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Introduction

chemical details vs. universal properties

(a) (b)

A polymer isastatistical mechanical system,
for which the role of entropy is very important



Programme

1. Ideal polymers:
e conformations. Gaussian coil
 |nanexterna fidd
 inaSdf Consistent Field (SCF)
2. Non-ideal polymers
e excluded volume
e attractions
3. Concentrated solutions:
* Flory-Huggins theory
» scaling theory (semi-dilute solutions)



Polymer conformations

segment

End-to-end vector

bond length
bond vector

N
End-to-end vector: R=

<R>:O

=1



Polymer conformations

End-to-end vector: R— | r.
)=t <

smaller if |j-i| larger

<R2>u N



Chain models (1)

Freely jointed chain:



Chain models (2)

Freely rotating chain:

<ri2> =(r, ry=b’

(r. 1,,)=b (cosq)’

(r. 1,,)=b (cosq)’

(rr)=b? (cosg)"




Chain models (3)

N
(R)= _b* 1+(cosq) +(cosq) +(cosq) +  =Nb ififiiZ

1+ cosg
1- cosqg

=Nb, 2  with b, Ob\/

Genera result when NO INTERACTION between segments

<R2> =Nb,°  withmoregenerd b,



End-to-end distribution (1)

P(R,N): probability of finding R after N segments?

recursion relation:
P(R,N) =(P(R- ry,N- 1))

'Nn

Taylorexpansion (N 1 and R ry):

P P
P(R- ry,N-1)»P(R N)+—(-1)+ Pl LIV
( > PRN*+E(-)+  2o(-n)

1 T°P
+§a:x,y,za:x,y,z ﬂaﬂb (_ rN,a)(- rN,b) '




End-to-end distribution (2)



End-to-end distribution (3)

2
P(BAN) » P )+E( )+E I ﬂ + P+

N 6 X2 ‘ITy2 1z’
| S (S (&
With the definition of the Laplacian D°® —+——+—
x fy° 1z

we thus find that P(R, N) isthe solution of:

TP(R.N)
N

b2
= DP(R, N)

cf. the diffusion equation for c(R,t):

Te(R1)
qt

= DDc(Rt)




End-to-end distribution (4)

Cf. one diffusing colloidal particle (Einstein):

e

An (ideal) polymer islike thetrajectory of adiffusing particle!



End-to-end distribution (5)

The solution of ﬂpﬁ N) :% DP(R,N) Is (by analogy):
3/2 2
P(R,N) = > exp - 3R2
20NDb 2NDb



Central Limit Theorem

Consider the sum of N independent, stochastic variables (N islarge).
This sum has anormal (= Gaussian) distribution with s* p N.

N

=" s ={(m o=
Variationin R* : SRZZ\/<(R2'<R2>)2>:\/§NI32

A Gaussian coil isastrongly fluctuating object!

Conclusion: many (global) properties of polymers do not
depend on the (local) details of the model.




Entropy of a Gaussian coll

S(R) =k, InW
=cst +k, InP(R)
3K
2Nb?

3Kk, T

b2

AR)(=-TS) =cst + R* ENTROPIC SPRING



Conditional probability

probability conditional probability
P(R,N) =G (R]0) Gy (RIR9

independent end points: G, (RGRY G, (R|RY
integrate over RE G, (R|R9
(OK for Gaussian chains)



Additional polymer models

Gaussian bond modd:

Every single bond Gaussian | exp - 5 ‘

Bead-spring modd!:
3k, T

2(1)b?

spring constant:

(used in the Rouse/Zimm models for polymer dynamics)

Continuous model:

permits the use of path integrals




A polymer in an external field (1)

assume a segment at position R has energy / (R)

the recursion relation now changes to:

P(RN)=(P(R-ry,N-1)) exp -/k(.F;)

Taylor expansion:

P(R-r,,N-1)» P(R N)+11TT_E( )+ atc. ’ 1_/.(R)+

P _b o /(R

IN 6 kT
cf. diffusion in an external field

P




A polymer in an external field (2)
similarly for the conditional probability G, (R|RJ

_E:_b_ZDG+j(R)

G| RCisaparameter, but: R« R

N 6 kT
.y 2
of -i 2= =-—Dy +V(R
- o Vv +V(R)y

QM: time-dependent Schroedinger equation for y (R,t)

linear, partia differential equations; solution method:

separ ation of variables



Separation of variables
1IG_ b e/ (R

IN 6 kT

assume G can bewrittenas. G = f(N)y (R)

G )’"(N) -2 (D (R+LZ (N (R
divide by f(N)y(R)

1 7f(N)__b’Dby(R_/ (R
Cf(N) 9N 6 y(R kT

B

f (N) =cexp(- / N) b—sz(R)+/( R)

Yy (R =/y(R)

6 k.T

eigenvalue eguation
elgenvalues / |, complete set (orthogonal) eigenfunctions y . (R)

G=y,(Rexp(-/,N)| orany linear combination for different n




A polymer in an external field (3)
linear combination: G, (R|RY= cy (R exp(-/,N)

n

using R« Rd

bilinear expansion: G, (R|RY= y . (Ry.(RYexp(-/,N)

) .
where - 2-py (R+L ) (R =/,(R
6 K T
1) continuous spectrum of eigenvalues
example: / (R) =0 y =e“%and/ ={b’k’

here we need all eigenfunctions Gaussian coil



A polymer in an external field (4)

bilinear expansion: G, (R|RY= vy (R)y,(Ryexp(-/,N)

n

2) discrete spectrum of eigenvalues

lowest eigenvalue /, dominates for large N
GROUND STATE DOMINANCE

GN(Rl RCD J/O(R)J/O(R(De)(p(' /ON)
chain ends are decoupled!




A polymer in an external field (5)
segment density c(R) ?

Integrate over: beginning
end
n

2
‘ cf. QM: bound state

c¢(R) NLVO(R)



A polymer in an external field (6)



Lifshitz entropy: derivation

(for ground-state dominance)

Partition function Z: # conformations
(weighed with Boltzmann factors exp(-/ (R)/kgT))

Z= drR dRG,(R|RY Gy (RIRY ¥ o(R o(RYexp(- /,N)

z &"( dry,(R)’

end effects
free energy:
A=-k,TInZ kT/,N+end effects

entropy: W C(R) Ny 2
U-A_

S=—"__" = 1/ (R)c(R)dR- k,/,N and the eigenvalue equation
T T and eliminate /



Lifshitz entropy: result

S=Nk; b7 /o (RIDY o(R) R

- 2 .
S=- NkB%b2 Ny,(R) dR partia integrationusing D® N N

~ 2
s=-k Lp MR o1 usingc(R) Ny,2
24 c(R)

e independent of / (R)
» also valid for a collection of polymers

» Sdecreases because of concentration gradients
«S=3c(R)] (Sisafunctiona of c(R))



Self-consistent field method

this method incorporates inter-segment interactions:

free energy:

ACc(R)] =U[c(R)]- THc(R)]
U[c(R)] representse.g. anon-ideal gas of segments

Cs (R) 1sthen obtained by functional minimization
THIS APPROACH NEGLECTS FLUCTUATIONS/CORRELATIONS !



Non-ideal polymer chains

U[c(R)] = Nk, TBc(R)
B isthe second virial coefficient (B > 0 repulsion)

Edwards (1965): <R2> TR

swelling
PURE REPULSION

total number of configurations (dependingon R) L

2

3
P(R N)u 40R?exp -
U P(R,N)u 4p P N’

but a certain fraction of these configurations is "forbidden":
N(N-1)/2 N 2/70

n
Ry» 1- &% » exp -
P(R) 3 P R




Non-ideal (repulsive) polymer chains

free energy:
AR) _ S(R) _ In[ P(R)P(R, N)]
kT ke T
2 2
» cst- 2InR+ 3R2 + > ZC
2Nb* 2R

minimize A(R) with respect to R
n.=0: R u N"Db

.5 . 3
n.t0: i - i »n—‘:j;N”2 Flory
R, b
N 1. R»R'N"uN*b SWELLING!

RG theory / smulations: R p N%%p



Repulsion combined with attraction (1)

Assumptions:
* only attraction between nearest neighbours
e coordination number: z
. solvent-sol vent
solvent-polymer
polymer-polymer

 random pair contacts:



Repulsion combined with attraction (2)

attractive energy within a coil:
U_. = Nn_c(R)z(- De)
(7. c(R) isthe probability to find a neighbouring segment)

2
Uae -_N /1, 2De where 2D, ¢ (chi-parameter)
K T R K T KT
¢ usualy >0
2
Compare with repulsive termin AR , which was: N RZ’C
B
n.® n°n,(1- 2c)
. 5 ., 3
i* - i » n—g(l- 20) NY?  Flory
R, R, b



Repulsion combined with attraction (3)

. O . 3
% - % » %(1- 26) NY?  Flory
CONCLUSION:

. a c=0 swollenchanR p N¥°
. &t ¢=1/2 (q - temperature): ided chainR =R u N*?

- right-hand side only small if c:%- o |.e. abrupt change if N large

JN
¢ >1/2: globule (bound state, cf. QM) R p NY?

-ingenerd R* b N”



Repulsion combined with attraction (4)

polystyrene in cyclohexane



Concentrated polymer solutions

C*
N N (N-1/2 « N-4/5)
» »
RB (an)S b3

C* » very small !

FLORY-HUGGINS:

. concentrated systems. S(R) NO
- homogeneous systems: S i.y;,, NO
- random mixing (W places) YES



Flory-Huggins theory (1)

trandational entropy: S, , » - kK;W,,In7_  (sp = species)

polymer: A » kBTW%Inf

solvent: A  » KgTW1- 7)In(1- 7)

A » WK T %flnf+(1- FIn(l- f)+ cf 1- f)



Flory-Huggins theory (2)

. f = 1

° 1+4JN
1

- T, followsfrom c, »%+—

JN

T.® g forlargeN, i.e. near the coll ® globule transition
- note that fluctuations are neglected!

(highly) asymmetric



Polystyrene in methylcyclohexane



Scaling theory



Semi-dilute solution (good solvent)

N

f*»b’ck » b° T N"“* till very small !

OSMOTIC PRESSURE TYPICAL LENGTH SCALE

DILUTE

P :kBTﬁ x(=R) =bN¥®

m
c 7 SEMI-DILUTE m

S f

S A (power law) x bN3° po

kBT% N4/5mfm Independent of N bN 3/5N 4/5mfm

m=5/4 m=-3/4

5/4  KgT .9/4
P kTcf o f v pr-34

des Cloizeaux de Gennes



What Is the meaning of ksi ? (1)

Flory-Huggins. P k;;l' £2 k;;l'
des Cloizeaux: P kB;r f 9/4 k53
b b

probability of segment = probability of contact w

probability of contact w: lower for scaling theory (correlations!)
Flory-Huggins:

des Cloizeaux:



What Is the meaning of ksi ? (2)

on one chain: number of segments between contacts?

g monomers.g w' fF*

bg®'® b(f'5’4)3/5 bf¥* x distance between chain contacts!

1) volume fraction within one blob:
gb3 f— 5/4b3

f blobs touch !
X3 (bf 3/4)3




What is the meaning of ksi ? (3)

2) aSEMI-DILUTE SOLUTION
IS acollection of BLOBS!

deGennes: x bf 3/4
KT f9/4l KT
b’ X°

3) desCloizeaux: P blobs are the osmotic units

4) x is aso the screening length for the excluded volume

5 f®1: x( bf *)®b
chainsin polymer melts are ideal! (Flory)






