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Monte Carlo simulations are used to investigate the asymptotic decay of the total pairwise
correlation functiorh(r) for some model fluids. We determine the poles of the Fourier transform
h(q) from the direct correlation function(r). The leading poles determine the ultimate; o,

decay ofh(r). For the truncated and shifted Lennard-Jones fluid we calculate the Fisher—Widom
(disordey line in the temperature-densityl (p) plane where the ultimate decay df(r) crosses

over from monotonidexponential to exponentially damped oscillatory decay. This line lies close
to that obtained in an earlier integral-equatipimypernetted chain-soft core mean spherical
approximation(HMSA)] study. For states on the monotonic side of the disorder hig) has a

finite number of oscillations and we determine the boundaries which mark regions if ihe (
plane wheréh(r) has a given number of zeros using a random-phase approximatio(rjorin the

case of the hard-sphere fluid, the ultimate decaki(o) is oscillatory for all densities and we find

that simulation results for the period at@kponentigl decay length of the oscillations are in good
overall agreement with those of Percus—Yevick theory, although there is some indication that
systematic differences develop for high-density statéz0.85. © 2000 American Institute of
Physics[S0021-960680)51003-4

I. INTRODUCTION transitions at wall-fluid interfaces® The first attempt at cal-
culating the FW line for a realistic model of a fluid was
It is now 30 years since Fisher and Widboonjectured, based on the random phase approximat{B#A) for the
on the basis of some exact results for one-dimensional modsquare-well model. The FW line, which is the line in the
els, that there should be a line in the temperature—densithyp) plane wheraxy= a,, was found to intersect the liquid
(T,p) plane where the longest range decay of the total pairyranch of the liquid-gas coexistence curveT4t .~ 0.9 and
wise correlation functiom(r) of a simple fluid should cross /pe~1.9, whereT, and p. are the critical temperature and
over from monotonic to exponentially damped oscillatory.densityg Later, the accurate HMSA integral equation theory
For high temperatures and densities, repulsive forces angas ysed to determine the FW line for the truncated and
packing considerations dominate am() should exhibit 0s-  gpiieqd (at R,=2.50) Lennard-Jones fluifl.The calculated
cillatory decay. At lower densities and temperatures, attraCgyy jine intersected the coexistence curve at values/at,
tive interatomi'c forces play a more impolrtant role' ard) _andplp, close to those stated abotgee also Fig. ¥ Sub-
should decay in a.monotqnlc fgsh|on, asin Ornstem—Zern.lk%equent investigations of asymptotic decay and crossover
theory. In magnetism, spin-spin correlations can also exhibifi,as have focused on Coulombic or screened Coulombic
different types of asymptotic decay and the analog of they,ijs57 \yhere the crossover mechanisms associated with
cross over or Fisher—WidoFW) line is well-known and is 1,506 correlations are different from those in simple, atomic
termed the d|sord_er transmor_l line. For bulk flwds and Magd+ids described by short-ranged interatomic potentials.
nets, the change in asymptotic decayof) which occurs at All the studies of the asymptotic decay of correlations
the crossover line does not imply any thermodynamic singUeiteq hitherto have employed approximate theories of lig-
larity and little attention was paid to the crossover phenom—uids with varying degrees of sophistication. In the present
enon until Evanst al? pointed out its repercussions for the papér we present the first study of the asymptotic decay us-
structure of fluid interfagez_s. The density profile of a fluid far ing computer simulations. At first sight this might appear to
from a planar Wa.” exhibits the same type of decay as th e an especially difficult task—measurimgr) directly at
bulk h(r). T_hus, |frh(r)~exp(—aor) for r—eo, then the_ large interatomic separation requires very large system
densny pro_ﬂle at a wallexerting a short-rgnged vyall-flmd sizes and good statistics. However, we show that by using
potentia) will decay as expf ac2), Wh~erez IS Ihe distance the Ornstein—Zernike equation to calculate the direct corre-
from the wall, whereas ifh (r) ~exp(-agrjcosir—6) then |ation functionc(r) it is possible to extract the longest range
the profile decays as exp@gz)cosiyz—6,).2* This obser- decay ofh(r) and determine the FW line without recourse to
vation has significant implications for the structure of thesimulations with enormous numbers of particles. We restrict
liquid-vapor interfacé and for the occurrence of wetting attention to model fluids with interatomic potentials that are
of finite range. For fluids in which the pairwise potential

3present address: Debye Institute, Condensed Matter Physics, Utrecht Urf2(T) decays as a power Ia‘_’\h(r) decay_s _UItimatel)_’ as
versity, Postbus 80000, 3508 TA Utrecht, The Netherlands. —S%(0)p(r)/kgT, whereS(0) is theq—0 limit of the lig-
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uid structure facto?;® and there is no sharp FW line, al- Combining Eqs(2) and(4) yields

though there is still erosion of the intermediate range oscil- .

lations ofh(r) as the density is decreased. c(q)
Our paper is arranged as follows: in Sec. Il we summa-

1-pc(q)
rize the key results for the asymptotics of correlation func- . ] .
tions and describe the theoretical framework for calculatind[: or short-ranged interatomic potentials, whefe) decays

the inverse decay lengths,, & and the period 2/, aster than a power law, it follows that the asymptotjc behav-
which describe the decay ¢f(r)—see above. Our Monte 10F of rh(r), i.e.,r—c, is determined by the poles o{q),
Carlo simulation studies of the Lennard-Jones fluid, trund-€- Poles at compleg=a=a;+iaqy that satisfy

cated and shifted éR.=2.50, are reported in Sec. lll. We 1- p&(a)=0 ®)
measureh(r), extractc(r), and determine the quantities P '
ag,a, anda, from the latter. The FW line which we obtain A pole can lie on the imaginary axis where it gives rise to
lies very close to that obtained in Ref. 5 from the HMSA for pure exponential decay oh(r), or it can lie off the imagi-
the same potential. Moreover, we find that leading order anary axis where it gives rise to exponentially damped oscil-
symptotics provide an accurate fit to the simulation resultdatory decay. Equating the real and imaginary parts in(gy.
for h(r) atintermediateseparations, i.e., faras small as &, gives

as well as at long range. In Sec. IV we focus on the hard- " sinh(argr )

sphere fluid, where the decay bfr) is always oscillatory, 1:47”’J dr r2c(r)—° cod a;r), 7
and determine the decay length and period using simulation 0 @of

results forc(r). The results are compared with those from . sin(ar)

Percus—Yevick theory. Section V addresses the issue of how 1:47Tpf dr r2c(r)cosh agr) v (8)

the FW line behaves at very high temperatures where the 0 at

effects of attraction become weak_and wh(_are the deca_y c1£r0videdc(r) is known for a given density and temperature,
h(r) should become hard-sphere-like. Section VI de:scrlbe,f.niS pair of equations can be used to find the pajesa;

an RPA analysis of the number of zeroshgf) for states on +iag. A pure imaginary pole is obtained from E@) alone
the monotonic side of the FW line. We determine boundarie@vith a,=0. The right-hand side of Eq5) can be evaluated
in the (T,p) plane which separate a region whég) hasn by choosing the contour to be an infinite semicircle in the

ZEros from one W|th1+2'ze',-rqs. For states approgchmg theupper half-plane, and provided all poles are simple it follows
FW line, n increases to infinity and the boundaries cluster.,[hat

Finally, in Sec. VIl we make some concluding remarks.

1 ©
rh(r)=—2j dq gsingr (5)
2wcJo

Un

—=, 9
2mp®C’ (qn) ©

rh(r)=>2, WA with A ,=—
Il. THEORY (r) ; . .

Below we give a brief summary of the asymptotics of whereq,, is then-th pole, 2rA, is the residue ofjc(q)/(1
the pair correlation function of a fluid with short-ranged in- —p&(q)) at q=q,, and&’(q,) is the derivative ofc(q)
teratomic potentials. For more details we refer the reader tQ;i respect ta a’{a:q In gr;eneral an infinite number of
Refs. 2 and 3. The asymptotic decay of the radial distributiorbmes can be expect@ct?ut the Iongeét range part b{r) is
functiong(r) is most easily determined by investigating the yetermined by the pole or poles with the smallest imaginary
pole structure of the structure fact®(q). The Omstein— ot Two scenarios are possible) Pure exponential decay
Zernike (OZ) equation relates the total pair correlation func- yominates at longest range if the pole lying on the imaginary

tion h(r)=g(r)—1 to the direct correlation functioo(r) axisq=i e, has the smallest value af,. Using Eq.(9), we
find that the contribution of a pure imaginary polertq(r) is

() =c(n+p [ drine e, (M given by
wherep denotes the bulk density. In Fourier representation,  rh(r)~Ae™ (10

this equation reads with an amplitude

c(q)

h(g)=——=—, 2 i ag
_ A=——— 11
Lopsl@’ 2o (ag) (D
where the Fourier transforri(q) of a spherically symmetric
. N and
function f(r) is given by
m : A Aq (= sinh( aqr)
R singr Ty )= — 2 —
f(q):4,ﬁfo dr rzf(r) ar , (3) C (Ia’o) ia’oJo drr C(r) Cosl’(aor) r . (12)
or inversely by (b) The complex poles in the upper half-plane occur as con-

jugate pairs and exponentially damped oscillatory decay with
4) a wavelength z/«, dominates at longest range, if a conju-
gate pair of polexj=*a;+ia, has a smaller imaginary

(0= 5ra . da et "G
r=—
2m%Jo aard qr
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part than the pole on the imaginary axis. The decaii(o) 2 . . .
at longest range is then determined by the contribution of the
conjugate pair of complex poles, i.e., 0
rh(r)~2|Aje” * cog ayr — 6). (13
-2 4
Explicit formulas for the amplitude and phase are derived in
Refs. 3 and 6 and read C(I’) 4 |
- (agta) "/
|A|e_'0=—e_'(t_2p), and (14 6 [ 0% = 0.400 ]
8m2p2\a’+b? ——- p*=0.500 ]
. . —-— px=0.550
with the angleg andt determined by sy 0% = 0.575 1
-~ .~ -~ = p* = 0.600
 aqtiag _ a+ib -10 . s .
ef=—u—, e'=—n—F, (15 0 1 2 3 4
V ag-f- ai a’+b? r/'c
and FIG. 1. Monte Carlo results for the direct correlation functizm) of the
_ - - _ truncated and shifted LJ fluid at reduced temperafre- 1.25 for several
~ aagtba; ~ aa;—beag densities. The oscillations far/o=<0.1 arise from truncating the Fourier
a= =y =~ c, b= =5 o~y +d, (16) transforms.
agtaj agtag

where the functions,b,c, andd are defined by
Eq. (9). Following earlier worlé we shall assume any such

a:J dr re(r) sinh(aor) cogayr), (17) terms decay faster than the contributions of the two leading
0 poles.
b= fo drrc(r) costagr) sin(ayr), (18 1I. MONTE CARLO SIMULATION STUDIES OF THE

LENNARD-JONES FLUID

o= fxdr r2¢(r) cosi(&or) cos{Elr), (19 A. Determination of the Fisher—Widom line
0 We performed canonical Monte Carlo simulations of a
o fluid interacting with a Lennard-Jones potential which is
d= JO drr2c(r) sinh(agr) sin(a;r). (200 truncated and shifted &,=2.50,
. . DLas(r)=dy(r)—¢s(Re)  r<=R,
The crossover from monotonic decay to damped oscillatory 22
decay at longest range is given by the so-called Fisher— =0 r>Rg,

Widom (FW) line. The locus of the FW~Iine in thep(T) with ¢LJ(r):46((0_”)12_(0_”)6)_ The Gibbs ensemble
plane is determined by the conditiary= . In order to  simulation study of Smif estimated the critical point of this
utilize the procedure described above, all the relevant intemodel to lie atT* =1.085 andp¥ =0.32. We measured the
grals must converge. This is guaranteed wi¢n) is of  pair correlation functiong(r) at equidistant intervals of
finite range, as is the case for interatomic potent{&(s) of /100 for several reduced temperatufiés= (B¢) ~* and re-

finite range treated in the mean-spheri@dSA) or random-  duced densitiep* =No®/V, whereN is the number of par-

phase(RPA) approximation. In reality, howeverg(r) will  ticles andV the volume of the system. The system consists of
have a nonvanishing tail far>R;, the cutoff distance. In- g cubic box with lengthL =200 containing N particles,
tegral equation theories predict ther) decays as whereN is the nearest integer toL®. We determined the
1) poles by solving the two Eqé?) and(8). These require(r)
c(r)~—pBo(r)+ Thz(r)Jr R (21)  as input. First, we compute(q) by a Fourier transform of

h(r)=g(r)—1. We then obtairc(q) using the Ornstein—
whereg=1/kgT and7(r) is some(slowly varying function  Zernike (OZ) equation in Fourier spadé&q. (2)]. The direct
of r. Within the hypernetted chaitHNC) approximation  correlation function in real space(r) is obtained from an
7(r)=1 while in the HMSA}10<T(T)<_1- This implies that i erse Fourier transform af(q). Figure 1 shows the direct
the integrals in Egs(7) and (8) will diverge for any pole  .orrelation  function c(r) for T*=125 and p*
Whoseimaginary part is larger than twice the imaginary part_ 0.40,0.50,0.55,0.575, and 0.60. We find that dfe) is
(g Or ap) of the leading, i.e., the lowest-lying poleThus,  negative inside the core,<o, and is positive outside the
our numerical procedure for determining poles and residuegore, decaying smoothly to zero at large distances. Upon
is restricted to the calculation of the two leading poles. Noténcreasing the density;(r) becomes more negative inside
also that certain integral equation theories yield other typeshe core as the packing increases and the effects of repulsion
of singularities inﬁ(q) which give rise to additional terms in become more important. Significantly, fooutside the core,
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o0 10l %// ]
G-—9© p*=0.40
05 - = —8 px=0.50 |
) &—o p#=0.55 . s s
A —A pr=0.575 | 0.20 0.40 p* 0.60 0.80
* — % p*=0.60
0.0 : L : ! : ! : 1 : FIG. 3. Monte Carlo results for the difference between the pure imaginary
-2 0 2 0.G 4 6 8 pole (ao) and the imaginary part of the lowest-lying complex polg) as
1 a function of reduced density* for three different temperatures. When

(ao—ao)(r<0 the ultimate decay ofi(r) is monotonic whereas fora{

FIG. 2. The imaginary ¢o) and real ;) part of the leading poles for —%0)o>0 it is damped oscillatory.

several densities as obtained from the results shown in Fig. 1, i.eT,*for
=1.25. The symbols withw;=0 refer to the pure imaginary pole while

those witha,;0~6.1 refer to the lowest-lying complex pair=*a; +iaq

(only the pole witha;>0 is shown. The dashed lines couple poles at the

; insensitive to the addition of the tail. Thus, we believe that
same density.

our results for the two leading poles should not depend very
strongly on tail contributions ta(r).

In Fig. 2 we observe that at* =0.40 and 0.50 the pure
c(r) is almost independent gi* . Using thesec(r)’s, we  imaginary pole has a smaller imaginary part than the corre-
obtain the leading poles #f(q) by solving Egs(7) and(8). ~ Sponding complex pole, whereas#t=0.575 and 0.60 the
In the first instance we simply truncated the integrals at2.5 complex pole has the smaller imaginary part. This indicates
the cutoff value of the potential, sincgr) is very small at that for T* =1.25 the decay ofh(r) changes from purely
this distance. In Fig. 2, we show for each density the puréxponential, at longest range, to damped oscillatory*ass
imaginary poie and the poie off the imaginary axis with theincreased from 0.50 to 0.575. Figure 3 displays~the differ-
smallest value ofy,. The statistical error barf®ne standard €nce betweemy, (for the pure imaginary pojeand a, (for
deviation were estimated by calculating the poles from 3—5the first complex poleas a function op* . Fitting the data
independent sets af(r)’s. We also performed simulations t0 @ cubic spline we estimate the crossover from monotonic
for L=250 in order to check the system size dependencelecay to damped oscillatory, wheng= a, to occur atp*
and found that the values of these poles agree with those 0.553 forT* =1.25.
obtained from the smaller system size within the statistical Further sets of calculations were carried out for the sub-
error. Note that the spurious oscillations @fr) at r/c  critical temperaturd* =1.0 and forT* = 1.8, and the corre-
<0.1 arise from truncation effects in the Fourier transfofm. sponding results foao—Zzo are also plotted in Fig. 3. From
These do not have a significant effect on the values obtaineghese results we have constructed a portion of the FW line in
for the poles since for these valuesrahe integrands ir(7) the (T*,p*) plane and this is shown in Fig. 4 along with the
and (8) vary asr?c(r), which is very small. What is more  Fw line obtained from the HMSA integral equation thedry.
significant is the large behavior ofc(r) since at large the  The two lines have very similar shape and lie close together.
integrands vary asc(r)exp(aor) and, as pointed out in Sec. The simulation FW line intersects the liquid branch of the

Il, c(r) is not identically zero beyond the range of the po-coexistence curve of Smit at T*=0.95, i.e., atT/T,
tential. In order to check the sensitivity of our results to the=0.88 andp/p.=1.94.

tail of c(r) we assumed that(r)~h?(r)/2 for r>2.50 and
calculatedh(r) from the two-pole asymptotic formula

rh(r)~Ae_“0r+2|”A|e_;0r cog a1 —6), (23 B. Long and intermediate range decay of  h(r)

) ] ) ] ) Integral equation studies of the asymptotic decaki (@
i.e., from the pure imaginary plus the lowest-lying conjugatesq 4 variety of fluids have shown that retaining only the two

pair of complex poles, using the values of the poles and thg,a4ing pole contributions in the expansion(f leads to a
residues obtained from the original calculations which haVE%emarkably accurate description bfr) at intermediate as
c(r)=0 for r>2.50. Recalculating the poles frof¥) and \ye|| a5 long rangé&>~" More specifically, it was found that
(8) with this form of tail for c(r) changes their values by a ¢ approximation(23) is in very close agreement with the
small amount. For the lowest density =0.4, %o changes' results forh(r) obtained from the direct numerical solution
by 0.26% andx, by 0.10%, whereas for the highest density, of the integral equations even for interatomic separations as
p*=0.6, the corresponding changes are 4% and 03%s  small as 2, i.e., second nearest neighbor distances. It is of
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FIG. 4. The Fisher—WidoniFW) line in the temperature-density plane for 15 : :

the LJ fluid truncated and shifted at 2.5The asterisks joined by dots
denote our present Monte-Carlo results for the FW line while the solid curve
is the result of the HMSAREef. 5. The dashed line joining squares denotes
the simulation result§Ref. 13 for the liquid-gas coexistence curve and the 1.0 -
cross is the simulation estimate of the critical point.

0.5
considerable interest to enquire whether the same approxi-h(r)
mation provides an equally accurate description of the simu-
lation results.

In Fig. 5@ we compare the simulation result fo(r)
with that from (23) for T* =1.25 andp* =0.4. The poles
and the residues, which determine via E¢H))—(20) the
amplitudes and the phase, were obtained from) calcu-

lated as described above. For this state paigt a, (see 1.0
Fig. 2), so the ultimate asymptotic decayufr) is predicted r'c
to be monotonic. However, the contribution from the conju-
gate pair of complex poles dominates at intermediate an€iG. 5. h(r) for the truncated and shifted LJ fluid &t =1.25. The solid
short range and accounts for the three maxima(@f that curve is the Monte _Carlo regu_lt and the da§heq curve is the a_symptotic result
are easily discernible in the simulations. Equat(ﬁﬁ) pro- obta_uned‘ from(23_), i.e., retaining the contrlbut_lon fror_n the smgle pole on

. . . . the imaginary axis plus that from the lowest-lying conjugate pair of complex
vides an excellent fit to the simulation result down 0 ,5jes (3 p*=0.4. The pure imaginary pole hago=0.885 and the con-
~20 and it even gives the correct position of the first peakjygate pair hasvo=+6.105+i1.718. Thusey<a, and the ultimate de-
in h(r). The overall quality of the approximation is similar cay ofrh(r) is pure exponentialb) p* =0.6. Now the pure imaginary pole
to that found in the HMSA calculationsFigure b) dis-  has ao0=1.761 and the conjugate pair hasr=*6.273+i1.241. Thus
plays the corresponding results for the same temperature bat> o and the ultimate decay is exponentially damped oscillatory.

a higher density,p* =0.6. Now ay>a, since we have

crossed the FW line and the ultimate decay should beshed to make any definitive statement. Direct observation
damped oscillatory. Once agai@3) provides an excellent fit ot ¢rossover from monotonic to damped oscillatory decay of
to simulation down ta ~20 and yields the correct first peak pr) is extremely difficult in a simulation study, where data

position. o _are limited by box size and the statistical accuracy may be
The present two-pole approximation appears to be just asoor. Our procedure, which inputs data fr) at small and

r_eliable "’Tt intermediqte range as in the gagizr integral CAU% termediater and provides, via the auxiliary functiar(q)
tion studies, where its success was attribtitedo the fact detailed information aboui(r) at larger, does appear to be

that the next lowest-lying complex poles have much Iarge(/ery useful. What its status is as a mathematical extrapola-

imaginary parts. Thus we conclude that were we able to Calfion procedure remains to be investigated.

culate the next poles by simulation these would also be far
removed from the lowest-lying ones. . V. POLES IN THE HARD-SPHERE FLUID

As a remark on the usefulness of our asymptotic analysis
we should note that naive comparison of the simulation re- The occurrence of both pure imaginary and complex
sults forh(r) in Figs. 5a) and 3b) would not establish a poles in the Lennard-Jones fluid is a consequence of the fact
conclusive difference between the two forms of asymptotidhat such potentials have both attractive and repulsive com-
decay. Although onenightascertain one or two more oscil- ponents. For potentials which are purely repulsive and of
lations for p* =0.6 than forp* =0.4, one would be hard- finite range one expectsh(r) to exhibit exponentially

0.0 +
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4 . . . study the tail is rapidly decaying and(r)| is <0.01 for
O Percus-Yevick r/d=2.0. We used the data fa(r) given in Table Il of Ref.
* c(r) from Ref. [10] ] 17 along with Egs(7) and (8) to obtain the lowest-lying
3l he | conjugate pair of poles at each density and these results are

also shown in Fig. 6. There is rather close agreement be-
tween the PY and simulation results across the full range of
d densities. Given that PY does provide quite a good descrip-
Oco 2r ¥ 1 tion of the intermediate range structurelifr), this level of
agreement may not come as a surprise. However, we should
remark that since(r) in Ref. 17 does differ significantly,
both inside and outside the hard core, from the PY solution
we are inputting two sets of significantly different data into
the equations which determine the poles. As expected, the
inverse decay lengtla, decreases rapidly with increasing
density until large packings are attained when the decrease
becomes much slower. The variation ®f with density is
weaker. Forp*=0.2, the period #/«q is about 1.28
whereas fop* =0.9 this is 0.94.

6
o,d
FIG. 6. The imaginary ¢,) and real ;) parts of the lowest-lying conju-

gate pair of polesr= *+ @, +i«, for the hard-sphere fluid, with diametdy

for a series of reduced densitip$ = pd®=0.2 (top), 0.4, 0.6, 0.65, 0.7,
0.75, 0.8, 0.85, and 0®ottom). The squares denote the values from the PY V. THE FW LINE AT HIGH TEMPERATURES

approximation and the asterisks those from the Monte Carlo resultgfpr

given in Ref. 17. For a fluid described by a pairwise potential of the

Lennard-Jones-type, repulsive forces must always dominate
at sufficiently large temperatures and then the structure of the
uid must resemble that of a fluid in which the potential is
ard-sphere like, for which the decay bfr) is always
gamped oscillatory and no crossover exists. Earlier studies
Investigated the FW line for temperatures up to about twice
the critical temperatufe where the effects of attractive
forces are still very strong and one is far from approaching
hard-sphere like behavior. Here we address the issue of what

damped oscillatory decay for all state points. Of course, th(%
inverse decay lengthy and period 2r/ a4 will still depend

on the density and temperature. Of special interest is th
hard-sphere fluid where the densityr packing fractionn
=wd%p/6) is the only relevant variablel is the hard-sphere
diameter. Upon increasing toward the value at freezing
(7=0.49 one expects, intuitively, that the decay of the os- ) )
cillations inh(r) will become slower. It is less obvious how happens to the FW Ime. for very .h|ng‘ ;

the period will vary. There have been surprisingly few stud- .Rather than extending the ;lmulatlon study of Sec. Ill,
ies of the asymptotic decay {r) in the hard-sphere fluid. which would be extremely laborious, we have used the RPA

Iy - to map out the FW line in theT(*,p*) plane for the LJ fluid
Perry and Throoff calculated the lowest-lying conjugate ryith potential (22). The RPA assumes that the direct corre-

pair of poles and the corresponding amplitude and phase i tion functi b mated b
(13) from the Percus—YevicKPY) approximation for the ation function can be approximated by

Laplace transform ofh(r). Rosenfeld;> and more recently Crpd 1) =Che(1) = Bbarlr), (24)
Leote de Carvalhet al.® investigated several of the Percus—
Yevick poles in the approach to the so-called asymptoti
high-density limit—1. Henderson and Sabétidetermined
the onset of pure oscillatory decay lofr) for hard spheres, baT)=—€ T<rp=2Y
i.e., solutions of(6) with ag=0, from a weighted density
functional treatment. Here we determine the poles of the = dLas(r) T>Tmin-
hard-sphere fluid using the results of Greotal,!’ who ex- For simplicity, the hard-sphere diametéis set equal to
tractedc(r) in a careful analysis of Monte Carlo data, and o. Other choices of the attractive potential inside the core are
compare these with the results from the PY approximation.possible and it is well-known thdt(r) calculated from the

As is well-known, within PYc(r) vanishes for>d and  RPA closure is not necessarily zero inside the repulsive core.
is a polynomial inr for r <d with coefficients depending on Nevertheless, the pole structure arising from the RPA does
7. We calculated the lowest-lying conjugate pair of polesreproduce the key features of more sophisticated closure
using Egs.(7) and (8) for a range of(fluid) densities. The approximationg:® Once again the lowest-lying poles were
results for the real and imaginary parts are shown in Fig. &alculated using Eq%7) and(8) and the FW line was deter-
and these agree with published results obtained by otheanined as in Sec. Ill. The results are shown in Figs. 7 and 8.
method<:**In reality the direct correlation function does not At temperatures in the range £0* <1.8, the RPA FW line
vanish identically forr >d, rather it has a rapidly decaying has a similanear lineay shape to the line obtained in simu-
tail. Grootet al!” allowed for the possibility of an empirical, lation (and in the HMSA. The RPA line intersects the
damped oscillatory tail irc(r). Their fits (via OZ) to the  (simulation coexistence curve at a slightly higher tempera-
simulation data foh(r) show that the tail is non-negligible ture, T* =1.015, than our simulation estimaf& =0.95. For
for large packing fractions. However, for all the cases theyhigher temperatures, the FW line increases rapidly with de-

wherecy(r) is the PY hard-sphere direct correlation func-
Sion at densityp* and the attractive potential is chosen to be

(25
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1000 T . T 3 in a very low density fluid the ultimate asymptotic decay of
] h(r) will not resemble that of hard spheres until extremely
DIRef. [13] ] high temperatures.
-~ This work
—— RPA
100

VI. THE NUMBER OF ZEROS OF h(r)

On the oscillatory side of the FW lin@(r) has an infi-
nite number of zeros since the dominant decay is given by
Eqg. (13). On the monotonic side oscillations do still occur. It
is only the ultimate decay ah(r) which is pure exponential
(10) and the lowest-lying complex poles make increasingly
important contributions as the FW line is approached. Re-
writing the two-pole approximatiof23) as

2|A|

rh(r)=Ae «| 1+ Te—@o—“o)rcoq?&lr—e) , (26

10

FIG. 7. FW line(solid curve for the truncated and shifted LJ fluid at high we see that provided the ratio of amplitudes is sufficiently
temperatures as obtained from the RPA. The asterisks joined by dots dengte '

our Monte Carlo results for the FW line. The dashed line joining square arge, the secon(bscillatory) term will remain~comparable
denotes simulation resultRef. 13 for the liquid-gas coexistence curve and with the first at increasingly large distances@s— aq. In

the cross marks the critical point—see Fig. 4. turn, this implies an increasing number of zerosh@rf) will

be exposed on approaching the FW line and one can envis-
age boundaries in thel'(p) plane separating a region where
h(r) hasn zeroes from one where it hast 2 zeros. On the
boundary there will ben+ 1 zeros with the if+ 1)th being

an extremum. A® increases, these boundaries should crowd
Ig‘:loser together and converge to the FW line, which corre-

creasingp* . Crossover from monotonic to damped oscilla-
tory decay ofh(r) occurs at the critical densitp* =py
whenT*=3.171, i.e.,T/T,=2.923. At a fairly low density,
p*=0.03 (~0.1p}), crossover does not occur unfi*
=32. One deduces that the attractive interactions, whic
give rise to the pure imaginary pole, continue to manifestSponds ton==.

themselves up to very high temperatures when the density its W(te Zave dcaLgft:lag[elid the'(ljou .Of t?ﬁ seRt;i\ur?darleE(s for the
low. Figure 7 shows that the FW line approaches the temaérl:gig; (?Sr csalltu?ations uelm:IS(,)I)r/]g d tﬁe two, [I).(flé agf)?oxi
perature axis asymptotically, as expected, and it is clear th Mation (23) with the poles, amplitudes, and phase deter-

mined as previously. As argued in Sec. Ill B, this approxi-

1.9 mation yields an accurate description of the intermediate
range behavior oh(r) provided the next lowest-lying con-
17 + jugate pair of poles has an imaginary parta,. We
’ checked, by computing the fuli(r) from the OZ relation,
15| that(23) counts correctly the first few zeros. Upon increasing
’ p* at fixedT*, one passes from a region whérg) has one
T* s zero to one where it has three zeros and then to one with five

zeros and so forth. The boundaries separating these regions
are shown in Fig. 8. Pronounced crowding of the boundaries
has already occurred far~ 20, at densities which are still
well below that of the FW line. Note that except exactly on a
boundary h(r) always has amdd number of zeros. We can
understand this as follows. In the limg—0, h(r)~exp
(=pB¢(r))—1 which has one zero. The presence of the cosine
in the two-pole approximatiof26) implies that the number

of zeros increases by two upon crossing the first boundary.
On the boundary there are two zeros, the second correspond-

6. 8. Boundati i ons in the & tre-density pl _tg’ng to a minimum ofh(r). The sequence continues so that
. 8. Boundaries separating regions in the temperature-density plane wi e .

n andn+2 zeros ofh(r) for the truncated and shifted LJ fluid. The solid n the monotonic side of the FW “r_hir) a!WayS decays to
curves are RPA results for the loci of the boundaries between regions witf €0 'from above ag— . The amplitudeA in (?6) mUSF b.e

1, 3, 5, ... zeros. On these boundaries, the lasti(L)th zero is a mini-  positive. These conclusions have been confirmed within the
mum ofh(r). For largen the boundaries crowd together andres they ~ RPA. Our simulation results also appear to be consistent
approach the FW lin¢bold curvg. The asterisks joined by dots denote our with the observation thaln(r) should decay to zero from
Monte Carlo results for the FW line. The dashed line joining squares de- L. e . .
notes simulation resultéRef. 13 for the liquid—gas coexistence curve and above, although it is difficult to check this directly when

the crossmarks the critical point. >7. Although we are not aware of any rigorous proof that in

11 F

e
d

0.

0.7
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the region of ultimate monotonic decdnfr) should decay The last two sections of our paper dealt with the FW line
from above, such a result is in keeping with Widom’s proofat high temperatures and with the location of boundaries
that fdr(g(r)exp(B4(r))—1)=02 separating regions in thel (p) plane whereh(r) has a dif-
ferent numbers of zeros. To the best of our knowledge, nei-
VIl. CONCLUDING REMARKS ther of these topics has been considered previously. Our re-

We have shown that computer simulation results can béults are based on the RPA which, although crude, should

used to determine the longest range asymptotic decay gapture most of the key features of the decayh(). In

h(r) for fluids exhibiting finite-range interatomic potentials. partlcular we would expect the overall shape of the FW line

By calculatingc(r) from the simulation results we were able in Fig. 7 and the form and clustering of the boundaries in

to determine the lowest-lying poles bfq), which enabled Fig. 8 to be given correctly by the RPA. This could, of
> ’ ) course, be tested by employing more sophisticated integral
us to calculate a portion of the crosso€V) line for the . y ploying phist nteg

truncated and shifted Lennard-Jones fluid. The FW line ”esequatlon theories or, indeed, simulations.

very close to the previous HMSA results, implying that the
latter provides an accurate description of the Iowest-lyingACKNOWLEDGMENTS
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