Contents

•**Classical Nucleation Theory & Variations**

•Variations on a Theme (Monodispersity): -'Stöber' Synthesis

•Conclusions

Absolute Crystal Nucleation Rates for Hard-Sphere Colloids

 $\phi = 0.52$

Monte Carlo Simulations with Umbrella sampling through a biasing potential Auer & Frenkel, Nature, 409, 1020 (2001)

Randomly stacked critical nucleus

Classical Nucleation Theory (*CNT***)**

Critical Nucleus Size

DielectroPhoretic Forces

Dipole in a homogeneous electric field does not experience a force, in an inhomogeneous field its motion it does: Dielectrophoretic Force

$$F_d = \frac{4\pi a^3}{c} \left(\frac{m^2 - 1}{m^2 + 2}\right) \bullet \nabla E^2$$

Using gradients in the electric field and let those balance against the osmotic pressure and gravity allows for field induced changes in the volume fraction in small volumes: A DieletrocPhoretic Bottle

DielectroPhoretic Bottle: *Slow Rate*

Field Strength 80 V/mm, 12 days crystallization, 4 mm width1 MHz1 mm thick

PHS-PMMA

2 µm diameter, CHB/cDec: density matched, TBAB 'saturated' \rightarrow 'almost' HS

NO Crystallization in control without E! *Heterogeneous Crystal Growth*, *Wall Induced!*

Heterogeneous Crystal Growth, Random Crystal Orientation!

Density-Matched Tracer-Host Mixture

(PS-SiO₂-PMMA and PMMA)

Bright field

Combined fluorescence and reflection

Images 25x25 μm²

3D Structures in a Concentrated Colloidal Dispersion

$$\phi = 35\%$$

Confocal z-scan

Arrays at HS Fluid-Crystal Coexistence

Averaged over 100 frames

Image 100x100 μm²

Arrays at HS Fluid-Crystal Coexistence

Averaged over 100 frames

Image 100x100 μm²

Tweezers and **Dielectric Bottle**

Success but no data (yet)!

Tweezers and **Dielectric Bottle**

Spinodal Decomposition: Nucleation & Growth

Homogeneous Nucleation: NanoCrystals

Monodispersity through Growth

$$\frac{dV_p}{dt} \propto k_c R^{\alpha} c_h$$

 $\alpha = 1$ diffusion limited growth $\alpha = 2$ surface reaction limited growth

Contents

•CNT & Variations

•Variations on a Theme(Monodispersity): -'Stöber' Synthesis (Coupling Agents)

•Conclusions

Multistage Nucleation and Growth

CdSe several µm in Size

Polytypism in Nucleation & Growth

CdTe TetraPods

Alivisatos et al. *Nature Materials* **2**, 382 (2003)

Colloidal NanoCrystals with Shape Control

CdSe Nano Crystals with Shape Control Form LC phases

Alivisatos et al., Nano Lett., 1, 349 (2001)

Aggregation of ZnS NanoXtals

ZnS $R = 1.4 \ \mu m \ \delta \sim 1\%$

Monodisperse Hematite Fe₂O₃ Colloids

Hematite: Aggregation of NanoXtals

Contents

•CNT & Variations

•Variations on a Theme (Monodispersity): -'*Stöber' Synthesis (Coupling Agents)*

•Conclusions

'Silica' from 4-AlkoxySilanes

General Scheme	Specific Example	Role
R _x Si(OR`) _v	Si(OCH ₂ CH ₃) ₄	Reagent
Alcohol	HOCH ₂ CH ₃	Co-solvent
Water	H ₂ O	Reagent/Solvent
Amine	NH ₃	Catalyst

Reactions:

 $\begin{array}{l} Hydrolysis (amine is catalyst) \\ -Si-OR + H_2O \leftrightarrow -Si-OH + HOR \\ Condensation (amine is catalyst) \\ -Si-OH + RO-Si- \leftrightarrow -Si-O-Si- + HOR \\ \end{array}$

Stöber et al., *JCIS*, (1968) -> <u>Kolbe</u> (1956); Sol-Gel -> <u>NO Gel</u>

Silica Bidisperse Particle Growth

'Silica' from n-AlkoxySilanes (n<4)

•Mechanism:

-Hydrolysis Rate Determining
-Initial Aggregation of 'Collapsed Polymers'
-Surface Reaction Limited Growth of 'Monomers'
-> Rel. Polydispersity ∝ 1/R

•Variations: *AvB, et al., JCIS, 154,* (1992); AvB, et al., *JNCS, 149* (1993)

-Surface Coating with Coupling Agent R-Si(OEth)₃ -Seeded Growth

-Copolymerization with Coupling Agent

Contents

•CNT & Variations

•Variations on a Theme (Monodispersity): -'Stöber' Synthesis (Coupling Agents) -In a µ-Emulsion

•Conclusions

Silica in a W/O μ -Emulsion

		C ₈ H ₁₇ -(////////////////////////////////////
Components:		
Cyclohexane (Cycl)	$(CH_2)_6$	n ~ 5
Polyoxyethylene nonylphenyl ether		
(NP5)	$4 - (C_9 H_{19}) C_6 H_{19}$	H ₄ O(CH ₂ CH ₂ O) _{~4} CH ₂ CH ₂ OH
Ammonia (NH ₃)	NH ₃	
Tetraethoxysilane (TES)	Si(OCH ₂ CH ₂	$_{3})_{4}$
Water (H_2O)	H ₂ O	
Ethanol (Eth)	$H_3 CH_2 COH$	° ~~

Arriagada, et al., *Colloids Surf.*, **69**, 105 (**1992**).

11

Silica in a W/O μ -Emulsion

Water in Oil Microemulsion

Silica Spheres Dispersed in Non-ionic Surfactant **Emulsion with Silica Spheres**

Further Growth by Seeded Stöber Proces

Silica Seeds From W/O µ-Emulsion

ZnS-in-Silica in a W/O µ-Emulsion

QD/Ag/RE-in-Silica in a W/O µ-Emulsion

Contents

•CNT & Variations

Variations on a Theme (Monodispersity):

 -'Stöber' Synthesis (Coupling Agents)
 -In a μ-Emulsion
 -n=2 -> Emulsion -> Shells

•Conclusions

Monodisperse O/W Emulsion

DMDES dimethyldiethoxysilane Base-catalyzed (ammonia) hydrolysis and polymerization

PDMS 'poly'dimethylsiloxane (silicone oil)

'Stöber-Like Mechanism'

Obey, Vincent, J. Colloid Interface Sci. 163, 454 (1994)

Monodisperse O/W Emulsion

Monodisperse Elastomeric Shells

Zoldesi et al. Adv.Mater.17, 924 (2005)

Monodisperse Elastomeric Shells: Buckling

Microcapsules

Microballoons

Buckling of Elastomeric Shells

L.Landau, E.Lifshitz, Theory of Elasticity (1997)

Monodisperse Elastomeric Shell

microspheres

microcapsules

Shape Monodisperse Microcapsules

Shape Monodisperse Microcapsules

4 wrinkles

5 wrinkles

8 wrinkles

6 wrinkles

7 wrinkles

coffee seeds

Shape Monodisperse Microcapsules

Elastic energy : Bending energy + Stretching energy

$$\lambda = \left(\frac{k/A}{R^2}\right)^2 = \frac{1}{\sqrt{12(1-\sigma^2)}} \frac{d}{R}$$

k – bending constant
A – stretching constant (A=Ed)
σ - Poisson ratio

$$\frac{1}{\lambda^2}$$
 - Föppl-von Kármán number

Procedure:

- Surface Evolver routines (*)
- Minimization of the energy
- Step by step decrease of the interior volume
 (ΔV/V relative decrease of the internal volume)
- Spontaneous curvature c_0 first set to $c_0 = 0$ than to $c_0 = 1/R$

L.Landau, E.Lifshitz, *Theory of Elasticity* (1997) *Tsapis et al., *Phys.Rev.Lett.* **94**, 018302 (2005)

Shape Monodisperse Buckled Capsules

$\lambda = 0.049, \ \Delta V/V = 0.76$

$\lambda = 0.0116, \Delta V/V = 0.36$

λ = 0.015, ΔV/V = 0.67

Contents

- •CNT & Variations
- Variations on a Theme (Monodispersity):

 -'Stöber' Synthesis (Coupling Agents)
 -In a μ-Emulsion
 -n=2 -> Emulsion -> Shells
 -'Controlled' Aggregation
- •Conclusions

~40% Silica Dumbbells

-lonic Strength and Shear Induced ('Steady' State) -> 40% Yield (~1 μ m spheres)

-Smaller Spheres: Ionic Strength & Depletion Induced -> 10% Yield

Silica Dumbbells

Monodisperse Hematite Fe₂O₃ Colloids

'Aggregated' Microcapsules

Higher n-mers -> Shape Constant!

Contents

- •Introduction: Colloids in the Next 100 Years
- •Variations on a Theme (Monodispersity):
 - -'Stöber' Synthesis (Coupling Agents)
 - -In a µ-Emulsion
 - -n=2 -> Emulsion -> Shells
 - -'Controlled' Aggregation
 - -Templating -> Shell -> Model Colloid
- •Conclusions

PVP Coating to Grow Silica

Porous Silica on Hematite -> Dissolve -> Fill -> Close Up!

Philipse, et al., Langmuir 22, (2006)

Silica around Hematite 'Peanut'

After Coating with PVP silica and Dissolution

Repeated Polymerization: *Wetting/Phase Separation*

Sheu, et al. J. Polym. Sci. A28, 629 (1990).

Mock et al., *Langmuir* 22, 4037 (2006)

PHSA-PMMA (core-shell) by Dispersion Polymerization

