Theory of Optical Tweezers

Simple descriptions:

- Rayleigh particles (R << λ) (dipoles in gradient EM-field)
- Ray Optics $(R >> \lambda)$ (refraction of light rays)

Neuman and Block *Rev. Sci. Instrum.* 75, 2787 (2004) Full calculation:

Surface Patterning using Optical Tweezers

Optical Tweezers:

- 10 nm to 10 µm sized particles
- Dielectric, metal particles, and living matter

Patterning:

- Surface coating to create opposite charge
- Can be fully automated
 - Increased speed
 - Large patterns
 - Increased accuracy

Hoogenboom, Vossen et al. *Appl. Phys. Lett.* (2002) Vossen, Hoogenboom et al. *MRS proc.* (2002)

Template for 3D HCP growth

2D Crystallization by Dielectrophoresis & Light

Colloidal **dumbbell** particles

Optical potential:

- 1/e ~ particle diameter
- $1 k_{b}T$ = tens of diameters

Vossen, Plaisier, and van Blaaderen *SPIE proceedings (2004)*

2D-Arrays using AODs

Time-sharing at 220 kHz (point-to-point)

 $10 \ \mu m$

20x20 traps

Dynamically changeable

5 µm

(array scanned at 96 Hz ; 1 W BFP)

Mixtures of core-shell particles

Bright field imaging

Confocal imaging

Density-Matched Tracer-Host Mixture

(PS-SiO₂-PMMA and PMMA)

Bright field

Combined fluorescence and reflection

Images 25x25 μm²

3D Structures in a Concentrated Colloidal Dispersion

$$\phi = 35\%$$

Confocal z-scan

Confocal Microscopy

•Increased Resolution (> Rayleigh's criterion)

•Optical Sectioning

•(Point)Scanning Method

Confocal Microscopy: 3D Structure Determination

Silica Colloids (1 μ m) with a fluorescent core (300 nm)

AvB, Wiltzius, Science (1995)

AvB, Ruel, Wiltzius, Nature (1997)

Confocal Microscopy: Dynamics

Sublimation (control over interactions)

Phonons, Defects....

Confocal Microscopy: Dynamics Hard Spheres near the Glass Transition

Dynamical Heterogeneities

Kegel, AvB, Science (2000)

DLVO: Screened Coulomb

Solution of Poisson-Boltzmann and small DL overlap: Yukawa potential

$$V_{Yukawa} = \frac{Z_a Z_b e^2}{4\pi\varepsilon\varepsilon_0} \left(\frac{\exp[\kappa R]}{1+\kappa R}\right)^2 \frac{\exp[-\kappa r]}{r} \qquad \text{a,b} = +/-$$

Inverse Debye Screening Length

3D-g(*r*) vs Monte Carlo Simulation

η = 0.094 and 0.101 C.P.Royall, et al., *J.Phys: Condens.Matter*, 2003, *15*, 3581

Single set of parameters: $\beta \epsilon = 140$, $\kappa R = 2.5$ (\rightarrow surface potential 36 mV)