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Introduction

chemical details vs. universal properties

A polymer is a statistical mechanical system, 
for which the role of entropy is very important



Programme

1. Ideal polymers: 
• conformations: Gaussian coil
• in an external field
• in a Self Consistent Field (SCF)

2. Non-ideal polymers
• excluded volume
• attractions

3. Concentrated solutions:
• Flory-Huggins theory
• scaling theory (semi-dilute solutions)



Polymer conformations
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Polymer conformations
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Chain models (1)
Freely jointed chain:
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Chain models (2)
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Freely rotating chain:
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Chain models (3)
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End-to-end distribution (1)
( , ) :   probability of finding  after  segments?P R N R N
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recursion relation:
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End-to-end distribution (2)
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End-to-end distribution (3)
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End-to-end distribution (4)
Cf. one diffusing colloidal particle (Einstein):
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An (ideal) polymer is like the trajectory of a diffusing particle!



End-to-end distribution (5)
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Central Limit Theorem
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Consider the sum of  independent, stochastic variables (  is large).

This sum has a normal (= Gaussian) distribution with .
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A Gaussian coil is a strongly fluctuating object!

Conclusion: many (global) properties of polymers do not
depend on the (local) details of the model.   



Entropy of a Gaussian coil
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Conditional probability

probability
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Additional polymer models
Gaussian bond model:
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Bead-spr ing model:

( ) 2

3
spring constant: 
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(used in the Rouse/Zimm models for polymer dynamics)

Continuous model:

permits the use of path integrals



A polymer in an external field (1)
assume a segment at position  has energy ( )R Rj
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A polymer in an external field (2)
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linear, partial differential equations; solution method:

separation of var iables



Separation of variables
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A polymer in an external field (3)
( )linear combination:  ( | ) ( )expN n n n
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A polymer in an external field (4)

2)  discrete spectrum of eigenvalues

0 lowest eigenvalue   dominates for large 

      GROUND STATE DOMINANCE
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A polymer in an external field (5)

integrate over: beginning

  end

 n

( )0

2
( ) cf. QM: bound statec R N Ry

� �
�

segment density ( )  ?c R
�



A polymer in an external field (6)



Lifshitz entropy: derivation
(for ground-state dominance)

Partition function : # conformations 

(weighed with Boltzmann factors exp( ( ) / ))B
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Lifshitz entropy: result
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Self-consistent field method
this method incorporates inter-segment interactions:

free energy:
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Non-ideal polymer chains

second virial 
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Non-ideal (repulsive) polymer chains
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Repulsion combined with attraction (1)
Assumptions:
• only attraction between nearest neighbours
• coordination number: z
• solvent-solvent

solvent-polymer
polymer-polymer

• random pair contacts:



Repulsion combined with attraction (2)
attractive energy within a coil:
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Repulsion combined with attraction (3)
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Repulsion combined with attraction (4)

polystyrene in cyclohexane



Concentrated polymer solutions
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Flory-Huggins theory (1)
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Flory-Huggins theory (2)
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Polystyrene in methylcyclohexane



Scaling theory



Semi-dilute solution (good solvent)
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What is the meaning of ksi ? (1)
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probability of segment probability of contact w´

probability of contact w: lower for scaling theory (correlations!)

Flory-Huggins:

des Cloizeaux: 



What is the meaning of ksi ? (2)

on one chain: number of segments between contacts?
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What is the meaning of ksi ? (3)

2)  a SEMI-DILUTE SOLUTION 
is a collection of BLOBS !
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