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Abstract – We study jammed configurations of polydisperse colloidal hard spheres with a
well-defined temperature (constant kinetic energy) as a function of compression speed and size
polydispersity. To this end, we employ event-driven molecular-dynamics simulations at fixed
temperature, using an algorithm that strictly prohibits particle overlaps. We find a strong
dependence of the jamming density on the compression rate that cannot be explained by
crystallization. Additionally, we find that during the compression, the pressure follows the
metastable liquid branch until the system gets kinetically arrested. Our results show that further
compression yields jammed configurations that can be regarded as the infinite-pressure limit of
glassy states and that different glasses can jam at different jamming densities depending on the
compression rate. We present accurate data for the jamming density as a function of compression
rate and size polydispersity.
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Colloidal hard spheres have proven their value as a
model system for the study of liquids, glasses, crystals
and powders. In 2005, Hales proved Kepler’s conjecture
that the densest packing of N identical hard spheres
in a volume V is achieved by the stacking of close-
packed hexagonal planes yielding a packing fraction
φ= πσ3N/6V ≈ 0.74 [1]. When a colloidal system is
compressed slowly it indeed forms this close-packed crys-
tal phase [2]. However, when a system of hard spherical
colloids is compressed quickly it does not reach this
maximum density and it forms a jammed configuration
at a lower density as further compression leads to particle
overlaps or deformation [3]. Jamming phenomena are
generic since atomic, colloidal and granular systems can
all be jammed in a state out of equilibrium by quickly
cooling, compressing or unloading [4]. In experiments on
colloidal systems, which are inherently polydisperse in
size, the packing fraction is often determined by centrifug-
ing the sample and equating the packing fraction of the
sediment [5] to the jamming or random-close-packing
density φrcp, and hence requires an accurate value of φrcp.
Many authors speculate that φrcp ∼ 0.64 of hard spheres

is well defined [6] although its precise value is unknown. On
the other hand, Torquato et al. [7] argued that φrcp is ill
defined as the jamming density depends strongly on the
compression rate. These authors showed by simulations

of pure hard spheres and binary hard-disk mixtures that
the jamming density increases with slower compressions
due to crystallization (and demixing) [7,8]. They resolved
this issue by defining a maximally random jammed state
which only takes into account systems that do not have
any crystalline order and find that the equation of state
(EOS) of the metastable fluid diverges at φrcp ∼ 0.644 [9].
Crystallization can be avoided by introducing size poly-

dispersity. In this letter, we study the jamming density as
a function of compression rate for polydisperse colloidal
hard spheres. We find that the jamming density increases
by lowering the compression speed without introducing
any crystalline order into the system in contrast with
previous results [7,8]. Moreover, our results contrasts the
idea that φrcp is well defined and can be regarded as the
infinite-pressure limit of the metastable extension of
the equilibrium liquid branch [6,7,9].
Others made the assumption that jammed configura-

tions can be regarded as the infinite-pressure limit of
glassy states [10–13]. Speedy [11] showed that different
hard-sphere glasses can be generated with different
jamming densities due to irreversible relaxation. Recent
simulations on binary hard-sphere mixtures also confirm
this assumption [14,15]. To investigate whether our
observed range of jamming densities can be explained
by the idea that different glasses jam at different
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densities, we monitor the pressure during compression.
Our results provide evidence that jammed configurations
of polydisperse hard spheres can be regarded as the
infinite-pressure limit of glassy states and that indeed
different glasses can be formed for different compression
rates that jam at varying jamming densities.
Additionally, we give accurate data for the jamming

density as a function of compression rate and size poly-
dispersity, which is important for experiments on colloidal
systems, where the packing fraction is often determined by
equating the packing fraction of the centrifuged sediment
to φrcp obtained from simulations [16,17]. However, it was
already pointed out in [18] that these simulation results are
inaccurate, thereby casting doubts on the determination
of the volume fractions in these experiments [5]. Addition-
ally, these simulations do not take any compression rate
(or centrifugal speed) dependence into account. As our
results show that the jamming density strongly depends
on the compression rate, we denote the density of the
jammed configuration with φJ rather than the random-
close-packing density φrcp. We also note that jammed
configurations are defined here as infinite-pressure states
as further compression would result in particle overlaps; it
does not mean that particles cannot displace anymore or
cannot move collectively.
As the focus of our work is on colloidal hard spheres with

a well-defined temperature, and where the particles cannot
be deformed or overlap, we restrict ourselves to simula-
tions that strictly prohibits particle overlaps. In addition,
we kept the temperature and hence, the kinetic energy
of all particles fixed. This is an important difference with
the work on soft particles [19–21]. To this end, we perform
event-driven molecular-dynamics (MD) simulations using
the Lubachevsky-Stillinger algorithm [22]. Modifications
were made to fix the temperature of the system and to
define a compression rate Γ= dσV −1/3/dt, where we use
the MD time as our unit of time [23]. The temperature was
kept constant by monitoring the build up of kinetic energy
and by rescaling the particle velocities. When we rescaled
the velocities we also rescaled the system size such that
the average diameter of the particles was kept fixed. So the
algorithm runs for a certain number of collisions while the
temperature rises and the particles grow. The algorithm
was adapted to keep the polydispersity constant during
the particle growth [24]. When the temperature of the
system rises too much or the particles become too large,
the system is rescaled to the desired temperature and
particle sizes. The polydispersity was sampled from a log-
normal distribution, which is nearly identical to a normal
(Gaussian) distribution for small polydispersities, but has
the advantage that it is zero for negative diameters.
We determine the EOS from simulations of 2000 parti-

cles with a size polydispersity of 10%. We average our
results over 50 different runs. To check for finite-size effects
we perform simulations with up to 2 ×105 particles and
we find good agreement within the statistical accuracy.
We plot the EOS for varying Γ in fig. 1a along with the
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Fig. 1: (Colour on-line) (a) Pressure βPσ3 as a function of
packing fraction φ for a system of hard spheres with 10%
size polydispersity and for varying compression rates Γ as
labeled. The dotted black line is a fast compression of a well-
equilibrated fluid of φ= 0.585. The red and blue (dark and
light solid) lines denote the equilibrium equation of state for
the fluid and solid phase, respectively, while the horizontal line
denotes fluid-solid coexistence. The dashed lines denote the fits
to the simulation data (symbols) using eq. (1). (b) As in (a)
but now plotted as a function of φ and 1/(βPσ3) so that the
infinite-pressure limit is clearly visible.

equilibrium Carnahan-Starling (CS) EOS for the fluid [25]
and the EOS of the solid phase [11]. During the simulations
with 10% polydispersity, we carefully checked for crystal-
lization, but we did not find any crystalline order in any
of our compression runs. The global bond-orientational
order parameter Q6 remains <0.02 during compression
for all Γ, and the pressure does not show any drops that
correspond with partial crystallization. We also calculated
local and global Q4, Q6 and Q8 bond-orientational order
parameters, which did not show any local and global crys-
talline order. Additionally, the spatial correlation func-
tion of Q6 [26] did not detect any crystalline clusters.
We also checked for demixing by calculating the number
of particles that are smaller or larger than the averaged
size around each particle during the simulation. As this
number remains constant, we conclude that we did not
find any sign of demixing.
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The pressure initially follows the equilibrium CS-EOS
of the metastable fluid phase until the system becomes
kinetically arrested as the relaxation time of the system
exceeds the compression rate. At this density, the pressure
increases much faster than that of the equilibrium fluid
EOS upon further compression. The density of the jammed
configuration at infinite pressure increases with slower
compressions. The reason is that the system has more
time to equilibrate for slow compressions, and hence the
system falls out of equilibrium at a higher density on
the metastable fluid branch. Further compression of this
glass phase yields a higher jamming density. Therefore
we find a finite range of jamming densities depending
on Γ. Our results provide strong support that jammed
configurations can be identified with the infinite-pressure
limit of glassy states and that different glasses can be
generated as a function of compression rate that jam at
different densities.
We note that fig. 1a shows remarkable resemblance

to fig. 7 of [15], where the existence of multiple EOS
for the unequilibrated binary hard-sphere glasses has
been established, all diverging at different jamming
densities. In addition, they construct a one-to-one
correspondence between the density where the system
falls out-of-equilibrium and the density where the
pressure diverges by equilibrating metastable fluid config-
urations at various initial densities and compressing
them rapidly to very high pressures so that structural
relaxation is prevented. In this work, we keep the
compression rate fixed during the compressions as this
is closer to the experimental conditions of colloidal
systems. Appreciable relaxation and aging behaviour
might be expected during our compressions when the
system departs the equilibrium EOS. However, we do not
find any noticeable effect on the jamming density if we
increase the compression rate when the system leaves the
equilibrium liquid branch.
The concept of multiple glasses is well known for

molecular glasses [27]. Indeed, fig. 1a resembles the picture
that is found for molecular glasses with φ and 1/(βPσ3)
playing the role of the inverse of the specific volume
and the temperature, respectively. To this end, we plot
our results in fig. 1b in the φ-1/(βPσ3) representation,
where β = 1/kBT with kB Boltzmann’s constant. We now
find striking similarities with the sketched phase diagrams
in refs. [12,13]. Theoretical calculations using the replica
method [13] predict also that different glasses can jam at
different densities upon compression, and that the pressure
of the glass phase close to jamming is well described
by a power law βP/ρ∝ 1/(φJ −φ) with φJ the jamming
density at infinite pressure [13]. We observe in fig. 1b
an almost linear behavior for the inverse pressure as
a function of φ for the glass phase, which we can fit
remarkably well as shown in fig. 1 over the full range using
the free volume scaling [6]:

βPσ3 = a
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Fig. 2: (Colour on-line) (a) Pressure difference β(P (t)−
PCS)σ

3 with respect to the Carnahan-Starling equation of state
PCS as a function of MD time for a system of hard spheres
with 10% size polydispersity. Inset: the relaxation time τα and
τ of the self-intermediate scattering function Fs(t) and P (t),
respectively. (b) Fs(t) as a function of MD time.

where a and φJ are fitting parameters. The leading order
term of eq. (1) yields the power law as predicted in [13]
close to jamming. In addition, the theory predicts an
ideal-glass transition at a Kauzmann packing fraction
φK = 0.617 on the metastable fluid branch, yielding a
jammed configuration upon compression of this ideal glass
with a random-close-packing density of φrcp = 0.683 [13].
However, the existence of a thermodynamic ideal-glass
transition is heavily debated. We note that our results do
not depend on the (non-)existence of such a glass transi-
tion. Our results show a nonequilibrium glass transition at
a density range of 0.50–0.59, which is far below the theo-
retical predictions for the ideal glass. This is to be expected
as the structural relaxation time diverges on approaching
the ideal-glass transition [28]. Hence, it is impossible to
reach φK , since already at lower densities, the fluid gets
arrested in a nonequilibrium glass as the relaxation time
becomes longer than the simulation time.
In order to investigate the divergence of the structural

relaxation time on approaching φK , and to estimate
what the maximum density is at which we can still
equilibrate a state on the metastable fluid branch, we
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perform constant-volume simulations of a system of 2×
104 spheres with 10% size polydispersity and varying φ.
We start our runs with an initial configuration obtained
from a fast compression. Figure 2 shows the pressure
difference with respect to the CS-EOS as a function of
time. We clearly observe that the pressure initially decays
towards an intermediate state for all φ. Subsequently,
large collective rearrangements are required to relax the
system further. Finally, we observe that the pressure
reaches the value predicted by the equilibrium CS-EOS.
The time scale for the system to equilibrate to the
equilibrium fluid phase is comparable to the relaxation
time τα that can be determined from the self-part of the
intermediate scattering function Fs(q, t), where we define
τα by Fs(τα) = 0.1 for qσ= 6.5. In fig. 2b we plot Fs(t) for
varying φ and the inset of fig. 2a shows τα along with the
equilibration time τ defined as β(P (τ)−PCS)σ3 = 0.1. We
clearly observe that both times are remarkably close. The
equilibration time of a system with 2 ×104 particles at
φ= 0.585 is more than 105 MD steps, which is equivalent
to 2 weeks on a desktop PC. The equilibration time for
φ= 0.59 is expected to be more than 20 weeks. Hence,
the ideal glass at φK , and the corresponding random close
packing are both inaccessible. Instead the system will fall
out of equilibrium into a non-equilibrium glass state at
a density that depends strongly on the compression rate.
Additionally, we compress at high Γ our well-equilibrated
fluid configuration of φ= 0.585 to very high pressures as
in [15]. Figure 1 shows that the EOS is similar to the other
compression runs, providing again support that jammed
configurations are infinite-pressure limits of glassy states.
In order to study whether the final configurations are

locally or collectively jammed, we calculate the coordina-
tion number of the final configuration of the monodisperse
compression runs. To calculate the coordination number
we perform a short event driven MD simulation, initialized
with the final configuration of the compression run, while
we keep track of the collisions of all particles. In fig. 3a we
plot the averaged number of neighboring particles with
which each particle has collided as a function of time. For
very fast compressions, the particles can still move out of
their cage and collide with new particles, while for slower
compressions, the cage formed by on average 6 neighbors
gets tighter. Hence, it takes longer till a particle can escape
out of its cage and collide with more than 6 particles.
The slowest compressions result in a nearly rectangular
graph where the particles can only collide with the 6 parti-
cles of its cage. As the averaged coordination number is
always larger than 4 and the cage-trapping plateau of the
mean square displacement is always much smaller than
σ2, we conclude that the configurations are at least locally
jammed [29].
However, for all compression speeds the particles are

still able to escape their cages by collective rearrange-
ments, although this takes longer for slower compressions.
We can read of the number of particles that have escaped
their cage from fig. 3, when we assume that particles are
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Fig. 3: (Colour on-line) (a) The coordination number obtained
from the number of different particles a particle has collided
with after time t in MD units. The simulations were started
with the final configuration of a monodisperse compression run.
(b) The radial distribution functions of the final configurations
of the monodisperse compression runs for varying Γ−1 as
labeled.

caged by maximally 6 neighbors and all particles that have
collided with a 7th particle have escaped their cage. The
fact that we do not observe collectively jammed configu-
rations is consistent with work of Donev et al. [30] who
have demonstrated that it is difficult to generate large
collectively jammed systems and Osada [31] and Salsburg
et al. [32], who have proven that it is impossible to have
an infinitely large collectively jammed system of Brown-
ian particles at finite pressure. Our system contains 2000
particles which is most likely too large to result in a
collectively jammed configuration at the pressures we have
reached.
Our results differ significantly from studies on collec-

tively jammed configurations of soft particles at tempera-
ture T = 0, where a well-defined jamming point or random-
close-packing density is found in the thermodynamic
limit [19,20]. In these studies, although they might yield
overlap-free final configurations, will follow a path through
phase space that cannot be followed by hard particles
without generating particle overlaps. Recent work shows,
however, that these soft-particle systems yield a range
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of jamming densities as the compression is performed at
finite temperature [21].
To investigate whether there is a structural difference

between the different compression speeds we calculated
the radial distribution function of the monodisperse final
configurations in fig 3b. The radial distribution functions
of these different configurations are nearly independent of
the compression speed and show all the typical features
observed for dense random packings of spheres, i.e.,
split second peak, oscillatory decay, averaged coordination
number larger than 4, etc. [33].
Finally, we study the jamming density as a function

of Γ for several size polydispersities δ. We perform simu-
lations of 2000 particles using varying Γ and we termi-
nate the simulations when the time between successive
collisions becomes of the same order of magnitude as our
numerical accuracy, yielding βPσ3 ∼ 105 for slow compres-
sions. To determine the jamming density φJ , we fit the
EOS close to jamming (the last few volume percent) with
eq. (1). We average our results over 50 different runs.
Figure 4a shows φJ as a function of Γ

−1 for varying δ.
We have fitted these extrapolations with φ= a+ b/log(Γ),

where a and b are fitting parameters. The jamming density
φJ for pure hard spheres ranges from 0.635 to 0.645 for
10� Γ−1 � 1000. For faster compressions Γ−1 < 10, the
simulations do not yield jammed configurations and the
system (partially) crystallizes for Γ−1 > 1000 as can be
observed in fig. 4 as φJ increases rapidly, which is consis-
tent with [7]. We also observe that φJ increases with
increasing δ. For δ= 10%, we find that φJ varies from
0.638− 0.658. As polydispersity prevents crystallization,
we are now able to study φJ for five orders of magni-
tude of Γ. Although the slope of the curves decreases
with increasing Γ−1 (slower compressions), it is hard
to justify an extrapolation to infinitely slow compres-
sion rates. Figure 4b shows φJ as a function of δ for
Γ−1 = 20 and 104. For comparison, we also plot data from
Nolan [16] and Schaertl [17]. Our results are close to [16],
but the results of [17], which are obtained from single runs
with low accuracy, deviate from our data. The strong Γ-
dependence of φJ explains the range of densities that has
been found in the literature obtained by different authors
and algorithms. Our results show that a size polydisper-
sity of up to 5% does not increase the jamming density
significantly from the monodisperse case. A much larger
dependence on δ is often used in the experiments [5] based
on ref. [17], casting doubts on the precise values for the
volume fractions determined in experiments via this route.
In conclusion, we studied the jamming density of

colloidal hard spheres as a function of compression rate
for a wide range of size polydispersities. As the focus
of our work is on jamming in systems of colloidal hard
spheres with a well-defined temperature, we employed
event-driven MD simulations at finite temperature (fixed
kinetic energy) using an algorithm that strictly prohibits
particle overlaps. We find a range of jamming densities
as a function of compression rate. We show that the
increase in jamming density cannot be explained by
crystallization effects in contrast with [7]. In addition,
our results contrasts the idea that the jamming or
random-close-packing density φrcp is well defined and
can be regarded as the infinite-pressure limit of the
metastable liquid branch [6,7,9]. Instead we find that
jammed configurations of polydisperse hard spheres can
be identified as the infinite-pressure limit of glassy states
and that different glasses can be formed that jam at differ-
ent jamming densities as a function of the compression
rate. Our work demonstrates nicely the compression rate
dependence of φJ for a wide range of size polydispersities
and complement recent work that showed the existence
of multiple glassy states and jamming densities for binary
mixtures of hard spheres [14,15].
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