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We study a model suspension of sterically stabilized colloidal particles and nonadsorbing ideal polymer
coils, both in bulk and adsorbed against a planar hard wall. By integrating out the degrees of freedom of the
polymer coils, we derive a formal expression for the effective one-component Hamiltonian of the colloids. We
employ an efficient Monte Carlo simulation scheme for this mixture based on the exact effective colloid
Hamiltonian; i.e., it incorporates all many-body interactions. The many-body character of the polymer-
mediated effective interactions between the colloids yields bulk phase behavior and adsorption phenomena that
differ substantially from those found for pairwise simple fluids. We determine the phase behavior for size ratios
q=�p /�c=1, 0.6, and 0.1, where �c and �p denote the diameters of the colloids and polymer coils, respec-
tively. For q=1 and 0.6, we find both a fluid-solid and a stable colloidal gas-liquid transition with an anoma-
lously large bulk liquid regime caused by the many-body interactions. We compare the phase diagrams ob-
tained from simulations with the results of the free-volume approach and with direct simulations of the true
binary mixture. Although we did not simulate the polymer coils explicitly, we are able to obtain the three
partial structure factors and radial distribution functions. We compare our results with those obtained from
density functional theory and the Percus-Yevick approximation. We find good agreement between all results for
the structure. We also study the mixture in contact with a single hard wall for q=1. Upon approach of the
gas-liquid binodal, we find far from the triple point, three layering transitions in the partial wetting regime.
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I. INTRODUCTION

Mixed suspensions of colloidal spheres and nonadsorbing
polymer coils are rich condensed-matter systems, revealing
not only fluid-solid coexistence but under the right condi-
tions also fluid-fluid phase coexistence of a colloid-dilute
“gas” phase and a colloid-dense “liquid” phase �1–8�. The
gas-liquid transition is driven by the depletion effect �1,9�,
which induces effective attractions between pairs of colloids
at surface-surface separations smaller than �about� twice the
radius of gyration, Rg, of the polymer; the strength of these
attractions increases with the polymer fugacity. A simple
model that describes the depletion effect is named after
Asakura and Oosawa �AO�, and was first formulated by Vrij
in 1976 �1�. In the AO model the colloids are treated as hard
spheres with diameter �c and the interpenetrable polymer
coils are treated as noninteracting �ideal� spheres as regards
their mutual interactions. The hard core of the colloids, how-
ever, excludes the center of mass of a polymeric sphere from
the center of a colloid by a distance �cp���c+�p� /2, where
we defined the diameter of a polymeric sphere as �p=2Rg.
The bulk phase diagrams of the AO model have been studied
extensively over the years—e.g., as a function of the colloid
packing fraction �c and the polymer fugacity zp at fixed size
ratio q=�p /�c. For q�0.4 no stable gas-liquid coexistence
was found, regardless the polymer and colloid concentration,
while the fluid-solid immiscibility gap broadens considerably
with increasing polymer fugacity �10–12�. For sufficiently
large polymers sizes, q�0.31 within the perturbation theory

of Ref. �10� or q�0.32 within the free-volume theory of Ref.
�11,13�, the phase diagram of the AO model does exhibit
gas-liquid, liquid-solid, and gas-solid coexistence, with a
gas-liquid-solid triple point and a gas-liquid critical point not
unlike simple fluids, with zp playing the role of inverse tem-
perature. Note that these colloidal analogs of simple liquids
have an extremely low gas-liquid interfacial tension �14–17�,
which recently led to the direct experimental observation of
capillary waves on the colloidal gas-liquid interface �18�.

Even though the AO model is a relatively simple nonad-
ditive hard-sphere mixture �19� it is not straightforward to
directly simulate it, at least not in all state points and geom-
etries of interest. The main complication is the relatively
large number of required �ideal� polymers in the simulation,
which causes slow equilibration in the case of, e.g., triple
points and wetting of planar walls. In this paper, we circum-
vent this problem and map the binary mixture onto a one-
component system of colloids with polymer-induced effec-
tive interactions �20,21�, possibly with a many-body
character despite the underlying pairwise additive mixture.
For size ratios q�0.1547 the effective system is pairwise
additive, but otherwise three-body and higher-body terms are
not vanishing. We describe a method to perform efficient
Monte Carlo simulations for the AO model within this one-
component approach and apply it to calculate bulk phase
diagrams for size ratios q=1, 0.6, and 0.1, as well as struc-
ture and adsorption at a planar hard wall for q=1.

The paper is organized as follows. In Sec. II, we describe
the model and derive an explicit expression for the effective
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one-component Hamiltonian by integrating out the degrees
of freedom of the polymer coils formally in the partition
function. In Sec. III, we present our efficient Monte Carlo
simulation scheme for a model colloid-polymer mixture,
which is based on the exact or full effective colloid Hamil-
tonian. In Sec. IV, we present results of computer simulations
based on the exact effective Hamiltonian. Phase diagrams for
size ratios q=1, 0.6, and 0.1 are shown and compared with
those obtained from the free-volume approach. In Sec. V, we
present results for the three partial structure factors and pair
correlation functions for q=1. We compare our results with
those obtained from density functional theory and the
Percus-Yevick approximation. In Sec. VI, we study the ad-
sorption phenomena of a colloid-polymer mixture in contact
with a planar hard wall for q=1. Finally, in Sec. VII, we end
with some concluding remarks. Parts of this work have been
presented elsewhere in a short communication �22,23�. In
addition, we refer interested readers to recent topical reviews
of colloid-polymer mixtures �21,24� and a detailed review of
the statistical mechanics of inhomogeneous model colloid-
polymer mixtures �25� and references therein.

II. MODEL AND EFFECTIVE HAMILTONIAN

The interactions in the AO model of Nc colloids at posi-
tions Ri �with 1� i�Nc� and Np polymers at positions r j
�with 1� j�Np� in a macroscopic volume V at temperature
T are described by a pairwise colloid-colloid interaction
Hamiltonian Hcc=�i�j

Nc �cc�Rij�, a pairwise colloid-polymer
Hamiltonian Hcp=�i=1

Nc � j=1
Np �cp��Ri−r j��, and a polymer-

polymer Hamiltonian Hpp�0. Here we introduced the
colloid-colloid pair potential �cc and the colloid-polymer
pair potential �cp given by

��cc�Rij� = �	 for Rij � �c,

0 otherwise,
	

��cp��Ri − r j�� = �	 for �Ri − r j� � �cp,

0 otherwise,
	

where �= �kBT�−1 with kB the Boltzmann constant and where
Rij = �Ri−R j�. The diameter of the colloids is �c, and the dis-
tance of closest approach of a colloid and a polymer is �cp
= ��c+�p� /2, with �p twice the polymer radius of gyration
Rg. We also consider external potentials uc�R� and up�r� act-
ing on the colloids and polymers, respectively, such that the
total interaction Hamiltonian of the system of interest here
reads H=Hcc+Hcp+Hpp+Uc+Up, where

Uc = �
i=1

Nc

uc�Ri�, Up = �
j=1

Np

up�r j� .

The kinetic energy of the polymers and colloids is not con-
sidered explicitly here, as it is trivially accounted for in the
classical partition sums to be evaluated below.

In this paper, we map the binary mixture of colloids and
polymers with interaction Hamiltonian H onto an effective
one-component system with Hamiltonian Heff by integrating
out the degrees of freedom of the polymer coils. Our deriva-

tion follows closely those of Refs. �12,20,25,26�.
It is convenient to consider the system in the �Nc ,V ,zp ,T�

ensemble, in which the fugacity zp=
p
−3 exp���p� of the

polymer coils is fixed, with 
� the thermal wavelength of
species �=c , p and with �p the chemical potential of the
polymers. The thermodynamic potential F�Nc ,V ,zp ,T� of
this ensemble can be written as

exp�− �F� = �
Np=0

	
zp

Np

Nc!
c
3NcNp!

TrcTrp exp�− �H�

=
1

Nc!
c
3Nc

Trc exp�− �Heff� , �1�

where the trace Trc is short for the volume integral 
VdRNc

over the coordinates of the colloids and similarly for Trp.
The effective Hamiltonian of the colloids is written as

Heff = Hcc + Uc − zpVf , �2�

where zpVf =zpVf��R�� is the negative of the grand potential
of the fluid of ideal polymer coils in the external potential Up
and in the static configuration of Nc colloids with coordinates
�R�. Here Vf��R�� is the free volume of the polymers in the
configuration of the colloids, weighted by the Boltzmann
factor exp�−�up�r�� of the external potential. Because of the
ideal character of the polymer-polymer interactions, it can be
written explicitly as

Vf = 
V

dr exp�− �up�r� − �
i=1

Nc

��cp��Ri − r��� . �3�

Nonvanishing contributions to Vf stem from those positions
r that are outside any of the Nc depletion shells. The shape of
the free volume is, in general, highly irregular and noncon-
nected. We decompose Vf, formally, into zero-colloid, one-
colloid, two-colloid, etc., contributions by expanding it in
terms of the colloid-polymer Mayer function f�r�, which for
the present model equals −1 for 0�r��cp and 0 otherwise.
One finds

Vf = 
V

dr exp�− �up�r���
i=1

Nc

�1 + f��Ri − r���

= Vf
�0� + �

i=1

Nc

Vf
�1��Ri� + �

i�j

Nc

Vf
�2��Ri,R j� + ¯ , �4�

with the zero-colloid term

Vf
�0� = 

V

dr exp�− �up�r�� �5�

and, for k1, the k-colloid contribution

Vf
�k� = 

V

dr exp�− �up�r���
m=1

k

f��Rim
− r�� , �6�

where only those positions r give nonvanishing contributions
where the depletion layers of �at least� k colloids overlap
simultaneously.
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We give explicit expressions for Vf
�k� for k=0, 1, and 2, in

a translationally invariant bulk system, where Up�0. The
zero-body contribution Vf

�0� is equal to the total volume of the
system V. It follows directly from Eq. �4� that the one-body
contribution Vf

�1�=−v1 with v1=��cp
3 /6, which can be inter-

preted as the volume that is excluded for a polymer coil by a
single colloid. Vf

�2��Ri ,R j� is the lens-shaped overlap volume

of two spheres of radius �cp at separation Rij. Note that these
k=0,1 terms are irrelevant offsets that do not affect the ther-
modynamics and structure of the bulk suspension �20� and
that −zp�−1Vf

�2��Rij���AO�Rij� is the well-known depletion
potential of the AO model �1,10�. The exact expression for
the potential was derived by Asakura and Oosawa �9� and
reads

��AO�Rij� = �−
��p

3zp

6

�1 + q�3

q3 � �1 −
3Rij

2�1 + q��c
+

Rij
3

2�1 + q�3�c
3� for �c � Rij � 2�cp,

=0 for Rij � 2�cp.
�

This Asakura-Oosawa pair potential describes an attractive
well close to the surface of the colloid, whose depth in-
creases linearly with increasing zp. The range of the potential
is given by �p.

The higher-order contributions Vf
�k� correspond to k-body

potentials, which will be nonzero when the size ratio q
0.1547. In Sec. IV B, we show explicitly that an increasing
number of higher-body terms becomes nonzero when q in-
creases. This can be made plausible by geometric arguments,
since the number of nonoverlapping colloidal spheres that
can simultaneously overlap with a polymer coil increases
when q increases. Thus, for large size ratios, three- and
more-body interactions cannot be neglected, as also pointed
out in Ref. �7�. These authors performed simulations for the
AO model, in which the polymers are represented by ideal
particles on a cubic lattice �7�. In the work presented here,
we investigate the influence of three- and higher-body inter-
actions on the bulk and interfacial phase behavior and struc-
ture of the AO model, in which the polymer particles are not
restricted to lattice sites. To this end, we developed a simu-
lation method for the AO model, based on the exact effective
colloid Hamiltonian, containing all many-body interaction
terms. This method was briefly described in Ref. �22� and
will be explained in more detail here.

III. SIMULATION METHOD

Calculating the effective Hamiltonian of the colloids in
the AO model involves the evaluation of Vf given in Eq. �3�,
which is computationally extremely demanding by, e.g., a
finite-element method because of the highly irregular shape
of the volume that contributes to Vf. Here we discuss a
method with which changes of Vf can be calculated accu-
rately and efficiently, which is then used in a Monte Carlo
scheme that generates colloid configurations �R� with the
correct Boltzmann weight exp�−�Heff� to sample phase
space in order to evaluate thermal averages of the AO model.
This method includes all effective many-body interactions.

The starting point is the expansion of Vf into k-body terms
as given in Eq. �4�. We separate the Vf

�k� terms with k

=0,1 ,2, for which analytic expressions exist for some Up,
from those with k3, such that

Vf = Vf
�0� + �

i=1

Nc

Vf
�1��Ri� + �

i�j

Nc

Vf
�2��Ri,R j� + Vf

�3+�, �7�

where the last term is the accumulation of all k3 contribu-
tions given by

Vf
�3+� = �

k3
� �

i1�¯�ik

Nc

Vf
�k��Ri1

, . . . ,Rik
�� . �8�

The pairwise additivity approximation is recovered when
Vf

�3+� is set to zero. Here we go beyond this approximation by
a numerical evaluation of Vf

�3+�; the k�2 terms are treated
analytically. For the present model an efficient scheme can
be constructed by introducing n=n�r��−�i=1

Nc f��r−Ri��, the
number of simultaneously overlapping depletion layers in r.
Figure 1 shows a schematic configuration of colloidal par-
ticles �solid spheres� and their depletion zones �outer
circles�—i.e., the volume that each colloid excludes for the
center of mass of a polymer coil. We also plot the values of
n for the different regions. It is easy to show that the free
volume is given by the integral of exp�−�up�r�� over the
volume V for which n=0, which we write as

Vf = 
n=0

dr exp�− �up�r�� . �9�

As analytic expressions exist for the zero-, one-, and two-
body contributions for some Up, we separate these from Vf.
These terms are given by

Vf
�0� = dr exp�− �up�r�� ,

�
i=1

Nc

Vf
�1��Ri� = − 

n1
dr exp�− �up�r��n�r� ,
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�
i�j

Nc

Vf
�2��Ri,R j� = 

n2
dr exp�− �up�r��

n�r�!
�n�r� − 2�!2!

= 
n2

dr exp�− �up�r��
n�r��n�r� − 1�

2
.

�10�

Combining Eqs. �10� with Eq. �9�, Vf can be written as

Vf = Vf
�0� − 

n1
dr exp�− �up�r��

= Vf
�0� − 

n1
dr exp�− �up�r���n�r� + �1 − n�r���

= Vf
�0� + �

i=1

Nc

Vf
�1��Ri� − 

n2
dr exp�− �up�r���1 − n�r��

= Vf
�0� + �

i=1

Nc

Vf
�1��Ri� + �

i�j

Nc

Vf
�2��Ri,R j� + Vf

�3+�, �11�

with

Vf
�3+� = −

1

2


n3
dr exp�− �up�r���n�r� − 1��n�r� − 2� ,

�12�

where the integration is only over those regions where n�r�
3. This result also follows from inserting the identity

�
i1�¯�ik

Nc

Vf
�k��Ri1

, . . . ,Rik
�

= �− 1�k
nk

dr exp�− �up�r��
n�r�!

�n�r� − k�!k!
�13�

into Eq. �8�, after a little algebra. Note that Eq. �12� holds
strictly for the present Mayer function, whereas Eqs. �7� and
�8� hold for any f provided the polymer-polymer interaction
is ideal.

Since the standard Metropolis algorithm for Monte Carlo
�MC� simulations is based on an acceptance probability
min�1,exp�−��Heff��, with �Heff the change of Heff due to a
proposed configuration change, it follows that MC simula-
tions of the AO model can be performed provided the corre-
sponding change �Vf

�3+� can be evaluated efficiently—the
changes in the two- and one-body terms are easily calculated
as in pairwise systems. For MC moves involving only a
single colloid—say, R1→R1�—the only contributions to
�Vf

�3+� occur inside the two spheres of radius �cp centered
about R1 and R1�. In both spheres a spherically symmetric
grid with typically M �2.5�105 grid points rm with 1�m
�M is constructed, and from n�rm� one can estimate �Vf

�3+�

using Eq. �12� �22�. We considered the present value of M
the optimal balance between accuracy and computational
speed.

If V�k� cannot be determined analytically for k=2,1 be-
cause of a nontrivial up�r�, one can derive expressions simi-
lar to Eq. �12� for Vf

�2+� or Vf
�1+�. In summary, we arrive at

Heff given by Eq. �2� with Vf given by Eqs. �11� and �12�,
and with changes in Vf that can be calculated sufficiently
efficiently to be useful in MC simulations, as we will show
below.

IV. RESULTS OF SIMULATIONS USING THE EFFECTIVE
HAMILTONIAN

A. Bulk phase diagrams

In order to determine the phase diagram of the effective
one-component system using our MC scheme, we first cal-
culate the thermodynamic potential F, defined in Eq. �1� with
Heff given by Eq. �2�, as a function of Nc, V, and zp. For
convenience we usually replace the dependence on zp by that
on the reservoir packing fraction �p

r ���p
3zp /6. As the free

energy cannot be measured directly in a Monte Carlo simu-
lation, we use thermodynamic integration to relate the free-
energy density f��c ,�p

r �=��c
3F�Nc ,V ,zp ,T� /6V of the effec-

tive system to that of a reference hard-sphere system at the
same colloid packing fraction �c���c

3Nc /6V:

f��c,�p
r � = f��c,�p

r = 0� + fattr��c,�p
r � , �14�

with

fattr��c,�p
r � = 

0

�p
r

d�p
r�� �f��c,�p

r��

��p
r� � �15�

and with f��c ,�p
r =0� the free-energy density of the pure ref-

erence system of hard spheres, for which we use the

FIG. 1. �Color online� A schematic configuration of colloids
�solid circles� with their depletion zones—i.e., the volume that each
colloid excludes for the center of mass of a polymer coil. We also
plot the values of n=n�r��−�i=1

Nc f��r−Ri��—i.e., the number of si-
multaneously overlapping depletion layers—for the different re-
gions. When two colloids approach each other and the depletion
zones overlap, there is an increase in the available or free volume
for the polymer coils, resulting in an effective attractive interaction
between the colloids due to the so-called depletion effect.
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Carnahan-Starling expressions �27� for the fluid and the ana-
lytic form for the equation of state proposed by Hall �28� for
the solid phase. In the latter case an integration constant is
determined such that the simulation results for fluid-solid
coexistence of the pure hard-sphere system are recovered
�29�. The integrand in Eq. �15� can be rewritten using Eq. �1�
as

� ��f��c,�p
r �

��p
r � = −

����p
r ,�c

q3 , �16�

where we have introduced the quantity
����p

r ,�c
���p� /�p

r—i.e., the ratio of the density of polymer
in the mixture to that in the reservoir—for given polymer
reservoir packing fraction �p

r and colloid packing fraction �c.
The brackets �¼� denote the thermal average over all con-
figurations, weighted by exp�−�Heff��p

r ��.
In order to map out the phase diagram the free-energy

density �14� must be determined from �p
r� integrations for

many state points ��c ,�p
r �. We chose therefore to simulate

relatively small systems, with Nc=128. We use an equidis-
tant �r3 ,cos � ,�� grid of 100, 50, and 50 points, respectively,
to evaluate Vf

�3+�. In Fig. 2, we plot �p as a function of �p
r as

measured in a simulation for several �c and size ratio q=1.
We also plot �p as predicted by the free-volume approach
�11,13�, which is based on the assumption

����p
r� � ����p

r�=0 �17�

and employs scaled particle expressions for the volume that
is available for the polymer in a system of pure hard spheres

��p
r�=0�. Figure 2 shows good agreement between the simu-

lation results and those obtained from the free-volume theory
for �c�0.01 and �c0.30 and for 0.01��c�0.30 provided
�p

r �0.8 �we will show below that the state points for �p
r

�0.8 for which we do find deviations with free-volume

theory are inside the gas-liquid coexistence region�. Using
the simulation data for �p as a function of �p

r , we calculate
the free-energy density f��c ,�p

r � from Eq. �14� by numerical
integration. Once f is known, we employ common tangent
constructions at fixed �p

r to obtain the coexisting phases; i.e.,
we fitted polynomials to f and computed the pressure and
chemical potential at each �c. The densities of the coexisting
phases can then be determined by equating the pressures and
chemical potentials in both phases. For more details we refer
the reader to Ref. �20�.

The above procedure has been carried out to determine
the phase diagram for size ratio q=1. In Fig. 3, we show the
resulting phase diagram in the ��c ,�p

r � plane. The coexisting
densities are denoted by the open squares. This representa-
tion, which is the natural one given our approach, implies
that the tielines connecting coexisting state points are hori-
zontal. At �p

r =0 our procedure ensures that we recover the
known freezing transition of the pure hard-sphere system. At
sufficiently large polymer reservoir packing fraction, we find
a liquid-vapor transition with a critical point at �p

r,c�0.86
and a triple point at �p

r,t�6.0 at which the colloidal gas,
liquid, and solid coexist. Note that the ratio �p

r,t /�p
r,c�7 is

remarkably high compared to the corresponding �inverse�
temperature ratio in simple fluids. Comparing the present
“exact” phase diagram for q=1 with the one based solely on
pairwise AO interactions, for which the triple and critical
point values of �p

r are �0.8 and �0.5, respectively �12�,
shows that the main effect of the many-body interactions is
to enhance the �p

r regime of stable gas-liquid coexistence
considerably at the expense of that of the gas-solid
coexistence.

FIG. 2. The polymer packing fraction �p of a colloid-polymer
mixture with size ratio q=1.0 versus that of the reservoir �p

r for
several colloid packing fractions �c. The asterisks denote the simu-
lation data while the solid lines denote the results of the free-
volume theory �11,13�. Results like these are used to calculate
����p

r ,�c
as defined below Eq. �16�.

FIG. 3. �Color online� Bulk phase diagram of the AO model
�size ratio q=1� as a function of the colloid packing fraction �c and
the polymer reservoir packing fraction �p

r as obtained from simula-
tions of the exact effective one-component Hamiltonian �open
squares� and from Gibbs ensemble Monte Carlo simulations using
the true binary mixture �solid circles�. F and S denote the stable
fluid and solid �fcc� phases. F+S and F+F denote, respectively, the
stable fluid-solid and fluid-fluid coexistence regions. The solid lines
denote the bulk binodals of the free-volume theory �11,13�. Note
that all the tielines are horizontal �not drawn�.
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In addition, we perform Gibbs ensemble simulations of
the true binary mixture; i.e., the polymer coils �modeled as
penetrable spheres� are included explicitly in the simulations.
In this method, the two coexisting phases are simulated using
standard displacement moves in separate simulation boxes
which may exchange volume and particles in order to fulfill
the phase equilibrium requirements of equal pressures and
chemical potentials. The simulation results using the binary
mixture agree well with those obtained from an effective
one-component system. This is not surprising as the mapping
of the binary mixture onto the effective one-component sys-
tem is exact and no approximations are made to the corre-
sponding effective one-component Hamiltonian. The good
agreement also shows that our numerical calculation of the
higher-body terms is sufficiently accurate. Note that the
Gibbs ensemble simulations of the true binary mixture are
only possible fairly close to the critical point.

The solid lines are the results from free-volume theory
�11,13�. We find good agreement between both results close
to the triple point. The critical point using the free-volume
theory is shifted to lower �p

r with respect to the simulations.
In order to appreciate the agreement between the two phase
diagrams more, we plot �fattr��c ,�p

r � versus the colloid pack-
ing fraction for polymer reservoir packing fractions �p

r =0.5,
1.0, and 2.0. The open circles denote the simulation results
for state points in the gas-liquid coexistence region, while
the solid circles denote the simulation results for the state
points in the stable fluid phase. Figure 4 shows that the free-
volume theory—i.e., Eq. �17� with Eqs. �16� and �15�—
underestimates �fattr systematically at colloid packing frac-
tions 0.01��c�0.3 and the deviations become larger at
increasing polymer reservoir packing fraction. However, at
large polymer reservoir packing fractions, the phase bound-
aries are located at very small and large colloid packing

fractions—i.e., at �c�0.01 and �c�0.3—where the devia-
tions for �fattr are small. At low polymer reservoir packing
fractions, the free-volume theory underestimates �fattr only
slightly, resulting in a critical point shifted to lower �p

r with
respect to the simulations. In conclusion, there is excellent
agreement between the simulation and free-volume results of
�fattr for all state points in the stable fluid phase, yielding
good agreement of the two phase diagrams.

Using the same procedure as described above, we also
determined the phase diagram for size ratio q=0.6. In Fig. 5,
we show the resulting phase diagram in the ��c ,�p

r � plane.
Again, we find good agreement with the phase diagram ob-
tained from free-volume theory. At sufficiently large polymer
reservoir packing fractions, we find a critical point at �p

r,c

�0.53 and a triple point at �p
r,t�1.35. The ratio �p

r,t /�p
r,c

�2.55 is more than twice as large than the ratio based solely
on pairwise AO interactions, for which the triple- and
critical-point values of �p

r are �0.6 and �0.5, respectively
�12�. The enhancement of the bulk liquid regime due to
many-body interactions is less pronounced as in the case for
q=1.

For comparison, we also plot the phase diagram for size
ratio q=0.1. In this case, the mapping onto the two-body
approximation of the effective Hamiltonian is exact, as the
three- and higher-body terms are identically zero. The full
phase diagram using the Asakura-Oosawa pair potential ap-
proximation to the effective Hamiltonian was also deter-
mined in Ref. �12� by computer simulations. In Fig. 6, we
show the resulting phase diagram in the ��c ,�p

r � plane along
with the one obtained from free-volume theory. We find that
the fluid-solid binodal from free-volume theory is shifted to
higher �p

r compared with simulations, while the free-volume

FIG. 4. The free-energy density difference between the AO
model �size ratio q=1.0� and a pure hard-sphere system
�fattr��c ,�p

r � as a function of the colloid packing fraction �c and for
polymer reservoir packing fractions �p

r =0.5, 1.0, and 2.0 �from bot-
tom to top�. The circles denote the simulation results, while the
solid lines denote the predictions from free-volume theory using Eq.
�17� �11,13�. Note that excellent agreement is found for all state
points in the stable fluid phase �denoted by the solid circles, while
the open circles denote the state points in the two-phase region�.

FIG. 5. �Color online� Bulk phase diagram of the AO model
�size ratio q=0.6� as a function of the colloid packing fraction �c

and the polymer reservoir packing fraction �p
r as obtained from

simulations of the exact effective one-component Hamiltonian
�open squares�. F and S denote the stable fluid and solid �fcc�
phases. F+S and F+F denote, respectively, the stable fluid-solid
and fluid-fluid coexistence regions. The solid lines denote the bulk
binodals of the free-volume theory �11,13�. Note that all the tielines
are horizontal �not drawn�.

DIJKSTRA et al. PHYSICAL REVIEW E 73, 041404 �2006�

041404-6



theory fluid-fluid binodal is shifted to unphysically high col-
loid packing fractions.

B. Importance of effective many-body interactions

In Sec. II, we mentioned that an increasing number of
higher-body contributions become nonzero upon increasing
q. This can easily be understood since the thickness of the
depletion layers increases upon increasing q and, hence, the
number of depletion layers that can simultaneously overlap
increases, upon increasing q. In order to quantify the impor-
tance of many-body interactions, we introduce P�n�, the
probability that we find n=n�r� overlapping depletion layers
at r in a system consisting of N colloids in a volume V and a
polymer reservoir packing fraction �p

r and size ratio q. Using
our numerical evaluation of higher-body terms, we can easily
measure P�n� in our simulations. In Fig. 7 we show P�n� for
size ratios q=0.1, 0.6, and 1, respectively, for varying colloid
packing fractions �c. We set �p

r to zero as we expect the �p
r

dependence to be small on the basis of Fig. 2 and the good
agreement between free-volume theory �using �p

r =0 as ref-
erence state� and our simulations. For q=0.1, we indeed find
that P�n�=0 for n3. Hence, three- and higher-body inter-
actions are identical to zero and the mapping of the binary
colloid-polymer mixture onto an effective Hamiltonian with
only effective pair interactions for the colloids is exact for
q=0.1. We also observe that P�n=1� increases upon increas-
ing �c as expected, and that P�n=2� increases only slightly
for increasing �c.

For q=0.6, we find that P�n�=0 for n7 and the impor-
tance of many-body interactions, in particular the three-body
interactions, increases with �c. Figure 7 also shows that
P�n�=0 for n8, when q=1. Moreover, we find that the

dominant contribution to the effective interaction changes
from the zero-body term to the six-body term upon increas-
ing �c.

C. Structure

In this subsection we turn attention to the structure of the
model colloid-polymer mixture for q=1. Given that we de-

FIG. 6. �Color online� Bulk phase diagram of the AO model
�size ratio q=0.1� as a function of the colloid packing fraction �c

and the polymer reservoir packing fraction �p
r as obtained from

simulations of the exact effective one-component Hamiltonian
�open squares�. F and S denote the stable fluid and solid �fcc�
phases. F+S denotes the stable fluid-solid coexistence region. The
solid lines denote the bulk binodals of the free-volume theory
�11,13�. Note that all the tielines are horizontal �not drawn�.

FIG. 7. The probability of n overlapping depletion layers for a
colloid-polymer mixture with polymer reservoir packing fraction
�p

r =0 and colloid packing fraction �c=0.01 ���, 0.1 ���, 0.3 ���,
0.5 ���, and 0.74 ��� as labeled for varying size ratios q=0.1, 0.6,
and 1.0 from top to bottom.
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termined the phase diagrams in Sec. IV A, we can now cal-
culate the colloid-colloid, colloid-polymer, and polymer-
polymer radial distribution function g�r� and the structure
factor S�k� in the fluid phase but close to the phase bound-
aries. We performed simulations with Nc=1000 colloids, in-
teracting with the full effective Hamiltonian obtained by in-
tegrating out the degrees of freedom of the polymer. At first
sight it may seem surprising that it is possible to recover
information about the structure of the polymer as we traced
out the polymer degrees of freedom. However, as the poly-
mer coils are ideal, the number density of the polymer is
constant ��p=�p

r � in the free volume or the holes of the sys-
tem. The colloid-polymer and polymer-polymer correlations
can therefore be obtained from the colloid-hole and hole-
hole correlations. More precisely, we determine the colloid-
polymer and polymer-polymer correlations from 10 000 ran-
domly inserted polymer coils in an instantaneous colloid
configuration, provided that no overlap exists between the
polymer and colloids. This procedure breaks down in prac-
tice when the probability to insert a polymer is smaller than
about 10−4. Our procedure for calculating the colloid-
polymer and polymer-polymer correlations is therefore
restricted to colloid packing fractions �c�0.4. The
structure factor S���k� is calculated using S���k�
= �N�N��−1/2����k����−k��, where ���k�=�i=1

N� exp�ik ·ri�. In
Figs. 8–11 we show g���r� and S���k� for four different state
points, where g���r� is the radial distribution function. The
packing fractions of the statepoints are given in Table I.

Figure 8 shows the colloidal structure factor Scc�k� and
radial distribution function gcc�r� of the effective one-
component system using the full effective Hamiltonian in
simulations with size ratio q=1, polymer reservoir packing
fraction �p

r =4.8, and colloid packing fraction �c=0.48. The
colloid packing fraction was too high for our procedure to
calculate the colloid-polymer and polymer-polymer correla-
tions as the probability to insert a polymer in a typical col-
loid configuration is extremely small ��10−7�. For compari-
son, we also plot the Percus-Yevick �PY� results for gcc�r�
and Scc�k� of a pure system of hard spheres at the same
colloid packing fraction. We find good agreement between
the PY result and the simulation, showing that the structure
of the colloids in the mixture is close to that of pure hard
spheres. This result supports the validity of assumption �17�
in the free-volume theory at high colloid packing fractions.
We also show the three partial radial distribution functions
obtained from density functional theory �DFT� of the binary
mixture. For our DFT calculations, we employ the test par-
ticle approach, in which one particle of the mixture is fixed
at the origin and thereby acts as an external potential for the
rest of the mixture. For gcc�r� and gcp�r� we fix a colloid,
which generates a hard-sphere potential for both the colloids
and polymer. By minimizing the density function ���c ,�p�
we obtain the density distributions �cc�r� and �cp�r� of the
colloids and polymer, respectively, in the external field ex-
hibited by a colloid. From those density distributions the
partial radial distribution functions follow directly by gcc�r�
=�cc�r� /�c and gcp�r�=�cp�r� /�p. We use the same strategy
in order to obtain gpc�r� and gpp�r�—however, now we have
to fix a polymer at the origin, which exhibits an external

potential only on the colloid components. The polymer in the
mixture feels this external field only indirectly through the
inhomogeneous distribution of colloids. Again we obtain
density distributions �pc�r� and �pp�r� from which the partial
radial distribution functions gpc�r�=�pc�r� /�c and gpp�r�
=�pp�r� /�p follow. It is interesting to note that through the
asymmetry in the external field exhibited by either a colloid
or a polymer one finds that gcp�r��gpc�r�, despite the fact
that the functional we minimized predicts symmetric direct
correlation functions—i.e., ccp

�2��r�=cpc
�2��r�. We have verified

that while the shape of gpp�r� depends on both �c and �p
r , in

the limit r→0 we obtain the correct behavior gpp�r→0�
→1/�, which depends only on the colloid packing fraction

FIG. 8. Colloid-colloid radial distribution function gcc�r� �top�
and structure factor Scc�k� �bottom� of the effective one-component
system �open circles� using the full effective Hamiltonian in simu-
lations with size ratio q=1, polymer reservoir packing fraction �p

r

=4.8, and colloid packing fraction �c=0.48. The solid lines are the
PY results for Scc�k� and gcc�r� of pure hard spheres at a packing
fraction �c=0.48. The DFT results for the colloid-colloid and
colloid-polymer radial distribution functions of the binary mixture
are also denoted by solid lines, but are indistinguishable from each
other and from the PY result. The polymer-polymer radial distribu-
tion function gpp�r� obtained from DFT is denoted by the dashed
line and DFT yields gpp�r=0��7�106.
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�c. This result can easily be seen if one realizes that the
probability to find a second polymer close to the first poly-
mer that found an empty hole in a fixed colloid configuration
is 1 /� times higher than for two polymers infinitely far apart
from each other. Figure 8 shows that all partial g���r�’s from
DFT are indistinguishable from the PY result and from each
other, except that the polymer-polymer radial distribution
function continues for r��c and rises steeply for r→0.
Density functional theory yields gpp�r=0��7�106.

Figure 9 shows the colloid-colloid, colloid-polymer, and
polymer-polymer radial distribution functions and structure
factors from simulations for polymer reservoir packing frac-
tion �p

r =1.65 and colloid packing fraction �c=0.35. The

most striking feature is the similarity of the colloid-colloid
and colloid-polymer structure factors and radial distribution
functions, while again a very large value is found for gpp�r�
as r→0 and a steep rise for Spp�k� as k→0. For comparison,
we also show the Percus-Yevick �PY� result for gcc�r� and
Scc�k� of pure hard spheres at the same colloid packing frac-
tion. We were not able to find a PY solution for the binary
AO model. We find good agreement between the PY result
and the simulations, showing again that the structure of the
colloids in the mixture is close to that of pure hard spheres.
We also show the three partial radial distribution functions
obtained from DFT of the binary mixture. We find that gcc�r�
is indistinguishable from the PY result, and we find good
agreement between the simulations and DFT, although there
are small deviations for gpp�r�.

FIG. 9. Colloid-colloid �open circles�, colloid-polymer �open
squares�, and polymer-polymer �solid circles� partial radial distribu-
tion functions g���r� �top� and structure factors S���k� �bottom� of
the effective one-component system using the full effective Hamil-
tonian in simulations with size ratio q=1, polymer reservoir pack-
ing fraction �p

r =1.65, and colloid packing fraction �c=0.35. The
solid lines are the PY results for gcc�r� and Scc�k� of pure hard
spheres at a packing fraction �c=0.35. The DFT results for the three
partial radial distribution functions of the binary mixture are also
denoted by solid lines. The DFT result for gcc�r� is indistinguish-
able from the PY result. For clarity, gcp�r� and gpp�r� are shifted in
the vertical direction. The insets show gpp�r� and Scc�k� at a larger
scale.

FIG. 10. Colloid-colloid �open circles�, colloid-polymer �open
squares�, and polymer-polymer �solid circles� partial radial distribu-
tion functions g���r� �top� and structure factors S���k� �bottom� of
the effective one-component system using the full effective Hamil-
tonian in simulations with size ratio q=1, polymer reservoir pack-
ing fraction �p

r =0.5, and colloid packing fraction �c=0.1. The solid
lines are the PY results for the three partial structure factors S���k�
of the binary mixture �bottom figure� and the DFT results for the
three partial radial distribution functions g���r� of the binary mix-
ture �top figure�. The inset shows Spp�k� at a larger scale.
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In Fig. 10, we show the simulation results for the partial
radial distribution functions g���r� and structure factors
S���k� for a polymer reservoir packing fraction �p

r =0.5 and
colloid packing fraction �c=0.1, which is close to the critical
point. All three partial structure factors S���k� exhibit a steep
rise as k→0, characteristic of Ornstein-Zernike behavior. For
comparison, we plot the PY results for the three partial struc-
ture factors of the binary AO model and we find reasonable
agreement for the colloid-colloid and colloid-polymer struc-
ture factors. The small-angle polymer-polymer scattering is
largely underestimated in the PY result compared with simu-
lations. We also show the three partial radial distribution
functions obtained from DFT of the binary mixture. We find
good agreement for the colloid-colloid and colloid-polymer
radial distribution functions and small deviations for the

polymer-polymer radial distribution function.
Figure 11 shows the simulation results for the partial ra-

dial distribution functions g���r� and structure factors S���k�
for a polymer reservoir packing fraction �p

r =1.0 and colloid
packing fraction �c=0.01. For comparison, we also plot the
PY results for the three partial structure factors of the binary
AO model, which deviate considerably from the simulation
results. We also show the three partial radial distribution
functions obtained from DFT, and we find good agreement
with the simulation results. We note that hardly any structure
appears in the polymer-polymer radial distribution function
and structure factor as the colloid packing fraction is very
low and the polymers are treated as ideal particles.

D. Adsorption at a hard wall

We now consider the AO model with q=1 in contact with
a planar hard wall at z=0—i.e., such that �up�z�=�uc�z�
=0 for z��c /2 �=�p /2� and 	 for z��c /2, with z the dis-
tance of a particle from the wall. One then finds from Eq. �6�
for k=1 that the effective, polymer-induced wall-colloid po-
tential −zp�−1Vf

�1��z� is attractive if z��p+�c /2, with a
strength similar to that of the bulk colloid-colloid depletion
potential �AO�Rij� �26�. On the basis of the attractive one-
body potential one expects preferential colloid adsorption by
the hard wall. Moreover, given the large �p

r interval
��p

r,c ,�p
r,t� with a stable gas-liquid binodal, one might expect,

by analogy with simple fluids, a wetting transition at some
�p

r =�p
r,w in this interval �30�. However, unlike the case of

simple fluids the pair interaction −zp�−1Vf
�2��Ri ,R j� is now a

nontrivial function of Ri and R j for two colloids close to the
wall, with a strength that is reduced considerably compared
to its translationally invariant bulk form �AO�Rij� �26�. This
reduction, which is caused by an overlap of the pairwise
“lens” with the wall, tempers the tendency to form a dense
liquid layer at contact and thus competes with the attractive
one-body potential. The effect of the k-body interactions
with k3 on the adsorption is less clear. Here we investigate
the adsorption with a grand canonical version of our MC
scheme, which includes all many-body effects. We measured
the equilibrium colloid density profile �c�z� at fixed �p

r in a
rectangular box of volume A�L. Here A is the area of the
hard wall, along which we apply periodic boundary condi-
tions, and L=50�c the box length perpendicular to the wall
such that 0�z�L. We use the technique of Ref. �31� to
impose a flat average profile �c�z�=�c

b for L−2�c�z�L,

TABLE I. The state points at which the partial structure factors
and radial distribution functions were determined in terms of the
colloid packing fraction �c and the polymer reservoir packing frac-
tion �p

r , all for size ratio q=1.

State point �c �p
r

A 0.48 4.8

B 0.35 1.65

C 0.1 0.5

D 0.01 1.0

FIG. 11. Colloid-colloid �open circles�, colloid-polymer �open
squares�, and polymer-polymer �solid circles� partial radial distribu-
tion functions g���r� �top� and structure factors S���k� �bottom� of
the effective one-component system using the full effective Hamil-
tonian in simulations with size ratio q=1, polymer reservoir pack-
ing fraction �p

r =1.0, and colloid packing fraction �c=0.01. The
solid lines are the PY results for the three partial structure factors
S���k� of the binary mixture �bottom figure� and the DFT results for
the three partial radial distribution functions g���r� of the binary
mixture �top figure�.

DIJKSTRA et al. PHYSICAL REVIEW E 73, 041404 �2006�

041404-10



where the bulk packing fraction �c
b is fixed by the chemical

potential. For all state points considered the density profile is
found to be constant in 10�c�z�L; i.e., we mimic a semi-
infinite bulk gas in contact with a hard wall.

In Fig. 12 we show the density profile �c�z� in the vicinity
of the hard wall for �p

r =0.9 at several �c
b��c

sat, the saturated
colloid gas density. The exact values of �c

b can be found in
Fig. 12�b�, where we show the corresponding dimensionless
adsorption ��c

2=
0
Ldz��c�z�−�c

b� /�c as a function of �c
b. The

formation of a thick liquid film and the logarithmic increase
of ��c

2 as �c
b→�c

sat in Fig. 12�a� are strongly indicative of
complete wetting at �p

r =0.9. From the slope of the inset in
Fig. 12�b� one obtains the correlation length �
= �0.58±0.01��c of the wetting phase �30�, which agrees well
with �= �0.60±0.04��c as determined from the asymptotic
decay of the radial distribution function of the bulk coexist-
ing liquid at the value of �p

r . Figure 13 shows typical colloid
configurations for �p

r =0.9 at �c
b=0.013 ��0.42�c

sat� and at
�c

b=0.029 ��0.94�c
sat�. We clearly observe the formation of a

thick liquid film at the wall upon approaching bulk coexist-
ence. Note that the interface between the adsorbed liquid

film and the gas phase shows huge density fluctuations as the
interfacial tension is very small �16,17�.

For q=1 we also studied the density profiles �c�z� and the
adsorption � for �p

r =1.0 and 1.05. The case �p
r =1.0 is shown

in Fig. 14 for several �c
b��c

sat; the figure for the case �p
r

=1.05 can be found in Ref. �23�. Again the formation of a
thick liquid film and the logarithmic increase of ��c

2 provide
evidence for complete wetting for �p

r =1.0 and 1.05. The cor-
relation length determined from the slope of ��c

2�� upon
approach of saturation is �= �0.54±0.01��c and �
= �0.55±0.01��c for �p

r =1.0 and 1.05, respectively, which
agree well with �= �0.56±0.04��c and �= �0.55±0.04��c as
determined from the asymptotic decay of the radial distribu-
tion function.

Figure 15 shows the density profiles �c�z� for �p
r =1.12 at

several �c
b��c

sat along with the corresponding dimensionless
adsorption in the inset. The finite � for �c

b→�c
sat and the

finite liquid film thickness in Fig. 15 imply partial wetting at
�p

r =1.12. Indeed partial wetting was observed for all �p
r

1.10 that we considered. This implies that the wetting tran-
sition occurs at �p

r,w with 1.05��p
r,w�1.10. Despite consid-

erable effort we did not find any evidence for a prewetting
transition—i.e., a transition from a thin to a thick liquid
film—which by analogy with simple liquids is to be expected
in the complete wetting regime �p

r ��p
r,w if the wetting tran-

sition is first order �30�.

FIG. 12. �a� Colloid density profiles �c�z� for several fugacities
�asymptotic colloid bulk densities �c

b�, near a hard wall at z=0. The
reservoir polymer packing fraction is �p

r =0.9, and the size ratio q
=�p /�c=1. �b� The adsorption ��c

2 upon approach of gas saturation
�c

sat �dashed vertical line�. The inset shows that the adsorption ��c
2

appears to diverge as −�� with �� ln��c
sat−�c

b� and � the bulk cor-
relation length �see text�. The solid line denotes a linear fit.

FIG. 13. �Color online� Typical colloid configurations of the
adsorption of a colloid-polymer mixture with size ratio q=1 at a
planar hard wall obtained from Monte Carlo simulations based on
the exact effective one-component Hamiltonian for the colloids.
The polymer reservoir packing fraction is �p

r =0.9, and the colloid
packing fraction is �c

b=0.013 �top� and 0.029 �bottom�.
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In accordance with the DFT results of Refs. �25,32�, we
did find off-coexistence jumps �� in � in three separate re-
gimes �p

r ��p
r,w—i.e., in the partial wetting regime. The inset

of Fig. 15 shows such a jump, which we associate, following
Refs. �25,32�, with a layering transition �even though the
adsorption is not strictly localized in a well-defined layer�.
From the profiles in Fig. 15 one checks that �� is due to a
condensation in a regime 2�c�z�6�c. Typical colloid con-
figurations just before and after the jump in the adsorption
are shown in Fig. 16. This “third” layering transition was
also found at �p

r =1.10, although slightly further off coexist-

ence and with a smaller ��. At yet smaller �p
r we did not

detect any discontinuity in the adsorption, consistent with a
low-�p

r critical point for a line of layering transitions. Figure
17 shows a similar adsorption discontinuity, which can be
associated with the second layering transition for �p

r =1.2,
while Fig. 18 shows one corresponding to the first layering
transition for �p

r =1.24. The jump in the first is due to adsorp-
tion in 0.7�c�z�3�c and that in the second in 1.5�c�z

FIG. 14. Same as Fig. 12, but for �p
r =1.0.

FIG. 15. Same as Fig. 12, but for �p
r =1.12.

FIG. 16. Typical colloid configurations of the adsorption of a
colloid-polymer mixture with size ratio q=1 at a planar hard wall
obtained from Monte Carlo simulations based on the exact effective
one-component Hamiltonian for the colloids. The polymer reservoir
packing fraction is �p

r =1.12, and the colloid packing fraction is
�c

b=0.00534 �top� and 0.00539 �bottom�, reflecting the “third” lay-
ering transition.

FIG. 17. Same as Fig. 12, but for �p
r =1.2.
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�4�c. Note that all three layering transitions take place just
below saturation, are entropy driven, occur only for �p

r,w

��p
r ��p

r,t, extend over a rather small regime of �p
r , and

seem to end in their own �surface� critical point. We stress
that our results are in qualitative agreement with density
functional predictions for the AO model �25,32�.

Finally, we show the surface phase diagram in Fig. 19 as
obtained from our adsorption studies for varying �p

r . Figure
19 shows the layering transitions on an expanded scale,
while the inset shows all values of �p

r that we considered.
The solid line denotes that part of the saturated gas branch
that is relevant for our wetting and layering study. The full
bulk phase diagram for q=1 was already shown in Fig. 3.
The dashed curve in the inset is the gas binodal as predicted
by the “free volume theory” of Refs. �11,13�, where the free
volume is accounted for within first-order perturbation
theory by its average in a pure hard-sphere system. On the

full scale of Fig. 3 this approximation turns out to be remark-
ably accurate. However, on the detailed scale of the gas
branch in the inset, the deviations are appreciable—e.g., a
factor of about 2 in �c at �p

r =0.9. The different symbols
denote the varying �p

r that we used in our adsorption studies.
The complete wetting regime is denoted by the thick curve
and ���, while the partial wetting regime is represented by
the thin curve. Figure 19 shows clearly that the first ���,
second ���, and third ��� layering transitions take place off
bulk coexistence, but only slightly.

V. CONCLUSIONS

We have studied a model suspension of colloidal hard
spheres and nonadsorbing ideal polymer in bulk and ad-
sorbed against a planar hard wall. By first integrating out the
degrees of freedom of the polymer coils in the partition func-
tion we derive a formal expression for the effective Hamil-
tonian of the colloids. For sufficiently large polymer coils
compared to the colloids, the effective Hamiltonian consists
of �trivial� zero- and one-body terms, but also effective
polymer-mediated two- and higher-body terms. We devel-
oped an efficient Monte Carlo simulation scheme for a model
colloid-polymer mixture, based on the exact effective Hamil-
tonian; i.e., it incorporates all many-body interactions. We
show explicit phase diagrams for size ratios q=�p /�c=1,
0.6, and 0.1 and find good agreement with the predictions
obtained from free-volume theory. In addition, we studied
the adsorption of the mixture against a planar hard wall. We
found a very rich surface phase diagram with a wetting tran-
sition from complete wetting to partial wetting and a number
of layering transitions. Our results are in good agreement
with recent DFT predictions �25,32�. The many-body char-
acter of the polymer-mediated effective interactions between
the colloids yields a bulk phase behavior and adsorption phe-
nomena that differ substantially from those found for pair-
wise simple fluids: e.g., we find an anomalously large bulk
liquid regime and, far from the bulk triple point, three layer-
ing transitions in the partial wetting regime.

However, experiments �3,5,6� show that the bulk liquid
regime is much smaller than predicted by our results of the
AO model. A recent simulation study showed that quantita-
tive agreement with experiments was found by including
excluded-volume interactions between the polymers �8�.
More specifically, the bulk liquid regime—i.e.,
�p

r,t /�p
r,c—decreases enormously. What the repercussions of

the polymer interactions are on the wetting behavior—e.g.,
the location of the wetting transition and the layering
transitions—remains an open question. Recent contact angle
measurements show indications that there is a transition from
partial to complete wetting for a mixture of silica spheres
and PDMS �33�. However, confocal microscopy experiments
on silica-PDMS mixtures show a thick colloidal liquid layer
adsorbed at the glass wall consistent with complete wetting
for all measured state points �34�. These authors were unable
to find a wetting transition from complete to partial wetting.
The interfacial tension and wetting behavior was recently

FIG. 18. Same as Fig. 12, but for �p
r =1.24.

FIG. 19. Surface phase diagram of the AO model �size ratio q
=1� as a function of the colloid packing fraction �c and polymer
reservoir packing fraction �p

r . The solid curve denotes the saturated
bulk gas branch, separated into a regime of complete wetting �thick
curve ����, and partial wetting by colloidal liquid �thin curve� at a
planar hard wall. The first ���, second ���, and third ��� layering
transitions are off bulk coexistence. The inset shows the surface
phase diagram on a larger scale. The dashed curve in the inset
denotes the bulk binodal of the “free-volume theory” �11,13�.
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calculated using the free-volume approach extended to inter-
acting polymers �35�. Investigations whether or not a wetting
transition occurs in a mixture of colloids and interacting
polymers using the coarse-graining techniques of Ref. �8� are
in progress.

Finally, we note that our simulation scheme can easily be
extended to mixtures of polymers and charged colloidal
spheres or anisotropic colloidal particles and to other inho-
mogeneous situations. Phase diagrams for mixtures of colloi-
dal rods and nonadsorbing polymer will be presented else-
where �36�. The free gas-liquid interface and its interfacial

tension of the AO model was recently studied in Ref. �17� by
simulations using techniques discussed here.
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