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Sedimentation and multiphase equilibria in a suspension of hard colloidal rods are explored by analyzing the
(macroscopic) osmotic equilibrium conditions. We observe that gravity enables the system to explore a whole
range of phases varying from the most dilute phase to the densest phase, i.e., from the isotropic(I), to the
nematic(N), to the smectic(Sm), to the crystal(K) phase. We determine the phase diagrams for hard sphero-
cylinders with a length-to-diameter ratio of 5 for a semi-infinite system and a system with fixed container
height using a bulk equation of state obtained from simulations. Our results show that gravity leads to multi-
phase coexistence for the semi-infinite system, as we observeI, I +N, I +N+Sm, orI +N+Sm+K coexistence,
while the finite system showsI, N, Sm, K, I +N, N+Sm, Sm+K , I +N+Sm,N+Sm+K, and I +N+Sm+K
phase coexistence. In addition, we compare our theoretical predictions for the phase behavior and the density
profiles with Monte Carlo simulations for the semi-infinite system and we find good agreement with our
theoretical predictions.
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I. INTRODUCTION

Gravity is often non-negligible in colloidal suspensions,
as the gravitational energy becomes comparable to the ther-
mal energy for colloid sizes of about a micrometer. Hence, a
spatial inhomogeneous suspension is obtained due to the
gravitational field, which is characterized by a density profile
rszd that varies with altitudez. The parameter that is associ-
ated with a gravitational field is the so-called gravitational
length and reads,=sbmgd−1 where m is the effective or
buoyancy mass of the colloidal particle,b=skBTd−1 the in-
verse temperature withkB Boltzmann’s constant, andg the
gravitational acceleration. Typically,, is of the order of mi-
crometers to millimeters for colloidal particles. The density
profile rszd follows from a competition between minimal en-
ergy (all colloids at the bottom) and maximum entropy(a
homogeneous distribution in the available volume). In the
case of a very dilute colloid concentration or at high altitude,
where the suspension becomes sufficiently dilute, the system
behaves like an ideal gas and the system obeys the Boltz-
mann distribution, yielding an exponential density profile
with a decay length given by,. In 1910, Jean Perrin mea-
sured such a density profile under the microscope which en-
abled him to determine Boltzmann’s constant and hence
Avogadro’s number[1]. However, when the interactions be-
come important, the density profile becomes highly nonex-
ponential. Density profiles have been calculated for suspen-
sions of hard and charged colloidal spheres using density
functional theory[2], and are measured by light scattering
techniques[3]. The measured concentration profiles can be
inverted to obtain the osmotic equation of state[2–4]. Non-
trivial sedimentation profiles have been predicted recently
for charged colloids[5–9] (and measured experimentally
[10]), colloid-polymer mixtures[11–14], and binary hard-
sphere mixtures[15].

In this paper we consider suspensions of hard rods, which
serve as a simple model for colloidal rodlike particles, like
the tobacco mosaic virus, fd virus, and boehmite or silica

rods. The bulk phase behavior of hard-rod fluids has been
studied thoroughly in many theoretical and simulation stud-
ies [16–18]. Suspensions of colloidal rods show lyotropic
liquid crystalline behavior and form isotropic, nematic,
smectic, and crystal phases upon increasing the concentra-
tion. Despite the fact that gravity is often non-negligible for
colloidal rods, there are only a few theoretical studies that
include its effect on the phase behavior[19] and on the struc-
ture of the fluid[20]. In this paper we determine the phase
diagram and density profiles from macroscopic equilibrium
conditions using the bulk equation of state of hard sphero-
cylinders with a length-to-diameter ratioL /D=5 obtained
from Monte Carlo simulations[21]. We consider two situa-
tions: (1) a semi-infinite system that extends to infinity in the
vertical z direction and (2) a finite system. References
[19,20] were both focused on the finite system, while disre-
garding the situation of a semi-infinite system. Surprisingly,
the phase behavior depends drastically on the boundary con-
ditions of the system. Finally, we compare our results de-
rived from macroscopic equilibrium conditions directly with
Monte Carlo simulations for the semi-infinite system. More-
over, we examine the accuracy of the osmotic equation of
state derived from an inversion of the sedimentation profiles
of hard spherocylinders.

The paper is organized as follows. In Sec. II we describe
the model and the macroscopic description of sedimentation
equilibria. In Sec. III, we determine phase diagrams for the
finite and semi-infinite systems. We present Monte Carlo
simulation results in Sec. IV and we end with some conclud-
ing remarks in Sec. V.

II. MACROSCOPIC DESCRIPTION OF SEDIMENTATION
EQUILIBRIUM

We consider a system of hard spherocylinders with a
length-to-diameter ratio ofL /D suspended in a solvent. The
suspending solvent is regarded as an incompressible struc-
tureless continuum, characterized by its mass densityr̃. The
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effective or buoyancy mass of a spherocylinder is, according
to Archimedes’ principle,

m= m0 − r̃v, s1d

where m0 is the bare mass of the rod andv=psLD2/4
+D3/6d the volume of the rod. In a gravitational field ori-
ented along thez direction of the vessel, the rods are sub-
jected to the external potential

fszd = mgz, s2d

wherez is the vertical coordinate, andg is the gravitational
acceleration.

When the density does not vary rapidly with the height of
the sample, which is usually the case if the particles are not
too large and heavy, the macroscopic description of the sys-
tem is applicable and the equilibrium condition reads[22]

dPszd
dz

= − mgrszd, s3d

whereP is the osmotic pressure.
Equation(3) allows us to determine the equation of state

of the system from a single measurement of the concentra-
tion profile, which is convenient in experimental or simula-
tion studies[2,4]. The pressure at arbitrary heightz can be
obtained using

bPszd = bPs0d − ,−1E
0

z

dz8rsz8d s4d

whereb=skBTd−1 and,=sbmgd−1. If the concentration pro-
file rszd is measured, elimination ofz betweenrszd andPszd
leads directly to the osmotic equation of statePsrd of the
colloidal suspension.

On the other hand, if the temperature is assumed to be
constant throughout the sample, the pressure depends only
on the local density and Eq.(3) can be rewritten as a non-
linear differential equation forrszd,

drszd
dz

= −
xTsrdrszd

,
, s5d

wherexT=s]bP/]rdT
−1 is the reduced osmotic compressibil-

ity of the bulk fluid at densityr. If the osmotic equation of
statePsrd is known explicitly, the density profile at various
values for the gravitational length can be obtained from Eq.
(5).

III. PHASE DIAGRAMS FOR COLLOIDAL RODS
IN A GRAVITATIONAL FIELD

We determine phase diagrams for colloidal rods in a
gravitational field using the macroscopic conditions for sedi-
mentation equilibrium. We model the colloidal rods as hard
spherocylinders, for which the bulk phase diagram is well
explored[18,21]. The phase diagram shows an isotropic fluid
phase(I), nematic (N) and smecticA (Sm) phases, and a
crystalline phase(K). In order to determine the phase behav-
ior for colloidal rods in a gravitational field, we employ fits
to the equation of states obtained from Monte Carlo simula-

tions of hard spherocylinders with a length-to-diameter ratio
L /D=5 [21]. We determine the phase diagrams for two situ-
ations:(1) a semi-infinite system, and(2) a finite system. We
show that the phase behavior depends sensitively on the
boundary conditions of the system. Below, we discuss the
two situations in more detail.

A. Semi-infinite system

We first consider the case of a semi-infinite system ex-
tending fromz=0 to `. We confineN rods in an open rect-
angular vessel with a horizontalxy cross section of areaS.
The bottom of the system is located atz=0 and vertical
confinement is determined by the gravitational force exerted
on the particles. We determine the phase behavior using the
values for the pressure at phase coexistence determined by
previous simulations in Ref.[21]. Direct integration of Eq.
(3) using the boundary conditione0

`dzrszd=N/S;ns, i.e.,
keeping the number of particles per unit surface fixed, and
employingPsz=`d=0, yields a simple relation for the pres-
sure atz=0, i.e., at the bottom of the sample,

Psz= 0d = mgns. s6d

Equating the pressure at phase coexistence with the pressure
at the bottom of our sample, given by Eq.(6), we can deter-
mine easily the phase boundaries of our system, i.e., which
phase appears at the bottom of our system followed by the
more dilute phases at higher altitudes. In Fig. 1, three phase
boundaries denoted by the solid lines are shown in the phase
diagram for a semi-infinite system. At low gravity, i.e., low
values ofD /,, and lownsD

2, we observe an isotropic phase
throughout the whole system. This regime is denoted byI in
our phase diagram. At higher gravity orns, Psz=0d becomes
larger thanPIN, i.e., the pressure atI-N coexistence, and we
observe a nematic phase at the bottom of our sample. At

FIG. 1. Phase diagram for hard spherocylinders(colloidal rods)
with L /D=5 in a gravitational field for a semi-infinite system. We
plot the gravitational length of the rodsD /, versus the number of
rods per unit surfacensD

2. The symbols denote the state points
employed in our simulations of spherocylinders.s denotes the iso-
tropic phase,n the isotropic-nematicsI +Nd coexistence,h the
isotropic–nematic–smectic-AsI +N+Smd coexistence, andL the
isotropic–nematic–smectic-A–crystalsI +N+Sm+Kd coexistence.
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higher altitudes, we still observe an isotropic phase as the
system becomes more and more dilute at higherz. Hence, we
observe two phases simultaneously in our sample with the
denser phase(N) at the bottom and the isotropic phase at the
top. WhenPsz=0d becomes larger than the pressurePN Sm at
N-Sm coexistence, we find three-phase coexistence with the
smectic phase at the bottom of the container followed by the
nematic and the isotropic phases at higher altitudes. For
Psz=0d. PSm K, four-phase coexistence is predicted with the
crystal phase atz=0. The pressure at Sm-K coexistence is
denoted byPSm K. It is worth mentioning that the phase dia-
gram shows one-, two-, three-, and four-phase coexistence
regions and that the isotropic phase is always present in a
semi-infinite system at sufficiently high altitudes.

B. Finite system

In the previous subsection we considered the situation of
a suspension in an open vessel unlimited in thez direction,
which becomes infinitely dilute in the limit of,→`, i.e., no
gravity. In this section, we consider a suspension ofN col-
loidal rods confined in all directions to a volumeV. The
bottom of the system is again located atz=0, while the
height of the vesselH is fixed. In the absence of gravity, the
suspension is homogeneously distributed with a uniform
densityN/V. Employing Eq.(5) using the boundary condi-
tion e0

Hdzrszd /H=N/V yields the density at the bottomrsz
=0d and at the toprsz=Hd of the sample from which we can
determine the phase diagram. Figure 2 shows the phase dia-
gram in the reduced sample heightH /,–dimensionless rod
density rD3 representation. On the horizontal axis we find
bulk coexistence densities of the isotropic-nematic, nematic-
smectic, and smectic-crystal transitions for zero gravity, i.e.,
H /,=0. At sample heights of about three times the gravita-
tional length, we observe an extremely rich phase behavior.
For instance, at rod densitiesrD3,0.1, we find a pure nem-
atic phase at low sample heights, which is sandwiched by a
more dilute phase(I) at the top and a denser phase(Sm) at
the bottom, as soon as the sample height exceedsH /,
=3.55. The resulting sample exhibits three-phase coexistence

of isotropic, nematic, and smectic phases. At rod densities
rD3,0.125, a pure smectic phase can be transformed in a
three-phasesN+Sm+Kd coexistence by increasing the
sample height. On the other hand, at sample heightsH /,
,3, a singleI phase can be transformed upon increasing the
rod density to a two-phasesI +Nd coexistence, a singleN
phase,N+Sm coexistence, a single Sm phase, Sm+K coex-
istence, to a single crystal phase. At sample heightsH /,
,10 the sequence isI, I +N,I +N+Sm,N+Sm,N+Sm
+K ,Sm+K, K, upon increasing the rod density. Four-phase
coexistence is observed at rod densitiesrD3,0.115 at
sample heights more than about 11 gravitational lengths. It is
worth noting that there are striking differences with the semi-
infinite system. When phase coexistence is observed in the
semi-infinite system, the most dilute phase at sufficiently
high altitudes is always the isotropic phase. This is not the
case in the finite system, yielding many more possibilities for
multiphase coexistence and resulting in a much more com-
plicated phase diagram as shown in Fig. 2 compared to the
semi-infinite system in Fig. 1.

IV. SIMULATIONS

In this section, we present a Monte Carlo study of a sys-
tem of hard spherocylinders with a length-to-diameter ratio
L /D=5 in a gravitational field. Each spherocylinder consists
of a cylindrical part with diameterD and a lengthL with
spherical caps of diameterD at both ends. The bulk phase
diagram of hard spherocylinders is well explored[18,21] and
shows a rich phase behavior including isotropic, nematic,
smecticA, and crystalline phases. In Refs.[23–25], the in-
terfacial behavior of a hard-rod fluid is investigated using
density functional theory and computer simulations. The au-
thors find complete wetting of the nematic phase at the wall–
isotropic fluid interface and a uniaxial to biaxial surface tran-
sition well below the bulkI-N transition. Moreover, when the
hard-rod fluid is confined by two walls, a significant shift of
the I-N transition is found to lower densities compared to
bulk. In this section, we study the effect of a gravitational
field on the phase behavior of hard rods using computer
simulations. We compare our theoretical predictions based
on the macroscopic equilibrium conditions on the phase dia-
gram with simulation results. We study a system with a fixed
number of hard spherocylindersN in a semi-infinite box with
lateral dimensionsLx and Ly applying periodic boundary
conditions in thex andy directions. Thez dimension of the
box is infinite. While atz=0 a planar hard wall is located, the
rods are free to move upward. The confinement of the system
is implemented by a gravitational field along thez direction.
Each rod is subjected to the external potentialfszd=mgz
with m the buoyancy mass,g the acceleration of gravity, and
z the height of the center of mass of the rod. The number of
particles and the dimensions of the box are varied in the
simulations to adjust the pressure at the bottom of the sys-
tem. The starting configuration is prepared as follows. A
close-packed face-centered-cubic(fcc) lattice of spheres of
diameterD with its (001) plane in thexy plane was stretched
in the x direction by a factor ofL /D+1 in order to accom-
modate the close-packed crystal of spherocylinders. This lat-

FIG. 2. Phase diagram for hard spherocylinders(colloidal rods)
with L /D=5 in a gravitational field for a closed vessel. We plot the
reduced sample heightH /, with , the gravitational length of the
rods versus the dimensionless rod densityrD3.

SEDIMENTATION AND MULTIPHASE EQUILIBRIA IN … PHYSICAL REVIEW E 70, 051401(2004)

051401-3



tice was subsequently expanded in thex andy directions. For
inhomogeneous phases, such as the smectic and crystal
phases, it is often essential that the simulation box can
change its size(and maybe its shape), in order to accommo-
date the changes in the phase structures without creating high
stresses in the sample. However, as the concentration varies
with height in a gravitational field, it is impossible to avoid
stresses at each heightz. We have chosen the area of the
sample such that the phase at the bottom is well accommo-
dated or is commensurate with the dimensions of the cross
section of the container. We check for equilibrium by moni-
toring the height of the center of mass of the system. When
equilibrium is reached we perform sampling at,1.53106

Monte Carlo cycles(one cycle is one attempted move per
particle), the profiles are sampled in bins of width 0.1D. The
sampled quantities are the density profile and the profiles of
the eigenvalues of the standard 333 nematic order param-
eter tensor defined as[26]

Qabszjd =
1

nj
Ko

i=1

nj 3ua
i ub

i − dab

2 L s7d

whereua
i is thea component of the unit orientation vector of

particle i with a=x, y, z, andnj is the number of particles
present in binj . The Kronecker delta isdab. Diagonalizing
this tensor gives three orientational ordering eigenvalues
l+, l0, andl− for each bin.

We perform simulations of spherocylinders withL /D=5
at three values of the inverse gravitational lengthD /,=0.3,
0.5, and 0.75, and for varying number of particles per unit
surfacensD

2. The explicit values forD /, andnsD
2 which are

employed in the simulations are displayed by the dots in Fig.
1. We display coarse-grained density profiles forD /,=0.30
and 0.75 for varying values ofnsD

2 in Figs. 3 and 4. Similar
results were obtained forD /,=0.50. We show plots for only
a few values ofnsD

2 for clarity. At high altitudes(largez) we
find that the density tends to zero, while the highest density
is observed at the bottom of the sample as expected. For

comparison, we also plot the density profiles obtained from
Eq. (5) and employing the equation of state from Ref.[21].
We find good agreement of the simulation results with the
theoretical predictions based on the macroscopic osmotic
equilibrium conditions. We, therefore, believe that also the
theoretical predictions on the phase behavior are reliable.
The density fluctuations due to the ordering of the rods in-
duced by the wall or due to the ordering in the smectic and
crystal phase is, of course, missing in the density profiles
obtained from the macroscopic osmotic equilibrium condi-
tions. We wish to mention that the phase at the bottom of the
container, and hence the phase diagram can be determined by
comparing the theoretical or simulation contact densities at
z=0.5D with the bulk coexisting densities. The coexisting
densities are determined by McGrotheret al. using computer
simulations[21]. The reduced densities are atI-N coexist-
encerD3=0.0914sId andrD3=0.0932sNd, at N-Sm coexist-
ence rD3=0.1061sNd and rD3=0.1094sSmd, and at Sm-K
coexistencerD3=0.1319sSmd andrD3=0.1380sKd [21]. For
the two lowest density profiles in Figs. 3 and 4, we find that
the contact density is lower than the coexisting density of the
nematic phase atI-N coexistence; hence, the whole sample is
in the isotropic phase in agreement with the theoretical phase
diagram in Fig. 1. The contact densities fornsD

2=4.348 in
Fig. 3 andnsD

2=1.701 in Fig. 4 are higher than the coexist-
ing density of the nematic phase atI-N coexistence, but
lower than that atN-Sm coexistence, and we find two-phase
coexistence of the isotropic phase and the nematic phase. We
find that the contact density fornsD

2=2.457 in Fig. 4 is
higher than the coexisting density of the smectic phase at
N-Sm coexistence, but lower than that at Sm-K coexistence.
For this state point, we observe three-phase coexistence of
smectic, nematic, and isotropic phases. For all these density
profiles, we find good agreement with the theoretical predic-
tions for the phase behavior, as one might expect on the basis
of the good agreement of the density profiles with the theo-

FIG. 3. Density profilesrD3 versusz/D for a semi-infinite sys-
tem with inverse gravitational lengthD /,=0.30, and for varying
number of particles per unit surfacensD

2=0.756,2.268,4.348(from
bottom to top). The thin lines are the coarse-grained density profiles
from computer simulations, while the thick lines are those obtained
from Eq. (5) using the equation of state of Ref.[21].

FIG. 4. Density profilesrD3 versusz/D for a semi-infinite
system with inverse gravitational lengthD /,=0.75, and for
varying number of particles per unit surfacensD

2 of
0.567,1.323,1.701,2.457,3.51,4.34(from bottom to top). The thin
lines are the coarse-grained density profiles from computer simula-
tions, while the thick lines are those obtained from Eq.(5) using the
equation of state of Ref.[21]. The inset shows the raw density
profile from simulations fornsD

2=4.34.
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retical ones. Closer inspection of Fig. 1 shows that theI +N
coexistence starts at lowernsD

2 for D /,=0.5 and 0.3 com-
pared with the theoretical predictions. A similar shift was
also found in previous simulations of a hard-rod fluid in
contact with a planar hard wall: the uniaxial to biaxial sur-
face transition occurs well below the bulkI-N transition
[23–25]. However, it is impossible to determine the contact
density from the density profiles obtained from simulations
at highnsD

2 due to the large density fluctuations close to the
wall. Even coarse-graining the density profiles does not give
us a sufficiently accurate value for the contact density. How-
ever, the appearance of the crystal phase can be observed in
the raw (not coarse-grained) density profiles. The inset of
Fig. 4 shows the raw density profile fornsD

2=4.34. We

clearly observe the formation of crystalline layers at the bot-
tom and smectic layers at higher altitudes: the density drops
to zero between the density peaks close to the wall(crystal
phase), while only pronounced peaks are observed at higher
z (smectic phase). The system is in the four-phase coexist-
ence region fornsD

2=4.34 andD /,=0.75. This multiphase
coexistence can also be appreciated from the snapshots in
Fig. 5 that shows nice crystalline ordering at the bottom of
the container in Fig. 5(c) and hexagonal ordering in Fig.
5(b). At higher altitudes, the hexagonal ordering is destroyed,
and a smectic phase appears. The smectic layers disappear at
even higher heights as can be seen in Fig. 5(a), and we ob-
serve a nematic phase. At high altitudes, we observe the iso-
tropic phase.

FIG. 5. Snapshots of typical configurations, two sideviews(a) and (b), and a bottom view(c), obtained from simulations of hard
spherocylinders withL /D=5, for number of particles per unit surfacensD

2=4.34 and for an inverse gravitational lengthD /,=0.75.
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In Fig. 6, we plot the order parameter profiles forD /,
=0.75 and varying values ofnsD

2. In bulk, the value of the
largest eigenvalue of this tensor determines the nematic or-
dering, which is zero for an isotropic fluid phase and 1 for
perfectly aligned rods. In the presence of the wall at the
bottom of the sample the lowest eigenvalue of this tensor
approaches −1/2 as the rods close to the wall have to be
oriented parallel to the surface. Consequently, the two largest
eigenvalues are equal to 1/4 when there is no in-plane order;
see Fig. 6(the short-dashed lines fornsD

2=0.567). The onset
of biaxial and nematic ordering at the bottom can be ob-
served from the difference of the two largest eigenvalues,
which shows the appearance of a preferred in-plane orienta-
tion (the dash-double-dotted lines fornsD

2=1.323). As nsD
2

increases this difference increases. The nematic phase ap-
pears at the bottom of the container when the largest eigen-
value exceeds 0.5 atz=0 (dash-dotted line fornsD

2=1.701),
which corresponds well with the value of the nematic order
parameter of 0.471 for the nematic phase atI-N coexistence
[21]. Three-phase coexistence is observed when the largest
eigenvalue is roughly 0.9 at the bottom(dotted and dashed
lines fornsD

2=2.457 and 3.51, respectively), again in agree-
ment with the fact that the nematic order parameter of the
smectic phase in bulk is about 0.893 atN-Sm coexistence
[21]. A crystal phase(solid line for nsD

2=4.34) is found at
the bottom of the container when the largest eigenvalue ap-
proaches 1, while the order parameter of the crystal phase in
bulk is about 0.974 at Sm-K coexistence[21].

Finally, we obtain the osmotic equation of state for hard
spherocylinders by inverting the coarse-grained simulation
sedimentation profiles using Eq.(4) and by eliminatingz
betweenrszd and Pszd. In Fig. 7, we show the results using
the profiles for inverse gravitational lengthD /,=0.75 and
number of particles per unit surfacensD

2=3.21 and 4.34. For
comparison, we also plot the osmotic equation of state ob-
tained from bulk simulations performed at many different
densities of Ref.[21] and we find good agreement, even for
densities higher than those atI-N coexistence. Similar good
agreement of the equation of state of the isotropicandof the
nematic phase was also found by inverting sedimentation
profiles for D /,=0.30 and 0.50, and other values ofnsD

2

that we considered.

FIG. 6. The profiles of the eigenvaluesl+, l0, and l− of the
nematic order parameter tensor(7) versusz/D for a semi-infinite
system with inverse gravitational lengthD /,=0.75, and varying
number of particles per unit surface(a) nsD

2=0.567, (b) nsD
2

=1.323,(c) nsD
2=1.701, and(d) nsD

2=2.457(short-dashed), 3.51
(dashed), 4.34 (solid).

FIG. 7. Equation of state of hard spherocylinders with a length-
to-diameter ratioL /D=5 obtained by inverting the coarse-grained
density profiles from Fig. 4 versus reduced densitiesrD3 for nsD

2

=3.21s3d andnsD
2=4.34 (s), while — represents the bulk equa-

tion of state from Ref.[21].
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V. CONCLUSIONS

We have investigated sedimentation and phase equilibria
in suspensions of hard spherocylinders with a length-to-
diameter ratioL /D=5 by analyzing the(macroscopic) os-
motic equilibrium conditions. We present phase diagrams for
a semi-infinite system and for a finite system. We find that
the phase behavior depends in great detail on the boundary
conditions of the system. To the best of our knowledge, we
believe that this is the first study that investigates the depen-
dence of the phase behavior on the boundary conditions of
the system. In addition, we compare our theoretical predic-
tions for the phase behavior and sedimentation profiles with
Monte Carlo simulations for the semi-infinite system. We
find very good agreement between the two sets of results.
Moreover, we find excellent agreement of the osmotic equa-
tion of state obtained from inverting the coarse-grained sedi-
mentation profiles from a single simulation with the bulk
equation of state determined from bulk simulations at many
different densities[21], even for densities in the nematic

phase. This surprisingly good agreement for densities beyond
I-N coexistence can be understood as the interfacial width of
the isotropic-nematic interface is very small for the gravita-
tional lengths considered in this work.

It is interesting to study the effect of the addition of an
extra component to the sedimentation profiles of a suspen-
sion of hard rods, e.g., a nonadsorbing polymer that might
yield a floating liquid phase similar to that found in Refs.
[13,14], or thinner rods that might give a nontrivial density
profile of floating thick rods in a suspension of thin rods
similar to that in Ref.[15]. We plan to study the sedimenta-
tion profiles of colloidal rod mixtures in future work.
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