by integrating the
Gibbs-Duhem equation at constant temperature:

dP =pdu . (4)

In the nematic phase the orientational distribution
function is symmetric around a preferred direction i,
i.e., the nematic director. A deformation of the uniform
alignment of the director in a nematic results in an elas-
tic restoring force. The constants of proportionality be-
tween the deformation and the restoring forces are the
Frank elastic constants. The deformation free energy Fp
density for a two-dimensional nematic has the following
form:

1 . 1 N
Fp = §K1[V -a(r))? + §K3[V x a(r)]? . (5)
In Fourier language this is equivalent to

Fo =5 Y Kila-a@P + jKalaxa@P . (9

where V is the volume of the system. If we decompose
q in components g, and g, respectively, perpendicular
and parallel to the nematic director i we arrive at

1 2 2 2
Fp = v Zq: [ni(q)|*(Kig9l + Kaqj) (M)

and the equipartition theorem yields

VkpgT

2
n = —0—F—.
(Ims ") K14} + Ksqj

(8)

The nematic director in a system of N polymers con-
sisting of L segments can be calculated by finding the
eigenvalues and eigenvectors of the tensor order parame-
ter density Q.

:‘x'jv'irg’j —0apl0(r — 11 5) , (9)

M=
M=
)
&

Qus(r) = 7

where W%J is the ath Cartesian coordinate of the unit
vectors specifying the orientation of segment j of polymer
k and ri ; the position of this segment. The nematic di-
rector is the eigenvector that corresponds with the largest
eigenvalue. The ensemble averaged value of Q (i.e., aver-
aged over all segments in the system) after diagonalizing
of the tensor is

(Q) = pS(284 1), (10)

where S is the largest eigenvalue of the tensor order pa-
rameter QQ and p is equal to the number density of poly-
mers. As fi is a unit vector, a small fluctuation in the
orientation of the director will, to first order, be perpen-
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dicular to the nematic director. A small fluctuation in
the nematic director can now be expressed in Q.

Qﬁlﬁn (@) = 2ﬁll6ﬁLSp (11)
and
LA 2
 kj ok )
(1Qa.a, (@) = I Z Z [2Wﬁj wﬁ"’] exp(iq - I, ;)

k=1j=1

(12)
2 .2

_ 45%p°VkpgT (13),

T K¢ +K3qﬁ '

Thus if we calculate (|Qa, a,|?) for q parallel and per-
pendicular to the nematic director, we can compute the
elastic constants K; and K3. The analogous expression
for three-dimensional (3D) nematics was used in Refs.
[20,21].

III. RESULTS AND DISCUSSION

We performed GCMC simulations of semiflexible poly-
mers with different persistence length (Ip = 2, 20, 60,
and 120) in order to investigate the influence of flexi-
bility on the equation of state. In a GCMC simulation
the chemical potential, the volume, and the temperature
are fixed quantities. The chemical potential was chosen
such that the dimensionless or reduced density pL? var-
ied from 0.2 to 10. The initial configuration from which
the first runs were started was one in which all the poly-
mers were directed in the same direction but randomly
positioned in the periodic box. Subsequent runs were
started from previously equilibrated configurations at a
higher or lower chemical potential. Most runs consisted
of 1 x 10° — 1 x 107 trial moves per particle. Most trial
moves were simple reptation moves. On average once
every three reptation moves, a polymer is completely re-
grown at a random position in the periodic box using the
CBMC method. Once every ten reptation moves, a trial
move to insert or to remove a particle was attempted.
In order to investigate the pressure dependence at low
densities and the elastic constants in the nematic phase,
canonical ensemble simulations (number of particles, vol-
ume, and temperature are fixed) were performed for sys-
tems with densities ranging from 0.2 to 1 and from 10 to
70 in reduced units. Figure 1 shows a plot of the pressure
versus the reduced density for different values of the per-
sistence length of the polymers. For the sake of compari-
son the results for hard needles (Ref. [15]) have also been
plotted in Fig. 1. Earlier simulations by Dickman [10]
indicated that for a dilute system the pressure increases
dramatically with increasing stiffness, but it is nearly in-
dependent of stiffness in dense systems [10]. However,
for high densities we observe an increase in the pressure
when the polymers become more flexible. This effect is to
be expected because for dense systems the confinement
free energy plays a role. An increase in the flexibility
of the polymers results in a larger confinement free en-
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FIG. 1. Pressure versus the density for different values for
the flexibility of the two-dimensional semiflexible polymers
with L the length of the polymer.

ergy and the pressure will increase rapidly with larger
flexibility [17].

At low densities, the pressure can be approximated by
the virial expansion.

kB—T=P+32P2+"'- (14)
For hard-core systems, the second virial coefficient B, is
a measure of the pair excluded volume of the polymers.
For flexible chains the excluded volume is smaller than
for stiff chains and therefore we expect that the pres-
sure is smaller for more flexible chains. At low densities
(pL? < 1) we do indeed observe an increase in pressure
with stiffness (see Fig. 2) and our results agree qualita-
tively with those of Ref. [10] at low densities.

For the sake of comparison, we computed the virial
coefficient B, numerically and plotted the virial expan-
sion [Eq. (14)] truncated at the second virial coefficient in
Fig. 2. For semiflexible polymers with persistence length
2 and 120, we found, respectively, B, = 0.2393 £ 0.0003
and 0.3166 + 0.0002 in units of L2. The latter value
approaches the value for the second virial coefficient for
hard needles, i.e., 1/7 in units of L2. As can be seen
in Fig. 2, the pressure computed in our MC simulations
reduces to the value predicted on the basis of the second-
virial coefficient, in the low-density limit.

In order to test our calculations of the pressure by vir-
tual volume changes, we also computed the pressure by
integrating the Gibbs-Duhem equation. Figure 3 shows
that the pressure calculations by virtual volume changes
agree well with the pressure obtained by integration of
the Gibbs-Duhem equation.

The orientational distribution function g2(r) =
(cos{2[6(0) — 6(r)]}) is plotted in Fig. 4 as a function
of 7 (in units of the segment length) for a system with a
density of about 8 in reduced units. For large flexibility
(Ip = 2), the orientational order dies out over a distance
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FIG. 2. Pressure versus the density for semiflexible poly-
mers of persistence length 2 (black circles) and 120 (open
squares) in the low-density regime. The dashed line and the
long-dashed line correspond with the B> approximation for
semiflexible polymers of, respectively, persistence length 2 and
120. L denotes the length of the polymer.

smaller than the length of the polymer. For stiffer chains,
we find that the orientational order appears to decay al-
gebraically. This algebraic decay of orientational order
was also observed in a two-dimensional fluid of hard nee-
dles, which shows an isotropic-nematic phase transition
of the Kosterlitz-Thouless type. For 2D nematics the
Kosterlitz-Thouless transition occurs at a universal value
of the renormalized elastic constant, i.e., K = (K3K;)/?
(22):

FIG. 3. The pressure calculated by integration of the
Gibbs-Duhem equation for persistence length [p = 2 and 120
(dashed line) and the pressure calculated by virtual volume
changes (open triangles and black squares). L denotes the
length of the polymer.

We computed the elastic constants for the splay and
the bend, respectively, K; and K3. In Figs. 5 and 6,
the elastic constants for, respectively, the bend and the
splay are plotted versus the density. We observe that at
high density the elastic constants increase with stiffness.
This effect is to be expected, as a system consisting of
more flexible chains is easier to deform. We also find
that the elastic constants for the splay are smaller than
for the bend. Using Eq. (15), we can now estimate the
density at which a Kosterlitz-Thouless transition should
occur. To this end, we fitted our data for the elastic
constants as a function of the density for different per-

FIG. 4. The orientational distribution
function g2(r) = (cos{2[0(0) — 8(r)]}) ver-
sus 7 (in units of the segment length) for
different values for the flexibility of the
two-dimensional semiflexible polymers at a
density of about 8 in reduced units.

K (15)
8kpT ~
1.0 [ T — T -
I, =120
o
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1 10 50
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sistence lengths. Using this fit,

we computed the density

at which K becomes larger than 8kgT/w. The densi-
ties px_7 at which this happens are estimated to be

21.7 +0.8,16.1 £ 0.5,11.7 + 0.

5 in reduced units for, re-

spectively, persistence length [p = 20,60, and 120 (see
Fig. 7). For the sake of comparison, we have also plotted
the value for hard needles (Ref. [15]) in Fig. 7.

In Fig. 8, we have shown typical configurations of the
two-dimensional semiflexible polymer fluid with persis-
tence length [p = 120 at reduced densities pL? = 4.89,

9.11, and 22.22 and with persistence length Ip

at reduced densities pL? = 4.

20
44, 8.88, and 22.22. The

snapshots for the highest density are well inside the ne-
matic regime. The configurations at lower densities are
isotropic, in spite of the fact that, due to finite size ef-
fects, the configurations look nematic. In Fig. 9, we have

shown typical snapshots of the

semiflexible polymer fluid

with persistence length [p = 2 at reduced densities pL?2
= 5.11 and 8.44. Both configurations are in the isotropic

In the nematic phase, each polymer is strongly hin-
dered by neighboring polymers and we can assume that
each polymer is effectively confined to a tube with diam-
eter D. The tube diameter D scales with the density as
p~ 1. The ratio of the elastic constants for the bend and
for the splay is then expected to scale as follows [23]:

()

A new length scale is introduced here, namely, the deflec-
tion length A. The deflection length is the characteristic
length scale for a semiflexible chain confined in a tube
with diameter D. This length scale corresponds to the
average distance between two successive deflection points
of the chain in the tube and is found to scale as lll,/ 3p2/3
[24,25]. It is not surprising that the ratio of the elastic
constants follows Eq. (16), as the deflection length and
the diameter are the characteristic length scales parallel
and perpendicular to the nematic director. The bending

A

D

Ky

=~ (16)

FIG. 6. The elastic constant for the splay
as a function of the density. L denotes the
length of the polymer. In order to investigate
the scaling behavior, we have fitted the data
for high density. The values for the slopes
are plotted with the error in the last digit in
parentheses.

regime.
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FIG. 7. The density at which the Kosterlitz-Thouless tran-
sition occurs versus the inverse persistence length flexibility
for a two-dimensional system of semiflexible polymers with L
the length of the polymers.
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FIG. 8. Snapshots of the two-dimensional semiflexible
polymers with persistence length {p = 120 (left, density equal
to 4.89, 9.11, and 22.22 in reduced units from top to bottom)
and lp = 20 (right, density equal to 4.44, 8.88, and 22.22 in
reduced units from top to bottom). The size of the snapshots
is 25 x 25 in units of the segment length.
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FIG. 9. Snapshots of the two-dimensional semiflexible
polymers with persistence length lp = 2 (density equal to
5.11 and 8.44 in reduced units from left to right). The size of
the snapshots is 25 x 25 in units of the segment length.

elastic constant is directly related to the internal bending
constant and the density and scales as [23]

K; ~Cp=pkpgTlp . (1n)

Using Egs. (16) and (17) we can derive the scaling be-
havior of the elastic constant for the splay with the den-
sity and the persistence length (i.e., ~ p1/3l},/3). It is,
therefore, interesting to investigate the scaling behavior
of the elastic constants at high densities. We find that
both the bending elastic constant and the splay elastic
constant scale as a power of the density (K; ~ p** and
K3 ~ pt3). We computed p; and pj for the different
persistence lengths as shown in Figs. 5 and 6. We find
13 = 1.006 + 0.004,0.993 + 0.002, and 0.98 + 0.02 for,
respectively, persistence lengths {p = 20, 60, and 120.
Thus we do indeed find that the bending elastic constant
scales linearly with the density for densities well inside
the nematic regime. In Fig. 6, u; is 0.35+0.02,0.34+0.02,
and 0.34 £+ 0.01 for, respectively, persistence lengths
lp = 20, 60, and 120. This value should be compared
with 1/3 as expected on the basis of the scaling argu-
ment. Secondly, the bending elastic constant is found
to scale as ~ I7 and the splay elastic constant scales as
~ . We computed v, and v3 for the different densities
as shown in the insets of Figs. 5 and 6. We find, respec-
tively, v3 = 0.995 + 0.005,0.99 + 0.01, and 0.98 £+ 0.01
for densities p = 22.9, 44.4, and 66.7 in reduced units.
For v, we find, respectively, v; = 0.35+0.01,0.32 +0.01,
and 0.33 + 0.01 for densities p = 22.9, 44.4, and 66.7 in
reduced units. This should be compared with the val-
ues v3 = 1 and v; = 1/3 predicted by theory. Thus our
data are consistent with the scaling relations predicted
theoretically.

In summary, we have performed simulations of a two-
dimensional system of semiflexible polymers. For a dilute
system the pressure decreases when the polymers become
more flexible, but increases in dense systems. If we in-
crease the density, we observe an isotropic-nematic phase
transition with algebraic decay of orientational order.
This transition appears to be of the Kosterlitz-Thouless
type. The scaling behavior of the elastic constants is
found to be in good agreement with the theoretical pre-
dictions.
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APPENDIX

One of the trial moves in a GCMC simulation is the
exchange of particles with an infinitely large reservoir,
which contains an ideal gas of the same particles (in the
present case the ideal gas particles have internal bending
energy). Direct insertion of all but the shortest flexible
particles in a dense fluid has a prohibitively low proba-
bility, as it almost always results in an overlap with one
of the other chains. We therefore employed an extension
of the configurational bias Monte Carlo method [16] to
GCMC simulations. In this algorithm, we bias the in-
sertion of chains in such a way that the “holes” of the
system are found. Below, we describe the algorithm.

Consider a trial move to insert a molecule in the sys-
tem. We first choose a random position and a random
orientation. The construction of the chain proceeds then
segment by segment. Let us consider the addition of one
such segment. To be specific, let us assume that we have
already grown i — 1 segments, and that we are trying to
add segment i. This is done as follows.

(1) Generate a fixed number (say k) of trial segments.
The probability distribution of the orientations of the
trial segments is proportional to the internal Boltzmann
weight P‘f—vd.__”.vj = exp[—ﬁuiffi_lﬁj] associated with the
internal bending. We denote the different trial segments
by indices 1,2,...,k. Now the probability to generate a
given subset {W}; of k trial segments with orientations
w; through Wy is equal to
J

VNvM—N

M
Q(M,V,Viey, T) = NZ AN M = V)]
=0

x [as™ [ dr exp{-pw(r™) + U ))

where A = (/h2/2rmkgT, U***(s") is the external po-
tential of the IV particles interacting with each other by
a hard-core potential. U*¥(I'V) and Vi¢(I'™M~N) are the
internal potentials corresponding to the internal bending
energy of the, respectively, IV flexible chains in the system
and M — N flexible chains in the reservoir. The prob-
ability density P(s™;N) to find a system with M — N
particles at reduced coordinates sM~N in a reservoir of
volume V;., and N particles at reduced coordinates s™v
in a system of volume V is

k
1 ~ 1
Py, = o L1 695Pit_a, - (A1)

i=1
The normalization constant B is
J dw; exp[—Buy,_ 4. ]-

(2) For all k trial segments, we compute the “external”
Boltzmann factor exp(—-,Bu;’,‘:), where uf.v"j‘ is the poten-
tial energy of the jth trial segment of the polymer with
conformation I'y, due to interaction with all the other
segments in the system.

(3) Select one of the trial segments, say W;, with a
probability

equal to

exp [—ﬁu@j‘f]

P = (A2)
' Z{w)s
where we have defined
k
Ziwy, = Zexp[-—ﬂuz,"jt .
i=1

The subscript {W}; means that W; is one of the segments
of the subset, so W; € {W}.

(4) Add this segment as segment ¢ to the chain and

store the corresponding partial “Rosenbluth weight” [16]:
w; = Z{‘-\,}i/k . (A3)

In order to use this method to transfer a molecule
from the reservoir to the system with N molecules in
a GCMC simulation, we impose detailed balance on the
Monte Carlo scheme. This implies that in equilibrium,
the rate at which particles are removed from the system
equals the reverse rate.

Let us first consider the grand canonical partition func-
tion in scaled coordinates of a combined system of N in-
teracting particles in volume V' and M —N ideal polymers
in a reservoir of volume Vieq:

/ dsM-N / MY exp[— GV (PM-N)]

(A4)
[
) _ VNVrIetg—N exp[—ﬂVid(PM_N)]
P(s™;N) = NI (M — NYIA3MQ(M, V, Ve, T)
x exp{—B[U**(TN) + U*(sV)]} . (A5)

The ratio of the statistical weights P(s™; N + 1) and
P(sM;N) is given by
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P(sM;N +1)
P(sM;N)

V(M — N) exp[— ﬂ(Zuw‘ w, + U]
= = , (A6)

Vies(N + 1) exp[— ,BZ'UW‘ i)

=1

where we have rewritten the difference in internal and
external potential as follows:

Uid(FN-f-l) + Uext(sN+1)

_ Uid(FN) _ Uext(sN)

u;‘f‘ LW —I—u‘iXt (A7)

I
.Mh

=1
and
. . L
V:d(I\M—N) _ Vui(FM—N-—l) — ngi_ﬂ‘v.- . (AS)
i=1
vi.“,’.__ﬂ.vi denotes the internal potential associated with

the internal bending of the chains in the reservoir.
The condition for detailed balance can now be ex-
pressed as follows:

P(s™;NYGNN41Pace (N | N 4+ 1)

= P(s™;N +1)Gny15NPacc (N +1| N) , (A9)
where P(s™; N) and P(s™; N + 1) are, respectively, the
statistical weights that the system has N particles and
N + 1 particles. Gy_,n+1 is the probability that, start-
ing from the current configuration of N particles in the
system, a configuration is generated with N +1 molecules
in the system. P,.. (N | N + 1) denotes the probability
that this trial move is accepted. If we now impose the
“superdetailed” balance condition, we have to consider
the probability of generating a new chain in the sys-
tem via one particular choice of trial directions {Wgyst}:
and of choosing a set of trial directions in the reser-
voir {W,es}: from all possible sets that contain the old
configuration. The probability of transferring a chain
of L segments from the reservoir to the system via the
set {Wsyst}i and of choosing the set {Wies}:; will now
be equal to the probability to generate the old set of
trial directions {Wyes }: excludlng the old orientation (de-
noted by Py, _.y,/exp[— Buid times the probabil-

wi_aw:])

ity to generate a new set of trial directions in the system
{Wsyst }; that contains the new orientation (i.e., P, }‘.)
times the probability to select this new orientation (i.e.,
exp [—fui™] /Z(wy.):

L
P, . —Busxt
GN—-}N+1 — H {wuy:t}: {wrel}l exp{ ﬂut ] .

(A10)
i exp[=Bvg o] Zpe

The probability Gn41 N is the probability of moving
one chain from the system to the reservoir. The probabil-
ity to exchange one particle with the reservoir is equal to
the probability to generate the old set of trial directions
in the system {Wgyst }: excluding the old orientation (i.e.,
Pis.,..}./ exp[—Buig _ 4.]) times the probability to gen-
erate a new set of trial directions {Wys}: that contains
the new orientation (i.e., P(g,.,},) times the probability
to select this new orientation (i.e., 1/k):

L
Pw, ..} Plwayu: 1
GNy1oN = H xol—Bud 1k

] R (A1)

The ratio of the probabilities Gy41n and Gy, n41 i
now given by

exp[ ﬂvw, lw.] Z{v‘l},—
exp[ ﬁ(u‘v‘ o, FUEH] K

L
GN+1oN H

= . (A12
GNoN+1 (A12)
Substitution of Eqs. (A6) and (A12) in Eq. (A9) yields

. P(sM;N + 1)GN+1—>N)
P, .. (N|N+1) = 1,
oV =i (1, S

[ V(M -N)W
= min (1, m) , (A13)

where W = H,'L=1 w;. Let us now consider the limit that
the reservoir is very much larger than the interacting sys-
tem: M — 00, Vies = 00 and M/V,es — p. For an ideal
gas the fugacity z is equal to the particle density. There-
fore, in the limit M/N — oo, Eq. (A13) becomes

VW )

Py (N | N +1) =min (I’N—+1

(A14)
Similarly, we can derive the probability of accepting a

trial move that removes a particle from the system to
the reservoir:

N+1)

Ty (A15)

Pacc(N|N+1)=min(

(1] P. J. Flory, Proc. R. Soc. London Ser. A 234, 60 (1956).

[2] E. A. DiMarzio, J. Chem. Phys. 36, 1563 (1962).

[3] P. J. Flory and G. Ronca, Mol. Cryst. Lig. Cryst. 54,
289 (1979).

[4] G. Ronca, J. Polym. Sci. Pt. B 27, 1795 (1989).

[5] J. F. Nagle, Proc. R. Soc. London Ser. A 337, 569 (1974).

[6] A. Malakis, J. Phys. A 13, 651 (1980).

[7] A. Baumgirtner, J. Chem. Phys. 84, 1905 (1986).
[8] A. Kolinsky et al., Macromolecules 19, 2560 (1986).
[9] A. L. Rodriguez et al., Macromolecules 23, 4327 (1990).
[10] R. Dickman, Comput. Polym. Sci. 1, 206 (1991).
[11] A. R. Khokhlov and A. N. Semenov, Physica A 108, 546
(1981).
[12] A. R. Khokhlov and A. N. Semenov, Physica A 112, 605



50 SIMULATION STUDY OF A TWO-DIMENSIONAL SYSTEM OF . .. 357

(1982).

[13] Z. Y. Chen, Phys. Rev. Lett. 71, 93 (1993).

[14] M. P. Allen and D. J. Tildesley, Computer Simulations
of Liquids (Clarendon, Oxford, 1987).

[15] D. Frenkel and R. Eppenga, Phys. Rev. A 31, 3 (1985).

(16] D. Frenkel, G. C. A. M. Mooij, and B. Smit, J. Phys.
Condens. Matter 4, 3053 (1992).

[17] M. Dijkstra, D. Frenkel, and H. N. W. Lekkerkerker,
Physica A 193, 374 (1993).

[18] C. H. Bennett, J. Comput. Phys. 22, 245 (1976).

[19] R. Eppenga and D. Frenkel, Mol. Phys. 52, 1303 (1984).

[20] M. P. Allen and D. Frenkel, Phys. Rev. A 37, 1813
(1988).

[21] M. P. Allen and D. Frenkel, Phys. Rev. A 42, 3641
(1990).

[22] S. Ostlund and B. I. Halperin, Phys. Rev. B 23, 335
(1981).

[23] J. V. Selinger and R. F. Bruinsma, Phys. Rev. A 43, 2910
(1991).

[24] T. Odijk, Macromolecules 19, 2313 (1986).

[25] H. Yamakawa and M. Fujii, J. Chem. Phys. 59, 6641
(1973).



