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Introduction

chemical details vs. universal properties

(a) (b)

A polymer is a statistical mechanical system,
for which the role of entropy is very important



Programme

1. Ideal polymers:
e conformations: Gaussian coil
e 1n an external field
 1n a Self Consistent Field (SCF)
2. Non-ideal polymers
e excluded volume
e attractions
3. Concentrated solutions:
* Flory-Huggins theory
e scaling theory (semi-dilute solutions)



Polymer conformations
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Polymer conformations

N
End-to-end vector: R = ZZ
i=1



Chain models (1)

Freely jointed chain:



Chain models (2)

Freely rotating chain:




Chain models (3)
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General result when NO INTERACTION between segments

<1’§2 > = Nbeﬂ2 with more general b,



End-to-end distribution (1)

P(R,N): probability of finding R after N segments?

recursion relation:

P(R.N)=(P(R~F,.N~1))

Taylor expansion (N >1 and R > ry):

q oP P,
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End-to-end distribution (2)




End-to-end distribution (3)
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With the definition of the Laplacian A= —+—+—;
ox~ dy” 0z

we thus find that P(E, N) 1s the solution of:
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cf. the diffusion equation for ¢(R,?):

dc(R,1)

= DAc(R, ¢
> c(R,1)




End-to-end distribution (4)

Ct. one diffusing colloidal particle (Einstein):

2l

An (ideal) polymer is like the trajectory of a diffusing particle!



End-to-end distribution (5)
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Central Limit Theorem

Consider the sum of N independent, stochastic variables (N 1s large).

This sum has a normal (= Gaussian) distribution with &> o N.

~3)

R=37 = o =((R-0) )=(R)=n (xb,)

i=1
Variation in R” : o - \/<( - §z>)2> - \ENbZ

A Gaussian coil 1s a strongly fluctuating object!

Conclusion: many (global) properties of polymers do not
depend on the (local) details of the model.




Entropy of a Gaussian coll

S(R)=k,InW
=cst+k,In P(ﬁ)
3k,

2
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= CSt —

A(R)(=-TS) =cst + %! % ENTROPIC SPRING
2Nb

or



Conditional probability

=
R
N
probability conditional probability
P(R,N)=G,(RI0) G,(RIR

independent end points: G,(R’IR)G,_,(RIR")
integrate over R© = G, (RIR)

(OK for Gaussian chains)



Additional polymer models

Gaussian bond model:

3 72
Every single bond Gaussian o< ex - ’
Y S p( 2(1)b2j

Bead-spring model: 7

< zg :‘ﬂ ﬁ%
U, spring constant: 3kBT2
w& 2(1)[9
N v

(used 1n the Rouse/Zimm models for polymer dynamics)

Continuous model:

permits the use of path integrals



A polymer in an external field (1)

assume a segment at position R has energy @(R)

the recursion relation now changes to:

P(R.N)=(P(R—F,,N~1)) exp{_ i(?]

Taylor expansion:

R N-D=| PR+ 2L (C1) 4. 9B
P(R-7,,N 1)~(P(R,N)+8N( 1)+ etc.jX(l kBT+ ]

P _b ., oR)
ON 6 k,T

cf. diffusion in an external field




A polymer in an external field (2)
similarly for the conditional probability G, (R|R’)

0G b’ o(R) R) B o
——=——AG+ ’ - . ,
ON 6 k, T R’ 1s a parameter, but: R <> R

2
of. —in2V ——h—Aw+V(R)w
ot 2m

QM: time-dependent Schroedinger equation for ¥ (ﬁ, t)

linear, partial differential equations; solution method:

separation of variables



Separation of variables

G _ b R
ON 6 k,T
assume G can be written as: G = f(N) w(ﬁ)
R L =L vy k) + 2 D 3wy
divide by f(N) ;V(R)
L o WN)_ D AYR) pR) _
f(N) N 6 w(R) k T
N)= ~-AN 2 R) - .
fN)=cexp(=AN) LAy R+ Py (R = 2y (R

eigenvalue equation =

eigenvalues A

n?

G=vy, (R)exp(-AN)

complete set (orthogonal) eigenfunctions ¥, (R)

or any linear combination for different n



A polymer in an external field (3)
linear combination: G, (RIR’) = Z ¢y, (Ryexp(-AN)

using R < R’

bilinear expansion: G, (RIR’) = Z v, (R)y,(R)exp(-A,N)

: -
where == Ay, (R)+ 28y, (R)= Ay, (R)
6 kT

1) continuous spectrum of eigenvalues

example: @(R)=0 = V. = ¢**k and A =¢b'k”

here we need all eigenfunctions = Gaussian coil



A polymer in an external field (4)

bilinear expansion: G, (RIR)=> v, (R, (R)exp(-4,N)

2) discrete spectrum of eigenvalues

= lowest eigenvalue 4, dominates for large N
GROUND STATE DOMINANCE

Gy(RIR) ~y, (R, (R)exp(-4N)

chain ends are decoupled!




A polymer in an external field (5)

segment density c(ﬁ) ?

0 Y N integrate over: beginning
_'1 end
R . Vv

2

c(R)~ N|w, (fé) cf. QM: bound state




A polymer in an external field (6

Figure 5. A polymer chain in a spherical cavity of diameter D.

An example of this situation is a polymer chain confined to a spherical cavity of
diameter D (see figure 5). For this spherical symmetry we can express the Laplacian
in terms of the distance to the origin R:

_ld
= RaR?

If we now solve equation (2.16) with ¢(R) = 0 within the cavity, but all eigenfunc-
tions = 0 outside (since the chain obviously cannot be there), we find as the lowest
eigenvalue and (normalized) eigenfunction:

22
2m“b

Ao = 3

Ry ()

and g =

o,

Segment density of a very long ideal polymer in a spherical cavity of
diameter D.

1!




Lifshitz entropy: derivation

(for ground-state dominance)

Partition function Z: # conformations

(weighed with Boltzmann factors exp(—qD(E) [k,T))
Z = [dR[dRG,(RIR') Gy (RIR) ~ yy (R),(R)exp(~4,N)

Z~ e ([ dR %(1%))2

end effects
free energy:

A=—k,TInZ ~ k,TA N +end effects

entropy: e c(ﬁ) N Ny/02
U—-A

S =—"= jl gp(fé)c(]_é) dR — k,A,N and the eigenvalue equation
r r and eliminate A,



Lifshitz entropy: result

S = Nk, észWO(ié)AWo(ié)dié

1 = = = . . : = =
S =—Nk, —sz[V W,(R) ] dR partial integration using A=V.V

Vc(R) ]
c¢(R)

§ =k, L7 [1 using c(R) ~ Ny,

* independent of go(ﬁ)
e also valid for a collection of polymers

* § decreases because of concentration gradients
S =S[c(R)] (S 1s afunctional of c(R))



Self-consistent field method

this method incorporates inter-segment interactions:

free energy:
Alc(R)]=U[c(R)]-TS[c(R)]

Ulc(R)] represents €.g2. a non-ideal gas of segments

Ceq (ﬁ) 1s then obtained by functional minimization

THIS APPROACH NEGLECTS FLUCTUATIONS/CORRELATIONS !



Non-ideal polymer chains
Ulc(R)] = Nk,TB c(R)

B 1s the second virial coefficient (B > 0 repulsion)

Edwards (1965) NO3

swelling
PURE REPULSION

total number of configurations (depending on R) o<

3R*
o P(R,N) < 47R* exp| —
(R,N) p( 2Nb2j

but a certain fraction of these configurations is "forbidden":

N(N-1)/2 )

vV NV
R)=|1-— = exp| — :
P(R) ( R3j p[ 2R3]




Non-ideal (repulsive) polymer chains

free energy:

A(R)  S(R
R) __ 5 )=—ln[p(R)P(R,N)]
k,T k,T
2 2
=~ cst—2In R+ SR : +N ZC
2Nb® 2R

minimize A(R) with respect to R
v.=0: R o« N"b

BN N
v. #0: R— —R—* zv—;’N”z Flory
R R b

0 0

N>1: R =R'N"° e« N"b SWELLING !
RG theory / simulations : R" oc N"%%



Repulsion combined with attraction (1)

Assumptions:

e only attraction between nearest neighbours
e coordination number: z

. solvent-solvent 0 0 €
solvent-polymer o e : _¢ .
polymer-polymer ¢ ¢ - ei;l"

e random pair contacts:
Q-9 ©o 0 © O ° o O ©
0O e<0v@ O = O 00 OO0
@ 9 0 0o 0 —E o © B © ©

5 €P$ (, ‘Elop' 853,'+ ‘lE’f’S) % 6’" P S ES.S



Repulsion combined with attraction (2)

attractive energy within a coil:

U, =NV c(R)z(-A¢)

attr

(V. c(R) 1s the probability to find a neighbouring segment)

N°* ZAE ZAE

i i 4 where —— = y (chi-parameter
k,T R kT o AP )
X usually >0
2
Compare with repulsive term in AR) , which was: ]ZRZC

B

v. >v=v, (1-2y)

. N\ + \3
[ij —(R—*j ~Ye(1-24)N"  Flory

b3




Repulsion combined with attraction (3)

£\ £ \3
[R j _(R_*j =5 (1=22) N Flory

R’ R b’

0 0

CONCLUSION:

e at ¥ =0 swollen chain R o N°7°

e at y=1/2 (6 - temperature): ideal chain R" =R, o< N'/*

¢ right-hand side only small if ;(:l _ ot 1.e. abrupt change if N large

2 N
2 >1/2: globule (bound state, cf. QM) R o< N'°

e in general R* ~ b N’



epulsion combined with attraction (4)
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Concentrated polymer solutions

very small !

FLORY-HUGGINS:
® concentrated systems: S (ﬁ) NO

® homogeneous systems: S; ... NO

e random mixing (€2 places) YES



Flory-Huggins theory (1)

translational entropy: S, ~~-k,Q Ing  (sp=species)
polymer: A, =k ,TQ— 9 ln¢

solvent: A, = k,TQ(1- ¢)ln(1 0)

A, = Qk,T [%mn ¢+(1-9)In(1-9)+ yo(l- ¢)}



Flory-Huggins theory (2)

T,P &g 3
g 2
leiis &
% ¢
1
° P = (highly) asymmetric
’ TN
1 1

o T follows from y =—+—

2 JN

1. — 6 tfor large N, 1.e. near the coil — globule transition

¢ note that fluctuations are neglected!



Polystyrene in methylcyclohexane
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Scaling theory

end-to-end distance : N'%b— Nguzbg (= N”zb) invariant!

TR
; A\ step length : b— b, (; g‘“b)
. h \ number : N — N, (= N/g)
4

e

g monomers



Semi-dilute solution (good solvent)

N

BN ~ N~ still very small !

¢ = b= b’

OSMOTIC PRESSURE TYPICAL LENGTH SCALE

DILUTE
H:kBT% £(=R)=bN*"?

m
C ¢ SEMI-DILUTE m
II~kT—| —
N (¢*) (power law) £ ~bNP (%)
C

4/5 -
~k;T —N i mdep?ndent (?fN ~ bN3/5N4/5m¢m

N
m=5/4| m = -3/4
kg 9/4 s
H~kBTC¢5/4~ B ¢

b3 5 ~ b¢_3/4
des Cloizeaux de Gennes




What is the meaning of ksi ? (1)

| T T

Flory-Huggins: II ~ k£3 ¢2 = k;;

des Cloizeaux: II ~ kB3T ¢9/4 ~ kB3
b b

probability of segment X probability of contact w

probability of contact w: lower for scaling theory (correlations!)

Flory-Huggins: 050

des Cloizeaux: E_g

"o



What is the meaning of ksi ? (2)

on one chain: number of segments between contacts?

-1 —5/4
g monomers: g ~w_ ~ @’

3/5 7 - _
bg’” ~b (¢_5 / 4) ~bp™'* ~ & distance between chain contacts !

1) volume fraction within one blob:
gb3 ¢_5/4b3
& b

- ~¢ = Dblobs touch !




What is the meaning of ksi ? (3)

2) a SEMI-DILUTE SOLUTION
1s a collection of BLOBS !

de Gennes: & ~ b¢_3/ 4
kyT ¢9/4 l kyT

3) des Cloizeaux: II~ 13

blobs are the osmotic units

4) & is also the screening length for the excluded volume

5) ¢9—=1: E(~bp™'*)—b

chains in polymer melts are ideal! (Flory)



— poor solvents —»
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