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1

Introduction

1.1 Colloids
Colloids are particles within a size range of a nanometer to several micrometers that are
moving around in a solvent. We make use of colloids almost every day. For instance,
milk, latex paint, mayonnaise, ice creams, etc., by definition, are all consisting of colloidal
particles. Therefore, it is clear that a better understanding of colloidal systems will
improve these products and contribute to industrial applications. Besides applications,
colloids are also good model systems to study in order to gain insights in the behavior
of atomic and molecular systems. More than hundred years ago, Perrin pointed out
that the motion of colloids is caused by the collisions with the molecules of the solvent,
which causes the colloids to move in an irregular fashion, i.e., Brownian motion [1]. Due
to the Brownian motion, colloidal particles can explore phase space, and self-assemble
similarly to atomic and molecular systems. Moreover, colloidal particles are several orders
of magnitude larger than atoms or molecules, and they move much slower. This makes it
possible to track the motion of the particles in real time using an optical microscopy and
study the dynamics of physical processes, such as nucleation, which are very difficult to
investigate in atomic or molecular systems.

Moreover, the interactions between colloidal particles can be tuned relatively easily,
which opens up the possibility of fabricating functional materials with rational designed
properties. For instance, colloids are normally charged particles, since the surface of a
colloid always adsorbs ions and releases some ions to the solvent. The ions in the solvent
screen the bare Coulomb interactions between charged colloids. When the concentration
of ions is low, the electrostatic repulsion dominates the phase behavior of colloidal systems,
and makes the spherical colloidal particles form a body-centered cubic (bcc) crystal when
the density of colloids is high. By adding salt into the solution, one can tune the colloid-
colloid interaction into a hard-sphere like repulsion, which drives hard-sphere like particles
to crystallize into a face-centered cubic (fcc) arrangement at high density [2]. This means
that one can control the resulting crystal structure in colloidal systems by changing the
properties of the solution.

Therefore, the colloidal self-assembly is important for both applications in material
science and as model systems for studying physical phenomena such as nucleation, glasses,
gels, etc.



2 Chapter 1

1.2 Interactions
Recent breakthroughs in particle synthesis have resulted in a spectacular variety of build-
ing blocks with anisotropic interactions [3]. For example, rod-like [4], platelet-like [5] and
polyhedral particles [6] have been successfully synthesized in experiments. In addition,
as mentioned previously, one can also tune the interaction between colloidal particles by
changing the properties of solvent. External fields can be employed to drive the self-
assembly of colloidal systems as well [7].

In this thesis, we mainly focus on interactions induced by excluded volume effects,
i.e., hard-core interactions. Although it is a simplification of the colloid-colloid interac-
tions, there are many systems which are well modeled by hard interactions. For instance,
in typical colloidal systems consisting of silica or PMMA particles coated with polymer
brushes, the interaction between the colloidal particles include a hard-core repulsion, a
steric repulsion associated with the polymer brushes, van der Waals forces, and electro-
static interactions induced by charges adsorbed on the surface of the colloids. In most
experimental systems, the colloids are suspended in a medium with a similar refractive
index that can minimize the van der Waals interactions. The steric stabilizer on the sur-
face of colloids helps to prevent the particles to aggregate as it basically masks the van
der Waals interactions. The electrostatic interactions can be screened by adding salt into
the solution. Therefore, the resulting effective interaction between particles can be well
modeled as hard-sphere repulsion, and the calculated equilibrium phase diagram of hard
spheres indeed agrees well with experiments [8].

1.3 Simulation techniques
In this thesis, we perform computer simulations to study the phase behavior in colloidal
systems. Two main simulation methods are employed: Monte Carlo (MC) simulations and
molecular dynamics (MD) simulations. For example, to determine the nucleation rate in
computer simulations, we first calculate the Gibbs free energy as a function of cluster
size by using umbrella sampling MC simulations, and then compute the attachment rate
by performing MD simulations starting from top of the nucleation barrier. Moreover,
in the calculation of the equilibrium phase diagram of colloidal systems, we employ MC
simulations to calculate the equation of state (EOS) and the free energies of various
phases. In this section, we will give a brief explanation of these two methods.

1.3.1 Monte Carlo simulations
Monte Carlo simulations are usually employed to measure the equilibrium properties of a
system by sampling the phase space with a Boltzmann distribution. Instead of following
the real dynamic evolution of the system, a Monte Carlo simulation simply samples the
most relevant states of the system, which is called importance sampling or Metropolis
sampling [9].

Consider a system of N interacting particles in a volume V at temperature T . The
probability of the system to be in a state with particle positions rN and momenta pN is
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proportional to the Boltzmann weight with respect to the Hamiltonian H of the system:

P(rN ,pN) ∝ exp
[
−βH(rN ,pN)

]
(1.1)

with β = 1/kBT and kB Boltzmann constant. Then the mathematical expectation of a
quantity A of the system is the weighted average of A over all possible states:

〈A〉 =
∫

drN
∫

pNA(rN ,pN)P(rN ,pN)∫
drN

∫
dpNP(rN ,pN) , (1.2)

where the partition function for this system is given by

Q =
∫

drN
∫

dpNP(rN ,pN). (1.3)

The Hamiltonian can be written as

H(rN ,pN) = U(rN) +K(pN) (1.4)

where U(rN) and K(pN) are the total potential energy and kinetic energy of the system,
respectively. If the quantity A is independent of the velocities of the particles, Eq. 1.2
can be re-written as:

〈A〉 =
∫

drNA(rN) exp
[
−βU(rN)

]
∫

drN exp [−βU(rN)] (1.5)

A simple Monte Carlo method of evaluating Eq. 1.5 is to randomly generate a number
of configurations, and determine the value A and the weight of exp

[
−βU(rN)

]
for each

configuration. However, for any system of more than a few particles, this method is
very inefficient, since it has a big probability of selecting configurations with very small
Boltzmann weight exp

[
−βU(rN)

]
. Metropolis et al. introduced an ingenious method, in

which 〈A〉 is calculated by averaging A(rN) selected according to a Boltzmann distribution
of exp

[
−βU(rN)

]
. Thus, if we randomly generate M configurations according to the

Boltzmann distribution, then

〈A〉 = 1
M

M∑
i=1

A(rNi ). (1.6)

Therefore, the Metropolis method suggests a way of sampling the most relevant config-
urations in phase space according to the Boltzmann distribution, which is also called
importance sampling. In practice, one can generate a Markov chain of configurations
according to the Boltzmann distribution, and simply average the quantity A over the
configurations [10].

However, in this thesis we study nucleation in colloidal systems. Nucleation is a rare
event, which means it is not regarded as the “important” part of phase space in the
conventional Metropolis method. The statistics of calculating the free energy barrier of
nucleation in Metropolis Monte Carlo simulations are very poor. Thus, we need to bias the
simulation to sample the nucleation barrier, which is called umbrella sampling. Basically,
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we re-write Eq. 1.5 as

〈A〉 =
∫

drNA(rN) exp
[
−βU(rN)

]
∫

drN exp [−βU(rN)]

=
∫

drNA(rN) exp
[
βW(rN)

]
exp

{
−β

[
U(rN) +W(rN)

]}
∫

drN exp [βW(rN)] exp {−β [U(rN) +W(rN)]}

=

〈
A exp

[
βW(rN)

]〉
W

〈exp [βW(rN)]〉W
, (1.7)

where W(rN) is the biasing potential which is used to bias the simulation to sample the
specific part of the phase space. In order to calculate the free energy barrier around
cluster size n0, we use

βW(rN) = 1
2k
[
n(rN)− n0

]2
, (1.8)

where n(rN) is the biggest cluster size in the configuration rN and k = 0.2 is the spring
constant controlling the window width of the sampling. Here we described the Monte
Carlo method in the canonical ensemble (NV T ), and it can easily be adapted to other
ensemble by modifying the partition function in Eq. 1.3. For instance, in the isothermal-
isobaric ensemble (NPT ), there is one more PV term in the statistical weight, where P
and V are the pressure and volume of the system, respectively.

1.3.2 Molecular Dynamics simulations
In molecular dynamics (MD) simulations, the dynamics of the system are explicitly taken
into account, and the particles move according to Newton’s Law which defines the equa-
tions of motion of the particles in the system. In conventional MD simulations, where
the potential continuously changes as a function of the distance between particles, the
equations of motion of the particles can be integrated with fixed time steps. The evolu-
tion of the system is then driven by time steps. However, this time-driven scheme cannot
work for systems where the forces between the particles are instantaneous which is due to
the discontinuity of the potential in the system. For instance, in MD simulations of hard
particles, the particles only feel the interactions with other particles when they collide,
but the collision cannot be detected before the overlap of particles in the time-driven MD
simulations. In this thesis, we employ a scheme called event-driven molecular dynamics
(EDMD) simulations to study a system of hard particles. In EDMD simulations, we first
predict the times of all possible collisions explicitly, and put them into an events tree.
We then evolve the system to the earliest event selected from the events tree and process
the event and modify the events tree. Combined with using a cell list to speed up the
simulation, the outline of the EDMD simulation for a system of hard particles is described
below:

1. Initialize the velocities and positions of the particles in the system.

2. Initialize the cell list of the system, and predict and store next cell cross event for
each particle.
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3. Predict and store the collision events between the particles in neighboring cells.

4. Select the first predicted event, and evolve the system to the time of event.

5. In the case of a cell crossing event, update the cell list, and predict and store the
collisions with the particles in the new neighboring cells.

6. In the case of a collision event, update the velocities of the particles; delete all
events associated with the two colliding particles, and then predict and store the
new collisions for the colliding particles.

7. In both cases, delete the old cell crossing event, and predict the new cell crossing
for the particles involved in the event.

8. Repeat steps 4 ∼ 7.

In this thesis, we employ EDMD simulations mainly to study systems of anisotropic
particles with rotational symmetry along one axis, i.e., hard dumbbells and hard sphero-
cylinders. In the following, we take hard spherocylinders as an example to describe the
free-flight dynamics and the collision dynamics [11].

Consider at time t, a hard spherocylinder located at r(t) with an orientation u(t)
which is the unit vector along the axis of the cylindric part of the particle. The velocity
and angular velocity of the particle are v(t) and ω(t), respectively, and by ignoring the
spinning of the particle around u(t), we have ω(t) ·u(t) = 0. We assume that the particles
move freely between collisions. The position and orientation of the particle at t+ ∆t can
be easily described by

r(t+ ∆t) = r(t) + v(t)∆t, (1.9)
u(t+ ∆t) = cos(|ω(t)|∆t) u(t) + sin(|ω(t)|∆t) ω̂(t)× u(t). (1.10)

where ω̂(t) = ω(t)/|ω(t)|.
To find the time at which the collision between two particles i and j occurs, we need

to employ an overlap function which is a continuous function f(ri,ui, rj,uj) depending on
the location ri,j and orientation ui,j of the two particles. The overlap function is defined
such that f(ri,ui, rj,uj) < 0, when the two particles are overlapped, and larger than zero,
otherwise. Thus, to predict the time of collision, we essentially solve the equation:

f(ri(tij),ui(tij), rj(tij),uj(tij)) = 0. (1.11)

For a system of hard spherocylinders with a diameter σ and a cylindrical segment of
length L, we use f(ri,ui, rj,uj) = d(ri,ui, rj,uj)−σ, where d(ri,ui, rj,uj) is the shortest
distance between two line segments at ri,j and orientation ui,j [12]. Taking into account the
free-flight dynamics of hard spherocylinders, one needs to solve a transcendental equation
to predict the time of collision. Although it is hard to have analytical solutions for those
equations, it can still be solved numerically [13].

As long as we have found the times of collisions in the system, we can select the first
collision event and evolve the system to the time of the collision. We assume that particle
i and j at positions ri, rj with orientations ui, uj, momenta pi, pj and angular velocities
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ri r j

rc

ui u j

rci rcj
Ωi Ω j

Dp

Figure 1.1: Illustration of the collision between two spherocylinders i and j.

ωi, ωj, respectively, collide at the contact point rc as shown in Fig. 1.1. The moment of
inertia of the particle is I, thus the angular momentum of particle i is Ji = Iωi.

The post-collisional values of the linear and angular momenta of the particles, denoted
by primes, are then given in terms of the collision impulse ∆p at the contact point:

p′i = pi + ∆p, (1.12)
p′j = pj −∆p, (1.13)
J′i = Ji + rci ×∆p, (1.14)
J′j = Jj − rcj ×∆p, (1.15)

where rci,cj is the position of point of collision with respect to the center of the particle
i, j. Supposing that the collision is elastic and the two particles have the same mass m,
we find

|∆p|2

m
+ gij ·∆p + 1

2I
(
|rci ×∆p|2 + |rcj ×∆p|2

)
= 0, (1.16)

where
gij = vi + ωi × rci − vj − ωj × rcj (1.17)

is the relative velocity of the two colliding points. Moreover, since the impulse is per-
pendicular to the surface, ∆p = n|∆p|, where n is the unit vector perpendicular to the
surface of collision, and this gives

|∆p| = −gij · n
(1/m) + (|rci × n|2 + |rcj × n|2) /2I . (1.18)

This equation is generally applicable to hard particles with rotational symmetry.

1.4 Outline of this thesis
The remainder of this thesis is organized as follows. This thesis can be divided into two in-
dependent parts. In the first part of this thesis, we focus on studying the kinetic pathways
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of nucleation in colloidal systems. In Chapter 2, we briefly introduce the relevant theory
of nucleation, i.e., classic nucleation theory. Then in Chapter 3, we investigate the crystal
nucleation in the “simplest” model system for colloids, i.e., the monodisperse hard-sphere
system, by using three different simulation methods, i.e., molecular dynamics, forward
flux sampling and umbrella sampling simulations. Subsequently, we apply our simulation
methods to a more realistic system of colloidal hard spheres in Chapter 4. Furthermore,
we study the nucleation in a variety of systems consisting of hard particles, i.e., hard
dumbbells (Chapter 5), hard rods (Chapter 6), hard colloidal polymers (Chapter 7) and
binary hard-sphere mixtures (Chapter 8). In the second part of this thesis, we study the
phase behavior of several colloidal systems. In Chapter 9, we study the equilibrium phase
diagram of colloidal hard superballs whose shape interpolates from cubes to octahedra
via spheres. We investigate the micellization of asymmetric patchy dumbbells induced by
the depletion attraction in Chapter 10.

1.5 Appendix: NPT Monte Carlo simulations
In this section, we formulate the partition function for the NPT ensemble in a deformable
box and the corresponding acceptance rule for volume moves in Monte Carlo simulations.

We start with the partition function for the NV T ensemble:

Q(N, V, T ) = C
∫

drN exp
[
−βU(rN)

]
, (1.19)

where C is a constant. If we use a matrix h = (e1, e2, e3) to fix the box shape, where ei
is the ith box length vector, the spatial coordinate of particle k can be written as

rk = hsk, (1.20)

where sk is the fractional coordinate of particle k. Then the partition function for the
NhT ensemble reads:

Q(N,h, T ) = CV N
∫

dsN exp
[
−βU(sN)

]
, (1.21)

where V = det(h) is the volume of the system.
For the NPT ensemble, we decompose the box into two terms: the volume of the box

and the shape of the box. If we use the matrix h0 = h/V 1/3 to denote the shape of the
box, the partition function for the NPT ensemble can be written as

Q(N,P, T ) = 1
V0

∫ ∞
0

dV
∫

dh0 exp(−βPV )Q(N,h, T )δ [det(h0)− 1] , (1.22)

where V0 is the unit of volume, and δ(∗) is the Dirac delta function. We note that
det(h0) = det(h)/V , and we find

Q(N,P, T ) = 1
V0

∫ ∞
0

dV
∫

dh det
[
J

(
∂h0

∂h

)]
exp(−βPV )Q(N,h, T )δ

[
det(h)
V

− 1
]
,

(1.23)
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where J
(
∂h0
∂h

)
is the Jacobian of h0 with respect to h. We note that h has nine, i.e.,

3 × 3, independent elements, and ∂h0,i
∂hj = V −1/3δK(i, j), where δK(i, j) is the Kronecker

delta function. We arrive at

J

(
∂h0

∂h

)
=



V −1/3 0 0 0 0 0 0 0 0
0 V −1/3 0 0 0 0 0 0 0
0 0 V −1/3 0 0 0 0 0 0
0 0 0 V −1/3 0 0 0 0 0
0 0 0 0 V −1/3 0 0 0 0
0 0 0 0 0 V −1/3 0 0 0
0 0 0 0 0 0 V −1/3 0 0
0 0 0 0 0 0 0 V −1/3 0
0 0 0 0 0 0 0 0 V −1/3


,

and
det

[
J

(
∂h0

∂h

)]
= V −3. (1.24)

By utilizing the properties of the Dirac delta function and implying δ [det(h)/V − 1] =
V δ [det(h)− V ] , the partition function can be re-written as

Q(N,P, T ) = C

V0

∫
dh[det(h)]N−2 exp [−βP det(h)]

∫
dsN exp

[
−βU(sN ,h)

]
. (1.25)

We can now construct a Monte Carlo scheme to simulate the system in theNPT ensemble.
The acceptance rule for a trial move from h to h′ is

acc(o→ n) = min
(
1, exp

{
−β

[
U(sN ,h′)− U(sN ,h)

+P [det(h′)− det(h)]− (N − 2)β−1 ln
(

det(h′)
det(h)

)]})
. (1.26)

More generally, for the NPT ensemble in d dimensional systems, the partition function
is

Q(N,P, T ) = C

V0

∫
dh[det(h)]N+1−d exp [−βP det(h)]

∫
dsN exp

[
−βU(sN ,h)

]
. (1.27)

In the following, we derive the partition function for the NPT ensemble in three
specific cases, which are commonly used.

1.5.1 Cubic box
The most commonly used NPT - MC simulations are performed in a cubic simulation box
without shape deformation. When we fix the shape of the cubic box with length L, the
box matrix becomes

h =

 L 0 0
0 L 0
0 0 L

 . (1.28)
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Then the tensor dh = dL, and the Jacobian in Eq. 1.23 becomes det
[
J
(
∂h0
∂h

)]
= 1/L =

V −1/3. The resulting partition function becomes

Q(N,P, T ) = C

3V0

∫
dV V N exp(−βPV )

∫
dsN exp

[
−βU(sN)

]
, (1.29)

which recovers the partition function for NPT ensemble without box shape deformation
in Ref. [10].

1.5.2 Rectangular box
NPT simulations in rectangular simulation boxes are also frequently employed, since
many crystals cannot be simulated in a cubic box, e.g., hexagonal-close-packed crystals.
The box matrix for a rectangular box is

h =

 Lx 0 0
0 Ly 0
0 0 Lz

 , (1.30)

where Lx, Ly and Lz are three independent variables denoting the box length in the x, y
and z directions, respectively. The tensor dh reduces to dLxdLydLz, and the Jacobian in
Eq. 1.24 becomes det

[
J
(
∂h0
∂h

)]
= V −1. Subsequently, the partition function is

Q(N,P, T ) = C

V0

∫
dLxdLydLz(LxLyLz)N exp(−βPLxLyLz)

∫
dsN exp

[
−βU(sN)

]
,

(1.31)
which has the same acceptance rule for volume moves as for cubic simulation boxes.
However, we note that the NPT ensembles with a cubic box and a rectangular box
are two different ensembles, and that the system in a rectangular box has more entropy
associated with the box shape.

1.5.3 Floppy box without box rotation
The partition function for the NPT ensemble in a general floppy box is described in
Eq. 1.26, and one can perform Monte Carlo simulations with random walks in the nine
elements of h. However, the random walk in all the nine elements of h will result in a
rotating simulation box. To prevent the rotation of the simulation box, a common trick
is to fix the first axis of the box along the x axis and the second axis of the box in the
x − y plane. The third axis of the box can freely rotate. The box matrix becomes an
upper triangular matrix:

h =

 h1 h6 h5
0 h2 h4
0 0 h3

 , (1.32)

which uses the Voigt notation: 11 = 1, 22 = 2, 33 = 3, 23(= 32) = 4, 13(= 31) = 5 and
12(= 21) = 6. Then the Jacobian in Eq. 1.24 becomes det

[
J
(
∂h0
∂h

)]
= V −2. Therefore,

the partition function is

Q(N,P, T ) = C

V0

∫
dh[det(h)]N−1 exp [−βP det(h)]

∫
dsN exp

[
−βU(sN)

]
. (1.33)
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And the corresponding acceptance rule for the trial move from h to h′ is

acc(o→ n) = min
(
1, exp

{
−β

[
U(sN ,h′)− U(sN ,h)

+P [det(h′)− det(h)]− (N − 1)β−1 ln
(

det(h′)
det(h)

)]})
. (1.34)

TheNPT ensembles in cubic, rectangular and floppy boxes are, in principle, equivalent
when the system is infinitely large. However, for a finite system, they are different.
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Nucleation in colloidal systems

11





2

Theory of nucleation

In this chapter, we briefly describe the physical background of nucleation and a classic
theoretical interpretation, i.e., classical nucleation theory (CNT). We shortly derive CNT
for estimating the free-energy barrier of nucleation and the resulting nucleation rate.

2.1 Nucleation
Nucleation is the onset of a first order phase transition, which happens when the first order
derivative of the free energy with respect to a thermodynamic variable is discontinuous.
For example, the gas-liquid phase transition is a typical first order transition, which has a
discontinuity in density ρ. Let us take the van der Waals fluid as example. In his thesis of
1873, Van der Waals proposed two correction terms to the ideal gas law p = NkBT/V [14].
Firstly, he argued that the actual volume available to a molecule is smaller than the total
volume V of the container due to the excluded volume effect between molecules. Secondly,
he argued that the attractions between the molecules reduce the pressure p by an amount
−aρ2, where a > 0 is a measure for the attraction between the molecules. Therefore, Van
der Waals wrote

p = NkBT

V −Nb
− aρ2 = ρkBT

1− ρb − aρ
2, (2.1)

with two phenomenological parameters a and b. He also found that there is a critical tem-
perature Tc = 8a/27bkB, below which the system undergoes a gas-liquid phase transition
upon increasing the density. A typical equation of state for a system of a van der Waals
fluid at temperature T < Tc is shown in Fig. 2.1.

By applying a common tangent construction on the free energy density curve as shown
in Fig. 2.1, one finds that the gas-liquid phase coexistence densities are ρgas and ρliquid,
respectively, also called the binodal points. When the density of the system ρ lies well
inside the region ρgas < ρ < ρliquid, the system is metastable (supersaturated or undersat-
urated), and in equilibrium it phase separates into a gas phase with density ρgas and a
liquid phase with density ρliquid. The phase transition is triggered by fluctuations in the
system. Moreover, for each isotherm T < Tc, there are two points where ∂p/∂ρ = 0 equiv-
alent to ∂ρ/∂p =∞, which means that a tiny fluctuation in the pressure can induce huge
density fluctuations. These two points are called spinodal points, which are the stability
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Figure 2.1: The equation of state (solid line) and the corresponding conveniently shifted and
scaled Helmholtz free energy density fvdW = F/V (thick dashed line) as a function of density
ρ for a system of van der Waals fluid at temperature T < Tc. The gas-liquid phase coexistence
densities are ρgas and ρliquid, respectively.

limits of the metastable phases. Thus in the shadow region of Fig. 2.1, the gas-liquid
phase transition needs to be generated by finite and localized fluctuations, which is called
nucleation. During nucleation, the metastable phase has to overcome a finite free energy
barrier, after which the nuclei can grow spontaneously.

Figure 2.2: Nucleation of carbon dioxide bubbles around a finger.

Moreover, when we talk about nucleation, it is important to distinguish between het-
erogeneous and homogeneous nucleation. Heterogeneous nucleation happens when it can
be assisted by a heterogeneity in the system, such as walls or impurities. For instance,
when we put a finger into a cup of Sprite as shown in Fig. 2.2, there are more bubbles of
carbon dioxide on the finger compared to the bulk phase, as nucleation of carbon dioxide
bubbles is promoted by the interface created by the finger, i.e., heterogeneous nucleation.
In contrast, homogeneous nucleation occurs due to spontaneous fluctuations in the bulk
phase. Although in our real life, heterogeneous nucleation is more likely to happen, homo-
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geneous nucleation is not just a theoretical simplification for studying the physics of phase
transitions. There are still a lot of situations in the real world where homogeneous nucle-
ation dominates, such as condensation in supersonic nozzles [15], explosions which occurs
when a cold liquid contacts a much hotter one [16], formation of heavily microcrystallized
ceramics [17], (nano) particle synthesis,etc. Furthermore, experimental techniques, have
advanced significantly in recent years, which makes it possible to study homogeneous nu-
cleation in experiments. Nevertheless, the mechanism of homogeneous nucleation is still
an open question, and even for a system of hard spheres, probably the simplest model
to describe colloidal systems, there is still an ongoing debate on the discrepancy in the
measured nucleation rates between experimental and theoretical methods [18–21]. This
makes homogeneous nucleation an interesting and challenging topic. In the following, we
briefly derive a commonly used theory to describe homogeneous nucleation, i.e., classical
nucleation theory (CNT), which was first formulated by Volmer and Weber [22].

2.2 Free energy barrier
We consider a metastable phase A, e.g., a gas phase, at the thermodynamic condition
where phase B, e.g., a liquid phase, is the stable phase. As shown in Fig. 2.3, droplets of
phase B exist in the phase A, and they may grow and shrink due to thermal fluctuations.

A A B
I II

Figure 2.3: Illustration of the nucleation of phase B in a metastable phase A.

In the following, we first consider a homogeneous system containing only the metastable
phase A denoted as system I (left in Fig. 2.3) and a system II containing the metastable
phase A and a droplet (or a cluster) of phase B (right in Fig. 2.3). The temperature of
both systems is fixed and equal to T .

The internal energy of the homogeneous system I can be written as

U I = TSI − P IV I + µI
AN, (2.2)

where T is the temperature of the system, SI the total entropy, P I the pressure, V I the
total volume, µI

A the chemical potential and N the total number of particles. The internal
energy of system II, which contains the metastable phase A and a cluster of phase B, is

U II = TSII − P II
A V

II
A − P II

B V
II
B +Aγ + µII

ANA + µII
BNB, (2.3)

where P II
A,B, V II

A,B and µII
A,B are the pressure, volume and chemical potential of phase A,B,

respectively, with the superscripts indicating the values in system II, γ the interfacial
tension between A and B with A the surface area of cluster B, and NA and NB are the
number of particles of phase A and B in system II, respectively.
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If we keep the pressure in the metastable phase A fixed, i.e., P I = P II
A = P , and the

total number of particles constrain, i.e., N = NA + NB, then the Gibbs free energy in
system I and II are

GI = U I − TSI + P IV I = µI
AN (2.4)

GII = U II − TSII + P II
A (V II

A + V II
B )

= (P − P II
B )V II

B + γA+ µII
ANA + µII

BNB (2.5)

Furthermore, as the pressure and temperature of the metastable phase A are fixed,
the chemical potential is constant, i.e., µI

A = µII
A, and the Gibbs free energy difference can

be written as

∆G = GII −GI

= (P − P II
B )V II

B +Aγ +
[
µII
B(P II

B )− µI
A(PA)

]
NB. (2.6)

To obtain the expression of the free energy in CNT, we make a few assumptions below:

1. The interfacial tension γ is independent of the size of the cluster, or γ = γ∞, with
γ∞ the interfacial tension of an infinite cluster or the planar interface.

2. The cluster is incompressible, meaning that its density ρ does not change with
pressure. This assumption is valid for the nucleation of a denser phase from a dilute
phase, e.g. gas-liquid or fluid-crystal nucleation. Using the Gibbs-Duhem equation,
the chemical potential of phase B can be written as

µII
B(P II

B ) = µII
B(P ) +

∫ P II
B

P

1
ρ(P ′)dP ′

= µII
B(P ) + P II

B − P
ρB

, (2.7)

where ρB is the density of phase B at pressure P .

Therefore, we can re-write Eq. 2.6 into

∆G(NB) = A(NB)γ∞ +
[
µII
B(P )− µI

A(P )
]
NB

= A(NB)γ∞ − |∆µ|NB, (2.8)

where ∆µ = µII
B(P )− µII

A(P ) is the chemical potential difference between the two phases.
Given phase B is more stable than phase A, we have ∆µ < 0. In Eq. 2.8, the surface area
of the cluster A depends on the cluster size NB and its shape. CNT assumes that the
shape of the cluster is roughly spherical, and hence A = 4πR2 where R is the radius of
the spherical cluster. The Gibbs free energy of a spherical cluster with radius R is given
by

∆G(R) = 4πR2γ∞ −
4
3πR

3ρB|∆µ|, (2.9)

which contains two terms:
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• a “surface” term 4πR2γ∞, that takes into account the free energy cost of creating
an interface between phase A and B;

• a “volume” term −4
3πR

3ρB|∆µ|, that indicates the fact that phase B is more stable
than phase A, and can be interpreted as the driving force for the formation of phase
B.

A typical representation of ∆G as a function of the cluster radius R is shown in Fig. 2.4.

R

DG

O

HR*,DG*L

Figure 2.4: Gibbs free energy ∆G of a cluster as function of the cluster radius R according
to the classic nucleation theory where R∗ and ∆G∗ are the critical cluster and the height of free
energy barrier, respectively.

One finds that the free energy ∆G goes through a maximum at the critical cluster size

R∗ = 2γ∞
ρB|∆µ|

, (2.10)

beyond which the nuclei can spontaneously grow. The height of the free energy barrier
reads

∆G∗ = 16π
3

γ3
∞

(ρB|∆µ|)2 . (2.11)

We note that CNT always predicts a finite free energy barrier, but the region where
nucleation and growth can happen is bounded by the spinodal as shown in Fig. 2.1. In
Chapter 6, we show that the nucleation of the stable smectic phase out of a supersaturated
isotropic phase of hard rods is suppressed by an isotropic-nematic spinodal instability.

2.3 Kinetics of nucleation
The kinetics of nucleation is generally interpreted via a phenomenological reaction rate
theory, which was first formulated by Volmer and Weber [22].
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Volmer and Weber assumed that clusters of phase B slowly grow or shrink via attach-
ment or detachment of single particles:

Bn−1 + B1
f+,n−1

�
b−,n

Bn

Bn + B1
f+,n

�
b−,n+1

Bn+1

where Bn−1 is a cluster of n−1 particles, B1 a cluster of one particle (monomer), f+,n−1 and
b−,n are the attachment and detachment rate of a single monomer to a cluster of n−1 and
from a cluster of n particles, respectively. This assumption is proposed on the basis of that
the concentration of monomers is much higher than that of dimers, trimers, etc., and the
interaction between the growing clusters is ideal-gas like [23]. Hence, reactions of clusters
with dimers, trimers, etc., are infrequent compared with single particle attachment and
detachment. The time-dependent cluster distribution Nn(t) obeys the following Master
equation:

dNn(t)
dt = Nn−1(t)f+,n−1 +Nn+1(t)b−,n+1 − [Nn(t)f+,n +Nn(t)b−,n] . (2.12)

The nucleation rate for a cluster size n is the time-dependent flux of clusters that reaches
n:

In,t = Nn(t)f+,n −Nn+1(t)b−,n+1. (2.13)

We now assume that the system is in a steady state, in which the cluster size distribution
does not change in time the nucleation rate is a constant.

I = N s
nf+,n −N s

n+1b−,n+1. (2.14)

The equations can be solved by recurrence (see Ref. [24])

I = N s
1

[ ∞∑
n=1

1
f+,nξn

]−1

, (2.15)

where
ξn =

n−1∏
i=1

f+,i

b−,i+1
for n > 1. (2.16)

The fluid is, due to the very small steady state flux, in a kind of quasi equilibrium, where
for small cluster sizes n� n∗, the steady state cluster size distribution is almost equal to
the equilibrium distribution. Since the clusters of size n only interact with monomers, we
assume that clusters of size n are in equilibrium with respect to monomers, we then find

nN1
K

� Nn, (2.17)

where N1 and Nn are the equilibrium distribution of cluster size 1 and n, respectively, and
K the equilibrium constant. The ratio of products ξn in Eq. 2.16 is just the equilibrium
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constant K [24]. The equilibrium constant K for this reaction is simply given by the free
energy of forming a cluster with size n, and we find

ξn = K = exp [−β∆G(n)] (2.18)

Thus Eq. 2.15 can be re-written as

I = N1

{ ∞∑
n=1

1
f+,n exp [−β∆G(n)]

}−1

. (2.19)

In order to calculate the nucleation rate I, Becker and Döring made several approxima-
tions [25]:

1. the terms corresponding to the clusters near the top of the free energy barrier
dominate the summation in Eq. 2.19;

2. the shape of ∆G(n) around n∗ can be approximated by a Taylor expansion at the
top of free energy barrier

∆G(n) = ∆G(n∗) + 1
2∆G(n∗)′′(n− n∗)2;

3. f+,n is further replaced by f+,n∗ ;

4. the sum gets replaced by a integral from n − n∗ = −∞ and n − n∗ = ∞, by
considering Nn to be a continuous function of n.

We then find the final expression of the steady-state nucleation rate

I = N1f+,n∗

(
|∆G′′(n∗)|

2πkBT

)1/2

exp [−β∆G(n∗)] , (2.20)

where ∆G′′(n∗) is the second order derivative of the Gibbs free energy with respect to the
cluster size at the top of the free energy barrier n∗, and

Z =
(
|∆G′′(n∗)|

2πkBT

)1/2

(2.21)

is called the Zeldovitch factor. On the basis of this theory, Bennett [26] and Chandler [27]
proposed a two step scheme to calculate the nucleation rate in simulations: the free energy
barrier ∆G(n) can be obtained by performing Monte Carlo simulations using the umbrella
sampling technique, and molecular dynamics simulations starting from configurations on
the top of the free energy barrier can be employed to compute the attachment rate f+,n∗ .

The most important assumption in this theory is that when the cluster size is smaller
than the critical cluster size, the system is in quasi-equilibrium, which could be problem-
atic in some cases. For instance, in systems of binary mixtures, dynamical heterogeneities
may make the kinetic pathways of nucleation out of equilibrium [28], and it may be influ-
enced by the order parameter used in the umbrella sampling simulations. In Chapter 8,
we will discuss the effect of the order parameter on the nucleation of binary hard-sphere
mixtures.
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2.4 Equilibrium distribution of cluster sizes
In order to determine the nucleation rate, we need to calculate the probability of finding
a critical cluster, see Eq. 2.20.To this end, we consider a (meta) stable fluid in a cubic
box consisting of N particles at pressure P and temperature T . The partition function is
given by

Q(N,P, T ) = βP

Λ3NN !

∫
dV V N exp(−βPV )

∫
dsN exp(−βU), (2.22)

where Λ is the de Broglie wavelength, and sN are the factional coordinates of the particles.
We define an order parameter of the configuration (sN , V ) as f(sN , V ) = n, where n is the
size of the largest cluster. This order parameter can be used to calculate the nucleation
rate according to transition state theory, when it can distinguish the two different states,
i.e., fluid and crystal. The partition function of a system where the largest cluster size is
n can be written as

Qn(N,P, T ) = βP

Λ3NN !

∫
dV V N exp(−βPV )

∫
dsN exp(−βU)δK

[
f(sN , V )− n

]
, (2.23)

where δK is the Kronecker delta function. Then the free energy difference between a
system of N particles containing a largest cluster of size n and the (meta) stable fluid
phase is

∆G(n)NPT = −kBT ln
[
Qn(N,P, T )
Q(N,P, T )

]
= −kBT ln

〈
δK
[
f(sN , V )− n

]〉
NPT

. (2.24)

The formation of a large cluster in the fluid phase is a rare event. When the cluster size
is around the critical size, there is usually one large cluster present in the system. Thus

∆G(n)NPT = −kBT ln
〈
δK
[
f(sN , V )− n

]〉
NPT

= −kBT ln 〈Nn〉NPT , (2.25)

where Nn is the number of clusters of size n. This is the free energy of finding a cluster of
size n in a system of N particles, and we scale this to a unit system by adding a kBT lnN
term in the free energy, since the nucleation rate is system size independent. The free
energy barrier in a unit system is

∆G(n) = ∆G(n)NPT + kBT lnN = −kBT ln
〈
Nn

N

〉
NPT

. (2.26)

We note that we can approximate N ' ∑∞k=0Nk, as the number of fluid-like particles N0
is dominant. We re-write Eq. 2.26

∆G(n) = −kBT ln
〈

Nn∑∞
k=0Nk

〉
NPT

= −kBT lnP (n), (2.27)

where P (n) is the probability distribution function of finding a cluster of size n. This can
be calculated by Monte Carlo simulations with umbrella sampling technique. However,
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we should note that in our actual calculation, we still use Eq. 2.26 to compute the free
energy barrier.

Moreover, when calculating the free energy barrier of nucleation, one should make sure
that there is only one critical cluster in the simulation box. Thus the system size should
be large but not too large that multiple critical clusters may exist.
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Crystal nucleation of hard spheres
using molecular dynamics,

umbrella sampling and forward flux
sampling: A comparison of

simulation techniques

Over the last number of years several simulation methods have been introduced to study
rare events such as nucleation. In this chapter we examine the crystal nucleation rate
of hard spheres using three such numerical techniques: molecular dynamics, forward flux
sampling and a Bennett-Chandler type theory where the nucleation barrier is determined
using umbrella sampling simulations. The resulting nucleation rates are compared with
the experimental rates of Harland and Van Megen [J. L. Harland and W. van Megen,
Phys. Rev. E 55, 3054 (1997)], Sinn et al. [C. Sinn et al., Prog. Colloid Polym.
Sci. 118, 266 (2001)] and Schätzel and Ackerson [K. Schätzel and B.J. Ackerson, Phys.
Rev. E, 48, 3766 (1993)] and the predicted rates for monodisperse and 5% polydisperse
hard spheres of Auer and Frenkel [S. Auer and D. Frenkel, Nature 409, 1020 (2001)].
When the rates are examined in long-time diffusion units, we find agreement between
all the theoretically predicted nucleation rates, however, the experimental results display
a markedly different behavior for low supersaturation. Additionally, we examined the
pre-critical nuclei arising in the molecular dynamics, forward flux sampling, and umbrella
sampling simulations. The structure of the nuclei appear independent of the simulation
method, and in all cases, the nuclei contain on average significantly more face-centered-
cubic ordered particles than hexagonal-close-packed ordered particles.
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3.1 Introduction
Nucleation processes are ubiquitous in both natural and artificially-synthesized systems.
However, the occurrence of a nucleation event is often rare and difficult to examine both
experimentally and theoretically.

Colloidal systems are almost ideal model systems for studying nucleation phenomena.
Nucleation and the proceeding crystallization in such systems often take place on experi-
mentally accessible time scales, and due to the size of the particles, they are accessible to
a wide variety of scattering and imaging techniques, such as (confocal) microscopy [29],
holography [30], and light and x-ray scattering. Additionally, progress in particle synthe-
sis [3], solvent manipulation, and the application of external fields [31] allows for signif-
icant control over the interparticle interactions, allowing for the study of a large variety
of nucleation processes [32].

One such colloidal system is the experimental realization of “hard” spheres comprised
of sterically stabilized polymethylmethacrylate (PMMA) particles suspended in a liquid
mixture of decaline and carbon disulfide [33]. Experimentally, the phase behaviour of such
a system has been examined by Pusey and Van Megen [8] and maps well onto the phase
behaviour predicted for hard spheres. Specifically when the effective volume fraction of
their system is scaled to reproduce the freezing volume fraction of hard spheres (φ = 0.495)
the resulting melting volume fraction is φ = 0.545± 0.003 [8] which is in good agreement
with that predicted for hard spheres [34]. The nucleation rates have been measured using
light scattering by Harland and Van Megen [33], Sinn et al. [35], Schätzel and Ackerson
[36] and predicted theoretically by Auer and Frenkel [18].

On the theoretical side, hard-sphere systems are one of the simplest systems which can
be applied to the study of colloidal and nanoparticle systems, and generally, towards the
nucleation process itself. As such, it is an ideal system to examine various computational
methods for studying nucleation, and comparing the results with experimental data. Such
methods include, but are not limited to, molecular dynamics (MD) simulations, umbrella
sampling (US), forward flux sampling (FFS), and transition path sampling (TPS). It
is worth noting here that Auer and Frenkel [18] used umbrella sampling simulations to
study crystal nucleation of hard spheres and found a significant difference between their
predicted rates and the experimental rates of Refs. [33, 35, 36]. However, it was unclear
where this difference originated. In this chapter we compare the nucleation rates for the
hard-sphere system from MD, US and FFS simulations with the experimental results of
Refs. [33, 35, 36]. We demonstrate that the three simulation techniques are consistent
in their prediction of the nucleation rates, despite the fact that they treat the dynamics
differently. Thus we conclude that the difference between the experimental and theoretical
nucleation rates identified by Auer and Frenkel is not due to the simulation method.

A nucleation event occurs when a statistical fluctuation in a supersaturated liquid
results in the formation of a crystal nucleus large enough to grow out and continue crys-
tallizing the surrounding fluid. In general, small crystal nuclei are continuously being
formed and melting back in a liquid. However, while most of these small nuclei will
quickly melt, in a supersaturated liquid a fraction of these nuclei will grow out. Classical
nucleation theory (CNT) is the simplest theory available for describing this process. In
CNT it is assumed that the free energy for making a small nucleus is given by a surface
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free energy cost which is proportional to the surface area of the nucleus and a bulk free en-
ergy gain proportional to its volume. More specifically, according to CNT the Gibbs free
energy difference between a homogeneous bulk fluid and a system containing a spherical
nucleus of radius R is given by

∆G(R) = 4πγR2 − 4
3π |∆µ| ρsR

3 (3.1)

where |∆µ| is the difference in chemical potential between the fluid and solid phases, ρs
is the density of the solid, and γ is the interfacial free energy density of the fluid-solid
interface. This free energy difference is usually referred to as the nucleation barrier. From
this expression, the radius of the critical cluster is found to be R∗ = 2γ/ |∆µ| ρs and the
barrier height is ∆G∗ = 16πγ3/3ρ2

s |∆µ|
2.

Umbrella sampling [37, 38] is a method to examine the nucleation process from which
the nucleation barrier is easily obtained. The predicted barrier can then be used in com-
bination with kinetic Monte Carlo (KMC) or MD simulations to determine the nucleation
rate [18]. In US an order parameter for the system is chosen and configuration averages
for sequential values of the order parameter are taken. In order to facilitate such averag-
ing, the system is biased towards particular regions in configuration space. The success
of the method is expected to depend largely on the choice of order parameter and biasing
potential. Note that the free energy barrier is only defined in equilibrium, and thus is
only applicable to systems which are in (quasi-) equilibrium.

Forward flux sampling [39–41] is a method of studying rare events, such as nucleation,
in both equilibrium and non-equilibrium systems. Using FFS, the transition rate constants
(e.g. the nucleation rate) for rare events can be determined when brute force simulations
are difficult or even not possible. In FFS, a reaction coordinate Q (similar to the order
parameter in US) is introduced which follows the rare event. The transition rate between
phase A and B is then expressed as a product of the flux (ΦAλ0) of trajectories crossing the
A state boundary, typically denoted λ0, and the probability (P (λB|λ0)) that a trajectory
which has crossed this boundary will reach state B before returning to state A. Thus the
transition rate constant is written as

kAB = ΦAλ0P (λB|λ0). (3.2)

Forward flux sampling facilitates the calculation of probability P (λB|λ0) by breaking it
up into a set of probabilities between sequential values of the reaction coordinate. Little
information regarding the details of the nucleation process is required in advance, and the
choice of reaction coordinate is expected to be less important than the order parameter in
US. Additionally, unlike US, FFS utilizes dynamical simulations and hence this technique
does not assume that the system is in (quasi-)equilibrium.

Molecular dynamics and Brownian dynamics (BD) simulations are ideal for studying
the time evolution of systems, and, when possible, they are the natural technique to
study dynamical processes such as nucleation. Unfortunately, however, available the
computational time often limits the types of systems which can be effectively studied by
these dynamical techniques. Brownian dynamics simulations, which would be the natural
choice to use for colloidal systems, are very slow due to the small time steps required to
handle the steep potential used to approximate the hard-sphere potential. Event driven
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φ βpσ3 β |∆µ| ρsσ
3

0.5214 15.0 0.34 1.107
0.5284 16.0 0.44 1.122
0.5316 16.4 0.48 1.128
0.5348 16.9 0.53 1.135
0.5352 17.0 0.54 1.136
0.5381 17.5 0.58 1.142
0.5414 18.0 0.63 1.148
0.5478 19.1 0.74 1.161
0.5572 20.8 0.90 1.178

Table 3.1: Packing fraction (φ = πσ3N/6V ) , reduced pressure (βpσ3) and reduced chemical
potential difference between the fluid and solid phases (β |∆µ|) and reduced number density of
the solid phase ρs of the state points studied in this chapter. The chemical potential difference
was determined using thermodynamic integration[10], and the equations of state for the fluid
and solid are from Refs. [43, 44] respectively.

MD simulations are much more efficient to simulate hard spheres and enable us to study
spontaneous nucleation of hard-sphere mixtures over a range of volume fractions. The
main difference between the two simulation methods lies in how they treat the short-time
motion of the particles. Fortunately, the nucleation rate is only dependent on the long-
time dynamics which are not sensitive to the details of the short-time dynamics of the
system [42].

In this chapter we study in detail the application of US and FFS techniques to crystal
nucleation of hard spheres, and predict the associated nucleation rates. Combining these
nucleation rates with results from MD simulations, we make predictions for the nucleation
rates over a wide range of packing fractions φ = 0.5214−0.5572, with corresponding pres-
sures and supersaturations shown in Table 3.1. We compare these theoretical nucleation
rates with the rates measured experimentally by Refs. [33, 35, 36].

This chapter is organized as follows: in section 3.2 we discuss the model, in section
3.3 we describe and examine the order parameter used to distinguish between solid- and
fluid-like particles throughout this chapter, in section 3.4 we calculate essentially the
“exact” nucleation rates using MD simulations, in sections 3.5 and 3.6 we calculate the
nucleation rates of hard spheres using US and FFS respectively, and discuss difficulties in
the application of these techniques, in section 3.7 we summarize the theoretical results and
compare the predicted nucleation rates with the measured experimental rates of Harland
and Van Megen [33], Sinn et al. [35], and Schätzel and Ackerson [36] and section 3.8
contains our conclusions.
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3.2 Model
In this chapter we examine the nucleation rate between spheres with diameter σ which
interact via a hard-sphere pair potential given by

βUHS(rij) =
{

0 rij ≥ σ
∞ rij < σ.

(3.3)

where rij is the center-to-center distance between particles i and j and β = 1/kBT with
kB Boltzmann’s constant and T the temperature. This is in contrast to several studies on
“hard” spheres where the hard sphere potential is approximated by a slightly soft potential
(e. g., Refs. [20, 45]) so that Brownian dynamics simulations or traditional molecular
dynamics simulations (i. e., molecular dynamics which is not event driven), which require
a continuous potential, can be used. We would like to emphasize this distinction here
as the hardness of the interaction has previously been shown to play a significant role in
nucleation rates [46, 47], see also Chapter 4 for a discussion.

3.3 Order Parameter
In this chapter, an order parameter is used to differentiate between liquid-like and solid-
like particles and a cluster algorithm is used to identify the solid clusters. For this study we
have chosen to use the local bond-order parameter introduced by Ten Wolde et al. [48, 49]
in the study of crystal nucleation in a Lennard-Jones system. This order parameter has
been used in many crystal nucleation studies, including a previous study of hard-sphere
nucleation by Auer and Frenkel [18].

In the calculation of the local bond order parameter a list of “neighbours” is determined
for each particle. The neighbours of particle i include all particles within a radial distance
rc of particle i, and the total number of neighbours is denoted Nb(i). A bond orientational
order parameter ql,m(i) for each particle is then defined as

ql,m(i) = 1
Nb(i)

Nb(i)∑
j=1

Υl,m(θi,j, φi,j) (3.4)

where Υl,m(θ, φ) are the spherical harmonics, m ∈ [−l, l] and θi,j and φi,j are the polar and
azimuthal angles of the center-of-mass distance vector rij = rj − ri with ri the position
vector of particle i. Solid-like particles are identified as particles for which the number of
connections per particle ξ(i) is at least ξc and where

ξ(i) =
Nb(i)∑
j=1

H [dl(i, j)− dc] , (3.5)

H is the Heaviside step function, dc is the dot-product cutoff, and

dl(i, j) =

l∑
m=−l

ql,m(i)q∗l,m(j)
 l∑
m=−l

|ql,m(i)|2
1/2 l∑

m=−l
|ql,m(j)|2

1/2 . (3.6)
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A cluster contains all solid-like particles which have a solid-like neighbour in the same
cluster. Thus each particle can be a member of only a single cluster.

The parameters contained in this algorithm include the neighbour cutoff rc, the dot-
product cutoff dc, the critical value for the number of solid-like neighbours ξc, and the
symmetry index for the bond orientational order parameter l. The solid nucleus of a hard-
sphere crystal is expected to have randomly stacked hexagonal order, thus the symmetry
index is chosen to be 6 in all cases in this study. Note that this order parameter does not
distinguish between FCC and HCP ordered particles.

To investigate the effect of the choice of ξc, we examined the number of correlated bonds
per particle at the liquid-solid interface. To this end, we constructed a configuration in
the coexistence region in an elongated box by attaching a box containing an equilibrated
random-hexagonal-close-packed (RHCP) crystal to a box containing an equilibrated fluid.
Note that the RHCP crystal was placed in the box such that the hexagonal layers were
parallel to the interface. The new box was then equilibrated in an NpT MC simulation.
We then examined the density profile of solid-like particles as determined by our order
parameter using rc = 1.4σ, dc = 0.7 and ξc = 5, 7 and 9. As shown in Fig. 3.1, for
all values of ξc that we examined if the order parameter appears to consistently identify
the particles belonging to the bulk fluid and solid regions. For comparison we also show
a typical configuration of the RHCP crystal in coexistence with the fluid phase. The
solid-like particles as defined by the order parameter are labelled according to the number
of solid-like neighbours while the fluid-like particles are denoted by dots. The main
difference between these order parameters relates to distinguishing between fluid- and
solid-like particles at the fluid-solid interface. Unsurprisingly, the location of the interface
seems to shift in the direction of the bulk solid as ξc is increased. We note that the dips
in the density profile correspond to HCP stacked layers which are more pronounced for
higher values of ξc.

3.4 Molecular Dynamics

3.4.1 Nucleation Rates
In MD simulations the equations of motion are integrated to follow the time evolution of
the system. Since the hard-sphere potential is discontinuous the interactions only take
place when particles collide. Thus the particles move in straight lines (ballistic) until
they encounter another particle with which they perform an elastic collision [50]. These
collision events are identified and handled in order of occurrence using an event driven
simulation.

In theory, using an MD simulation to determine nucleation rates is quite simple.
Starting with an equilibrated fluid configuration, an MD simulation is used to evolve
the system until the largest cluster in the system exceeds the critical nucleus size. The
MD time associated with such an event is then measured and averaged over many initial
configurations. The nucleation rate is given by

I = 1
〈t〉V

(3.7)
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Figure 3.1: Top: A typical configuration of an equilibrated random-hexagonal-close-packed
(RHCP) crystal in coexistence with an equilibrated fluid. The crystalline particles are labelled
according to three different crystallinity criteria: the red particle have between ξ = 5 and 6
crystalline bonds, the green particles have between ξ = 7 and 8 crystalline bonds and the blue
particles have ξ ≥ 9 or more crystalline bonds. The fluid-like particles (ξ < 5) are denoted
by dots. Bottom: The density profile of particles with a minimum number of neighbours ξ
as labelled. Note that the dips in the density profile correspond to HCP stacked layers. This
implies that near the interface, the order parameter is slightly more sensitive to FCC ordered
particles than to HCP ordered particles.

where V is the volume of the system and 〈t〉 is the average time to form a critical nu-
cleus. Measuring this time is relatively easy for low supersaturations where the nucleation
times are relatively long compared to the nucleation event itself, which corresponds with
a steep increase in the crystalline fraction of the system. However, for high supersatura-
tions pinpointing the time of a nucleation event is more difficult. Often many nuclei form
immediately and the critical nucleus sizes must be estimated from CNT or US simula-
tions. Additionally, the precise details of the initial configuration can play a role at high
supersaturations since the equilibration time of the fluid is of the same order of magnitude
as the nucleation time. Hence, for each individual MD simulation we used a new initial
configuration which was created by quenching the system very quickly.

For the results in this chapter, we performed MD simulations with up to 100,000
particles in a cubic box with periodic boundary conditions in an NVE ensemble. Time
was measured in MD units σ

√
m/kBT . The order parameter was measured every 10 time
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Volume fraction Average nucleation time Rate
φ t

√
kBT/(mσ2) Iσ5/(6Dl)

0.5316 1 · 106 5·10−9

0.5348 1.7 · 104 3.6·10−7

0.5381 1.4 · 103 5.3·10−6

0.5414 2.0 · 102 4.3·10−5

0.5478 42 3.0·10−4

0.5572 10 2.4·10−3

Table 3.2: The average nucleation time, obtained from MD simulations, to form a critical
cluster that grew out and filled the box. The last column contains the rate (I) in units of
(6Dl)/σ5.

units and when the largest cluster exceeded the critical size by 100 percent we estimated
the time τnucl at which the critical nucleus was formed using stored previous configurations.
We performed up to 20 runs for every density and averaged the nucleation times.

The results are shown in Table 3.2. The nucleation times shown here are for a system
of 2.0·104 particles and in MD time units. To compare with other data we convert the MD
time units to units of σ2/(6Dl) with Dl the long-time self diffusion coefficient measured
in the same MD simulations. We were not able to measure the long-time self diffusion
coefficients for high densities because our measurements were influenced by crystallization.
We used the fit obtained by Zaccarelli et al. [51] who used polydisperse particles to prevent
crystallization. For φ < 0.54, we find good agreement between our data for Dl and this
fit.

3.5 Umbrella Sampling

3.5.1 Gibbs Free-Energy Barriers
Umbrella sampling is a technique developed by Torrie and Valleau to study systems where
Boltzmann-weighted sampling is inefficient [37]. This method has been applied frequently
to study rare events, such as nucleation [38], and specifically has been applied in the past
to study the nucleation of hard spheres [18]. In general, umbrella sampling is used to
examine parts of configurational space which are inaccessible by traditional schemes, eg.
Metropolis Monte Carlo simulations. Typically, a biasing potential is added to the true
interaction potential causing the system to oversample a region of configuration space.
The biasing potential, however, is added in a manner such that is it easy to “un”-bias the
measurables.

In the case of nucleation, while it is simple to sample the fluid, crystalline clusters of
larger sizes will be rare, and as such, impossible to sample on reasonable time scales. The
typical biasing potential for studying nucleation is given by [48, 52]

Ubias[n(rN)] = λ

2
[
n(rN)− nC

]2
(3.8)
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where λ is a coupling parameter, n(rN) is the size of the largest cluster associated with
configuration rN , and nC is the targeted cluster size. By choosing λ carefully, the simula-
tion will fluctuate around the part of configurational space with n(rN) in the vicinity of
nC . The expectation value of an observable A is then given by

〈A〉 =

〈
A/W (n(rN))

〉
bias

〈1/W (n(rN))〉bias
(3.9)

where
W (n) = e−βUbias(n). (3.10)

Using this scheme to measure the probability distribution P (n) for clusters of size n, the
Gibbs free energy barrier can be determined by [53]

β∆G(n) = constant− ln[P (n)]. (3.11)

Many more details on this method are given elsewhere [10, 53].
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Figure 3.2: Gibbs free energy barriers β∆G(n) as a function of cluster-size n as obtained from
umbrella sampling simulations at a reduced pressure of βpσ3 = 17 for varying critical number
of solid-like neighbours ξc as labelled. For ξc = 5, 7, 9, the neighbour cutoff is rc = 1.4 and for
ξc = 6, 8, 10, rc = 1.3. In all cases the dot product cutoff is dc = 0.7.

For a pressure of βpσ3 = 17, corresponding to a supersaturation of β |∆µ| = 0.54, we
examine the effect of one of the order parameter variables, namely ξc, on the prediction
of the nucleation barriers. The barriers predicted by US using ξc = 5, 6, 7, 8, 9 and 10 are
shown in Fig. 3.2. Note that the height of the barriers does not depend on ξc within error
bars. In general, for larger values of ξc more particles are identified as fluid as compared
with smaller values of ξc. This is consistent with the differences between these order
parameters as demonstrated in Fig. 3.1. Thus, the radius measured in our simulation
will depend on the definition of the order parameter. However, from classical nucleation
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Figure 3.3: Classical nucleation theory fits (thick lines) to the Gibbs free energy barriers
obtained from umbrella sampling simulations at a reduced pressure of βpσ3 = 17 for varying
ξc as labelled. Note that the CNT radius (RCNT ) is related to the radius (R(ξc)) measured by
umbrella sampling by R(ξc) = RCNT + α(ξc), where α(ξc) is a constant that corrects for the
different ways the various order parameters identify the particles at the fluid-solid interface. The
fit parameters are given in Table 3.3. We have shifted the barriers for ξc = 6− 9 by 5, 10, 15, 20
kBT respectively for clarity

theory (Eq. 1), there exists a unique definition of the liquid-solid interface and this a
unique radius associated with CNT which we define as RCNT . To a first approximation,
for each definition of the order parameter, this radius (RCNT ) differs from that measured
by our simulation (R(ξc)) by a constant which we denote as α(ξc), which is also dependent
on ξc. Thus, we fit the barriers corresponding to ξc = 5, 6, 7, 8 and 9 using CNT where
we have

R(ξc) = RCNT + α(ξc). (3.12)

Note that we have assumed that the cluster size n can be related to the cluster radius

β |∆µ| βγσ2 R∗CNT
CNT 0.54 0.76 2.49
ACNT 0.54 0.63 2.06

α(5) α(6) α(7) α(8) α(9) c(5) c(6) c(7) c(8) c(9)
CNT -0.425 -0.231 -0.000 0.139 0.380
ACNT -0.879 -0.698 -0.464 -0.335 -0.076 7.80 8.56 8.84 8.87 8.34

Table 3.3: Numerical values for the parameters associated with the fits in Figs. 3.3 and 3.4 for
classical nucleation theory and the adjusted classical nucleation theory presented in this chapter.
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Figure 3.4: Fits of an adjusted classical nucleation theory (ACNT) presented in Section 3.5.1
to the Gibbs free energy barriers predicted using umbrella sampling simulations at a reduced
pressure of βpσ3 = 17 and for varying ξc as labelled. Note that the CNT radius (RCNT) is
related to the radius measured by umbrella sampling by R(ξc) = RCNT +α(ξc), where α(ξc) is a
constant. The fit parameters are given in Table 3.3. We have shifted the barriers for ξc = 6− 9
by 5, 10, 15, 20 kBT respectively for clarity.

R(ξc) by

n(ξc) = 4πR(ξc)3ρs
3 . (3.13)

Only the top part of the free energy barriers are expected to fit to classical nucleation
theory, so we take the top of the barrier corresponding to the region where the difference
between β∆G(n) and β∆G(n∗) is approximately 5. Fitting all barriers simultaneously for
the interfacial free energy density γ, the classical nucleation theory radius RCNT , and the
various α(ξc), we obtain the fits displayed in Fig. 3.3. From the various values of α, the
associated critical CNT radius (R∗CNT) can be determined. We find R∗CNT = 2.49σ. Ad-
ditionally, we find an interfacial free energy density of βγσ2 = 0.76 which roughly agrees
with the results of Auer and Frenkel who obtained βγσ2 = 0.699, 0.738 and 0.748 for
pressures βpσ3 = 15, 16 and 17 respectively [18]. However, recent calculations by David-
chack et al. [54] of the interfacial free energy density at the fluid-solid coexistence find
βγσ2 = 0.574, 0.557 and 0.546 for the crystal planes (100), (110), and (111) respectively.
For a spherical nucleus, the interfacial free energy density is expected to be an average
over the crystal planes and was found to be βγσ2 = 0.559 [54]. Thus our result for the
interfacial free energy density and that of Ref. [18] appear to be an overestimation.

There have been a number of papers discussing possible corrections to CNT (eg. Refs.
[55, 56]). Recent work on the 2D Ising model, a system where both the interfacial free
energy density and supersaturation are known analytically, demonstrated that in order
to match a nucleation barrier obtained from US to CNT, two correction terms were
required, specifically a term proportional to log(N) as well as a constant shift in ∆G
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which we define as c [55]. The US barrier is only expected to match CNT near the top
of the barrier where the log(N) term is almost a constant. Thus, we propose fitting the
barrier to an adjusted expression for CNT (ACNT), by adding a constant c to Eq. 1.
Fitting the US barriers with this proposed form for the Gibbs free energy barrier, where
we assume c is a function of ξc, we obtain the fits displayed in Fig. 3.4. In this case we
find an interfacial free energy density βγσ2 = 0.63, and the values for α(ξc) and c(ξc) are
given in Table 3.3. We note that this fit is much better than the fits in Fig. 3.3. The
difference in the various c(ξc) are around 1kBT and correspond well to the difference in
heights of the barriers. More strikingly, the interfacial free energy density predicted from
this proposed free energy barrier is in much better agreement with recent calculations of
Davidchack et al. [54], than the interfacial free energy density we calculate using classical
nucleation theory directly. We would also like to point out that it has been proposed
that the effective interfacial free energy density will increase with pressure. However, an
increase from the βγσ2 = 0.559 at coexistence predicted by Ref. [54] to βγσ2 = 0.76
predicted from CNT is larger than what would be expected (see e.g. Refs. [57, 58]). For
a more thorough examination on the interfacial free energy densities of the hard sphere
model, see Ref. [58]. We would like to point out here that due to the simple form of
the nucleation barrier, it is difficult to be certain of any fit with more than one fitting
parameter, as there are many combinations of parameters which fit almost equally well.
To examine in more detail the accuracy of these fits, we have calculated the root mean
square of the residual for the two fits which we denote as σRMSR. In the case of the CNT
fit we find σRMSR = 0.50 while for the ACNT fit we find σRMSR = 0.11 indicating that the
ACNT fit is much better than the CNT fit. Additionally, we examined the ACNT fits
for various interfacial free energy densities γ. Fixing the interfacial free energy density
in the ACNT fit to the value found by CNT (βγσ2 = 0.76), we find σRMSR = 0.27 and
when we use interfacial free energy density at coexistence [54] (βγσ2 = 0.559) we find
σRMSR = 0.18.

Using either expressions for the Gibbs free energy barrier, namely CNT and ACNT,
we were unable to fit the barrier corresponding to βpσ3 = 17 and ξc = 10 simultaneously
with the other predicted barriers for the same pressure. We speculate that our difficulty
in fitting the barrier at ξc = 10 stems from an “over-biasing” of the system. Specifically,
by using ξc = 10 the biasing potential could cause the system to sample more frequently
more ordered clusters, and hence change slightly the region of phase space available to
the US simulations. In general, the least biased systems would be expected to explore the
largest region of phase space resulting in the best results. It should be noted that, in fact,
this problem is simply an equilibration and measuring problem, but it does emphasize the
difficulty caused by using an overly strong biasing potential.

In conclusion, with the exception of ξc = 10, the value of ξc used in the order parameter
did not appear to have an effect on the nucleation barriers once the difference in their
measurements of the solid-liquid interface was taken into consideration. Finally, for use
in our nucleation rate calculations (section 3.5.2) we also calculated the Gibbs free energy
∆G(n) for reduced pressures βpσ3 = 15 and 16 using umbrella sampling simulations. We
present the barrier heights in Table 3.4.
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3.5.2 Umbrella Sampling Nucleation Rates
The nucleation barriers as obtained from US simulations can be used to determine the
nucleation rates. The crystal nucleation rate I is related to the Gibbs free energy barrier
(G(n)) by [18]

I = κe−β∆G(n∗) (3.14)
where

κ ≈ ρfn∗

√
|β∆G′′(n∗)|

2π , (3.15)

n∗ is the number of particles in the critical nucleus, ρ is the number density of the
supersaturated fluid, fn∗ is the rate particles are attached to the critical cluster, and G′′
is the second derivative of the Gibbs free energy barrier. Auer and Frenkel [18] showed
that the attachment rate fn∗ could be related to the mean square deviation of the cluster
size at the top of the barrier by

fn∗ = 1
2
〈∆n2(t)〉

t
. (3.16)

The mean square deviation (MSD) of the cluster size ∆n2(t) = 〈n(t)− n∗〉 can then be
calculated by either employing a kinetic MC simulation or a MD simulation at the top of
the barrier. For simplicity, in the remainder of this chapter the nucleation rate determined
using this method will be referred to as umbrella sampling (US) nucleation rates, although
to calculate the nucleation rates both US simulations and dynamical simulations (KMC
or MD) are necessary.

The mean square deviation, or variance, in the cluster size appearing in Eq. 3.16 has
both a short- and long-time behaviour. At short times, fluctuations are due to particles
performing Brownian motion around their average positions while the long-time behaviour
is caused by rearrangements of particles required for the barrier crossings. The slope of
the variance is large at short times where only the fast rattling is sampled. However,
the longer the time the further the system has diffused away from the critical cluster
size at the top of the nucleation barrier. Auer [59] states that runs need to be selected
that remain at the top of the barrier. However, when this is done the attachment rate is
lower than when the average over all runs is taken since it excludes the runs that move
off the barrier fast and have the largest attachment rate. This problem is analogous
to determining the diffusion constant of a particle performing a random walk. By only
including walks which remain in the vicinity of the origin, the measurement is biased
and excludes trajectories which quickly move away from the origin. This results is an
underestimation of the diffusion constant, and similarly, in this case, an underestimate of
the attachment rate. Hence, in this chapter we do not attempt to prevent the trajectories
from falling off the barrier and we include all trajectories. In Fig. 3.5 we demonstrate
how, starting from a critical cluster, the size of the nucleus fluctuates as a function of
time and, in fact, can completely disappear or double in size within 0.3τl where τl is the
time that it takes a particle on average to diffuse over a distance equal to its diameter
i.e. τl = σ2/(6Dl).

The kinetic prefactor was determined using KMC simulations with 3000 particles
in an NVT ensemble in a cubic box with periodic boundary conditions. The initial
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Figure 3.5: The cluster size (n(t)) as a function of time in MC cycles for a random selection
of clusters that start at the top of the nucleation barrier.
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Figure 3.6: The mean squared deviation (MSD) of the cluster size
〈
∆n2(t)

〉
as function of

time t in MC cycles. The cluster size has been measured every cycle and averaged over 100
cycles to reduce the short-time fluctuations. The slope of this graph is twice the attachment
rate (Eq. 3.16).

configurations were taken from US simulations in one of the windows at the top of the
barrier. We examined the results from both Gaussian and uniformly distributed Monte
Carlo steps and found agreement within statistical errors. For all the simulations, the MC
stepsize was between 0.01σ and 0.1σ. The variance of the cluster size for a typical system
is shown in Fig. 3.6. We observed a large variance in the attachment rates calculated
for different nuclei. Specifically, some nuclei have attachment rates more than an order
of magnitude higher than other nuclei of similar size. The nuclei with low attachment
rates appeared to have a smoother surface than the nuclei with a high attachment rate.
In calculating the attachment rates we used 10 independent configurations on the top of
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βpσ3 ξc n∗ β∆G(n∗) β∆G′′(n∗) fn∗/6DL Iσ5/6DL

15 8 212 42.1± 0.2 −9.6 · 10−4 2150 1.4 · 10−17

16 8 112 27.5± 0.6 −1.6 · 10−3 1950 3.5 · 10−11

17 6 102 19.6± 0.3 −1.2 · 10−3 3980 1.7 · 10−7

17 8 72 20.0± 0.4 −2.0 · 10−3 2620 9.9 · 10−8

17 10 30 19.4± 0.7 −9.4 · 10−3 1760 2.5 · 10−7

Table 3.4: Nucleation rates I in units of 6DL/σ
5 with D0 the short time diffusion coefficient as

a function of reduced pressure (βpσ3) as predicted by umbrella sampling. G′′(n∗) is the second
order derivative of the Gibbs free energy at the critical nucleus size n∗.

the barrier and followed 10 trajectories from each.
Our results for the kinetic prefactors and nucleation rates for pressures βpσ3 =

15, 16, 17 are reported in Table 3.4.

3.6 Forward Flux Sampling

3.6.1 Method
The forward flux sampling method was introduced by Allen et al. [39] in 2005 to study
rare events and has since been applied to a wide variety of systems. Two review articles
(Refs. [60, 61]) on the subject have appeared recently and provide a thorough overview
of the method. In the present chapter we discuss FFS as it pertains to the liquid to solid
nucleation process in hard spheres. In general, FFS follows the progress of a reaction
coordinate during a rare event. For hard-sphere nucleation, a reasonable reaction coordi-
nate (Q) is the number of particles in the largest crystalline cluster in the system (n). For
the remainder of this chapter, for all FFS calculations, we take the reaction coordinate
to be the order parameter discussed in Sec. 3.3 with ξc = 8, rc = 1.3, and dc = 0.7. In
general, the reaction coordinate is used to divide phase space by a sequence of interfaces
(λ0, λ1, ... λN) associated with increasing values n(rN) such that the nucleation process
between any two interfaces can be examined. In our case the liquid is composed of all
states with n < λ0 and the solid contains all states with n > λN . While the complete
nucleation event is rare, the interfaces are chosen such that the part of the nucleation
process between consecutive interfaces is not rare, and can thus be thoroughly studied.

In the FFS methodology, the nucleation rate from the fluid phase A to the solid phase
B is given by

kAB = ΦAλ0P (λN |λ0) (3.17)

= ΦAλ0

N−1∏
i=0

P (λi+1|λi) (3.18)

where ΦAλ0 is the steady-state flux of trajectories leaving the A state and crossing the
interface λ0 in a volume V , and P (λi+1|λi) is the probability that a configuration starting
at interface λi will reach interface λi+1 before it returns to the fluid (A).
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Figure 3.7: The cluster size as a function of time t in MC cycles for 4 random trajectories
at pressure βpσ3 = 17 starting with a cluster size of n = 43 using kinetic MC simulations with
stepsize ∆KMC = 0.1σ and measuring the order parameter every ∆tord = 5 MC steps.

If we apply this method directly to a hard-sphere system a number of difficulties arise.
As shown in Fig. 3.5, on short times the size of a cluster measured by the order parameter
fluctuates wildly. The variance in the cluster size displays two different types of behaviour,
short-time fluctuations related to surface fluctuations of the cluster, and a longer time
cluster growth (Fig. 3.6). Thus, if we try to measure the flux ΦAλ0 directly, we encounter
difficulties due to these short-time surface fluctuations. In theory, FFS should be able
to handle these types of fluctuations, however, they increase the amount of statistics
necessary to properly measure the flux and the first probability window. In the second
part of FFS calculations, probabilities of the form P (λi+1|λi) need to be determined. In
calculating these probabilities it is important to be able to determine if a cluster has
returned to the fluid (A). For pre-critical clusters we find large fluctuations of the order
parameter, as shown in Fig. 3.7, which can lead to a cluster being misidentified as the fluid
(A). Specifically, in this figure the darkest trajectory (black) shows a cluster containing 43
particles that shrinks to 5 particles before it returns to 40, and finally reaches a cluster
size of 60 particles. Hence, if we had set λ0 = 5, this trajectory would have been identified
as melting back to the fluid phase (A). However, since the growth of a cluster from size
5 to 60 is a rare event in our system, we presume that this was simply a short-time
fluctuation of the cluster and not a ‘real’ melting of the instantaneously measured cluster.
For pre-critical clusters, these fluctuations result in cluster sizes that are smaller than the
cluster ‘really’ is. We suggest that these fluctuations are largely related to the difficulty
that this order parameter has in distinguishing between solid- and fluid-like particles at
the fluid-solid interface. For larger clusters, where the surface to volume ratio is small,
this problem is minimal. However, for elongated or rough pre-critical clusters, where
the surface to volume ratio is large, these surface fluctuations and rearrangements are
important, and can cause problems in measuring the order parameter.
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Thus, to try and address these problems, in this chapter, we apply forward flux sam-
pling in a slightly novel way. We regroup the elements of the rate calculation such that

kAB = Φ̃Aλ1

N−1∏
i=1

P (λi+1|λi). (3.19)

where
Φ̃Aλ1 = ΦAλ0P (λ1|λ0). (3.20)

We note that if λ1 is chosen such it is a relatively rare event for trajectories starting in A
to reach λ1, then

Φ̃Aλ1 ≈
1

〈tAλ1〉V
(3.21)

where 〈tAλ1〉 is the average time it takes a trajectory in A to reach λ1. The approximation
made here, in contrast to normal FFS simulations, is that the time the system spends
with an order parameter greater than λ1 is negligible. Since even reaching this interface
is a rare event, this approximation should have a minimal effect on the resulting rate.
Additionally, in this way we are relatively free to place the first interface (λ0) anywhere
under λ1

∗. We choose to use λ0 = 1 to minimize the effect of fluctuations, as seen in
Fig. 3.7, on the probability to reach the following interface. Here we assume that any
crystalline order in a system with an order parameter of 1 likely does not arise from
fluctuation of a much larger cluster, but rather is very close to the fluid, and is expected
to fully melt and not grow out to the next interface. In this manner we are able to start
several parallel trajectories from the fluid in order to measure 〈tAλ1〉, stopping whenever
the trajectory first hits interface λ1.

In our implementation of FFS, we employ kinetic Monte Carlo (KMC) simulations at
fixed pressure to follow the trajectories from the liquid to the solid. The KMC simulations
are characterized by two parameters, the maximum stepsize (∆KMC) per attempt to move
each particle, and the frequency with which the order parameter (reaction coordinate) is
measured ∆tord.

3.6.2 Simulation details and results
All simulations were performed with 3000 particle in a cubic box with periodic boundary
conditions. Initial configurations were produced using NpT MC simulations of a liquid
phase with a packing fraction of φ ≈ 0.4 and then simulated at a reduced pressure of
βpσ3 = 1000. The simulations were stopped when the packing fraction associated with
the pressure of interest was reached. In this way the system volume decreased rapidly to
the target density. This initial configuration was then relaxed using an NpT simulation at
the pressure of interest (βpσ3 = 15, 16, 17). The relaxation consisted of at least 10,000 MC

∗While it does appear that Eq. 3.19 is completely independent of λ0, this is not strictly correct as λ0
creates the border for state A and state A is expected to be a metastable, equilibrated state. For the
purposes of this chapter, the difference is insignificant as the average time for a nucleation event is much
longer than the relaxation time for the fluid.
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∆KMC 0.1 0.1 0.1 0.2 0.2 0.2
∆tord 2 2 2 2 2 2
P (λ2|λ1) 0.112 0.103 0.139 0.101 0.105 0.132
P (λ3|λ2) 0.096 0.117 0.090 0.104 0.093 0.112
P (λ4|λ3) 0.128 0.117 0.074 0.116 0.111 0.161
P (λ5|λ4) 0.180 0.159 0.082 0.156 0.115 0.241
P (λ6|λ5) 0.167 0.154 0.149 0.225 0.148 0.256
P (λ7|λ6) 0.071 0.074 0.060 0.128 0.093 0.118
P (λ8|λ7) 0.104 0.078 0.051 0.109 0.091 0.109
P (λ9|λ8) 0.100 0.100 0.105 0.083 0.075 0.089
P (λ9|λ1) 3 · 10−8 2 · 10−8 4 · 10−9 5 · 10−8 1 · 10−8 2 · 10−7

∆KMC 0.2 0.2 0.2 0.2 0.2 0.2
∆tord 1 1 1 10 10 10
P (λ2|λ1) 0.112 0.146 0.138 0.122 0.127 0.146
P (λ3|λ2) 0.115 0.097 0.079 0.103 0.081 0.080
P (λ4|λ3) 0.151 0.110 0.110 0.121 0.091 0.116
P (λ5|λ4) 0.209 0.189 0.173 0.121 0.073 0.150
P (λ6|λ5) 0.274 0.151 0.189 0.189 0.121 0.187
P (λ7|λ6) 0.121 0.052 0.092 0.169 0.077 0.064
P (λ8|λ7) 0.119 0.077 0.126 0.132 0.087 0.064
P (λ9|λ8) 0.101 0.081 0.129 0.101 0.109 0.068
P (λ9|λ1) 2 · 10−7 1 · 10−8 6 · 10−8 8 · 10−8 6 · 10−9 1 · 10−8

Table 3.5: Probabilities P (λi+1|λi) for the first 8 interfaces for a pressure of βpσ3 = 15 where
the KMC simulations stepsize (∆KMC) and the number of MC steps between measuring the order
parameter ∆tord are varied. The following interfaces were used: λ2 = 20, λ3 = 26, λ4 = 32,
λ5 = 38, λ6 = 44, λ7 = 54, λ8 = 65, and λ9 = 78. In all cases, 100 configurations were started in
the fluid and reached the first interface, and at each interface, Ci = 10 copies of each successful
configuration were used.

βpσ3 λ1 Φ̃Aλ1/6Dl P (λB|λ1) Iσ5/6Dl

17 27 2.66 · 10−5 7.6 · 10−3 2.0 · 10−7

17 27 2.68 · 10−5 1.4 · 10−2 3.7 · 10−7

16 20 8.57 · 10−6 3.1 · 10−7 2.6 · 10−12

16 20 8.57 · 10−6 2.1 · 10−7 1.8 · 10−12

15 15 8.72 · 10−6 1.9 · 10−15 1.6 · 10−20

Table 3.6: Nucleation rates predicted using forward flux sampling in long-time self diffusion
coefficient units (Dl). The probabilities P (λB|λ1), number of steps between the order parameter
measurements ∆ord, and kinetic MC stepsize are as in Tables 3.7, 3.8, and 3.9. At each interface,
Ci copies of each successful configuration were used.
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trial 1 trial 2
i λi Ci−1 P (λi|λi−1) Ci−1 P (λi|λi−1)
2 43 10 0.137 10 0.157
3 60 10 0.272 10 0.312
4 90 10 0.350 10 0.414
5 150 2 0.594 2 0.691
6 250 2 0.988 2 0.988

Table 3.7: Probabilities P (λi+1|λi) for the interfaces used in calculating the nucleation rate
for pressure βpσ3 = 17 with step size ∆KMC = 0.1σ and measuring the order parameter every
∆tord = 5 MC cycles.

trial 1 trial 2
i λi Ci−1 P (λi|λi−1) Ci−1 P (λi|λi−1)
2 28 10 0.105 10 0.110
3 38 10 0.075 10 0.077
4 50 10 0.070 10 0.089
5 70 10 0.114 10 0.089
6 90 10 0.095 10 0.101
7 110 10 0.339 10 0.278
8 250 10 0.152 10 0.112
9 350 1 1.000 1 1.000

Table 3.8: Same as Table 3.7 but for βpσ3 = 16.

i λi Ci−1 P (λi|λi−1) i λi Ci−1 P (λi|λi−1)
2 20 10 0.101 10 92 10 0.101
3 26 10 0.104 11 110 10 0.085
4 32 10 0.116 12 135 10 0.062
5 38 10 0.156 13 160 10 0.131
6 44 10 0.225 14 190 10 0.131
7 54 10 0.128 15 230 10 0.134
8 65 10 0.109 16 400 10 0.058
9 78 10 0.083

Table 3.9: Same as Table 3.7 but for βpσ3 = 15 and with ∆tord = 2.
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cycles, after which the simulation continued until a measurement of the order parameter
found no crystalline particles in the system.

In order to determine the flux and the probabilities, 100 trajectories were started in
the liquid and terminated when n(rN) = λ1. These trajectories were produced using
KMC simulations. The probability P (λ2|λ1) was then found by making C1 copies of the
configurations that reached λ1, and following these configurations until they either reached
λ2 or returned to the fluid. By taking different random number seeds, the various copies of
the same configurations follow different trajectories. The fraction of successful trajectories
corresponds to the required probability. The successful trajectories were then copied C2
times to determine P (λ3|λ2). The remaining P (λi+1|λi)’s are calculated similarly.

To study the effect of the two KMC parameters, namely ∆KMC and ∆tord, on the
nucleation rates, we have examined the first 8 FFS windows for βpσ3 = 15 for various
values of the number of MC steps between the order parameter measurements ∆tord and
the maximum displacement ∆KMC for the KMC simulations. The results are shown in
Table 3.5. As shown in this table we do not find a significant effect on the rate from
either parameter. Thus for numerical efficiency, unless otherwise indicated, the rates in
this section come from ∆tord = 5 MC cycles and ∆KMC = 0.2σ.

For pressures βpσ3 = 16 and 17 we have performed two separate FFS calculations
to determine the nucleation rates, and for pressure βpσ3 = 15 we have the result from
a single FFS simulation. A summary of the results are given in Table 3.6. A complete
summary of the results for P (λi+1|λi) for each simulation is given in Tables 3.7, 3.8, and
3.9.

3.7 Summary and Discussion

3.7.1 Nucleation Rates

In this section we examine hard-sphere nucleation rates predicted using US simulations,
MD simulations and FFS simulations together with the experimental results of Harland
and Van Megen, [33] Sinn et al. [35] and Schätzel and Ackerson [36] and the US simula-
tions of monodisperse and 5% polydisperse hard-spheres mixtures examined by Auer and
Frenkel [18]. The experimental volume fractions have been scaled to yield the coexistence
densities of monodisperse hard spheres[42]. Similarly, we scale the polydisperse results of
Auer and Frenkel with the coexistence densities determined in Ref. [62]. Inspired by the
recent work of Pusey et al. [42], we plot the nucleation rates in units of the long-time self
diffusion coefficient. In experiments with colloidal particles, the influence of the solvent
on the dynamics cannot be ignored. Specifically, the system slows down due to hydrody-
namic interactions when the density is increased. However, by presenting the nucleation
rates in terms of the long-time self diffusion coefficient, we expect our simulated nucleation
rates from the hard sphere model without an explicit solvent to be in agreement with the
experimental rates with a solvent. The time in experiments is typically measured in units
of D0, the free diffusion at low density. We convert the short-time self diffusion coefficient
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Figure 3.8: A comparison of the crystal nucleation rates of hard spheres as determined by the
three methods described in this chapter FFS, US, and MD with the experimental results from
Refs. [33, 35, 36] and previous theoretical results from Ref. [18]. Note that error bars have not
been included in this plot but are discussed in the main text. Within these estimated error bars,
the simulated nucleation rates are all in agreement, while the experimentally obtained rates
show a markedly different behaviour, particularly for low supersaturations where the difference
between the simulations and experiments can be as large as 12 orders of magnitude.
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D0 to the long-time self diffusion coefficient Dl using

Dl(φ)
D0

=
(

1− φ

0.58

)δ
. (3.22)

Harland and Van Megen [33] claim that δ = 2.6 gives a good fit to their system and Sinn
et al. [35] use δ = 2.58. Since the system Schätzel and Ackerson [36] examine is very
similar to the other two, we use δ = 2.6 to convert their nucleation rates to long-time
units. We note that both δ = 2.58 and δ = 2.6 give very similar results. The results
for both the theoretical and experimental rates in long time units are shown in Fig. 3.8.
Note that for clarity reasons the error bars have not been included in this plot. In general,
the error bars of the simulated nucleation rates are largest for lower supersaturations (i.e.
lower volume fractions), as the barrier height is higher. For the FFS and US simulations,
the error for βpσ3 = 15 (φ = 0.5214) is between 2 and 3 orders of magnitude, and for
βpσ3 = 17 (φ = 0.5352) is approximately one to two orders of magnitude. The MD
results are quite accurate around βpσ3 = 17, however the error bars are larger for the
higher pressure MD results.

In Ref. [42], Pusey et al. showed that the nucleation rates for various polydispersities
(0 to 6%) of hard-sphere mixtures collapsed onto the same curve when the rates were
plotted in units of the long-time self diffusion coefficient. We find similar results here.
Both the monodisperse and polydisperse US results of Auer and Frenkel [18], in addition to
our own US predictions of the nucleation rate, agree well within the expected measurement
error. Additionally, we find that the simulation results of the US, FFS, and MD all agree.
Whereas the simulation results agree well with the experimental results for the nucleation
rate at high supersaturation there is still a significant difference at low supersaturations.
Unfortunately, the origin of this discrepancy remains unsolved.

However, on the experimental side, the nucleation rates of Harland and Van Megen [33]
are approximately one to two orders of magnitude below the experiments of Sinn et al.
[35] and Schätzel and Ackerson [36]. This is unexpected due to the similarity between the
experimental systems. The main difference between these experiments is the polydisper-
sity of the particle mixtures: 5% in the case of Harland and Van Megen [33], 2.5% in the
case of Sinn et al. [35], and < 5% for Schätzel and Ackerson [36]. However, as demon-
strated by Pusey et al. [42], and now also in Fig. 3.8, the nucleation rate when measured
in long-time self diffusion coefficient units should not be affected by the polydispersity.
Thus, this seems unlikely as an explanation.

3.7.2 Nuclei
To examine whether the structure and shape of the critical clusters from US simulations
depended on the precise threshold values used for the crystalline order parameters, we
compared and analysed the critical clusters obtained when three different crystalline order
parameters were used to bias the US simulations, namely, ξc = 5, 7 and 9. Subsequently
we analyzed these critical clusters using the three different order parameters. In Fig. 3.9,
two typical critical clusters from different biasing order parameters are shown on the top
and bottom rows. The nucleus of the cluster, shown in blue, was identified by all three
cluster criteria (ξc = 5, 7 and 9). The main difference between the criteria is the location
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ξc = 5 ξc = 7 ξc = 9

Figure 3.9: Two typical snapshots (top and bottom) of the critical nuclei as obtained with US
at a volume fraction φ = 0.5355 using different values of the critical number of crystalline bonds
ξc = 5 (left), 7 (middle) and 9 (right) in the biasing potential. The clusters are analyzed with
three different crystalline order parameters. The blue particles are found by all three cluster
criteria, the green particles have ξ = 7 or 8 crystalline bonds and the red particles have only
ξ = 5 or 6 crystalline bonds.

Figure 3.10: Snapshots of spontaneously formed nuclei during an MD simulation at a volume
fraction of φ = 0.537. The snapshots were taken just before the nuclei grew. The color coding
of the particles is the same as in Fig. 3.9.
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of the fluid-solid interface as shown by the green and red particles. The strictest order
parameter finds only the more ordered center whereas the loosest version detects the
more disordered particles at the interface as well. In Fig. 3.10 we show some of the nuclei
obtained from MD simulations. These snapshots were taken just before the nuclei grew
out so they are not necessarily precisely at the top of the nucleation barrier. They appear
very similar in roughness and aspect ratio to those obtained from US simulations. We
note here that this is not meant to be a thorough study of the critical clusters, but rather
just a rough comparison to demonstrate that to a first approximation the clusters formed
by the three simulation techniques are the same. A more thorough examination of the
structure of the nuclei for high supersaturations can be found in Ref. [63]

To further examine whether the choice of method influenced the resulting clusters,
particularly the presence of the biasing potential in the US simulations and the choice
of reaction coordinate and interfaces in FFS, we calculated the radius of gyration tensor
for each of the methods for pressure βpσ3 = 17 as a function of cluster size (see Figure
3.11). There is no indication that the clusters in any of the simulation methods differed
substantially.

Additionally, we examined whether the simulation technique influenced the type of
pre-critical nuclei that formed in the simulations, i.e. face-centered-cubic (FCC), and
hexagonal-close-packed (HCP). To do this we used the order parameter introduced by
Ref. [64] which allows us to identify each particle in the cluster as either FCC-like or
HCP-like. The results for a wide range in nucleus size is shown in Fig. 3.12. We find
complete agreement between the three simulation techniques. Specifically, in all cases we
find that the nucleus is composed of approximately 80% FCC-like particles. This was
unexpected as the free energy difference between the bulk FCC and HCP phases is about
0.001kBT per particle at melting [65] and hence random-hexagonal-close-packing order in
the nuclei would be expected [66]. Note that using our order parameter this would appear
as an approximately 50% occurrence of FCC- and HCP-like particles in the nucleus. We
speculate that this predominance of FCC-like particles in the nuclei arises from surface
effects.

3.8 Conclusions

In this chapter we have examined in detail three independent simulation techniques for
studying nucleation processes and predicting nucleation rates, namely forward flux sam-
pling, umbrella sampling and molecular dynamics. We have shown that the three simu-
lation techniques are completely consistent in their prediction of the nucleation rates for
hard spheres over the large range of volume fractions studied, despite the fact that they
treat the dynamics differently. Additionally, in agreement with the recent work of Pusey
et al. [42], we find that by measuring the nucleation rates in terms of the long-time self
diffusion constant and scaling to the coexistence density of monodisperse hard spheres,
the 5% polydisperse results of Auer and Frenkel [18] also agree. On examining the critical
clusters, we also do not find a difference in the nuclei formed using the three simulation
techniques. Hence we conclude that the origional prediction of Auer and Frenkel [18] for
the nucleation rates in hard sphere systems was indeed robust.
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Figure 3.11: A comparison of the three components of the radius of gyration tensor as a
function of cluster size n, as well as the sum of the three components, for clusters produced
using FFS, MD, and US simulations.
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Figure 3.12: Fraction of particles identified as either FCC or HCP respectively in the clusters
produced via molecular dynamics (MD), forward flux sampling (FFS), and umbrella sampling
(US) simulations as a function of cluster size n. All three methods agree and find the pre-critial
clusters predominately FCC.

We have also compared our nucleation rates with previous experimental data, specifi-
cally, the nucleation rates predicted by Harland and Van Megen [33], Sinn et al. [35] and
Schätzel and Ackerson [36]. As was found first by Auer and Frenkel [18], while the sim-
ulation results agree well with the experimental results for high supersaturations, there
is a significant difference between the simulations and experiments for smaller volume
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fractions. The agreement between the three theoretical methods examined in this chap-
ter, namely molecular dynamics, umbrella sampling, and forward flux sampling, seems to
indicate that either there is a fundamental difference between the simulations and theory
which we are not taking into account, such as some form of collective hydrodynamics
which are included in the experiments but not considered in the thoery or some difficulty
in interpreting the experimental data. In either case, the origin of the huge discrepancy
in the theoretical and experimental nucleation rates remains a mystery.
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Simulation of nucleation in almost
hard-sphere colloids: the

discrepancy between experiment
and simulation persists

In this chapter we examine the phase behaviour of the Weeks-Chandler-Andersen (WCA)
potential with βε = 40. Crystal nucleation in this model system was recently studied by
Kawasaki and Tanaka [Proc. Natl. Acad. Sci. U.S.A. 107, 14036 (2010)], who argued
that the computed nucleation rates agree well with experiment, a finding that contradicted
earlier simulation results. Here we report an extensive numerical study of crystallization in
the WCA model, using three totally different techniques (Brownian Dynamics, Umbrella
Sampling and Forward Flux Sampling). We find that all simulations yield essentially the
same nucleation rates. However, these rates differ significantly from the values reported
by Kawasaki and Tanaka and hence we argue that the huge discrepancy in nucleation
rates between simulation and experiment persists. When we map the WCA model onto a
hard-sphere system, we find good agreement between the present simulation results and
those that had been obtained for hard spheres [S. Auer and D. Frenkel, Nature 409, 1020
(2001), L. Filion et al., J. Chem. Phys. 113, 244115 (2010)].
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4.1 Introduction
In a recent article, Kawasaki and Tanaka [20] examined the crystal nucleation in an almost
hard-sphere system using Brownian dynamics simulations. The nucleation rates reported
in Ref. [20] appear to be in good agreement with those that were found in earlier light-
scattering experiments [33, 35, 36]. This is in sharp contrast with previous simulation
studies of hard spheres, which show a large discrepancy between the experimental and
simulated rates for low volume fractions [18, 19]. In this chapter we revisit the system
examined by Kawasaki and Tanaka in order to determine the origin of the difference
between the simulated rates and, in particular, to clarify if there is indeed a discrepancy
between the experimental and simulated nucleation rates. We study the system using
a variety of simulation techniques, including brute force Brownian dynamics, umbrella
sampling and forward flux sampling.

Colloidal solutions consist of small particles suspended in another medium and are
typically characterized by the dynamics of these suspended particles, i.e., colloidal parti-
cles exhibit Brownian motion. As a result, Brownian dynamics simulations (BD) are the
natural choice to use when examining dynamical properties of colloidal systems, such as
crystal nucleation. Brownian dynamics are based on a simplified version of Langevin dy-
namics and correspond to the “overdamped” limit. Specifically, in BD it is assumed that
the particles’ inertial motion is completely damped out by frictional forces. As a result,
the motion of the particles is determined by the instantaneous forces acting on the colloid
plus a stochastic, diffusive displacement. However, unlike molecular dynamics simulations
(MD) where an event driven formalism exists which allows one to apply MD to systems
with hard-core interactions (see e.g. Ref. [50]), no such formalism exists for BD of hard
particles. Hence, when Brownian dynamics are applied to hard-core interactions, the hard
core is typically approximated. One such approximation is the Weeks-Chandler-Andersen
potential.

The Weeks-Chandler-Andersen (WCA) potential was introduced in 1971 in order to
address the short-range repulsive part of the Lennard-Jones liquid separately from the
longer range attractive tail. In contrast to the Lennard-Jones system, the phase diagram
for the WCA potential consists simply of liquid and solid phases; i.e., the liquid-gas phase
coexistence is not present in this model. The WCA potential [67] is given by

βUWCA (r) =
 4βε

[(
σ
r

)12
−
(
σ
r

)6
+ 1

4

]
r/σ ≤ 21/6

0 r/σ > 21/6
(4.1)

where σ is a length scale, ε is the energy scale, and β = 1/kBT where kB is Boltzmann’s
constant and T is the temperature. Note that the WCA potential is simply the Lennard-
Jones potential where the cutoff is chosen such that only the repulsive part remains and
the potential is shifted upwards so that the minimum occurs at zero. A plot of this
potential is shown in Fig. 4.1. The “hardness” of the interaction can be set by tuning the
interaction strength, βε. In Ref. [20], Kawasaki and Tanaka studied a WCA model at an
interaction strength βε = 40, which corresponds to a low temperature.

This chapter is organized as follows: in section 4.2 we use free-energy calculations to
determine the phase diagram for this model, in section 4.3 we describe the nucleation
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rates, in section 4.4 we compare our results to the previous work of Kawasaki and Tanaka
[20] and to hard-sphere crystal nucleation rates found both in simulations as well as light
scattering experiments. Our conclusions are found in section 4.5.
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Figure 4.1: The WCA potential and hard sphere potential βU(r) as a function of center-to-
center distance r.
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Figure 4.2: The triangles correspond to the freezing number density (ρAF ) from Ahmed and
Sadus [68] as a function of T ∗ where T ∗ = kBT/ε. The fit corresponds to σρF = 0.635 +
0.473(T ∗)1/2−0.236T ∗. The square corresponds to the freezing number density (ρ∗F ) determined
using full free-energy calculations as described in this chapter. The circle corresponds to the
freezing number density determined by Kawasaki and Tanaka. [20]



52 Chapter 4

4.2 Phase diagram

To calculate the coexistence densities for the WCA potential, we used full free-energy
calculations in combination with common tangent constructions. For the crystal phase,
the excess free energy Fex was calculated using Einstein integration [10, 69, 70] at a density
of ρσ3 = 0.8 for systems of N = 500, 864, 1372 and 2048 particles. Note that the excess
free energy is defined by Fex = Ftot−Fid where Ftot is the total free energy and Fid is the
ideal gas free energy. Following Ref. [70], we plotted βFex/N + logN/N as a function of
1/N and extrapolated to an infinite system yielding a free energy of βFtot/N = 4.8975.
The free energy at other densities was determined using thermodynamic integration of
the equation of state [10]. The equation of state was determined using Monte Carlo
NpT simulations with N = 4000 particles. We note that no significant difference was
found in the coexistence densities for equations of state determined using N = 1372 and
N = 4000. To test our Einstein integration and integration over the equation of state, we
determined the free energy at ρσ3 = 0.9 for N = 1372 and integrated over the equation of
state calculated for N = 1372. The free energies agreed within 0.00046 kBT per particle.
The fluid chemical potential was determined using the Widom insertion technique [10]
at ρσ3 = 0.4 with N = 4000 and was found to be βµ = 3.3173; for N = 1372 we
find βµ = 3.3194. Again integration over the equation of state was used to determine
the free energy as a function of density. To test the Widom insertion calculations, and
our integration over the equation of state, we also calculated the chemical potential at
ρσ3 = 0.3 for N = 1372. The difference in the free energy at ρσ3 = 0.3 associated
with the Widom insertions and integration over the equation of state results in a free
energy difference of 0.00075 kBT per particle, and hence we concluded that the Widom
insertions and integration over the equation of state were correct. Using these free energies
and common tangent constructions we find freezing and melting coexistence densities
ρ∗Fσ

3 = 0.712 and ρ∗Mσ3 = 0.785 respectively.
The phase diagram for the WCA potential has been examined previously by Ahmed

and Sadus [68] for a range of T ∗ = 1/βε using a phenomenological method based on non-
equilibrium MD simulations. The results of Ref. [68] for the freezing density are plotted in
Fig. 4.2. We find that their results for the freezing number density ρF as a function of βε
fit well to ρFσ3 = 0.635+ 0.473(T ∗)1/2−0.236T ∗. From this fit we approximate a freezing
number density of ρAFσ3 = 0.704 at βε = 40. We note that this is in good agreement
with our predictions. Hence, our free-energy calculations support the phenomenological
procedure of Ref. [68]. However, we find that the non-equilibrium MD estimate of the
freezing density is slightly lower than the true equilibrium coexistence density reported
here. Additionally, Kawasaki and Tanaka [20] found the freezing number density for
βε = 40 to be ρKF σ3 = 0.725. To locate the freezing point, these authors performed BD
simulations of a face-centered cubic (FCC) crystal and identified the density at which
the crystal becomes mechanically unstable as the freezing density [71]. Such calculations
cannot be used to accurately determine the coexistence densities, but rather give an
approximate lower bound for the melting density. As can be seen in Fig. 2, the freezing
density estimated in Ref. [20] is some 2% higher than the value that we find using free-
energy calculations.
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βpσ3 β |∆µ| ρliqσ
3 ρsolσ

3 φeff
12.0 0.41 0.762 0.844 0.526
13.0 0.54 0.775 0.858 0.535
13.3 0.58 0.778 0.862 0.538
13.4 0.59 0.780 0.863 0.539
13.6 0.61 0.782 0.865 0.540
13.9 0.65 0.785 0.868 0.542
14.0 0.66 0.787 0.870 0.544
14.4 0.71 0.791 0.874 0.547
14.6 0.73 0.793 0.876 0.548

Table 4.1: Reduced pressure (βpσ3), reduced chemical potential difference between the fluid
and solid phases (β |∆µ|), reduced number density of the metastable liquid ρliqσ

3, reduced
number density of the solid phase ρsolσ

3, and the effective hard-sphere packing fraction φeff for
the state points studied in this chapter.

4.3 Nucleation rates
In this section we apply Brownian dynamics, umbrella sampling (US) and forward flux
sampling (FFS) to study the crystal nucleation of the WCA model. The methods for
predicting nucleation rates have been discussed in detail in Chapter 3 and Ref. [19]
and so only a short overview will be presented here. An overview of the state points
discussed in this chapter is found in Table 4.1 where we list for various pressures βpσ3 the
corresponding chemical potential difference between the fluid and solid phases |β∆µ|, the
reduced number density of the metastable liquid phase ρliqσ3 and the stable solid phase
ρsolσ

3, and the effective packing fraction φeff (as defined below).
In all of the simulation methods examined in this chapter, an order parameter is

needed to differentiate between liquid-like and solid-like particles and a cluster algorithm
is used to identify the solid clusters. The order parameter we use is the local bond-order
parameter introduced by ten Wolde et al. [48, 49]. Please see Chapter 3.3 for details,
and in this chapter we used dc = 0.7, ξc = 6 or 8 as identified and rc is always either 1.5σ
or 1.6σ and is explicitly indicated in each section.

4.3.1 Brownian dynamics
Brownian dynamics is a simplified Langevin dynamics which can be used to describe the
motion of Brownian particles. In Brownian dynamics simulations, the motion of each
particle i is described by [72]

dri
dt = 1

mγ
[−∇iU + Wi(t)] , (4.2)

where γ and Wi(t) are the friction coefficient and the stochastic force of the solvent, m
is the mass of the particles and U is the potential energy of the system. They are linked
through the dissipation-fluctuation theorem 〈Wi(t) ·Wj(t′)〉 = 6mγkBTδijδ(t− t′) where
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ρσ3 ntr ne 〈t〉/τB Iσ5/D0
0.79228 5 5 13.8 1.4× 10−5

0.78507 5 5 159 1.2× 10−6

0.78153 10 10 260 7.3× 10−7

0.77700 20 10 3282 5.8× 10−8

0.77468 50 5 23340 8.1× 10−9

Table 4.2: Nucleation rates, Iσ5/D0, obtained from (NV T ) Brownian dynamics simulations
for various densities ρσ3 with ntr and ne the number of simulations and the number of observed
nucleation events, respectively and 〈t〉 is the average waiting time for a nucleation event.

δ is the Kronecker delta function. In our simulations, γ and m are both set to 1 and we
use the time step ∆t = 10−5τB to integrate Eq. 9.12. Note that τB is the Brownian time
which is defined as τB = σ2/D0 where D0 is the diffusion coefficient of the particle in the
infinitely dilute system.

To calculate the nucleation rates from Brownian dynamics simulations, we perform
multiple independent simulations of systems with N = 4096 particles and with the volume
V chosen such that the density of interest is acquired. Each simulation stops when a
nucleation event happens, and the nucleation rate is determined by

I = 1
〈t〉V

, (4.3)

where 〈t〉 is the average waiting time for a single nucleation event. Thus 〈t〉 = ∑
i ti/ne

where ti is the simulation time of the independent simulation i and where ne is the number
of nucleation events observed. The results from our BD simulations for varying densities
are shown in Table 4.2.

Additionally, for ρσ3 = 0.77000, we performed 50 independent Brownian dynamics
simulations. After a total simulation time ∑i ti = 116700τB we have not observed a single
nucleation event in a system of N = 4096 particles. Since nucleation is a rare event,
the probability distribution of a nucleation event happening at time t is an exponential
distribution given by

p(t) = 1
〈t〉

exp
(
− t

〈t〉

)
, (4.4)

where 〈t〉 is the average waiting time for a nucleation event. The probability of a nucleation
event happening before time t is

∫ t
0 p(t)dt = 1− exp(−t/〈t〉). Thus for ρσ3 = 0.77, we can

estimate the upper boundary for the nucleation rate. We find that if the nucleation rate
is 4.85503× 10−9D0/σ

5, the probability to observe a nucleation event before 116700τB in
a system of N = 4096 is 95%. Additionally, if the nucleation rate is 1.48499×10−9D0/σ

5,
this probability is 60%.

4.3.2 Umbrella sampling
In this section, we use umbrella sampling to determine the Gibbs free-energy barriers, and
then calculate the crystal nucleation rates from these barriers. The method is described
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βPσ3 n∗ fn∗/D0 β∆G(n∗) β∆G′′(n∗) ρσ3 Iσ5/D0
12 130 586.17 32.5 0.0015 0.762 5.23× 10−14

13 60 319.05 18.5 0.0030 0.774 4.98× 10−8

13.3 50 361.86 17.200 0.0030 0.777 2.08× 10−7

Table 4.3: Nucleation rates, Iσ5/D0, as obtained from (NpT ) umbrella sampling MC simu-
lations at various pressures, βPσ3, with ρσ3 the corresponding density of the supersaturated
fluid. β∆G(n∗) is the height of the free-energy barriers with n∗ the size of the critical cluster,
and β∆G′′(n∗) and fn∗/D0 are the second order derivative and attachment rate at the top of
the free-energy barrier, respectively.

in details in Chapter 3.5. For pressures βpσ3 = 12, 13 and 13.3, the free-energy barriers
are shown in Fig. 4.3 and the attachment rates fn∗ and nucleation rates I are listed in
Table 4.3. Note that in these simulations we used a neighbour cutoff of rc = 1.5σ and
coupling parameter λ = 0.2.
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Figure 4.3: Gibbs free-energy barriers β∆G(n) as a function of cluster size n as obtained from
umbrella sampling MC simulations at reduced pressures βpσ3 = 12, 13 and 13.3 as labelled.

4.3.3 Forward flux sampling
We use forward flux sampling to determine the nucleation rates, and the detailed de-
scription of the method is in Chapter 3.6. The dynamics in the forward flux sampling
simulations were approximated using kinetic Monte Carlo simulations with a step size of
∆KMC = 0.05σ and measuring the order parameter every ∆tord = 2 MC cycles. The near-
est neighbour cutoff for the order parameter was taken to be rc = 1.5σ. The probabilities
P (λi|λi−1) of going from interface λi−1 to λi required in the forward flux sampling rate
calculation for pressures βpσ3 = 12, 13 and 14 are given in Tables 4.4, respectively. The
resulting rates in terms of the short-time diffusion coefficient D0 are given in Table 4.5 .
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βpσ3 i λi P (λi|λi−1) βpσ3 i λi P (λi|λi−1) βpσ3 i λi P (λi|λi−1)
12 2 20 0.133 12 9 150 0.130 13 6 100 0.166
12 3 26 0.132 12 10 200 0.317 13 7 150 0.633
12 4 34 0.107 12 11 250 0.842 14 2 40 0.164
12 5 45 0.068 13 2 20 0.132 14 3 70 0.453
12 6 60 0.066 13 3 30 0.124 14 4 100 0.847
12 7 80 0.041 13 4 40 0.193
12 8 110 0.036 13 5 60 0.132

Table 4.4: Probabilities P (λi+1|λi) for the interfaces used in calculating the nucleation rate for
pressure βpσ3 = 12, 13 and 14.

βpσ3 ΦAλ1σ
5/D0 P (λB|λ1) Iσ5/D0

12 2.96×10−6 4.32×10−10 1.27×10−15

13 1.10×10−5 4.38×10−5 4.80×10−10

14 1.06×10−5 6.29×10−2 6.69×10−7

Table 4.5: Nucleation rate Iσ5/D0, flux ΦAλ1 , and P (λB|λ1) at various pressures βpσ3 as
obtained by (NpT ) forward flux sampling.

4.4 Discussion
In this section we compare our predicted nucleation rates to previous theoretical and
experimental studies. In Fig. 4.4 we show our predicted WCA crystal nucleation rates
and compare them with those found in Ref. [20]. Note that the nucleation rates shown
in Fig. 4.4 (and Fig. 4.6, see below) cannot be obtained directly from Ref. [20] as there
is a mistake in that paper regarding the mapping from effective packing fraction units to
number densities [71].

We first note that our BD results match well with previous BD nucleation rates [20]∗.
We also note that the uncertainty in the BD results is approximately one order of mag-
nitude and the uncertainty in the US and FFS results is approximately two orders of
magnitude. Within this uncertainty, the BD, US, and FFS nucleation rates all agree.
This is consistent with Chapter 3 and Ref. [19] which found that molecular dynamics and
FFS rates agreed well with the US rates of Auer and Frenkel [18].

We note that the US and FFS simulations were performed at constant pressure, i.e.
in an NpT ensemble, while the BD simulations were at constant volume (NV T ). While
we have not examined in detail the nuclei appearing in these simulations, no significant
difference was found between the nuclei forming in the BD simulations and the nuclei
forming in the FFS and US simulations. This question was addressed in more detail our
nucleation study on hard spheres as described in Chapter 3 and Ref. [19]. In that case,
the radius of gyration tensor of the resulting clusters was measured as a function of cluster

∗The number densities appearing in Figs. 4.4 and 4.6 were obtained directly via communications with
the authors of Ref. [20].
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Figure 4.4: Crystal nucleation rates Iσ5/D0 as a function of number density ρσ3 where D0 is
the short-time diffusion coefficient. While we have not included error bars in this plot, note that
the uncertainty in the US and FFS nucleation rates is approximately 2 orders of magnitude while
the uncertainty in the BD results is approximately 1 order of magnitude. Note also that the
US and FFS simulations were performed at constant pressure (NpT ) while the BD simulations
were at constant volume (NV T ).
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Figure 4.5: Crystal nucleation rates Iσ5/D0 as a function of supersaturation β |∆µ| where
D0 is the short-time diffusion coefficient. The hard-sphere (HS) nucleation rates are taken from
Ref. [19].

size for constant volume molecular dynamics simulations, and constant pressure FFS, and
US simulations. No difference between the resulting nuclei was found. Additionally, in an
NV T ensemble, the formation of a nucleus depletes the number of particles in the fluid
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Figure 4.6: Crystal nucleation rates Iσ5
eff/D0 as a function of effective packing fraction φeff =

π
6ρσ

3
eff where D0 is the short-time diffusion coefficient and ρ is the number density of the fluid.

Note that σeff is the size of a hard-sphere particle which has the same freezing number density
as the WCA model. The hard-sphere (HS) nucleation rates are taken from Ref. [19].

and lowers slightly the number density of the fluid. However, when the system size is
sufficiently large, this effect is negligible. While this effect was not studied in this article,
it was examined by Kawasaki and Tanaka [20] who found that the nucleation rates for this
model (i.e. the WCA potential) at high supersaturation converged for approximately 4000
particles. For lower supersaturations, we can approximate the effect of the system size
by determining the number density of the fluid when a critical nucleus is present at fixed
volume. For a system containing N = 4096 particles, at the lowest density we studied
using BD simulations, namely ρσ3 = 0.775, we find the fluid density to be approximately
ρσ3 = 0.774 when a critical nucleus containing 60 particles is present. As a result, we
expect at the very most a horizontal error bar of 0.001 in the number density of the
BD rates. Hence, we do not expect a significant effect from the system size in our BD
simulations

In Fig. 4.5 we compare our predicted WCA rates with the crystal nucleation rates
of hard spheres as a function of supersaturation, i.e. the chemical potential difference
between the bulk crystal and the supersaturated fluid (∆µ). We find good agreement
between the nucleation rates in these two systems.

We further compare our WCA results with those of the hard-sphere system examined
in Ref. [19] and the experimental light scattering results from Refs. [33, 35, 36]. To
do this, we scale our WCA results in terms of an effective packing fraction in the same
manner as is done experimentally. Specifically, we scale the freezing number density of
the WCA model (ρFσ3 = 0.712) to the freezing packing fraction of hard spheres. Note
that in literature there is a range of freezing packing fractions for hard spheres, namely
0.491 ≤ φHSF ≤ 0.494 (see, e.g. Refs. [10, 34, 73]). Here we follow Frenkel and Smit [10]
which we believe to be the most accurate. In their work, finite size effects are taken into



Simulation of nucleation in almost hard-sphere colloids: the
discrepancy between experiment and simulation persists 59

consideration when calculating the free energy of the face-centered-cubic (FCC) crystal,
i.e. they use the result from Ref. [70]. In addition, the Speedy equations of state for the
solid and fluid phase were employed [43, 44]. The resulting freezing packing fraction is
found to be φHSF = 0.492 [10]. The WCA nucleation rates Iσ5

eff/D0 scaled to φHSF = 0.492
are compared to the hard-sphere results in Fig. 4.6 where σeff is the size of a hard-sphere
particle which has the same freezing number density as the WCA model. We stress here
that any error in the freezing coexistence results in a horizontal shift in the nucleation
rates. Hence, in addition to an uncertainty of approximately 2 orders of magnitude in the
nucleation rates, there is an additional uncertainty of approximately ∆φerror = ±0.005
in the effective packing fractions. Thus, within these error bars, we find good agreement
between our predicted hard-sphere and WCA crystal nucleation rates.

Previous studies [46, 47] have shown that softness in the potential increases the nu-
cleation rate, however, this can not be confirmed from our predictions as the uncertainty
in the nucleation rates is too large. We stress that the experimental hard-sphere nucle-
ation rates differ significantly from our predicted rates for low supersaturations. This is
in contrast to the results presented in Ref. [20] where good agreement was found between
the WCA rates and the light scattering experimental nucleation rates. This difference
originates from the freezing number density which was used to map the WCA number
densities to effective packing fractions. As described in Section 4.2, in this chapter we
have determined the freezing densities using full free-energy calculations which are known
to be very accurate. In contrast, the method used in Ref. [20] appears to yield results
that differ significantly from the “exact” coexistence densities.

The large difference between the nucleation rates when plotted in terms of effective
packing fractions emphasizes one possible problem in the comparison between the ex-
perimental and simulated nucleation rates: the determination of the effective packing
fractions. A difference of 1-2% in the freezing density has a significant effect on the po-
sition of the drop-off of the nucleation rates. Whereas it is straightforward to evaluate
the correct effective volume fractions in simulations, the procedure required to deduce
the same information from experiments is more subtle. Hence, part of the discrepancy
between the computed and measured crystal-nucleation rates of “hard-sphere” colloids
may be due to a small difference in the definition of the effective packing fraction. Yet,
this is certainly not the whole story: the very large discrepancy between experimental
and numerical nucleation rates at lower densities cannot be accounted for by a simple
rescaling of the density axis. Hence, unlike Kawasaki and Tanaka, we conclude that the
discrepancy between simulation and experiment is as large as ever, and still unexplained.

4.5 Conclusions

In conclusion, we have examined the crystal nucleation of particles interacting with the
WCA potential with βε = 40 using Brownian dynamics, umbrella sampling and forward
flux sampling. As in Ref. [19], we find good agreement between the nucleation rates
predicted using these different methods. Additionally, we find that the nucleation rates
predicted for the WCA model agree well with those of hard spheres as a function of
the effective packing fraction φeff defined such that φeff at freezing matches that of hard
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spheres.
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Crystal nucleation of colloidal hard
dumbbells

Using computer simulations we investigate homogeneous crystal nucleation in suspensions
of colloidal hard dumbbells. The free energy barriers are determined by Monte Carlo
simulations using the umbrella sampling technique. We calculate the nucleation rates for
the plastic crystal and the aperiodic crystal phase using the kinetic prefactor as determined
from event driven molecular dynamics simulations. We find good agreement with the
nucleation rates determined from spontaneous nucleation events observed in event driven
molecular dynamics simulations within error bars of one order of magnitude. We study
the effect of aspect ratio of the dumbbells on the nucleation of plastic and aperiodic
crystal phases and we also determine the structure of the critical nuclei. Moreover, we
find that the nucleation of the aligned CP1 crystal phase is strongly suppressed by a high
free energy barrier at low supersaturations and slow dynamics at high supersaturations.
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5.1 Introduction

Recent breakthroughs in particle synthesis produced a spectacular variety of anisotropic
building blocks [3]. Colloidal particles with the shape of a dumbbell are one of the simplest
anisotropic building blocks [74]. Their unique morphologies lead to novel self-organized
structures. For instance, it was found that magnetic colloidal dumbbells can form chain-
like clusters with tunable chirality [75], while novel crystal structures have been predicted
recently for asymmetric dumbbell particles consisting of a tangent large and small hard
sphere, which are atomic analogs of NaCl, CsCl, γCuTi, CrB, and αIrV, when we re-
gard the two individual spheres of each dumbbell independently [76]. Moreover, colloidal
dumbbells also gain increasing scientific attention in recent years due to its potential use in
photonic applications. It has been shown that dumbbells on a face-centered-cubic lattice
where the spheres of the dumbbells form a diamond structure exhibit a complete band
gap [77, 78] while it is impossible to obtain a complete band gap in systems consisting
of spherical particles. A very recent calculation showed that for midrange aspect ratios,
both asymmetric and symmetric dumbbells have 2 - 3 large band gaps in the inverted
lattice [79]. Although these structures are not thermodynamically stable for hard dumb-
bells [80–86], it does show the promising potential of anisotropic particles in photonic
applications.

New routes of synthesizing colloidal dumbbells make it easy to control the aspect ra-
tio [74]. In addition, by adding salt to the solvent, the interactions between dumbbells can
be tuned from long-ranged repulsive to hard interactions. Although hard dumbbells were
originally modeled for simple non-spherical diatomic molecules, such as nitrogen, they are
also a natural model system for studying the self-assembly of colloidal dumbbells [87–90].
The phase behavior of hard dumbbells has been extensively studied by density functional
theory [80, 81] and computer simulations [82–86]. The bulk phase diagram of hard dumb-
bells displays three types of stable crystal structures [80–86]. For small aspect ratio, the
dumbbells form a plastic crystal phase at low densities. The freezing into a cubic plastic
crystal phase in which the dumbbells are positioned on a face-centered-cubic lattice but
are free to rotate, has been determined using Monte Carlo simulations [82]. These results
have been refined by Vega, Paras, and Monson, who showed that at higher densities the
cubic plastic crystal phase transforms into an orientationally ordered crystal CP1 phase.
Additionally, these authors showed that the fluid-cubic plastic crystal coexistence region
terminates at L/σ ' 0.38, where L is the distance between the centers of spheres and σ is
the diameter of the dumbbells. For longer dumbbells a fluid-CP1 coexistence region was
found, whereas the relative stability of the close-packed crystal structures CP1, CP2, and
CP3, which only differ in the way the hexagonally packed dumbbell layers are stacked
remained undetermined as the free energies are very similar [83–85]. Moreover, these
authors showed by making an estimate for the degeneracy contribution to the free energy
that dumbbells with L/σ = 1 may form an aperiodic crystal phase [83]. The stability of
such an aperiodic crystal structure in which both the orientations and positions of the
particles are disordered, while the spheres of each dumbbell are located on the lattice
positions of a random-hexagonal-close-packed (rhcp) lattice, has been verified recently
for L/σ > 0.88 [86]. In addition, it has been shown that the plastic crystal phase with
the hexagonal-close-packed structure is more stable than the cubic plastic crystal for a
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large part of the stable plastic crystal region [86]. Although, the bulk phase diagram is
well-studied, the kinetic pathways of the fluid-solid phase transitions are still unknown,
and only a few studies have been devoted to the crystal nucleation of anisotropic parti-
cles [91, 92]. In the present work, we investigate the nucleation of the plastic crystal phase
of hard dumbbells using computer simulations and study the effect of aspect ratio of the
dumbbells on the resulting nucleation rates and the structure and size of the critical nuclei.
Moreover, for longer dumbbells we investigate crystal nucleation of the aperiodic crystal
phase. First, we calculate the Gibbs free energy barriers for nucleation using Monte Carlo
(MC) simulations with the umbrella sampling technique, which are then combined with
event driven molecular dynamics (EDMD) simulations to determine the kinetic prefactor
and the nucleation rates. Additionally, we determine the nucleation rates from sponta-
neous nucleation events observed in EDMD simulations. We compare the nucleation rates
and critical nuclei obtained from the umbrella sampling MC simulations with those from
EDMD simulations.

The remainder of this chapter is organized as follows. In Sec. 5.2, we describe the
methodology including the model and simulation methods used. We present the results
and discussions on the nucleation of three types of crystal phases in suspensions of hard
dumbbells in Sec. 5.3. We end with some discussions and conclude in Sec. 5.4.

5.2 Methodology

We consider a system of hard dumbbells consisting of two overlapping hard spheres with
diameter σ with the centers separated by a distance L. We define the aspect ratio as
L∗ ≡ L/σ, such that the model reduces to hard spheres for L∗ = 0 and to tangent spheres
for L∗ = 1. We study crystal nucleation of hard dumbbells for 0 ≤ L∗ ≤ 1. We focus on
the nucleation of the plastic crystal phase (0 ≤ L∗ < 0.4) and the aperiodic crystal phase
(0.88 < L∗ ≤ 1) [81, 83–86].

5.2.1 Order parameter

In order to study the nucleation of the crystal phase, we require a cluster criterion that
identifies the crystalline clusters in a metastable fluid. In this work, we employ the order
parameter based on the local bond order parameter analysis of Steinhardt et al. [93]. We
define for every particle i, a 2l + 1-dimensional complex vector ql(i) given by

qlm(i) = 1
Nb(i)

Nb(i)∑
j=1

Υlm(r̂ij), (5.1)

where Nb(i) is the total number of neighboring particles of particle i, and Υlm(r̂ij) is the
spherical harmonics for the normalized direction vector r̂ij between particle i and j, l is a
free integer parameter, and m is an integer that runs from m = −l to m = +l. Neighbors
of particle i are defined as those particles which lie within a given cutoff radius rc from
particle i. In order to determine the correlation between the local environments of particle
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i and j, we define the rotationally invariant function dl(i, j)

dl(i, j) =
l∑

m=−l
q̃lm(i) · q̃∗lm(j), (5.2)

where q̃lm(i) = qlm(i)/
√∑l

m=−l |qlm(i)|2 and the asterisk is the complex conjugate [94]. If
dl(i, j) > dc, the bond between particle (sphere) i and j is regarded to be solid-like or
connected, where dc is the dot-product cutoff. We identify a particle (sphere) as solid-like
when it has at least ξc solid-like bonds. We have chosen the symmetry index l = 6 as
the particles (spheres) display hexagonal order in the plastic crystal and the aperiodic
crystal phase. We have chosen rc = 1.3σ, dc = 0.7, and ξc = 6 in our simulations. It has
been shown recently that the choice of order parameter (rc, dc, and ξc) does not affect the
resulting nucleation rate if it is not too restrictive [19, 92].

To analyze the structure of the critical nuclei, we use the averaged local bond order
parameter ql and wl proposed by Lechner and Dellago [64], which allows us to identify each
particle as fcc-like or hcp-like, provided the number of neighboring particles Nb(i) ≥ 10:

ql(i) =

√√√√ 4π
2l + 1

l∑
m=−l

|qlm(i)|2, (5.3)

wl(i) =

∑
m1+m2+m3=0

(
l l l
m1 m2 m3

)
qlm1(i)qlm2(i)qlm3(i)

 l∑
m=−l

|qlm(i)|2
3/2 , (5.4)

where

qlm(i) = 1
Nb(i) + 1

Nb(i)∑
k=0

qlm(i). (5.5)

The sum from k = 0 to Nb(i) runs over all neighbors of particle (sphere) i plus the
particle (sphere) i itself. While qlm(i) takes into account the structure of the first shell
around particle i, the averaged qlm(i), contains also the information of the structure of
the second shell, which increases the accuracy of the crystal structure determination. In
order to distinguish fcc-like and hcp-like particles, we employ q4 and w4, as the order
parameter distributions of pure fcc and hcp phases of Lennard-Jones and Gaussian core
systems are well separated in the q4 − w4 plane [64].

5.2.2 Umbrella sampling
The Gibbs free energy ∆G(n) for the formation of a crystalline cluster of size n is given
by ∆G(n)/kBT = const − ln[P (n)], where P (n) is the probability distribution function
of finding a cluster of size n, kB is Boltzmann’s constant, and T the temperature. As
nucleation is a rare event and the probability to find a spontaneous nucleation event is very
small in a brute force simulation within a reasonable time, one has to resort to specialized
simulation techniques such as forward flux sampling, umbrella sampling or transition
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path sampling. Here, we employ the method developed by Frenkel and coworkers [18] to
calculate the free energy of the largest cluster. In this method, the sampling is biased
towards configurations that contain clusters with a certain size. To this end, we introduce
a biasing potential ω(rN), which is a harmonic function of the cluster size n:

βω(rN) = 1
2k
[
n(rN)− n0

]2
, (5.6)

where n(rN) is the size of largest cluster and n0 is the center of the umbrella sampling
window whose width depends on k. In this work we set k = 0.2. By increasing the value
of n0, we increase the size of the largest crystalline cluster in our system, which enables
us to cross the nucleation barrier. If we define the average number of crystalline clusters
with n particles by 〈Nn〉, one can calculate the probability distribution P (n) = 〈Nn〉/N
from which we can determine the Gibbs free energy ∆G(n).

5.2.3 Event driven molecular dynamics simulations
Since the potential between particles in systems of hard dumbbells is discontinuous, the
pair interactions only change when particles collide. The particles perform elastic colli-
sions when they encounter each other. We numerically identify and handle these collisions
by using an EDMD simulation [13, 95].

Using MD simulations to determine the nucleation rate is straightforward. Starting
with an equilibrated fluid configuration, an MD simulation is used to evolve the system
until the largest cluster in the system exceeds the critical nucleus size. Then the nucleation
rate is given by

I = 1
〈t〉V

, (5.7)

where 〈t〉 is the averaged waiting time of forming a critical nucleus in a system of volume
V .

5.3 Results and discussions
In this section, we present the results on the nucleation of the plastic crystal, the aperiodic
crystal and the CP1 crystal phase in suspensions of hard dumbbells.

5.3.1 Nucleation of the plastic crystal phase
We first investigate the nucleation of the plastic crystal phase of hard dumbbells. Monte
Carlo simulations with the umbrella sampling technique are performed on hard-dumbbell
fluids with L∗ = 0, 0.15 and 0.3 at supersaturation β|∆µ| = 0.34 and with L∗ = 0, 0.15
and 0.2 for β|∆µ| = 0.54 with β = 1/kBT . We have chosen a shorter aspect ratio
for the highest supersaturation as the plastic crystal phase for dumbbells with L∗ =
0.3 becomes metastable with respect to the aligned CP1 phase for P ∗ = Pσ3/kBT >
30, i.e., β|∆µ| > 0.47. The Gibbs free energy β∆G(n) as a function of cluster size
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Figure 5.1: Gibbs free energy ∆G(n)/kBT as a function of cluster size n for the nucleation
of the plastic crystal phase of hard dumbbells with various aspect ratios L∗ = L/σ as displayed
and supersaturation β|∆µ| = 0.34 (filled symbols) and 0.54 (open symbols).
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Figure 5.3: Distribution of particles in the critical nuclei for the plastic crystal nucleation
in hard dumbbell systems with L∗ = 0 (a), 0.15 (b), and 0.3 (c) as obtained from umbrella
sampling MC simulations at a supersaturation β|∆µ| = 0.34 in the q4−w4 plane compared with
those for pure fcc and hcp plastic crystal phases with corresponding pressures. The dashed lines
are used to distinguish the fcc-like and hcp-like particles, and the formulas are next to them.

n is shown in Fig. 5.1. We clearly observe that at low supersaturation, i.e. β|∆µ| =
0.34, the heights of the free energy barriers increase slightly (∼ 8%) with aspect ratio.
More specifically, β∆G∗ = 42.9 ± 0.3, 44.5 ± 1.1, and 45.2 ± 2 for L∗ = 0, 0.15 and 0.3,
respectively. According to classical nucleation theory (CNT), the nucleation barrier for
a spherical nucleus with radius R is given by ∆G(R) = 4πγR2 − 4π|∆µ|ρsR3/3 with γ
the interfacial tension, |∆µ| the chemical potential difference between the solid and fluid
phase, and ρs the bulk density of the solid phase. CNT predicts a nucleation barrier
height ∆G∗ = (16π/3)γ3/(ρs|∆µ|)2 and a critical radius R∗ = 2γ/ρs|∆µ|. The small
increase in barrier height with aspect ratio can be explained by the small increase in the
crystal-melt interfacial tensions that have been determined recently for the crystal planes
(100), (110), (111) using nonequilibrium work measurements with a cleaving procedure
in MC simulations [96]. For a spherical cluster, the surface tension is expected to be an
average over the crystal planes, i.e., βγd2 = 0.58, 0.57, and 0.60, for L∗ = 0, 0.15 and
0.3, respectively, where d3 = σ3(1 + 3/2L∗ − 1/5L∗3). Another paper by Davidchack et
al. found a slightly lower value for the averaged interfacial tension of hard spheres, i.e,
βγd2 = 0.559 [54]. Using β∆G∗ = 42.9 and the more precise value for the surface tension
βγd2 = 0.559, and the values for βγd2 and the bulk density ρs for varying L∗ presented
in Table 5.1, CNT predicts a slightly larger increase in barrier height upon increasing
L∗, i.e., β∆G∗ = 45.6 and 50.49, for L∗ = 0.15 and 0.3, respectively. However, when
the supersaturation is increased to β|∆µ| = 0.54, we find a decrease in barrier height
upon increasing the aspect ratio as shown in Fig. 5.1 and Table 5.1, which cannot be
explained by CNT. Apparently, the pressure dependence of the surface tension is different
for dumbbells with various aspect ratios.

The nucleation barriers obtained from umbrella sampling MC simulations can also be
used to determine the nucleation rates as given by [18]:

I = κ exp (−β∆G∗) (5.8)

where κ is the kinetic prefactor given by κ = ρlfn∗
√
|∆G′′(n∗)|/2πkBT , ρl is the number

density of particles in the fluid phase, fn∗ the rate at which particles are attached to the
critical nucleus, ∆G′′(n∗) is the second derivative on the top of the Gibbs free energy
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Figure 5.4: Typical configurations of critical nuclei for the plastic crystal nucleation of hard
dumbbells with aspect ratios L∗ = 0 (a), 0.15 (b), and 0.3 (c) at supersaturation |∆µ| = 0.34kBT .
The red (dark grey) particles are fcc-like, the blue particles are hcp-like particles, while the light
blue (light grey) particles are undetermined.

barrier. The attachment rate can be calculated from the mean square deviation of the
cluster size at the top of the free energy barrier by

fn∗ = 1
2
〈[n(t)− n(0)]2〉

t
(5.9)

where n(t) is the cluster size at time t. The mean square deviation of the cluster size can
be determined from EDMD simulations starting from configurations at the top of the free
energy barriers. Using the results for the attachment rates and the nucleation barriers
obtained from umbrella sampling MC simulations, we can determine the nucleation rates,
which we compare with those obtained directly from spontaneous nucleation events in
EDMD simulations. We observed a large variance in the attachment rates calculated
for different nuclei. We used 10 independent configurations on the top of the barrier
and followed 10 trajectories for each of them to determine the attachment rates. Taking
into account the statistical errors in the free energy barriers and attachment rates, we
estimate that the error in the resulting nucleation rates is one order of magnitude. In
order to exclude the effect of dynamics, we compare the nucleation rates for the plastic
crystal phase in long-time self diffusion times, i.e. τL = σ2/6Dl with Dl the long-time
self diffusion coefficient. We calculate Dl by measuring the mean square displacement at
supersaturation β|∆µ| = 0.34 and 0.54 as shown in Table 5.1 for various aspect ratios. We
clearly observe that the dynamics becomes slower for increasing aspect ratio L∗, resulting
in long-time self diffusion coefficients Dlτ/σ

2 = 0.012, 0.01, 0.0023 for L∗ = 0, 0.15 and
0.3 at β|∆µ| = 0.34 with τ = σ

√
m/kBT . At higher supersaturation β|∆µ| = 0.54, we

find even smaller values for Dl, i.e., Dlτ/σ
2 = 0.0078, 0.006, 0.003 for L∗ = 0, 0.15 and

0.2, respectively.
The resulting nucleation rates in units of the long-time self diffusion coefficient are

shown in Table 5.1. We wish to make a few remarks here. First, the nucleation rates
obtained from spontaneous nucleation events observed in EDMD simulations agree well
with the ones obtained from umbrella sampling MC simulations within error bars of one



Crystal nucleation of colloidal hard dumbbells 69

order of magnitude, which means that the nucleation results obtained from the umbrella
sampling MC simulations are reliable. Secondly, we clearly observe that the nucleation
rates for the different aspect ratios ranging from L∗ = 0 to 0.3 are remarkably similar as
the differences are within the errorbars for both supersaturations.

Finally, we made an attempt to study spontaneous nucleation of dumbbells with
L∗ = 0.3 at supersaturation β|∆µ| = 0.54 using event-driven MD simulations. As
already mentioned above, the plastic crystal phase for dumbbells with L∗ = 0.3 be-
comes metastable with respect to an aligned CP1 phase for P ∗ = Pσ3/kBT > 30, i.e.,
β|∆µ| > 0.47. Hence, we would expect to find nucleation of the CP1 phase here. How-
ever, we find that the nucleation is severely hampered due to slow dynamics, which can be
appreciated from Fig. 5.2, where we plot the mean square displacement for β|∆µ| = 0.47.
The resulting long-time self diffusion coefficient Dl = 1.72×10−4σ2/τ is at least one order
of magnitude smaller than the long-time self diffusion coefficients at β|∆µ| = 0.54, where
we observed spontaneous nucleation for L∗ = 0, 0.5, and 0.2.

L∗ Pσ3/kBT β|∆µ| ρsd
3∗ n∗ β∆G(n∗) |β∆G′′(n∗)|

0 15 0.34 1.107 300 42.9± 0.3 5.1× 10−4

0.15 13.8 0.34 1.104 265 44.5± 1.1 6.0× 10−4

0.3 21 0.34 1.163 220 45.2± 2 1.0× 10−3

0 17 0.54 1.136 102 19.6± 0.3 1.2× 10−3

0.15 16 0.54 1.131 70 18.0± 0.7 9.7× 10−4

0.2 17.5 0.54 1.143 65 15.8± 0.5 2.0× 10−3

L∗ Pσ3/kBT fn∗/6Dl Dlτ/σ
2 Iσ5/6Dl (US) Iσ5/6Dl (MD)

0 15 4550 0.012 9.6× 10−18±1 -
0.15 13.8 3700 0.01 1.4× 10−18±1 -
0.3 21 7464 0.0023 1.7× 10−18±1 -
0 17 3980 0.0078 1.7× 10−7±1 1.6× 10−7†

0.15 16 3779 0.006 6.1× 10−7±1 3.5× 10−7±1

0.2 17.5 2682 0.003 5.5× 10−6±1 4.4× 10−6±1

∗d3 = σ3(1 + 3/2L∗ − 1/2L∗3) [96]
†Extrapolated from Ref. [19]

Table 5.1: Nucleation rates Iσ5/6Dl for the nucleation of the plastic crystal phase in systems
of hard dumbbells with elongation L∗, at pressure Pσ3/kBT , and supersaturation β|∆µ|. ρsd3

is the number density of dumbbells in the solid phase, β∆G(n∗) is the barrier height, and
|β∆G′′(n∗)| is the second derivative of the Gibbs free energy at the critical nucleus size n∗, i.e.,
the number of dumbbells in the critical cluster. fn∗/6Dl is the attachment rate in units of the
long-time self diffusion coefficient Dl.

In umbrella sampling MC simulations, we can “fix” the simulations at the top of
the nucleation barrier which allows us to study the properties of the critical nuclei. We
investigate the effect of the particle anisotropy on the structure of the critical nuclei using
the order parameters q4 and w4 as defined above. At supersaturation β|∆µ| = 0.34, the
size of the critical nuclei is n ' 250 which is sufficiently large to determine the crystal
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structure of the nuclei. For each dumbbell, we calculate the averaged local bond order
parameter q4 and w4, provided the particle has Nb(i) ≥ 10 neighbors. The distribution of
particles in the critical nuclei are presented as scatter plots in the q4−w4 plane along with
those for pure fcc and hcp plastic crystal phases of dumbbells with L∗ = 0, 0.15, and 0.3,
at corresponding pressures. From Fig. 5.3, we clearly observe that the critical nuclei for
L∗ = 0 and 0.15, contains predominantly fcc-like rather than hcp-like particles. In order
to distinguish the fcc-like and hcp-like particles more quantitatively, we divide the q4−w4
plane by a straight line in such a way that the particle distributions for the pure fcc and hcp
plastic crystal phases are maximally separated. We plot the criteria to distinguish fcc-like
and hcp-like particles as dashed straight lines in Fig. 5.3 with the corresponding formula.
We note, however, that the criteria seem to be arbitrarily chosen, but the identification
of fcc-like and hcp-like particles for typical nuclei seems to be less sensitive on the precise
details of these criteria. Typical snapshots of the critical nuclei for L∗ = 0, 0.15, and 0.3
are shown in Fig. 5.4, where the color-coding denotes the identity (fcc-like, hcp-like or
undetermined) of the particle using these criteria. As we did not calculate the averaged
local bond order parameter q4 and w4 for particles with Nb(i) < 10 neighbors, the identity
of these particles remains undetermined. We clearly observe that the critical nuclei for
L∗ = 0, 0.15 contains mainly fcc-like particles. The particle distributions becomes broader
for the pure fcc and hcp plastic crystal phases upon increasing L∗ and consequently it
becomes more difficult to distinguish fcc-like and hcp-like particles. However, the fraction
of hcp-like particles seems to increase with increasing particle elongation. This agrees
with the results from free energy calculations of hard dumbbell systems, where it has
been shown that the hcp plastic crystal phase is more stable than the one with an fcc
structure at L∗ ≥ 0.15 [86]. It is worth noting here that recent nucleation studies of hard
spheres showed that the critical nuclei contain approximately 80% fcc-like particles, see
Chapter 3 and Ref. [19] As the free energy difference per particle between bulk fcc and
hcp phases is only about 0.001 kBT at melting, the predominance for fcc-like particles is
attributed to surface effects.

5.3.2 Nucleation of the aperiodic crystal phase
For more elongated dumbbells, i.e., L∗ > 0.88, the orientationally disordered aperiodic
crystal phase becomes stable [83–86], in which the individual spheres of the dumbbells are
on a random hcp lattice, and in addition the orientations of the dumbbells are random. In
this section, we investigate the nucleation of the aperiodic crystal phase of hard dumbbells
with different aspect ratios. We perform Monte Carlo simulations using the umbrella
sampling technique to determine the Gibbs free energy as a function of cluster size for
hard dumbbells with L∗ = 1.0 and supersaturation P ∗ = 16 and 17. The order parameter
that is employed here in the umbrella sampling technique is equal to the number of
spheres n (and thus not the number of dumbbells) in the largest crystalline cluster in the
system. Thus, we check for each individual sphere whether or not it belongs to the largest
crystalline cluster, and as a consequence, the whole dumbbell can be part of the largest
cluster or only one sphere of the dumbbell can belong to the cluster, or the whole dumbbell
is regarded to be fluid-like. Consequently, it is convenient to introduce a bulk chemical
potential per sphere, which equals 0.5 times the bulk chemical potential per dumbbell
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Figure 5.5: Gibbs free energy ∆G(n) as a function of number of spheres n in the largest cluster
for the nucleation of the (aperiodic) crystal phase of hard dumbbells and of hard spheres.

10 12 14 16 18

Pσ
3
/k

B
T

0.9

0.95

1

1.05

1.1

1.15

ρ
sp

h
σ
3

Aper (dumbells)

Fluid (dumbells)
Solid (hard spheres)

Fluid (hard spheres)
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µsph = µ/2. We compare the results with those for hard spheres at the same pressure
in Fig. 5.5. Since the bulk pressure for the solid-fluid transition of hard dumbbells with
L∗ = 1 is remarkably close to that of hard spheres βPcoexσ3 = 11.8 [83–86], one might
naively expect that the nucleation barriers should be compared at the same dimensionless
pressure. However, we observe that at the same pressure, the nucleation barrier for the
aperiodic crystal phase of hard dumbbells is slightly higher than that of hard spheres.
CNT predicts that the barrier height is given by ∆G∗ = (16π/3)γ3/(ρsphs |∆µsph|)2, and
hence a difference in barrier height should be due to a difference in the interfacial tension
γ, the density of spheres in the solid phase ρsphs , or in |∆µsph|. As the reduced density
of spheres ρsphs σ3 in the aperiodic crystal phase is very close to that of a solid phase of
hard spheres at P ∗ = 16 and 17, and the interfacial tensions βγσ2 are also expected to be
very similar, the difference in barrier height can only be caused by a difference in |∆µsph|.
We therefore calculated more accurately the bulk chemical potential difference per sphere
between the solid and the fluid phase using

|∆µsph| =
∫ P

Pcoex

(
1
ρsphl
− 1
ρsphs

)
dP (5.10)

where ρsphl and ρsphs are the density of spheres in the liquid and solid phase. In Fig. 5.6, we
plot the equation of state for the fluid and solid phase of hard spheres from Ref. [44, 97]
along with the equation of state for the fluid phase of hard dumbbells for L∗ = 1 from
Ref. [98]. In addition, we determined the equation of state for the solid phase using EDMD
simulations. Using these results and Eq. 5.10, we indeed find that the supersaturation
β|∆µsph| per sphere is ∼ 2.3% smaller for hard dumbbells than for hard spheres, resulting
in an increase in barrier height of ∼ 5%, which perfectly matches our results. We conclude
that the difference in the height of the nucleation barrier between the aperiodic crystal
phase of dumbbells with L∗ = 1.0 and the hard-sphere crystal is mostly due to the
difference in |∆µsph|.

Moreover, we also performed EDMD simulations for the spontaneous nucleation of
the aperiodic crystal phase of dumbbells at P ∗ = 17 in system of N = 16000 hard
dumbbells. The number of spheres in the biggest cluster as a function of time from a
typical MD simulation is shown in Fig. 5.7. We find that the size of critical nuclei in
spontaneous nucleation is around 100 spheres which agrees well with the result obtained
from umbrella sampling MC simulations shown in Fig. 5.5. The nucleation rate obtained
from spontaneous nucleation events observed in MD simulations is Iσ5/6Dl = 7.3×10−8±1

which agrees very well with the rate obtained from umbrella sampling MC simulations,
Iσ5/6Dl = 2.8× 10−8±1, within the error bars of one order of magnitude.

Furthermore, we study the effect of aspect ratio on the nucleation of the aperiodic
crystal phase, and the free energy barriers for hard dumbbells with aspect ratios L∗ =
0.95, 0.97, and 1.0 at supersaturation β|∆µsph| = 0.43. We plot ∆G(n) as a function of
cluster size n, i.e., the number of spheres in the cluster, in Fig. 5.8. We observe that
at the same supersaturation the barrier height decreases upon decreasing the elongation
of the dumbbells. According to classical nucleation theory, ∆G∗ ∝ γ3/(ρsphs |∆µsph|)2,
where ∆µsph is the supersaturation per sphere with ρsphs the bulk density of spheres in
the solid phase. As shown in Table 5.2, ρsphs σ3 is very similar for L∗ = 0.95, 0.97, and
1.0, and we argue that the interfacial tension of the aperiodic crystal decreases upon
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Figure 5.11: Distribution of the spheres in the critical nuclei as obtained from umbrella
sampling MC simulations in q4 − w4 plane in systems of hard dumbbells with L∗ = 1.0 at
supersaturation β|∆µsph| = 0.43. Inset: Typical configuration of a critical nucleus. Red denotes
fcc-like spheres and blue denotes hcp-like spheres while the light blue are the undetermined ones.

decreasing the elongation of the dumbbells. In order to calculate the nucleation rates,
we perform EDMD simulations starting from configurations on the top of the free energy
barriers. We plot the mean square deviation of the cluster size as a function of time in
Fig. 5.9. We find that the attachment rate decreases significantly as the anisotropy of the
dumbbells decreases. The resulting nucleation rates in units of the long time diffusion
coefficient are shown in Fig. 5.10. We clearly observe that at fixed supersaturation the
nucleation rate increases with decreasing dumbbell elongation. However, in the phase
diagram of hard dumbbells [83–86], the pressure range where the aperiodic crystal phase
is thermodynamically stable shrinks significantly when the aspect ratio decreases. As a
result, it is not possible to increase the supersaturation further for shorter dumbbells,
although the nucleation rates are already much higher for shorter ones than for longer
ones at the same supersaturation.

Additionally, we also study the structure of the critical nuclei by calculating the aver-
aged local bond order parameter q4 and w4, provided the sphere has Nb(i) ≥ 10 neighbors.
The distribution of spheres in the critical nuclei are presented as scatter plots in the q4−w4
plane in Fig. 5.11 for L∗ = 1.0. We observe only a few spheres with w4 > 0 and q4 < 0.1,
as most of the spheres are in the area of w4 < 0 and q4 > 0.1, which is very similar to
the scatter plots for hard spheres shown in Fig. 5.3a. Consequently, the critical nucleus
of the aperiodic crystal phase of hard dumbbells contains also more fcc-like than hcp-like
particles, similar to the critical nuclei observed in hard-sphere nucleation [19]. A typical
configuration of a critical nucleus is shown in the inset of Fig. 5.11, where the spheres are
considered to be fcc-like if w4 < 0.
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L∗ Pσ3/kBT β|∆µsph| ρsphs σ3 n∗ β∆G(n∗) |β∆G′′(n∗)|
1 17 0.53 1.170 115 21.4± 0.4 1.2× 10−3

1 16 0.43 1.158 170 29.5± 0.6 9.4× 10−4

0.97 18 0.43 1.171 140 25.3± 0.9 8.4× 10−4

0.95 20 0.43 1.182 100 19.9± 0.7 3.0× 10−3

L∗ Pσ3/kBT fn∗/6Dl Dlτ/σ
2 Iσ5/6Dl (US) Iσ5/6Dl (MD)

1 17 2813 0.0026 2.0× 10−8±1 7.3× 10−8±1

1 16 5556 0.0036 1.1× 10−11±1 -
0.97 18 5228 0.0022 6.6× 10−10±1 -
0.95 20 2273 0.0011 1.2× 10−7±1 -

Table 5.2: Nucleation rates Iσ5/6Dl for the nucleation of the aperiodic crystal phase in systems
of hard dumbbells with elongation L∗, at pressure Pσ3/kBT , and supersaturation per sphere
β|∆µsph|. ρsphs σ3 is the number density of spheres in the solid phase, β∆G(n∗) is the barrier
height, and |β∆G′′(n∗)| is the second derivative of the Gibbs free energy at the critical nucleus
size n∗, i.e., the number of spheres in the critical cluster. fn∗/6Dl is the attachment rate in
units of the long-time self diffusion coefficient Dl.

L∗ P ∗ φ Dlτ/σ
2

0.4 34.5 0.64 1.02× 10−4

0.5 31.2 0.63 2.47× 10−4

0.8 24.8 0.61 2.78× 10−4

Table 5.3: Long-time diffusion coefficients Dl in units of σ2/τ with τ = σ
√
m/kBT for hard

dumbbells with elongation L∗ at pressure P ∗, packing fraction φ, and supersaturation β|∆µ| =
1.0.

5.3.3 Slow dynamics of hard dumbbells
The phase diagram of hard dumbbells shows a stable aligned CP1 crystal phase at infinite
pressure for all aspect ratios of the dumbbells, and a fluid-CP1 coexistence region for
0.4 ≤ L∗ ≤ 0.8 [83–86]. The surface tension for the fluid-CP1 interface of hard dumbbells
with L∗ = 0.4 is βγσ2 ' 1.8 [96]. The height of the free energy barrier is given by
∆G∗ = 16πγ3/3(ρs|∆µ|)2 in CNT. If we assume that the interfacial tension does not
change significantly with increasing pressure, we can estimate the free energy barrier
height as a function of pressure by integrating the Gibbs-Duhem equation to obtain |∆µ|.
The barrier height ∆G∗ and the packing fraction φ for the fluid phase are shown in
Fig. 5.12 as a function of the pressure P ∗. We find that the barrier height ∆G∗ is extremely
high, and only becomes less than 50kBT for P ∗ > 45, corresponding to a packing fraction
of the fluid phase φ > 0.67. However, if the interfacial tension increases with increasing
pressure as shown in Ref. [99], the “actual” height of free energy barrier can become even
higher. As a consequence nucleation of the CP1 crystal phase is an extremely rare event.

Additionally, we calculate mean square displacements 〈∆r2(t)〉 and the second-order
orientational correlator L2(t) = 〈P2[cos(θ(t))]〉 for a metastable fluid of hard dumbbells
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Figure 5.12: Estimated height of the Gibbs free energy barrier ∆G∗/kBT obtained from
classical nucleation theory (solid line) and the packing fraction φ in the supersaturated fluid
phase [98] (dashed line) as a function of pressure P ∗ for the nucleation of the CP1 phase of hard
dumbbells with L∗ = 0.4.

with L∗ = 0.4, 0.5, and 0.8 at supersaturation β|∆µ| = 1.0 as shown in Fig. 5.13. We
find that at a supersaturation β|∆µ| = 1.0, where the barrier height is still very high,
∆G∗/kBT ∼ 170 for L∗ = 0.4, the long-time self diffusion coefficients Dl ' 10−4σ2/τ
obtained from 〈∆r2(t)〉 is extremely small, see Table 5.3), whereas L2(t) exhibits slow re-
laxation. Our findings are consistent with predictions obtained from mode-coupling theory
for a liquid-glass transition, in which the structural arrest is due to steric hindrance for
both translational and reorientational motion [100–104]. Moreover, mode-coupling theory
predicts that the steric hindrance for reorientations becomes stronger with increasing elon-
gation, which is consistent with our results for L2(t) in Fig. 5.13 [100–104]. Increasing the
supersaturation will lower ∆G∗, but Dl will decrease as well, while at lower supersatura-
tion the barrier height will only increase. As a result, the nucleation of CP1 phase of hard
dumbbells is severely hindered by a high free energy barrier at low supersaturations and
slow dynamics at high supersaturations, which explains why the CP1 phase of colloidal
hard dumbbells has never been observed in experiments [90] or in direct simulations. It
is worth noting that the phase diagram might also display (meta)stable CP2 and CP3
close-packed crystal structures [83], which only differ in the way the hexagonally packed
dumbbell layers are stacked. As the free energy difference for the three close-packed struc-
tures is extremely small, we expect the surface tensions and the nucleation barrier height
to be very similar. Hence, we expect that also the nucleation of the CP2 and CP3 phases
are hindered by either a high free energy barrier or slow dynamics.

5.4 Conclusions
In conclusion, we investigated the homogeneous nucleation of the plastic crystal, aperiodic
crystal and CP1 crystal phase of hard dumbbells using computer simulations. Hard
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β|∆µ| = 1.0.

dumbbells serve as a model system for colloidal dumbbells for which the self-assembly is
mainly determined by excluded volume interactions. For charged colloidal dumbbells or
diatomic molecules, screened Coulombic interactions and Van der Waals interactions may
significantly change the kinetic pathways for nucleation. For instance, crystal nucleation
of hard rods proceeds via multi-layered crystalline nuclei whereas attractive depletion
interactions between the rods in a polymer solutions favor the nucleation of single-layered
nuclei [92, 105]. For the nucleation of the plastic crystal phase of hard dumbbells, we found
that at low supersaturations the free energy barriers increases slightly with increasing
dumbbell anisotropy, which can be explained by a small increase in surface tension for
more anisotropic dumbbells [96]. When the supersaturation increases, the barrier height
decreases with increasing dumbbell aspect ratio, which can only be explained by a different
pressure-dependence of the interfacial tension for hard dumbbells with different aspect
ratios. Although the nucleation rate for the plastic crystal phase does not vary much
with aspect ratio, the dynamics do decrease significantly. We also carried out EDMD
simulations and compared the nucleation rates obtained from spontaneous nucleation
events with those obtained from the umbrella sampling Monte Carlo simulations, and
found good agreement within the error bars of one order of magnitude. Additionally,
we investigated the structure of the critical nuclei of the plastic crystal phase of hard
dumbbells with various aspect ratios. We found that the nuclei of the plastic crystal
tend to include more fcc-like particles rather than hcp-like ones, which is similar to the
critical nuclei of hard spheres [19]. However, the amount of hcp-like particles increases
with increasing dumbbell aspect ratio, which agrees with the free energy calculations [86]
where it has been shown that the hcp structure is more stable than fcc structure for
L∗ ≥ 0.15.

Moreover, we also studied the nucleation of the aperiodic crystal phase of hard dumb-
bells, and our results showed that at the same pressure, the nucleation barrier of the
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aperiodic crystal phase of hard dumbbells with L∗ = 1.0 is slightly higher than that of
hard spheres which is mostly due to a small difference in supersaturation β|∆µsph|. We
also performed EDMD simulations for the spontaneous nucleation of the aperiodic crystal
from hard-dumbbell fluid phase, and we found that the nucleation rate obtained from
spontaneous nucleation agrees very well with the one obtained from umbrella sampling
MC simulations. Furthermore, we studied the effect of aspect ratio on the nucleation of
the aperiodic crystal phase, and found that at the same supersaturation, the nucleation
rate in units of long-time self diffusion coefficients increases for shorter hard dumbbells.
However, when the aspect ratio of dumbbells decreases, the pressure range where the
aperiodic crystal phase is stable becomes smaller. Additionally, we also found that the
structure of the critical nuclei of the aperiodic crystal phase formed by hard dumbbells
with L∗ = 1.0 is very similar to that of hard spheres which tend to have more fcc-like
particles rather than hcp-like ones.

Finally, we estimated the height of the free energy barrier for the nucleation of the
CP1 crystal phase of hard dumbbells according to classical nucleation theory, which turns
out to be extremely high in the normal pressure range due to a high interfacial tension.
Furthermore, we calculated the long-time self diffusion coefficients for hard dumbbells
at a moderate supersaturation, i.e., β|∆µ| = 1.0, which appears to be very small. As a
result, we conclude that the high free energy barrier as well as the slow dynamics suppress
significantly the nucleation of CP1 phase.

5.5 Acknowledgments
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Glassy dynamics, spinodal
fluctuations, and the kinetic limit
of nucleation in suspensions of

colloidal hard rods

Using simulations we identify three dynamic regimes in supersaturated isotropic fluid
states of short hard rods: (i) for moderate supersaturations we observe nucleation of
multi-layered crystalline clusters; (ii) at higher supersaturation, we find nucleation of
small crystallites which arrange into long-lived locally favored structures that get kineti-
cally arrested, while (iii) at even higher supersaturation the dynamic arrest is due to the
conventional cage-trapping glass transition. For longer rods we find that the formation of
the (stable) smectic phase out of a supersaturated isotropic state is strongly suppressed by
an isotropic-nematic spinodal instability that causes huge spinodal-like orientation fluc-
tuations with nematic clusters diverging in size. Our results show that glassy dynamics
and spinodal instabilities set kinetic limits to nucleation in a highly supersaturated fluid.
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6.1 Introduction

Nucleation is the process whereby a thermodynamically metastable state evolves into a
stable one, via the spontaneous formation of a droplet of the stable phase. According to
classical nucleation theory (CNT), the Gibbs free energy associated with the formation
of a spherical cluster of the stable phase with radius R in the metastable phase is given
by a volume term, which represents the driving force to form the new phase, and a
surface free energy cost to create an interface, i.e., ∆G = −4πR3ρ|∆µ|/3 + 4πR2γ with
γ the surface tension between the coexisting phases, ρ the density of the cluster, and
|∆µ| > 0 the chemical potential difference between the metastable and stable phase.
For a given |∆µ| and ρ, CNT predicts a nucleation barrier ∆Gcrit = (16π/3)γ3/(ρ|∆µ|)2

and a critical nucleus radius Rcrit = 2γ/ρ|∆µ|. CNT predicts an infinite barrier at bulk
coexistence (∆µ = 0), which decreases with increasing supersaturation. However, CNT
incorrectly predicts a finite barrier at the spinodal, whereas a non-classical approach yields
a vanishing barrier at the spinodal, with a diffuse critical nucleus that becomes of infinite
size [106, 107]. Both approaches explain why liquids must be supercooled substantially
before nucleation occurs, and one might expect that nucleation should always occur for
sufficiently high supersaturation. For deep quenches close to the spinodal, but not beyond
it, simulation studies show either nucleating anisotropic and diffuse clusters [108], or
precritical clusters that grow further [109] or that coalesce in ramified structures [110].
These results contrast the mean-field predictions that the critical size should diverge at
the spinodal [106, 107]. On the other hand, Wedekind et al. showed that the system
can become unstable by a so-called kinetic spinodal, where the largest cluster in the
system has a vanishing barrier, i.e. ∆Glarge

crit = 0, implying the immediate formation of
a critical cluster in the system [111]. Beyond this kinetic limit, which is system-size
dependent as ∆Glarge

crit = ∆Gcrit − kBT lnN , the system is kinetically unstable, and the
phase transformation proceeds immediately via growth of the largest cluster. Here N is
the number of particles, kB the Boltzmann constant, and T the temperature. This scenario
also explains why it is hard to reach the thermodynamic spinodal and why a divergence of
the critical cluster size was never observed in simulations, as the system already becomes
kinetically unstable at much lower supersaturations. Interestingly, recent simulations of
silica also showed a kinetic limit of the homogeneous nucleation regime that is strongly
influenced by glassy dynamics, without any spinodal effects [112]. Clearly, the nucleation
kinetics at high supersaturation is still poorly understood.

In this chapter, we investigate not only the nucleation pathways of the isotropic-crystal
(IX) transition of rod-like particles as a function of supersaturation, but also those of
the isotropic-smectic (ISm) transition. The nucleation pathways of structures with both
orientational and positional order are still unknown, as nucleating smectic or crystalline
clusters have never been observed in experiments or simulations [91, 105] ∗. We show
for the first time that crystal nucleation proceeds via nucleation of multi-layer crystalline
clusters, while previous studies found that nucleation is hampered by self-poisoning [91].
Additionally, we identify two mechanisms of dynamic arrest that sets a kinetic limit of
the crystal nucleation regime, one based on dynamic arrest of small crystalline nuclei

∗Very recently, Kuijk et al. observed the crystal nucleation of hard rods in experiments [113].
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that form locally favored structures, and one based on a conventional cage-trapping glass
transition. Moreover, for longer rods we show that the (metastable) isotropic-nematic
(IN) spinodal severely hinders and even prevents ISm nucleation.

6.2 Crystal nucleation of colloidal short rods
(L/σ = 2.0)

We consider a suspension of N hard spherocylinders with a diameter σ and a cylindrical
segment of length L = 2σ in a volume V or at pressure P . The equilibrium bulk phase
diagram of these rods with a length-to-diameter ratio L∗ = L/σ = 2 is well known as
shown in Fig. 6.1 [114]; it features the IX phase transition at pressure P ∗ = βPσ3 = 5.64
with β = 1/kBT .

Figure 6.1: Phase diagram in the ρ∗ (density) versus L/σ (aspect ratio) representation from
Ref. [114], where I, P, N, Sm, S denote isotropic, plastic crystal, nematic, smectic and crystal
phase respectively.

We first use NPT-Monte Carlo (MC) simulations to compress an isotropic fluid of
10, 000 rods at the moderate pressure P ∗ = 7.6 corresponding to a chemical potential
difference β|∆µ| = 1.11 between the (metastable) fluid and the crystal phase. We then
take random MC configurations as initial configurations for molecular dynamics (MD)
simulations in the NVT ensemble to study spontaneous crystal nucleation, employing the
cluster criterion as described in Ref. [115, 116]. We find spontaneous nucleation of a multi-
layered crystalline cluster in the isotropic fluid. Fig. 6.2 shows the time evolution from a
typical MD trajectory. In the initial stage of the MD simulation the system remains in
the metastable isotropic fluid for a long time, with small multi-layered crystalline clusters
appearing and disappearing along the simulation. After time t = 1000τ , with time unit
τ = σ

√
m/kBT and m the mass of the particle, a nucleus consisting of multiple crystalline
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layers starts to grow gradually until the whole system has been transformed into the bulk
crystal phase. We note that the cluster prefers to grow laterally as was also found for
attractive rods [105]. We observed similar spontaneous nucleation at P ∗ = 7.4. The long
waiting time tw before a postcritical cluster starts to appear by a spontaneous fluctuation
is typical for nucleation and growth. We calculate the nucleation rate I = 1/〈tw〉V , and
find from our MD simulations that I = 5 × 10−9±2τ−1σ−3 and 1.7 × 10−8±1τ−1σ−3, for
P ∗ = 7.4 and 7.6, respectively.

Figure 6.2: Configurations for spontaneous crystal nucleation from a typical molecular dy-
namics trajectory at P ∗ = 7.6 and t/τ = 0, 1000, 2000 and 3000 (from left to right) with
τ = σ

√
m/kBT and m the mass of the particle. Isotropic-like particles are drawn 10 times

smaller than their actual size. A movie can be found in [116].

As our MD simulations provide evidence that the IX transformation can occur via
nucleation of multilayer crystalline clusters, we determine the nucleation barrier using
umbrella sampling (US) in MC simulations. We bias the system to configurations with a
certain cluster size and we sample the equilibrium probability P (n) to find a cluster of n
rods. The Gibbs free energy of a cluster of size n is then given by β∆G(n) = −lnP (n).
We perform MC simulations of 2000 particles at P ∗ = 7.0, 7.2, and 7.4 corresponding
to β|∆µ| = 0.78, 0.89 and 1.0, respectively. Fig. 6.3 shows ∆G(n), which for P ∗ = 7.2
and 7.4 display a maximum of β∆Gcrit ≈ 27 ± 1.5 and 20 ± 1.5 at critical cluster sizes
ncrit ≈ 140 and 80, respectively. A typical configuration of the critical cluster, consisting
of three crystalline layers at P ∗ = 7.4, is shown in the inset of Fig. 6.3; its structure
agrees with those observed in our MD simulations of spontaneous nucleation of multilayer
crystallites. For P ∗ = 7.0 the free-energy barrier is too high to be calculated in our
simulations as the cluster starts to percolate the simulation box before the top is reached.
For even lower pressures, i.e. P ∗ = 6.0 (not shown), this problem is even more severe.
For clusters up to n ' 100, however, the barrier can be calculated with the US scheme,
revealing multilayered structures very similar to the one shown for P ∗ = 7.4. Our MC
simulation results for P ∗ = 7.2 and 7.4 can also be used to calculate the nucleation rate
from I = κ exp (−β∆Gcrit) with kinetic prefactor κ = |β∆G′′crit/(2π)|1/2 ρIfncrit , where ρI
is the number density of the isotropic fluid and fncrit is the attachment rate of particles to
the critical cluster (which we compute using MD simulations starting with independent
configurations at the top of the nucleation barrier [18]). For P ∗ = 7.2 and 7.4 we find
I = 1× 10−13±1 and 2× 10−10±1 τ−1σ−3, respectively, in agreement within the errorbars
with the MD simulations.
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Figure 6.3: Gibbs free energy ∆G(n) as a function of the number of rods n in the crystalline
cluster at pressure P ∗ = 7.0, 7.2, and 7.4. Inset: A typical configuration of a critical cluster
(n = 81) at P ∗ = 7.4.

Our observation of spontaneous nucleation of bulk crystals of short rods is in marked
contrast with an earlier study, which showed that the free energy never crosses a nucleation
barrier [91]. These simulations showed the formation of a single crystalline layer, while
subsequent crystal growth is hampered. The authors attribute the stunted growth of this
monolayer to self-poisoning by rods that lie flat on the cluster surface. If we use the same
cluster criterion as in Ref. [91] for the biasing potential, we indeed also find crystalline
monolayers at P ∗ = 7.4, which cannot grow further as ∆G(n) increases monotonically
with n. These results for the nucleation barrier agree with theoretical predictions that for
sufficiently low supersaturations ∆G(n) for a single layer is always positive, while mul-
tilayer crystalline clusters can grow spontaneously when the nucleus exceeds the critical
size [117]. However, our detailed check [116] of the order parameter in Ref. [91] actually
reveals a strong (unwanted) bias to form single-layered clusters in US simulations.

We also study the IX transformation at higher oversaturation. To this end, we com-
press 1000 rods (L∗ = 2) in NPT-MC simulations at P ∗ = 8 (β|∆µ| = 1.33). Using
βγσ2 ' 0.44, which follows from fitting the two barriers of Fig. 6.3 to CNT, we estimate
barriers as low as β∆Gcrit ∼ 9 and β∆Glarge

crit ∼ 2 for P ∗ = 8. Indeed, many small crystal-
lites nucleate immediately after the compression quench, indicative of the proximity of a
kinetic spinodal. These crystallites are oriented in different directions, and have a large
tendency to align perpendicular to each other. The subsequent equilibration is extremely
slow, since the growth of a single crystal evolves via collective re-arrangements of smaller
clusters that subsequently coalesce. In fact, after 3 × 107 MC cycles, our system is dy-
namically arrested. Interestingly, Frank proposed more than 50 years ago that dynamic
arrest may be attributed to the formation of locally favored structures in which the system
gets kinetically trapped in local potential-energy minima [118], while direct observation
of such a mechanism for dynamic arrest was only recently reported in the gel phase of
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Figure 6.4: Mean square displacement 〈(∆r(t))2〉 and second-order orientational correlator
L2(t) for hard rods with L∗ = 2 and pressures as labeled. The inset shows a typical configuration
of a glassy state with cubatic order at P ∗ = 10.

a colloid-polymer mixture [119]. In our simulations, we clearly observe the formation
of long-lived locally favored structures consisting of perpendicularly oriented crystallites.
Only via cooperative rearrangements (rotation of the whole cluster) the system can escape
from the kinetic traps, but these events are rare in MC simulations. So despite the large
supersaturation and the low barrier as predicted by CNT, the actual formation of a single
crystal is impeded dramatically by slow dynamics. In fact, our observations agree with
experiments on soft-repulsive selenium rods, where transient structures of 5-10 aligned
particles tend to form locally favored structures with perpendicularly aligned clusters,
which gradually merge into larger clusters [120]. Only attractive β-FeOOH rods form
crystalline monolayers in agreement with [105].

In order to investigate whether the system can be quenched beyond a thermodynamic
spinodal (such that the transformation should proceed via spinodal decomposition), we
also perform simulations at P ∗ = 10. We find again the immediate nucleation of many
small crystallites, which is expected beyond the kinetic spinodal. As the phase transfor-
mation sets in right away, we cannot determine whether the nucleation barrier is finite
or zero; it is therefore unclear whether or not we have crossed a thermodynamic spinodal
(if there is one for freezing). We note, however, that we did not find any characteris-
tics of spinodal decomposition in the early stages. The small crystallites tend to align
perpendicular, and in fact the system displays clear orientational ordering along three
perpendicular directions (cubatic order), as shown by the orientation distribution on the
surface of a unit sphere in the inset of Fig. 6.4. In order to check for finite size effects, we
studied a system of N = 4000 rods, which again show long-range cubatic order. However,
we cannot make any definite conclusions on the range of the cubatic order due to slow dy-
namics of larger systems. The mean-square displacement 〈(∆r(t))2〉 and the second-order
orientational correlator L2(t) = 〈(3 cos2 θ(t)− 1)/2〉 are also displayed in Fig. 6.4, which
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show the characteristic plateau of structural arrest. For comparison, we also present data
for P ∗ = 7.4, which show relatively fast relaxation of the translational and orientational
degrees of freedom. At an even larger supersaturation, P ∗ = 20, we find that the system
is kinetically arrested immediately after the quench. We find hardly any crystalline or-
der, while the orientation distribution remains isotropic (not shown). Clearly, the system
crossed the conventional cage trapping glass transition [121] that prevents the formation
of any ordering. The dynamic arrest can be appreciated by the plateau in 〈(∆r(t))2〉 and
L2(t) in Fig. 6.4. Our results thus show that nucleation at high supersaturation is strongly
affected by vitrification, either due to locally favored structures or by the conventional
glass transition, yielding glasses with and without small crystallites, respectively.
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Figure 6.5: Mean square displacement 〈(∆r(t))2〉 and second-order orientational correlator
L2(t) for hard rods with L∗ = 3.4 at P∗ = 3.0.

6.3 Nucleation of smectic phase of colloidal short rods
(L/σ = 3.4)

We also study longer hard rods with L∗ = 3.4, which show ISm coexistence at P ∗ =
2.828 as shown in Fig. 6.1. A previous MC simulation study [122] indeed showed the
formation of the smectic phase out of the highly supersaturated I phase at P ∗ = 3.1
via spinodal decomposition. However, nucleation and growth of the smectic phase out
of weakly supersaturated I phases at P ∗ = 2.85 − 3.0 was not observed [122]. As strong
pre-smectic ordering and huge nematic-like clusters were observed in the isotropic fluid
phase, the hampered nucleation was attributed to slow dynamics. Here we reinvestigate
the regime P ∗ = 2.828− 3.0 at much longer time scales by MD simulations. We confirm
the earlier findings as regards the structure, but did not find any evidence for structural
arrest in 〈(∆r(t))2〉 and L2(t) as shown in Fig. 6.5. Instead we find huge and strongly
fluctuating nematic-like clusters [116]. The nematic character of the clusters is evident
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Figure 6.6: (a) Positional (top) and orientational (bottom) structure factor of hard rods with
L/σ = 3.4 at P ∗ = 2, 2.828 and 3. (b) Orientational correlation g2(r) = 〈P2[cos(θ(r))]〉, where
P2 is the second order Legendre polynomial, as a function of distance r for the systems of hard
rods with L/σ = 3.4 at various pressures. The solid line represents the fit ∼ exp(−r/ξ)/r with
ξ the correlation length.

from the structure factor S(k) and orientational structure factor Sor(k), shown in Fig. 6.6a,
revealing a small-k divergence for Sor(k) but not for S(k) [121]. The correlation length ξ of
the orientational fluctuations obtained from fitting the orientational correlation function
gor(r) ∼ exp[−r/ξ]/r is shown in Fig. 6.6b to satisfy a power law ξ ∼ |P − Pc|−ν with
P ∗c = 3.01 the alleged IN spinodal pressure and ν = 0.47 as shown in Fig. 6.7a, which is
close to the expected mean-field exponent ν = 1/2 of the IN-spinodal [123]. Apparently,
the ISm nucleation is prevented, or severely slowed down, by an intervening metastable
IN spinodal. Our observation that the metastable isotropic fluid is more susceptible to
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nematic than to smectic fluctuations is corroborated by second-virial calculations of the
Zwanzig model of block-like H ×D ×D rods with three orthogonal orientations [124].

Figure 6.7: (a) Correlation length as a function of |P ∗−P ∗c |/P ∗c where P ∗c = 3.01 is the nematic
spinodal pressure and the line is a power-law fit with critical exponent ν = 0.47 which agrees
well with the prediction obtained from Landau theory (ν = 1/2) [123]. (b) Typical snapshot of
rods with L/σ = 3.4 at P ∗ = 3.0. (c,d) Helmholtz free energy density of Zwanzig rods in the
I, N, and Sm phases from a numerical minimization of the second-virial free-energy functional.
Common-tangent constructions (black and blue lines) and bifurcation analyses (symbols) reveal
equilibrium ISm and metastable IN coexistence and IN and ISm spinodal instabilities on the
supersaturated isotropic free-energy branch. A movie is shown in Ref. [116]. Isotropic-like
particles are drawn 10 times smaller than their actual size.

The dimensionless Helmholtz free-energy density f(η) of the I, N, and Sm phase for
H/D = 4.3, shown in Fig. 6.7, reveal equilibrium ISm coexistence, and a metastable N
branch. Moreover, the IN spinodal on the metastable isotropic branch occurs at a lower
packing fraction η than the ISm spinodal. In other words, the isotropic fluid is predicted
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to exhibit spinodal nematic fluctuations upon increasing the supersaturation, consistent
with the diverging ξ as observed in our simulations. One might have expected that the
presence of these orientationally ordered nematic clusters facilitate the formation of the
smectic phase. However, although we do find some layering of the rods, the density within
these nematic clusters is too low and the orientational fluctuations change too rapidly to
form the smectic layers.

6.4 Conclusions
In conclusion, our results show that nucleation of short hard rods from a supersaturated
isotropic fluid phase to orientationally and positionally ordered crystal and smectic phases
is much more rare than perhaps naively anticipated. Only for very short rods and mod-
erate supersaturations, we find, for the first time, nucleation of multi-layered crystals; at
higher supersaturations we identified two mechanism for dynamic arrest. The first one
occurs close to the kinetic spinodal, and is such that (locally favored) crystalline clusters
appear immediately after the quench, followed by extremely slow dynamics due to geo-
metric constraints of these tightly packed clusters. The second type of dynamic arrest
occurs at very high supersaturation and is due to the conventional cage-trapping glass
transition. For these very short rods (L∗ = 2) we have thus identified a competition
between the nucleation of multi-layered crystals, the vitrification of small crystallites, and
the formation of a cage-trapped amorphous glass state. In the supersaturated isotropic
state of slightly longer rods (L∗ = 3.4), the nucleation of the (equilibrium) smectic phase
is found to be hampered by huge nematic fluctuations due to the existence of a metastable
IN spinodal instability. In fact, we showed for the first time that for quenches close to a
spinodal the clusters diverge in size.

Our findings are of fundamental and practical interest. They provide strong evidence
for a local structural mechanism for dynamic arrest in a system with orientational and
positional degrees of freedom. They also explain why the self-organization of ordered
assemblies of nanorods is difficult and why most of the nanorod self-assembly techniques
require additional alignment of the rods by applied electric fields, fluid flow, or substrates
in order to facilitate the formation of the desired self-assembled structures [125]. Our sim-
ulations show that this additional "steering" is required since the spontaneous nucleation
of the rods is strongly affected by glassy dynamics and spinodal instabilities.

6.5 Acknowledgments
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Effect of bond connectivity on
crystal nucleation of hard

polymeric chains

We study the spontaneous nucleation and crystallization of linear and cyclic chains of
flexibly connected hard spheres using extensive molecular dynamics simulations. To this
end, we present a novel event-driven molecular dynamics simulation method, which is easy
to implement and very efficient. We find that the nucleation rates are predominately de-
termined by the number of bonds per sphere in the system, rather than the precise details
of the chain topology, chain length, and polymer composition. Our results thus show that
the crystal nucleation rate of bead chains can be enhanced by adding monomers to the
system. In addition, we find that the resulting crystal nuclei contain significantly more
face-centered-cubic than hexagonal-close-packed ordered particles. More surprisingly, the
resulting crystal nuclei possess a range of crystal morphologies including structures with
a five-fold symmetry.
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7.1 Introduction

Although crystal nucleation from a supersaturated fluid is one of the most fundamental
processes during solidification, the mechanism is still far from being well understood. Even
in a relatively simple model system of pure hard spheres, the nucleation rates obtained
from Monte Carlo (MC) simulations using the umbrella sampling technique differ by more
than 6 orders of magnitude from those measured in experiments [18]. This discrepancy in
the nucleation rates has led to intense ongoing debates in the past decade on the reliability
of various techniques as employed in simulations and experiments to obtain the nucleation
rates [19, 20]. Recently, it was shown that the theoretical prediction of the nucleation rates
for hard spheres is consistent for three widely used rare-event techniques, e.g., forward
flux sampling, umbrella sampling and brute force molecular dynamics simulations, despite
the fact that the methods treat the dynamics very differently [19]. Moreover, the struc-
ture of the resulting crystal nuclei as obtained from the different simulation techniques
all agreed and showed that the nuclei consist of approximately 80% face-centered-cubic-
like particles. The predominance of face-centered-cubic-like particles in the critical nuclei
is unexpected, as the free energy difference between the bulk face-centered-cubic (fcc)
and hexagonal-close-packed (hcp) phases is about 0.001 kBT per particle, and one would
thus expect to find a random-hexagonal-close-packed (rhcp) crystal phase [65]. More
surprisingly, simulation studies showed that the subsequent growth of these critical nu-
clei resulted in a range of crystal morphologies with a predominance of multiply twinned
structures exhibiting in some cases structures with a five-fold symmetry [126, 127]. Such
structures are intriguing as the fivefold symmetry is incompatible with space-filling pe-
riodic crystals. Moreover, the formation mechanism of these fivefold structures is still
unknown. Bagley speculated that the fivefold structures are due to the growth of fivefold
local structures (a decahedral or pentagonal dipyramid cluster of spheres) [128] that are
already present in the supersaturated fluid phase [129]. Another mechanism that has
been proposed is that these multiple twinned structures with a fivefold symmetry origi-
nates from nucleated fcc domains that are bound together by stacking faults [128]. For
instance, five tetrahedral fcc domains can form a cyclic multiple twinned structure with a
pentagonal pyramid shape. A recent event-driven Molecular Dynamics simulation study
on hard spheres showed, however, no correlation between the fivefold local clusters that
are already present in the supersaturated fluid and the multiple twinned structures in the
final crystal phase [127]. Hence, it was concluded that crystalline phases with multiple
stacking directions may possess fivefold structures, whereas crystals with a unique stack-
ing direction do not show any five-fold symmetry patterns. These authors also showed
using Monte Carlo simulations that hard-sphere chains never formed crystalline structures
with a fivefold symmetry, and hence, they argued that chain connectivity prohibits the
formation of twinned structures and forces the crystals to grow in a single stacking direc-
tion [127, 130]. However, several unphysical MC moves had to be introduced to study
polymer crystallization, which may affect the chain dynamics and the resulting crystal
morphologies.

In this chapter, we present an event driven molecular dynamics (EDMD) scheme that
is easy to implement and mimics closer the actual dynamics in these polymer systems.
We study the effect of bond connectivity on the nucleation rates and crystal morphology
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of flexibly connected hard spheres. These hard-sphere chains can serve as a simple model
for polymeric systems and a better understanding of the behavior of these bead chains
may shed light on the glass transition and crystallization of polymers. In fact, it has been
shown recently that random packings of granular ball chains show striking similarities
with the glass transition in polymers [131]. We also mention that recently, a colloidal
model system of bead chains has been realized consisting of colloidal spheres that are
bound together with “flexible linkers” [132].

7.2 Model
We consider a system of M polymer chains consisting of N identical hard spheres with
diameter σ in a volume V . In addition, the hard-sphere beads are connected by flexible
bonds with a bond energy Ubond(rij) given by

Ubond(rij)
kBT

=
{

0 σ < rij < σ + δ
∞ otherwise (7.1)

where rij is the center-to-center distance between two connected spherical beads i and
j, δ is the maximum bond length, kB the Boltzmann constant, and T the temperature.
The maximum bond length δ varies from 0 to 0.05σ in our simulations, such that δ = 0
corresponds to a freely jointed chain of tangent hard spheres. Since the pair potentials
between all beads (spheres) are discontinuous, the pair interactions only change when the
beads collide or when the maximum bond length is reached. Hence, the particles move in
straight lines (ballistically) until they encounter another particle or reach the maximum
bond length. The particles then perform an elastic collision. These collisions are identified
and handled in order of occurrence using an EDMD simulation [133].

Using EDMD simulations, it is straightforward to determine the nucleation rate. Start-
ing from an equilibrated fluid phase, an EDMD simulation is employed to evolve the sys-
tem until a spontaneous nucleation event occurs. The nucleation rate is then given by
I = 1/〈t〉V , where 〈t〉 is the average waiting time before an nucleation event occurs in a
system of volume V . In order to identify the crystalline clusters in the fluid phase, we em-
ploy the local bond-order parameter analysis as introduced by Steinhardt et al. [93, 134].
We define for every spherical bead i, a 2l + 1-dimensional complex vector ql(i) given by

qlm(i) = 1
Nb(i)

Nb(i)∑
j=1

Υlm(r̂ij), (7.2)

where Nb(i) is the total number of neighboring particles of particle i, Υlm(r̂ij) are the
spherical harmonics for the normalized distance vector r̂ij between bead i and j, and
m ∈ [−l, l]. Neighbors of particle i are defined as those particles that are within a
given cutoff radius rc from particle i. To determine the correlation between the local
environments of particle i and j, we define the rotationally invariant function dl(i, j)
given by

dl(i, j) =
l∑

m=−l
q̃lm(i) · q̃∗lm(j), (7.3)
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where q̃lm(i) = qlm(i)/
√∑l

m=−l |qlm(i)|2 and the asterisk is the complex conjugate [94]. If
dl(i, j) > dc, the “bond” between sphere i and j is regarded to be solid-like or connected,
where dc is the dot-product cutoff. We identify a sphere as solid-like when it has at least
ξc solid-like bonds. Previous studies on the crystallization of hard-sphere chains have
shown that the beads are located on the lattice positions of a random-hexagonal-close-
packed crystal lattice whereas the bonds are randomly oriented [130, 135]. We therefore
choose the symmetry index l = 6, and we employ rc = 1.3σ, dc = 0.7, and ξc = 6 in our
simulations.

7.3 Crystal Nucleation of linear and ring polymers
We first perform EDMD simulations to study the spontaneous nucleation of linear hard-
sphere chains at a packing fraction φ = 0.55. In order to obtain the initial configuration
for our EDMD simulations, we use the Lubachevsky-Stillinger algorithm [136] to grow the
particles in the simulation box to the packing fraction of interest with a very fast speed,
i.e., dσ(t)/dt = 0.01σ/τ where σ(t) is the size of spheres at time t with σ the target sphere
size and τ = σ

√
m/kBT the MD time scale. In order to exclude the effect of dynamics

on the nucleation rates [19, 134], we first calculate the long-time diffusion coefficient DL,
and use the long-time diffusion time, τL = 1/6DL, as the unit of time in the nucleation
rate. We found that DL decreases with increasing N , and is rather independent of the
bond length δ, at least for the range of values that we studied. Subsequently, we calculate
the crystal nucleation rates from EDMD simulations for various linear and ring-like hard-
sphere polymers. In Fig. 7.1, we show the nucleation rate for linear hard-sphere polymers
with a chain length N = 1 (hard spheres), 2 (dumbbells), 3, 5, 10, and 20 and bond length
δ = 0.05σ. We find that the nucleation rate decreases monotonically with increasing chain
length N . However, it is remarkable that hard-sphere chains with a maximum bond length
δ = 0.05σ can crystallize into a crystal phase of φ = 0.55 which corresponds to an average
surface-to-surface distance of about 0.10σ between the spheres in the fcc phase. We also
note that the nucleation rate is very similar for long polymers, i.e., N ≥ 10. To check
this surprising result, we also determined the nucleation rate of a single polymer of length
N = 104, where all the beads are doubly connected except the two end beads. We observe
that the system remains in the fluid phase for ' 7000τ , before a critical nucleus of ∼ 100
beads forms in the middle of the chain, which subsequently grows further until the whole
system is crystalline. In Fig. 7.2, we show the size of the largest crystalline cluster as a
function of simulation time from a typical MD trajectory. Additionally, we find that the
nucleation rate does not decrease significantly for N = 104, which is highly unexpected
as the beads can only move collectively.

We also determined the nucleation rate for linear chains with a smaller bond length
δ = 0.04σ and chain length N = 1, 2, 3, 4, and 5. For longer chains, we did not observe
spontaneous nucleation within the simulation times that we considered. We find that
the nucleation rate decreases with bond length δ, which is to be expected as bead chains
with shorter bond lengths are even more frustrated in an fcc crystal at φ = 0.55. For
comparison, we also plot the nucleation rates for dumbbells with a bond length of δ =
0.02σ and δ = 0 [134]. Our results clearly show that the nucleation rate decreases by
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several orders of magnitude upon decreasing the bond length. Finally, we also determine
the nucleation rates for cyclic bead-chains (ring polymers) with bond length δ = 0.05σ.
Figure 7.1 shows that the nucleation rate of ring polymers is always lower than for linear
polymers with the same length. However, the difference in nucleation rate is small for
N ≥ 10. Furthermore, the nucleation rate does not decrease monotonically with chain
length N for small ring polymers. For instance, the nucleation rate of rings of 4 beads is
an order of magnitude higher than for rings consisting of 5 beads.
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Figure 7.1: Nucleation rates Iσ3τL of linear hard-sphere polymers with maximum bond length
δ = 0.05σ and chain length N = 1, 2, 3, 5, 10, and 20 (solid circles), with δ = 0.04σ and chain
length N = 1, 2, 3 and 5 (solid squares), and of ring-like hard-sphere polymers with maximum
bond length δ = 0.05σ and chain length N = 3, 4, 5, 6, 7, 8, 10, and 20 (open squares). For
comparison, we also plot the nucleation rate for hard dumbbells with a maximum bond length
δ = 0.02σ (blue triangles) and δ = 0 (diamonds).

Our simulations on linear polymers show that the nucleation rate decreases with chain
length N . One may argue that the nucleation rate is largely determined by the chain
connectivity or the average number of bonds per sphere in the system. In Fig. 3, we
plot the nucleation rate for linear bead chains with maximum bond length δ = 0.04σ and
chain length N = 1, 2, 3, 4, and 5, which correspond to an average number of bonds per
bead of nb = (N − 1)/N = 0, 1/2, 2/3, 3/4 and 4/5. In order to investigate the effect of
average number of bonds per bead in the system on the nucleation rate, we also perform
simulations for binary mixtures of linear polymers with different chain lengths and the
same maximum bond length δ = 0.04σ. We consider mixtures of chain length N = 2 and
5, N = 1 and 6, and N = 1 and 10. The composition of the mixture is chosen such that
the value of nb matches with one of the values for the pure systems. We compare the
nucleation rates for the pure and binary systems in Fig. 7.3. We indeed observe a nice
data collapse, suggesting that the nucleation rate is mainly determined by the number of
bonds per sphere in the system, and the frustration imposed by the chain connectivity in
these systems.
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Figure 7.2: Size of the largest crystalline cluster nmax as a function of simulation time for
a single linear hard-sphere polymer with chain length N = 104. The insets are snapshots at
t = 7060τ , 8000τ and 10000τ , respectively, where only the solid-like beads are shown, and the
two dark yellow spheres are the two ends of the chain.

0 0.2 0.4 0.6 0.8
n
b

1×10
-7

1×10
-6

1×10
-5

1×10
-4

1×10
-3

Iσ
3
τ

L

Monodisperse

Mixture of N = 2 and 5
Mixture of N = 1 and 6
Mixture of N = 1 and 10

Figure 7.3: Nucleation rates Iσ3τL of linear hard-sphere polymers with chain length N =
1, 2, 3, and 5 and of binary mixtures of linear hard-sphere polymers with chain length N = 2
and 5, N = 1 and 6, and N = 1 and 10, as a function of the average number of bonds per bead
nb. The composition of the mixture was chosen such that the value for nb matches with one
of the values for the pure systems. The maximum bond length equals δ = 0.04σ for all bead
chains.

Additionally, we also investigate the structure of the resulting crystals by calculating
the averaged local bond order parameters q4 and w4 for each sphere i that has Nb(i) ≥ 10
neighbours. This analysis allows us to check whether a bead is fcc-like or hcp-like [64,
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Figure 7.4: Typical configurations of the crystal structures for linear hard-sphere chains with
chain length N = 20 (a) and for ring-like polymers with N = 3(b) and N = 5(c). Only
crystalline spheres are shown here. The blue and red spheres are hcp-like and fcc-like particles,
respectively.

134]. We find that the resulting crystal structures contain more fcc-like than hcp-like
particles, which is very similar to the critical nuclei observed in hard-sphere [19] and
hard-dumbbell nucleation [134]. In addition, we find that the resulting crystal structures
display a range of crystal morphologies including structures with a five-fold symmetry
pattern for all polymer systems that we considered, even for ring-like polymers with
chain length as small as N = 3, which contrasts previous simulations where no five-fold
structures were observed [127]. Exemplarily, Fig. 7.4 shows typical configurations of these
five-fold symmetry patterns formed by linear hard-sphere chains of length N = 20, and
cyclic bead chains of length N = 3 and 5. We note that the crystal structures resemble
closely those observed in MD simulations of hard spheres [126, 127]. As the crystal
morphology is mainly determined by the crystallization kinetics rather than the bulk and
surface contributions to the free energy of the nucleus, it is tempting to speculate that
the crystallization dynamics of hard polymeric chains is similar to that of hard spheres,
and is thus not strongly affected by the chain connectivity.

Furthermore, we determine the bond angle distribution function p(cos θ) in order to
quantify the distribution of bond angles between two neighboring polymer bonds in the
supersaturated fluid and crystal nuclei. Fig. 7.5 shows p(cos θ) for systems consisting of
linear and cyclic bead chains with N = 10. For the fluid phase, p(cos θ) displays two peaks
at cos θ = −0.5 and 0.5, i.e., θ = 120 and 60 degrees, which corresponds with the most
frequent three particle structures observed in random packings of spheres [135]. However,
p(cos θ) of the crystal structures exhibits four pronounced peaks located around cos θ =
−0.5, 0, 0.5 and 1.0, which corresponds with θ = 120, 90, 60 and 0 degrees, respectively.
In order to compare p(cos θ) with that for a self-avoiding random walk on an fcc crystal
lattice, we integrate the peaks of p(cos θ) between the two neighboring local minima. The
results are shown in Fig. 7.5 together with the bond angle distribution function for a self-
avoiding random walk on an fcc crystal lattice. We find that p(cos θ) for crystals of linear
and cyclic polymers agree well with that of a self-avoiding random walk [130]. Hence,
p(cos θ) seems not to be affected by the chain connectivity of the polymer chains. Free
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Figure 7.5: Bond angle distribution function p(cos θ) for a supersaturated fluid and crystal
of linear and cyclic hard-sphere polymers with chain length N = 10 (top). Integration of the
peaks of p(cos θ) between the two neighboring local minima (bottom). For comparison, we also
plot the bond angle distribution for self-avoiding random walks consisting of 10 steps on an fcc
crystal lattice (bottom). The inset shows the definition of the angle θ.

energy calculations show indeed that the stable solid of freely jointed hard-sphere chains
is an aperiodic crystal phase, where the spheres are positioned on an fcc lattice with the
bonds randomly oriented [137].

7.4 Conclusions
In conclusion, we presented an efficient event-driven Molecular Dynamics simulation
method for linear and cyclic hard-sphere chains, which can easily be extended to semi-
flexible polymers by taking into account a bending energy [138, 139]. We performed
extensive EDMD simulations to study the spontaneous nucleation and crystallization in
systems of linear and cyclic chains of flexibly connected hard spheres. We found that the
nucleation rate decreases significantly upon decreasing the maximum bond length, as the
bond connectivity frustrates the crystal formation of hard-sphere chains. Surprisingly, we
find that the nucleation rate is determined by the average number of bonds per bead in
the system rather than the chain length, chain topology, and polymer composition. We
thus find that the crystal nucleation rate can be enhanced by the addition of monomers.
Furthermore, we find that the final crystal structures show a wide range of crystal mor-
phologies including structures with a five-fold symmetry pattern, which are remarkably
similar to those observed in MD simulations of hard spheres [126, 127]. We also find that
the bond angle distribution function in the hard-sphere chain crystals resembles closely
that of self-avoiding random walks on an fcc crystal lattice. Hence, our observations sug-
gest that the nucleation and crystallization of hard-sphere polymers is remarkably similar
to that observed in hard-sphere systems, but frustrated by the bond connectivity.
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Crystal nucleation in binary
hard-sphere mixtures: The effect of
the order parameter on the cluster

composition

We study crystal nucleation in a binary mixture of hard spheres and investigate the
composition and size of the (non)critical clusters using Monte Carlo simulations. In
order to study nucleation of a crystal phase in computer simulations, a one-dimensional
order parameter is usually defined to identify the solid phase from the supersaturated fluid
phase. We show that the choice of order parameter can strongly influence the composition
of noncritical clusters due to the projection of the Gibbs free-energy landscape in the two-
dimensional composition plane onto a one-dimensional order parameter. On the other
hand, the critical cluster is independent of the choice of the order parameter, due to the
geometrical properties of the saddle point in the free-energy landscape, which is invariant
under coordinate transformation. We investigate the effect of the order parameter on the
cluster composition for nucleation of a substitutional solid solution in a simple toy model of
identical hard spheres but tagged with different colors and for nucleation of an interstitial
solid solution in a binary hard-sphere mixture with a diameter ratio q = 0.3. In both
cases, we find that the composition of noncritical clusters depends on the order parameter
choice, but are well explained by the predictions from classical nucleation theory. More
importantly, we find that the properties of the critical cluster do not depend on the order
parameter choice.
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8.1 Introduction

The process of nucleation in colloidal systems has attracted significant attention in recent
years, both in experimental and simulation studies. The framework with which phe-
nomena like these have been described traditionally is classical nucleation theory (CNT),
which is based on the notion that a thermal fluctuation spontaneously generates a small
droplet of the thermodynamically stable phase into the bulk of the metastable phase. In
CNT as developed by Volmer [22], Becker [25], and Zeldovich [140], the free energy of
formation of small nuclei of the new phase in the parent phase is described by using the
“capillary approximation”, i.e., the free energy to form a cluster of the new phase relative
to the homogeneous metastable phase is described by their difference in bulk free energy
and a surface free-energy term that is given by that of a planar interface between the two
coexisting phases at the same temperature. Thus the droplet is assumed to be separated
from the metastable bulk by a sharp step-like interface in CNT. The bulk free-energy
term is proportional to the volume of the droplet and represents the driving force to form
the new phase, while the surface free-energy cost to create an interface is proportional to
the surface area of the cluster. Hence, small droplets with a large surface-to-volume ratio
have a large probability to dissolve, while droplets that exceed a critical size and cross
the free-energy barrier, can grow further to form the new stable bulk phase.

CNT has successfully explained simulation results for the nucleation of spherical
particles, such as the fluid-solid and gas-liquid nucleation in Lennard-Jones systems
[52, 141, 142] and crystal nucleation of hard spheres [18, 19]. A modified CNT has been
used to explain the nucleation of anisotropic clusters of the nematic or solid phase (also
called tactoids) from a supersaturated isotropic phase of colloidal hard rods [92, 115, 143]
and the nucleation of 2D assemblies of attractive rods [105, 117]. This state of affairs
should be contrasted with the case of binary nucleation for which various nucleation
theories have been developed that differ substantially in the way they describe the com-
position of the cluster [106, 144, 145]. For instance, Reiss assumed the surface tension to
be independent of composition [144], while Doyle extended CNT by taking into account
a surface tension that depends on the cluster composition [146]. However, more than 20
years later, it was shown by Renninger [147], Wilemski [148, 149], and Reiss [150] that
Doyle’s derivation leads to thermodynamic inconsistencies. A revised thermodynamically
consistent classical binary nucleation theory was developed by Wilemski in which the
composition of the surface layer and the interior of the cluster could vary independently
[148, 149]. However, in the case of strong surface enrichment effects, this approach can
lead to unphysical negative particle numbers in the critical clusters [151, 152]. In addi-
tion, it was shown in Ref. [153] that the derivation by Wilemski starts off with the wrong
equations, but the resulting equations are correct. Moreover, binary nucleation can be ac-
companied with huge fractionation effects, i.e., the compositions of the metastable phase
and of the phase to be nucleated can differ enormously from the compositions of the two
coexisting bulk phases. It is therefore unclear i) how to determine the surface free-energy
term for a cluster, which is in quasi-equilibrium with a metastable parent phase with a
composition that is very different from those of the two coexisting bulk phases, ii) whether
the interfacial tension depends on composition, curvature, and surface enrichment effects,
and finally iii) whether or not one can use the capillary approximation in the first place
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to describe binary nucleation in systems where fractionation and surface activity of the
species are important. To summarize, there is no straightforward generalization to mul-
ticomponent systems of classical nucleation theory that is thermodynamically consistent,
does not lead to unphysical effects, and can be applied to small nuclei [145, 154].

Numerical studies may shed light on this issue, as the nucleation barrier can be deter-
mined directly in computer simulations using the umbrella sampling technique [37, 38].
In this method, an order parameter is chosen and configuration averages for sequential
values of the order parameter are taken. While this makes it possible to measure prop-
erties of clusters with specific values for the order parameter, it should be noted that
the results can depend on the choice of order parameter. In the present chapter, we
investigate whether the size and composition of (non)critical clusters can be affected by
the order parameter choice employed in simulation studies of multicomponent nucleation.
For simplicity, we focus here on crystal nucleation in binary hard-sphere mixtures, where
surface activity of the species can be neglected, and we assume the surface tension to be
composition independent. This chapter is organized as follows. In Sec. 8.2, we describe
the general nucleation theorem as derived by Oxtoby and Kashchiev [145], which does
not rely on the “capillary approximation” and can even be employed to describe small
clusters. Starting from the multicomponent nucleation theorem, it is straightforward to
reproduce the usual CNT for binary nucleation, which is the focus in the remainder of
this chapter. In Sec. 8.3 and 8.4, we define the (Landau) free energy as a function of an
order parameter, and we describe the order parameter that is employed to study crystal
nucleation. Additionally, we discuss the effect of order parameter choice on the nucleation
barrier in more detail. We present results for binary nucleation for a simple toy model
of hard spheres in Sec. 8.5, and subsequently, we study the nucleation of an interstitial
solid solution in an asymmetric binary hard-sphere mixture in Sec. 8.6.

8.2 Classical Nucleation Theory for multi-component
systems

We study the formation of a multicomponent spherical cluster of the new phase in a
supersaturated homogeneous bulk phase α consisting of species i = 1, 2, . . . . We note that
the thermodynamic variables corresponding to the metastable phase α are denoted by the
subscript α, whereas those corresponding to the new phase do not carry an extra subscript
to lighten the notation. We first consider a homogeneous bulk phase α characterized by
an entropy Soα, volume V o

α , and particle numbers N o
i,α. Note that the superscripts denote

the original bulk phase. The internal energy U o
α of the original bulk phase reads

U o
α = T oSoα − P o

αV
o
α +

∑
µoi,αN

o
i,α (8.1)

with T o the temperature, P o
α the bulk pressure, µoi,α the bulk chemical potential of species

i, and the summation runs over all species.
Following the derivation in Refs. [145, 154], we now consider a spherical cluster of the

new phase with a volume V separated from the original phase by an arbitrarily chosen
Gibbs dividing surface. The volume of the interface is set to zero, and the particle number
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of species i in the cluster is given by Ni + Ni,s, where Ni is the number of particles of
species i in a volume V which is homogeneous in the new bulk phase, and Ni,s is the
surface excess number of particles of species i that corrects for the difference between a
step-like interfacial density profile and the actual one. The surface excess number Ni,s

depends on the choice of dividing surface. The internal energy U of the resulting system
is then given by

U = TSα + TS − PαVα − PV + Ψ +
∑

µi,αNi,α +
∑

µiNi +
∑

µi,sNi,s, (8.2)

where P and S denote the bulk pressure and entropy of the nucleated phase, and µi and
µi,s are the chemical potentials of species i in the new phase and the surface phase, T is
the temperature of the system with the cluster, and Ψ = Ψ({Ni}, {Ni,s}, V ) is the total
surface energy of the spherical cluster. As the volume of the surface layer is zero, the
corresponding pressure is not defined.

The difference in the appropriate thermodynamic potential as a function of cluster size
depends on the quantities that are kept fixed during the nucleation process. If the nucleus
is formed at constant temperature and constant total number of particles of each species i,
and if we keep the pressure of the original phase fixed, then T = T o, Ni,α+Ni+Ni,s = N o

i,α,
and P o

α = Pα. The corresponding Gibbs free energy of the initial system Go
α and that of

the final system G are then given by the Legendre transformation

Go
α = U o

α − T oSoα + P o
αV

o
α =

∑
µoi,αN

o
i,α

G = U − TS + P o
α(Vα + V )

= (P o
α − P)V + Ψ +

∑
µi,αNi,α +

∑
µiNi

+
∑

µi,sNi,s. (8.3)

If we now assume that the composition of the metastable phase α remains unchanged and
we consider the Maxwell relation(

∂Vα
∂Ni,α

)
T,Pα,{Nj 6=i,α}

= vi,α =
(
∂µi,α
∂Pα

)
T,{Ni,α}

(8.4)

with vi,α the partial particle volumes of species i in phase α, we find that at constant
pressure, the chemical potential for each species i remains constant µoi,α = µi,α. Subse-
quently, we obtain for the change in Gibbs free energy ∆G = G − Go

α when a nucleus is
formed in the bulk of the original phase:

∆G = (P o
α − P)V + Ψ +

∑
(µi(P)− µoi,α(P o

α))Ni +
∑

(µi,s − µoi,α(P o
α))Ni,s. (8.5)

Consequently, the Gibbs free energy ∆G of a growing cluster depends on the number
of particles Ni and Ni,s in the cluster and the surface energy of the cluster. Hence, one
can define a free-energy surface in the multi-dimensional composition plane with a saddle
point that corresponds to the critical nucleus [144]. The conditions for the critical cluster
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read (
∂∆G
∂Ni

)
V,{Nj 6=i},{Ni,s}

= 0,
(
∂∆G
∂Ni,s

)
V,{Ni},{Nj 6=i,s}

= 0, (8.6)
(
∂∆G
∂V

)
{Ni},{Ni,s}

= 0.

To recover the chemical and mechanical equilibrium conditions, we use the above
conditions as well as the Gibbs-Duhem equation and the Gibbs adsorption equation. The
Gibbs-Duhem equation at constant temperature for the nucleated bulk phase is

− V dP +
∑

Nidµi = 0, (8.7)

and the Gibbs adsorption equation for the surface at constant temperature is

Adγ +
∑

Ni,sdµi,s = 0, (8.8)

where we have employed Ψ = γA. Note that γ denotes the surface free energy per unit
area and A is the surface area of the cluster. The resulting equilibrium conditions for all
particle species i in the critical cluster, the surface, and the metastable parent phase are
then given by

µ∗i (P ∗) = µ∗i,s = µoi,α(P o
α), (8.9)

and for the pressure difference inside and outside the droplet we find

P ∗ − P o
α = ∂γ∗A∗

∂V ∗
, (8.10)

where ∗ denotes quantities associated with a system where a critical cluster is present.
Hence, the composition of the critical cluster can be determined from these saddle point
conditions.

In order to obtain the usual classical nucleation theory for multicomponent systems,
we assume a spherical droplet with radius R. Note that the surface area is then A = 4πR2.
In addition, we use the fact that the volume of a spherical droplet can be expressed in
terms of the partial particle volumes vi of species i:

V = 4
3πR

3 =
∑

Nivi. (8.11)

Combining this with Eq. 8.10, we arrive at the generalised Laplace equation:

P ∗ − P o
α = 2γ∗

R∗
+
[
∂γ∗

∂R∗

]
, (8.12)
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where the square brackets denote a derivative associated with the displacement of the
dividing surface. One can now choose the dividing surface so that[

∂γ∗

∂R∗

]
= 0, (8.13)

and hence one recovers the usual Laplace equation. This choice for the dividing surface,
corresponding to a specific value for R∗ and γ∗, is called the surface of tension. In addition,
if we use the Gibbs adsorption isotherm (8.8) and the Maxwell relation (Eq. 8.4) for the
bulk phase of the nucleated cluster, we find for the critical cluster

dµ∗i,s = dµ∗i = vidP (8.14)

and [
A
∂γ∗

∂R∗

]
= −

∑
Ni,svi

[
∂P ∗

∂R∗

]
= 0, (8.15)

which is the condition for a curvature independent surface tension. Since ∂P ∗/∂R∗ 6= 0,
Eq. 8.15 implies that the dividing surface has to be chosen such that∑

Ni,svi = 0, (8.16)

which is called the equimolar surface, as for one-component systems Ni,s = 0, i.e. the
number of particles in the cluster equals the number of particles in a uniform bulk phase
with the same volume. It is generally not possible in a multicomponent system to choose
the dividing surface such that Ni,s = 0 for all species. Thus, as vi is usually positive,
Ni,s < 0 for at least one of the species. This may lead to (unphysical) negative particle
numbers when Ni + Ni,s < 0 as noted in Refs. [151, 152]. However, as will be discussed
in sections 8.5 and 8.6, there are cases in which the assumption Ni,s = 0 for all i is valid.

If the nucleated phase is assumed to be incompressible, one can integrate the Gibbs-
Duhem equation (8.7) at constant temperature to arrive at

V(P o
α − P) =

∑
(µi(P o

α)− µi(P))Ni, (8.17)

and using Eq. 8.5, we find

∆G = γA+
∑

(µi(P o
α)− µoi,α(P o

α))Ni +
∑

(µi,s − µoi,α(P o
α))Ni,s. (8.18)

Again using the Gibbs-Duhem equation at constant temperature and pressure and the
Gibbs adsorption isotherm, and minimizing the free energy with respect to Ni at fixed
{Ni,s}, we recover the Gibbs-Thomson (also called Kelvin) equations for multi-component
spherical critical clusters

∆µ∗i = −2γ∗vi
R∗

, (8.19)

where ∆µ∗i = µ∗i (P o
α) − µoi,α(P o

α). The radius of the critical cluster R∗ and the barrier
height ∆G∗ read

R∗ = 2γ∗vi
|∆µ∗i |

(8.20)

∆G∗ = 4πR∗2γ∗
3 = 16πγ∗3

3(∆µ∗i /vi)2 . (8.21)
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Using Eq. 8.20 or the Maxwell relation (8.4), one can show:

vi∆µi = vj∆µj, (8.22)

and the radius of the critical cluster R∗ can be expressed in terms of the bulk composition
xi = Ni/

∑
Ni of the critical cluster and v = V/

∑
Ni:

R∗ = 2γ∗v∑
xi|∆µ∗i |

. (8.23)

In order to study multi-component nucleation, MC simulations are often performed
in the isobaric-isothermal ensemble, in which the number of particles N o

1,α and N o
2,α, the

pressure of the original bulk phase P o
α, and the temperature T are kept fixed. One of the

assumptions of classical nucleation theory is that the composition of the metastable bulk
phase remains constant, while nucleating the new phase, see Eq. 8.4. In simulations this
can only be achieved if the system is sufficiently large, i.e., the volume of the metastable
bulk phase is much larger than that of the nucleating cluster. Especially, for binary (mul-
ticomponent) nucleation, where the composition of the stable phase is very different from
that of the metastable phase, this can lead to a huge depletion of one of the components in
the metastable fluid phase, and therefore a change in composition. In order to circumvent
this problem, simulation studies on binary nucleation are often carried out in the semi-
grand canonical ensemble [155, 156], i.e. the total number of particles N o

α = ∑
N o
i,α, the

chemical potential difference ∆µo12,α = µo2,α − µo1,α between the two species, the pressure
P o
α, and the temperature T are kept fixed of the original bulk phase. The corresponding

thermodynamic potential is obtained by a Legendre transformation

Y (N,∆µ12, P, T ) = G(N,N2, P, T )−N2∆µ12 (8.24)

Combining Eq. 8.3 with the conditions that the total number of particles are fixed N o
1,α+

N o
2,α = N1 + N2 + N1,α + N2,α, the chemical potential difference in the metastable phase

is kept fixed ∆µo12,α = ∆µ12,α, constant pressure of the metastable phase P o
α = Pα and

constant temperature T = T o, we find for the corresponding thermodynamic potentials

Y o
α = Go

α −N o
2,α∆µo12,α = µo1,α(N o

1,α +N o
2,α)

Y = G− (N2,α +N2)∆µ12,α

= (P o
α − P)V + Φ + µ1,α(N1,α +N2,α) +

µ1(N1 +N2)−∆µ12N2 −∆µ12,αN2, (8.25)

where we have set the surface excess numbers Ni,s to zero. Using the Maxwell equation(
∂µ1

∂P

)
N,∆µ12,T

=
(
∂V

∂N

)
∆µ12,P,T

= v, (8.26)

we find that due to constant pressure, the chemical potential of species 1 remains un-
changed µo1,α = µ1,α. Hence, we find that the change in free energy due to the formation
of a nucleus ∆Y = Y − Y o

α equals ∆G as given in Eq. 8.5 and the nucleation barrier
can be calculated in the semi-grand canonical ensemble. Similarly, one can show that in
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any statistical ensemble (grand canonical, canonical, etc. ), the change in the correspond-
ing thermodynamic potential as a function of cluster size is always the same, provided
that the metastable parent phase is sufficiently large. A similar result was also obtained
by Oxtoby and Bob Evans, who showed that the nucleation free-energy barriers in the
isobaric-isothermal and grand canonical ensemble are identical, i.e., ∆G = ∆Ω for a
one-component system [157].

8.3 Free-energy Barrier
While nucleation is an inherently non-equilibrium process, the assumption of local equilib-
rium is often made to describe the behavior of the system during the nucleation process.
In essence, this assumption states that the nucleus is in quasi-equilibrium with the parent
phase for every cluster size. This is approximately true if the time required to reach
an equilibrium distribution of clusters is short compared to the time needed to nucleate.
After the system crosses the free-energy barrier, the cluster of the new phase grows too
rapidly for this assumption to be accurate, but during the nucleation process itself, local
equilibrium has proven to be a useful assumption.

In order to compute the free-energy barrier that separates the metastable phase from
the stable phase, an order parameter Φ (or reaction coordinate) should be defined that
quantifies how much the system has transformed to the new phase. A common order
parameter that is employed in nucleation studies is the size of the largest cluster in
the system as defined by a certain cluster criterion. In the present chapter, we restrict
ourselves to binary nucleation. From Eq. 8.18, we find that the Gibbs free energy ∆G
of a growing binary cluster depends on the number of particles of species 1 and 2 in the
cluster, and hence, one can define a free-energy surface in the (N1, N2)-plane with a saddle
point that corresponds to the critical nucleus [144]. By projecting the phase space of the
system onto the (usually) one-dimensional order parameter, one can define the (Landau)
Gibbs free energy ∆G(Φ) as a function of this order parameter Φ

β∆G(Φ) = Gc − lnP (Φ), (8.27)

where β = 1/kBT , kB Boltzmann’s constant, T the temperature, Gc is a normalization
constant generally taken to correspond to the free energy of the homogeneous metastable
phase, and P (Φ) is the probability of observing an order parameter of value Φ. In a
system of N particles, at fixed pressure P , and constant temperature T , the probability
P (Φ) is given by:

P (Φ) =
∫
dV

∫
drN exp[−β(U(rN) + PV )]δ(Φ− Φ(rN))∫
dV

∫
drN exp[−β(U(rN) + PV )] (8.28)

with V the volume of the system, U the potential energy, and δ the Kronecker delta
function. The order parameter function Φ(rN) is a function that assigns to each config-
uration rN of the system a value for the order parameter. The probability distribution
P (Φ) can be obtained from Monte Carlo (MC) simulations via the umbrella sampling
technique [37, 38]. In this method, an additional external potential Ubias is added to the
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system to bias the sampling towards configurations corresponding to a certain window
of order parameter values centered around Φo. By increasing Φo sequentially, the entire
free-energy barrier as a function of Φ can be sampled. The typical biasing potential used
in umbrella sampling simulations is given by:

βUbias(rN) = k(Φ(rN)− Φo)2, (8.29)

where the constants k and Φo determine the width and location of the window, and rN
are the positions of all N particles in the simulation.

8.4 Order Parameter
In order to follow a phase transformation, a cluster criterion is required that is able to
identify the new phase from the supersaturated phase. In this chapter, we focus on the
formation of a solid cluster in a supersaturated fluid phase. In order to study crystal
nucleation, the local bond-order parameter is used to differentiate between liquid-like and
solid-like particles and a cluster algorithm is employed to identify the solid clusters [52].
In the calculation of the local bond order parameter a list of “neighbours” is determined
for each particle. The neighbours of particle i include all particles within a radial distance
rc of particle i, and the total number of neighbours is denoted Nb(i). A bond orientational
order parameter ql,m(i) for each particle is then defined as

ql,m(i) = 1
Nb(i)

Nb(i)∑
j=1

Υl,m(θi,j, φi,j), (8.30)

where Υl,m(θ, φ) are the spherical harmonics, m ∈ [−l, l] and θi,j and φi,j are the polar and
azimuthal angles of the center-of-mass distance vector rij = rj − ri with ri the position
vector of particle i. Solid-like particles are identified as particles for which the number of
connections per particle ξ(i) is at least ξc and where

ξ(i) =
Nb(i)∑
j=1

H(dl(i, j)− dc), (8.31)

H is the Heaviside step function, dc is the dot-product cutoff, and

dl(i, j) =

l∑
m=−l

ql,m(i)q∗l,m(j)
 l∑
m=−l

|ql,m(i)|2
1/2 l∑

m=−l
|ql,m(j)|2

1/2 . (8.32)

A cluster contains all solid-like particles which have a solid-like neighbour in the same
cluster. Thus each particle can be a member of only one cluster.

The parameters contained in this algorithm include the neighbour cutoff rc, the dot-
product cutoff dc, the critical value for the number of solid-like neighbours ξc, and the
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symmetry index for the bond orientational order parameter l. The hard-sphere crys-
tals considered in this chapter are expected to have random hexagonal order, thus the
symmetry index is chosen to be 6 in the present study.

This choice of order parameter Φ, defined as the number of solid-like particles in
the largest crystalline cluster, has been used to study crystal nucleation in various one-
component systems, e.g., Lennard-Jones systems [52], hard-sphere systems [18], and
Yukawa systems [47].

On the other hand, for binary systems, a variety of crystal structures can appear in
the bulk phase diagram, e.g., substitutionally ordered (superlattice) crystal structures
with varying stoichiometries, substitutionally disordered solid solutions, interstitial solid
solutions, crystalline phases of species 1 with a dispersed fluid of species 2, etc. Nucleation
of a substitutionally disordered solid solution and a crystal with the CsCl structure has
been studied in a binary mixture of hard spheres using the total number of particles in
the largest crystalline cluster as an order parameter, i.e. Φ = N1 + N2 [155]. This or-
der parameter has also been employed in a crystal nucleation study of a substitutionally
disordered face-centered cubic crystal and a crystal with the CsCl structure of oppositely
charged colloids [28], and nucleation of the NaCl salt crystal from its melt using the
symmetry index l = 4 instead of l = 6 for the bond orientational order parameter [158].
However, one can also define other linear combinations of N1 and N2 as an order param-
eter. When the partial particle volumes of the two species are very different, one can
employ the volume of the largest crystalline cluster Φ = V = N1v1 + N2v2 as an order
parameter. While, if the crystal structure consists of only one species, say species 1, with
the other species randomly dispersed, the number of particles of species 1 in the largest
crystalline cluster would be more appropriate to use as an order parameter Φ = N1. On
the other hand, one can also use the stoichiometry n of the ABn superlattice structure
to define the order parameter Φ = N1 + N2/n in order to prevent a strong bias towards
one of the species. More generally, if the cluster size is measured by the order parameter
Φ = N1 +λN2, the sensitivity of the order parameter to particles of species 2 can be tuned
via the parameter λ. For λ = 1, this corresponds to the total number of particles in the
cluster, while for λ = 0, this corresponds to the number of particles of type 1.

As already mentioned above, the umbrella sampling technique is often employed to
determine the probability distribution P (Φ) and the Gibbs free energy ∆G(Φ). To this
end, a biasing potential is introduced to sample configurations with certain values for
this order parameter Φ. In this chapter, we investigate the effect of the choice of order
parameter on the properties of the clusters during nucleation in a binary mixture of hard
spheres, where we assume that the surface excess numbers of species i are negligible.
Using Eq. 8.18, we now write down explicitly the change in Gibbs free energy for binary
nucleation

∆G = γA+ ∆µ1N1 + ∆µ2N2, (8.33)

where ∆µi = µi(P o
α)−µoi,α(P o

α). The Gibbs free energy ∆G depends on the particle num-
bers N1 and N2 and the composition of the critical cluster can be determined from the sad-
dle point conditions for ∆G. The free-energy surface in the two-dimensional composition
plane (N1, N2) is projected in umbrella sampling MC simulations onto a one-dimensional
order parameter, e.g. Φ = N1 + λN2. Hence, the projected ∆G(Φ) and the averaged (or
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projected) cluster composition of noncritical clusters both depend on the order parame-
ter. We note that this is not an artifact of the umbrella sampling MC simulations, but
merely the projection of a correctly measured equilibrium distribution. To determine the
averaged composition of noncritical spherical clusters with radius R as a function of Φ,
we can minimize ∆G with respect to N2 while keeping the order parameter Φ fixed:(

∂∆G
∂N2

)
Φ

= ∆µ2 − λ∆µ1 + 2γv1

R
(ω − λ) = 0, (8.34)

where ω = v2/v1. If we use the umbrella sampling technique in MC simulations to
determine the Gibbs free energy ∆G(Φ) as a function of Φ, one can easily determine the
slope of the barrier from the simulations, which is equal to

d∆G
dΦ = (∆µ2 + 2γv1

R
ω)
(
∂N2

∂Φ

)
+ (∆µ1 + 2γv1

R
)
(
∂N1

∂Φ

)
(8.35)

with

∂N1

∂Φ =
1− x− λN ∂x

∂Φ
1− x+ λx

(8.36)

∂N2

∂Φ =
x+N ∂x

∂Φ
1− x+ λx

, (8.37)

where we define the composition x = N2/N and N = N1 + N2. Combining Eqs. (8.34)
and (8.35) yields

ω∆µ1 −∆µ2 = (ω − λ)d∆G
dΦ . (8.38)

We wish to make a few remarks here. First, we recover the Gibbs-Thomson equations
for the critical cluster (8.19) when we set d∆G/dΦ in Eq. 8.35 to zero, and we recover
Eq. 8.22 from Eq. 8.38 for critical clusters. Consequently, the size and composition of
the critical cluster are independent of the choice of λ. This can also be understood from
the fact that the saddlepoint in the free-energy landscape is invariant under coordinate
transformations. As long as the top of the nucleation barrier corresponds to this saddle
point, the average properties of the cluster will be dominated by the configurations around
this saddlepoint, regardless of the chosen order parameter. While most reasonable choices
of the order parameter fulfill this requirement, it is possible to design order parameters
that shift the top of the barrier away from the saddle point. In this case, the clusters
at the top of the barrier are non-critical clusters, and rates calculated from the resulting
free energy barrier are unreliable. It is important to note that a different choice of order
parameter can change the height of the nucleation barrier, since the barrier height is
determined by the fraction of phase space mapped to the same order parameter value
at the top of the barrier. However, this effect should be small, as the probability of
finding a cluster at the top of the nucleation barrier is dominated by the probability of
being in the saddle point of the free-energy landscape. For noncritical clusters, we clearly
find that the slope of the barrier, and hence the composition of the cluster, depends on
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the choice of order parameter via λ. Below, we study the effect of the choice of order
parameter for a simple toy model of hard spheres and for the nucleation of an interstitial
solid solution in an asymmetric binary hard-sphere mixture. It is interesting to compare
this to past studies investigating one-component systems with higher-dimensional order
parameters [159, 160]. For the Lennard-Jones system, Moroni et al., have shown that the
number of particles in the cluster alone is insufficient to provide a good prediction for
the probability a cluster will grow out to a large crystal [159]. Using a two-dimensional
order parameter, they observed a strong correlation between the crystallinity and the
size of clusters with a 50% probability of growing out. Specifically, clusters with a large
amount of face-centered-cubic (fcc) ordering require much smaller sizes to grow out than
those with more body-centered-cubic (bcc) ordering. They found that this correlation
was not visible in the two-dimensional free-energy landscape, and argued that the shape
and structure of a nucleus could determine whether it will grow out. However, we note
that the two-dimensional order parameter is still a projection from a higher-dimensional
phase space. Thus, the properties of non-critical clusters likely depend on the choice of
order parameter as well.

8.5 A substitutional solid solution

In order to obtain more insight in the effect of order parameter choice on the cluster
composition of noncritical clusters, we first investigate binary crystal nucleation in a toy
model of hard spheres. Here, we consider a system consisting of two species of hard spheres
with identical sizes, but tagged with different colors, say species 1 is red and species 2 is
blue. Obviously, the stable solid phase to be nucleated is a substitutional disordered face-
centered-cubic (fcc) crystal phase with the red and blue particles randomly distributed on
an fcc lattice. Refs. [18, 19] and Chapter 3 showed that the nucleation barriers for pure
hard spheres are well-described by the predictions from classical nucleation theory, where
because of the condition of the equimolar surface, the surface excess number Ns = 0. It
is therefore safe to neglect the surface excess numbers for the present model as well. In
addition, it is clear that the partial particle volumes vi and volume per particle v are
identical, and ω = v2/v1 = 1. Using the Gibbs-Thomson equations for a binary critical
cluster (8.19), we find that the supersaturation ∆µ∗1 = ∆µ∗2 = −2γ∗v/R∗, and hence
the composition of the critical cluster follows straightforwardly from the bulk chemical
potentials µ∗1(P o

α) and µ∗2(P o
α), which depends on the bulk chemical potentials of the

original bulk phase and the supersaturation.
As already mentioned above, the composition of noncritical clusters depends on the

choice of order parameter, i.e., the projection of the two-dimensional composition plane
onto a one-dimensional order parameter Φ. Using Eq. 8.38, we find that for λ = 1, the
composition of the noncritical cluster is determined by the supersaturation ∆µ1 = ∆µ2
and the bulk chemical potentials of the original bulk phase. For λ = 0, we only measure
the number of particles of one color, say red, in the cluster. However, a thermodynamic
average of all clusters with N1 red particles also includes all post-critical clusters with
many blue particles, and as a result, the order parameter fails to work for λ = 0. For
non-zero values of λ, the ensemble of clusters of each size is well-defined, and we can
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Figure 8.1: Gibbs free energy ∆G(Φ)/kBT as a function of order parameter Φ = N1 +λN2 for
a binary mixture of red (species 1) and blue (species 2) hard spheres with equal diameter σ as
obtained from umbrella sampling MC simulations at a reduced pressure of P ∗ = P oασ

3/kBT = 17
with λ = 1 and λ = 0.5.

perform umbrella sampling MC simulations to measure the average cluster composition.
In order to keep the composition of the metastable fluid fixed, we perform Monte

Carlo simulations on a binary mixture with N = 1000 hard spheres in the semi-grand
canonical ensemble. Both species of hard spheres are identical in size with diameter σ,
and are either tagged red (species 1) or blue (species 2). The simulations were carried out
in a cubic box with periodic boundary conditions and the Metropolis sampling consists of
particle displacements and volume changes, and attempts to switch the identity (color)
of the particles. The acceptance rule for the identity swap moves is determined by the
chemical potential difference ∆µo12,α [155, 156]. We use the umbrella sampling technique
to determine the nucleation barrier ∆Y = ∆G as a function of an order parameter
Φ = N1 + λN2, where N1(N2) denotes the number of red (blue) solid-like particles in the
largest crystalline cluster in the system as determined by the local bond-order parameter
and cluster criterion described in Sec. 8.4 with cutoff radius rc = 1.3σ, dot-product cutoff
dc = 0.7, and number of solid bonds ξc ≥ 6. We first calculate the nucleation barrier for
λ = 1, for which the order parameter Φ is simply the total number of solid-like particles
in the largest cluster. We set the reduced pressure P ∗ = P o

ασ
3/kBT = 17, and ∆µo12,α = 0,

which corresponds on average to an equimolar mixture of red and blue hard spheres for
the metastable fluid phase. We plot the resulting nucleation barriers ∆G as a function of
Φ in Fig. 8.1. We note that the nucleation barrier for λ = 1 is equivalent to the nucleation
barrier for a pure system of hard spheres [18, 19]. In addition, we show the composition of
the largest cluster as a function of Φ in Fig. 8.2. We find that the averaged composition
x = N2/N = 0.5 as it should be since ∆µ1 = ∆µ2 and the bulk chemical potentials
of the metastable fluid are equal µo1,α = µo2,α. Using the binomial coefficients and the
measured one-dimensional free-energy barrier, we determine the two-dimensional free-
energy landscape ∆G(N1, N2)/kBT = − lnP (N1, N2) from the probability distribution
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Figure 8.2: Composition x = N2/N of the largest crystalline cluster as a function of order
parameter Φ = N1 + λN2 for a binary mixture of red (species 1) and blue (species 2) hard
spheres with equal diameter σ as obtained from umbrella sampling simulations at pressure
P ∗ = P oασ

3/kBT = 17 with λ = 1 (red circles) and λ = 0.5 (green squares). For comparison,
we plot the theoretical prediction (8.38) using the measured nucleation barrier of Fig. 8.1
(black solid line) and the composition determined from a steady-state cluster size distribution
for λ = 0.5 (blue dashed line). The critical cluster size is Φ ' 79 and 96 for λ = 0.5 and 1,
respectively.

function
P (N1, N2) = exp[−∆G(N1 +N2)/kBT ] 2N

(
N
N1

)
. (8.39)

Fig. 8.3 presents a contour plot of the two-dimensional free-energy landscape β∆G(N1, N2)
as a function of N1 and N2. Exemplarily, we also plot isolines for the order parameter
Φ = N1+λN2 for λ = 1 and 0.5 to show the projection of the two-dimensional composition
plane onto a one-dimensional order parameter.

In order to check the effect of order parameter choice in the biasing potential (8.29) on
the nucleation barrier and the composition of the clusters, we also calculate the nucleation
barrier for λ = 0.5 at the same reduced pressure. We plot the nucleation barrier in Fig.
8.1 and the averaged composition of the cluster as a function of Φ in Fig. 8.2. While
the barrier height is not significantly affected by the choice of order parameter in the
biasing potential, in agreement with our predictions in Sec. 8.4, the critical cluster "size"
as measured by Φ, i.e. ' 79 and 96 for λ = 0.5 and 1, respectively, depends on the order
parameter choice as expected. In addition, we determine the theoretical prediction for the
cluster composition using Eq. 8.38. Using the measured slope of the nucleation barrier
from Fig. 8.1 , we obtain the chemical potential difference ∆µ12(Φ) of species 1 and 2 in
the cluster from Eq. 8.38. Using Eq. 8.39, we find

P (N1, N2) ∝ 2N N !
N2!(N −N2)! exp[−βN2∆µ12(Φ)] (8.40)

from which we determine the most probable composition x = 1− exp[−β∆µ12(Φ)]. The
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theoretical prediction for the composition is plotted in Fig. 8.2. We find good agreement
with the measured composition, except for very small cluster sizes, where we do not expect
CNT to match our nucleation barriers. For comparison, we also plot the same predictions
for the nucleation paths in Fig. 8.3. We clearly observe that the two nucleation paths
cross at the saddle point yielding the same size and composition of the critical cluster for
both order parameters, as expected.

Finally, we also determine the composition of the clusters from the steady-state distri-
bution. In systems where the nucleation of the new phase is measured directly, either in
experiments or simulations, the measured cluster size distribution corresponds to a steady-
state distribution rather than an equilibrium distribution. The steady-state distribution
observed during the nucleation process is different from the equilibrium distribution, as
clusters that exceed the critical cluster size during the steady-state process will continue
to grow further. The steady-state distribution depends both on the free-energy land-
scape and the dynamics of the system, and includes a flux across the free-energy barrier,
whereas the equilibrium distribution can only be determined by preventing the system
from nucleating, i.e, constraining the maximum cluster size by e.g. umbrella sampling MC
simulations. While the equilibrium and steady-state distributions are in good agreement
for small cluster sizes, they disagree strongly for postcritical cluster sizes, i.e., when the
system crosses the free-energy barrier. In particular, the equilibrium cluster size distribu-
tion shows a minimum corresponding with the maximum in the free-energy barrier, and
the steady-state distribution generally decreases continuously (even) beyond the critical
cluster size.

We calculate the cluster composition from the steady-state distribution for our binary
mixture of hard spheres. To this end, we determine the free energy as a function of cluster
size N1 and N2 from Eq. 8.39 using a fit to the free-energy barrier obtained from umbrella
sampling MC simulations with λ = 1. The dynamics of the cluster are described by the
following rates:

k+,1
N1,N2 = 1
k+,2
N1,N2 = 1
k−,1N1,N2 = exp[−β(G(N1 − 1, N2)−G(N1, N2))]
k−,2N1,N2 = exp[−β(G(N1, N2 − 1)−G(N1, N2))].

Here, k+(−),i
N1,N2 is the rate associated with adding (removing) a particle of species i to (from)

the nucleus consisting of N1 and N2 particles. Hence, clusters can only grow or shrink by
one particle at a time with a rate determined by the corresponding free-energy difference.
In order to determine the steady-state cluster size distribution, we set a limit to the steady-
state distribution by defining a maximum cluster size, which exceeds the critical cluster
size. As a barrier crossing can be considered as a one-way event, subsequent nucleation
events should start again from the metastable fluid phase. To this end, we impose that
the addition of an extra particle to a nucleus with this maximum cluster size falls back to
size zero. We note that this step is not reversible, and results in slightly modified rates
for nuclei with the maximum cluster size and for clusters of zero size. With the exception
of these steps, the dynamics obey detailed balance.
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Figure 8.3: Contour plot of the two-dimensional free-energy landscape ∆G(N1, N2)/kBT as a
function of N1 and N2. We also plot a few isolines for the order parameter Φ = N1 + λN2 for
λ = 0.5 and 1 (dashed lines), and we plot the nucleation path (solid lines labeled with λ = 1
and λ = 0.5) for the two order parameters that we considered as predicted by (8.38). The two
nucleation paths cross at the saddle point corresponding to the critical cluster size.

In order to determine the steady-state distribution, we set the rate at which clusters
of size (N1, N2) are created to zero. Hence, the flux with which clusters of size (N1, N2)
are created should balance the flux with which clusters of this size disappear:

Pss(N1, N2)
∑
i

(k+,i
N1,N2 + k−,iN1,N2) =

Pss(N1 + 1, N2)k−,1N1+1,N2 + Pss(N1 − 1, N2)k+,1
N1−1,N2 +

Pss(N1, N2 + 1)k−,2N1,N2+1 + Pss(N1, N2 − 1)k+,2
N1,N2−1.

Here, Pss(N1, N2) denotes the steady-state cluster size distribution. The equations for
cluster size zero and the maximum cluster size are slightly different due to a flux of clusters
from maximum to zero cluster size. By solving this set of linear equations numerically,
we obtain the steady-state distribution. Subsequently, the average cluster composition
can be obtained from the steady-state distribution by averaging over clusters with equal
Φ = N1 + λN2. The resulting cluster composition is shown in Fig. 8.2 for λ = 0.5.
Since the two-dimensional steady-state cluster size distribution, which is symmetric in
N1 and N2 decreases monotonically with cluster size, the resulting projected composition
is always lower than 0.5 and matches well with the cluster compositions obtained from
umbrella sampling MC simulations and the theoretical prediction, except at small cluster
sizes as expected. Moreover, in the limit of large (postcritical) clusters, the cluster growth
rate approaches a constant for the current choice of dynamics, resulting in a nearly flat
steady-state cluster size distribution and a cluster composition of 0.5.
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In conclusion, we have shown using a simple model for a binary mixture of hard
spheres that the composition of the critical cluster does not depend on the choice of
order parameter, while the composition of noncritical clusters is affected by the order
parameter. This is a direct consequence of the projection of the two-dimensional free-
energy landscape onto a one-dimensional order parameter, say Φ = N1 + λN2, which
influence directly the projected (Landau) ∆G(Φ) and the averaged (or projected) cluster
composition. Moreover, as the umbrella sampling method allows us to equilibrate the
system for various values of the order parameter, the system can be regarded to be in
local equilibrium for each value of the order parameter. The nucleation paths that the
system then follows remain close to the minimum free-energy path (see Fig. 8.3), and thus
the height of the nucleation barrier is largely unaffected by the choice of order parameter.

8.6 An interstitial solid solution
We consider crystal nucleation of an interstitial solid solution in a highly asymmetric
binary mixture of large and small hard spheres with size ratio q = σ2/σ1 = 0.3, where σ1(2)
denotes the diameter of species 1 (large spheres) and 2 (small spheres). The interstitial
solid solution consists of a face-centered-cubic crystal phase of large spheres with a random
occupancy of the octahedral holes by small spheres, and hence the composition of the
interstitial solid solution can vary from x = N2/N ∈ [0, 1] [161]. As the volume of this
solid phase is not largely affected by the density of small spheres, we set the partial particle
volume v2 and ω = v2/v1 to zero. Using Eq. 8.38, we find the following relation if the
system is in local equilibrium at fixed order parameter Φ = N1 + λN2

∆µ2 = λ
d∆G
dΦ . (8.41)

For λ = 0, the order parameter Φ = N1 measures only the large spheres in the cluster,
and the cluster composition of both critical and noncritical clusters is determined by the
chemical equilibrium condition for the small spheres in the cluster and the metastable
fluid phase, i.e., ∆µ2 = 0. For λ = 1, when all particles in the clusters are counted
by the order parameter Φ = N1 + N2, the composition of precritical clusters will have
a higher density of small particles compared to the chemical equilibrium condition for
the small particles in the cluster and the metastable fluid phase, as the slope of the
nucleation barrier is positive, and similarly postcritical clusters will have a lower density
of small particles. For both order parameters, we find that the critical cluster satisfies
the Gibbs-Thomson equation (8.19), and thus for a partial particle volume v2 = 0, we
obtain chemical equilibrium for the small particles in the critical cluster and the fluid
phase independent of the order parameter choice.

As the composition and size of the critical cluster are not affected by the choice of
order parameter, we set λ = 0 in order to investigate whether or not we observe diffusive
equilibrium for species 2 for all noncritical clusters. To keep the composition of the fluid
fixed, it would be convenient to use again Monte Carlo simulations in the semi-grand
canonical (NPT − ∆µ1,2,α) ensemble. However, the acceptance probability of changing
small spheres into large spheres is extremely small, which makes the equilibration time of
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the simulation prohibitively long, even when we use the augmented semigrand ensemble
presented in Ref. [155], where the diameter of the particles is changed gradually in
different stages. In order to solve this problem, we determine the free-energy barrier
using the umbrella sampling technique in isothermal-isobaric MC simulations, in which
the pressure P o

α, the temperature T , and the particle numbers N o
1,α and N o

2,α are kept
fixed of the original metastable bulk phase. We perform successive simulations for each
window, but in such a way that the composition xoα = N2,α/(N o

1,α+N o
2,α) of the metastable

fluid phase is on average kept fixed during the growth of the nucleus. To this end, we first
measure the instantaneous composition xα of the fluid phase in the initial configuration
for the successive umbrella sampling windows centered around a new order parameter
value Φ. If the composition of the fluid has changed more than 0.1%, we resize random
particles in the fluid phase during an equilibration run until the fluid phase reaches its
original composition xoα. We then start the production run to measure the probability
distribution function P (Φ) and the corresponding part of the free-energy barrier in a
normal isobaric-isothermal MC simulation. We assume that the composition of the fluid
phase during MC simulations of a single umbrella sampling window does not change
significantly, since the cluster size is approximately constant. In order to determine the
composition of the fluid phase, we first determine the largest crystalline cluster in the
system by using the local bond-order parameter and cluster criterion as described in Sec.
8.4 with cutoff radius rc = 1.1σ1, dot-product cutoff dc = 0.7, and number of solid bonds
ξc ≥ 6. The composition of the fluid is defined as xα = (N o

2,α−N2)/(N o
2,α+N o

1,α−N2−N1)
where N1 is the number of large spheres in the cluster and N2 is the number of small
spheres which have at least 6 neighbors of large spheres in the cluster within cut-off
distance rc = 1.1σ1. N o

1,α and N o
2,α denote the total number of large and small spheres in

the MC simulation.
In addition, we determine the composition of the solid nucleus x = N2/N . In order to

avoid surface effects and defects in the crystal structure of the solid nucleus, we determine
the fraction of octahedral holes that is occupied by a small sphere in the fcc lattice of
the large spheres in the solid cluster. An octahedral hole is defined as a set of 6 large
particles, where each particle is a neighbour of 4 other particles in the same set, and the
octahedral hole is occupied by a small particle if all 6 large particles are within a cutoff
radius of 0.22σ1 of the center-of-mass of this small sphere.

We first determine the nucleation barrier in a normal N o
1,αN

o
2,αP

o
αT MC simulation

using the umbrella sampling technique for system sizes N o
α = N o

1,α + N o
2,α = 3000, 6000,

and 9000 particles. The initial fluid composition is set to xoα = 0.5 and reduced pressure
P ∗ = βP o

ασ
3
1 = 25. We plot the Gibbs free energy ∆G/kBT as a function of the number

of large spheres N1 in the largest crystalline cluster in Fig. 8.4. We observe that the
nucleation barrier height and critical cluster size decreases upon increasing system size.
This can be explained by a change in the composition of the metastable fluid phase during
the growth of a crystalline cluster. In Fig. 8.5, we plot the composition of the metastable
fluid phase as a function of the cluster size N1 for the various system sizes. We clearly find
that the fluid composition changes significantly during the growth of a solid nucleus for
smaller system sizes. In order to corroborate this result, we perform umbrella sampling
MC simulations in which the composition of the metastable fluid phase is kept fixed in
each successive umbrella sampling window using the method as described above. The
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composition of the fluid phase is indeed kept fixed by this method as shown in Fig. 8.5.
The nucleation barrier as obtained by fixing the composition of the metastable fluid phase
is presented in Fig. 8.4. As the nucleation barrier calculated at fixed fluid composition
should correspond to an infinitely large system size, we plot the barrier heights ∆G∗/kBT
as a function of 1/N o

α with N o
α = N o

1,α + N o
2,α. We find that the barrier height depends

linearly on 1/N o
α within errorbars. Moreover, extrapolating the barrier heights obtained

from N o
1,αN

o
2,αP

o
αT MC simulations to the thermodynamic limit, we find that the finite-size

corrected barrier height agrees well within errorbars with the barrier height determined
from umbrella sampling MC simulations with fixed fluid composition corresponding to an
infinitely large system size. In addition, we plot the composition of the solid cluster as a
function of cluster size N1 in Fig. 8.5, and we find no strong dependence of the cluster
composition on system size.

Finally, we determine the composition of (non)critical clusters for the nucleation of
the interstitial solid solution for four different fluid compositions xoα = 0.2, 0.5, 0.7 and
0.8 at statepoints well-inside the fluid-solid coexistence region using umbrella sampling
MC simulations with fixed fluid composition and system size N o

α = 3000. Following Ref.
[155], the "supercooling" was kept fixed, i.e., P ∗/P ∗coex = 1.2, where P ∗coex is the pressure at
the bulk fluid-solid coexistence at the corresponding fluid composition. We note however
that these statepoints correspond to different values for the supersaturation, and can
therefore lead to significantly different barrier heights. We determine the Gibbs free-
energy barrier and the cluster composition as a function of cluster size N1 using umbrella
sampling MC simulations, and plot the results in Fig. 8.6 and 8.7 for the four different
fluid compositions. In Fig. 8.7, the dashed lines indicate the compositions predicted by
Eq. 8.41 with λ = 0, i.e., chemical equilibrium for species 2 in the clusters and the
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metastable fluid phase. For comparison, we also plot the composition of the coexisting
solid phase at P ∗. We clearly observe that the measured cluster compositions obtained
from umbrella sampling MC simulations are in good agreement with the predictions from
CNT for cluster sizes larger than 30, which predicts chemical equilibrium for the small
spheres in the cluster and the metastable parent phase. If we now take a closer look at
the statepoint defined by xoα = 0.2 and P ∗/P ∗coex = 1.2 for the metastable fluid phase,
we find from Ref. [161] that the composition of the coexisting fluid and solid phase after
full phase separation should be x ' 0.47 and 0.15, respectively. Interestingly, we find
that the composition of the nucleating clusters is much lower (x ' 0.07) than that of
the coexisting bulk crystal phase. Hence, the phase separation is mainly driven by the
nucleation of large spheres while maintaining chemical equilibrium for the smaller species
throughout the whole system. Only when the chemical potential of the large spheres in
the metastable fluid is sufficiently low due to a depletion of large spheres as a result of
crystal nucleation and crystal growth, small spheres will diffuse into the crystal phase in
order to increase the composition of the solid phase. However, we note that the chemical
equilibrium condition for the smaller species only holds for the present order parameter
choice Φ = N1, whereas any other choice of order parameter would certainly yield different
results for the cluster composition.

For highly asymmetric binary hard-sphere mixtures, where the stable solid phase cor-
responds to an fcc of large spheres with a dispersed fluid of small particles, one would
naively expect that the small particles are always in chemical equilibrium during the nucle-
ation process. Hence, in order to study crystal nucleation in highly asymmetric mixtures,
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Figure 8.6: Gibbs free energy ∆G/kBT as a function of cluster size N1 for four different fluid
compositions xoα = 0.2, 0.5, 0.7, and 0.8 for a binary mixture of hard spheres with size ratio 0.3
at 20% supercooling, i.e., P ∗/P ∗coex = 1.2 with P ∗coex the bulk coexistence pressure.

one can employ an effective pairwise depletion potential description as described by Bob
Evans and coworkers in Ref. [162–164] provided that three- and higher-body interactions
are negligible and the depletion potentials are determined at fixed chemical potential of
the small spheres. Such an effective pair potential approach was employed in a nucleation
study in the vicinity of a critical isostructural solid-solid transition in a binary mixture
of hard spheres with size ratio q = σ2/σ1 = 0.1, but this study showed according to
the authors a breakdown of classical nucleation theory [165]. It would be interesting to
investigate whether or not the breakdown is caused by the (false) assumption of chemical
equilibrium of small spheres during the nucleation process. For less asymmetric binary
hard-sphere mixtures, where the small spheres cannot diffuse freely in the solid cluster,
chemical equilibrium of the smaller species is harder to maintain, especially when the
nucleated crystal phase has long-range crystalline order for both species as in the case
of a superlattice structure where the chemical potentials of the two species are not in-
dependent as it is determined by the stoichiometry of the crystal structure. It would be
interesting to investigate at which size ratio and pressures this crossover occurs.

8.7 Conclusions
In this chapter, we have studied crystal nucleation in a binary mixture of hard spheres
and we have investigated what the effect is of the choice of order parameter on the com-
position and size of both critical and noncritical clusters. We have studied nucleation of
a substitutional solid solution in a simple toy model of identical hard spheres but tagged
with different colors and we investigate the nucleation of an interstitial solid solution in
a binary hard-sphere mixture with a diameter ratio q = 0.3. In order to study nucleation
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Figure 8.7: Cluster compositions x = N2/N as a function of cluster size N1 for four different
fluid compositions xoα = 0.2, 0.5, 0.7, and 0.8 for a binary mixture of hard spheres with size ratio
0.3 at supercooling P ∗/P ∗coex = 1.2. The long dashed lines denote the composition predicted
by CNT, which corresponds to chemical equilbrium of species 2 in the solid clusters and the
metastable fluid phase, while the dotted lines denote the composition of the coexisting bulk
crystal phase.

of a crystal phase in computer simulations, a one-dimensional order parameter is usually
defined to identify the solid phase from the supersaturated fluid phase. We have shown
that the choice of order parameter can strongly influence the composition of noncritical
clusters, as the free-energy landscape in the two-dimensional composition plane (N1, N2)
is projected onto a one-dimensional order parameter, say Φ = N1 +λN2, in umbrella sam-
pling MC simulations. This is supported by the good agreement that we found between
our results on the composition of noncritical clusters obtained from umbrella sampling
MC simulations and the predictions from CNT for the nucleation of a substitutional solid
solution in a toy model. While the effect is clearly visible in the case of a binary system, it
should occur more generally whenever a higher-dimensional free-energy landscape is pro-
jected onto a single order parameter. For the nucleation of an interstitial solid solution
in a highly asymmetric hard-sphere system, we found that the composition of noncritical
clusters is determined by the chemical equilibrium condition of the small spheres in the
cluster and the fluid phase, as the partial particle volume of the small spheres in the solid
phase can be neglected. We compared the composition of the noncritical clusters obtained
from umbrella sampling MC simulations and the theoretical prediction from CNT, and
found again good agreement. More importantly, we find that the barrier height and the
composition of the critical cluster are not significantly affected by the choice of order
parameter. As a result, critical clusters and the barrier height should be comparable even
with different order parameters.
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Phase diagram of colloidal hard
superballs: from cubes via spheres

to octahedra

The phase diagram of colloidal hard superballs, of which the shape interpolates between
cubes and octahedra via spheres, is determined by free-energy calculations in Monte Carlo
simulations. We discover not only a stable face-centered cubic (fcc) plastic crystal phase
for near-spherical particles, but also a stable body-centered cubic (bcc) plastic crystal
close to the octahedron shape, and in fact even coexistence of these two plastic crystals
with a substantial density gap. The plastic fcc and bcc crystals are, however, unstable in
the cube and octahedron limit, suggesting that the rounded corners of superballs play an
important role in stablizing the rotator phases. In addition, we observe a two-step melting
phenomenon for hard octahedra, in which the Minkowski crystal melts into a metastable
bcc plastic crystal before melting into the fluid phase.
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9.1 Introduction

Recent breakthroughs in particle synthesis have resulted in a spectacular variety of aniso-
tropic nanoparticles such as cubes, octapods, tetrapods, octahedra, icecones, etc. [3]. A
natural starting point to study the self-assembled structures of these colloidal building
blocks is to view them as hard particles [1]. Not only can these hard-particle models be
used to predict properties of suitable experimental systems, but such models also provide
a stepping stone towards systems where soft interactions play a role [31, 166]. Moreover,
the analysis of hard particles is of fundamental relevance and raises problems that influ-
ence fields as diverse as (soft) condensed matter [3, 167–169], mathematics [168, 170], and
computer science [171]. In this light the concurrent boom in simulation studies of hard
anisotropic particles is not surprising [85, 86, 114, 168–170, 172–176].

The best-known hard-particle system consists of hard spheres, which freeze into close-
packed hexagonal (cph) crystal structures [171], of which the ABC-stacked cph crystal,
better known as the face-centered cubic (fcc) crystal phase, is thermodynamically sta-
ble [65]. Hard anisotropic particles can form liquid-crystalline equilibrium states if they are
sufficiently rod- or disclike [114, 175], but particles with shapes that are close-to-spherical
tend to order into plastic crystal phases, also known as rotator phases [85, 86, 114]. In
fact, simple guidelines were recently proposed to predict the plastic- and liquid-crystal
formation only on the basis of rotational symmetry and shape anisotropy of hard poly-
hedra [169]. In this chapter we will take a different approach, based on free-energy calcu-
lations, and address the question whether and to what extent rounding the corners and
faces of polyhedral particles affects the phase behavior. Such curvature effects are of direct
relevance to experimental systems, in which sterically and charged stabilised particles can
often not be considered as perfectly flat-faced and sharp-edged [177]. For instance, recent
experiments on nanocube assemblies show a continuous phase transformation between
simple cubic and rhombohedral phases by increasing the ligand thickness and hence the
particle sphericity [166].

9.2 Methodology

9.2.1 Model

In this chapter, we study a system of colloidal hard superballs in order to address these
problems. A superball is defined by the inequality

∣∣∣∣xa
∣∣∣∣2q +

∣∣∣∣ya
∣∣∣∣2q +

∣∣∣∣za
∣∣∣∣2q ≤ 1, (9.1)

where x, y and z are Cartesian coordinates with q the deformation parameter and with a
the radius of the particle. The shape of the superball interpolates smoothly between two
Platonic solids, namely the octahedron (q = 0.5) and the cube (q = ∞) via the sphere
(q = 1) as shown in Fig. 9.1. The volume of a superball with the shape parameter q is
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Figure 9.1: The shape of superballs interpolates between octahedra (q = 0.5) and cubes
(q =∞) via spheres (q = 1).

given by

V (q) = 8a3
∫ 1

0

∫ (1−x2q)1/2q

0
(1− x2q − y2q)1/2qd y dx

= 8a3 [Γ (1 + 1/2q)]3

Γ (1 + 3/2q) . (9.2)

By determining the phase diagram of these superballs as a function of q, we discovered
a thermodynamically stable body-centered (bcc) plastic crystal phase for octahedron-like
superballs. To the best of our knowledge no plastic crystals other than cph structures
have so far been observed for hard particles. Moreover, we find that bcc and fcc plastic
crystal phases are unstable for hard octahedra and hard cubes, respectively. Therefore,
rounded faces and edges play an important role in stabilizing rotator phases, while flat
faces tend to stabilize crystals.

9.2.2 Fluid phase

We employ standard NPT Monte Carlo simulations to obtain the equation of state (EOS)
for the fluid phase, and determine the free energy by measuring the free energy at density
ρ by integrating the EOS from reference density ρ0 to ρ:

F (ρ)
N

= F (ρ0)
N

+
∫ ρ

ρ0

P (ρ′)
ρ′2

d ρ′ (9.3)

where F (ρ0)/N = µ(ρ0) − P (ρ0)/ρ0 is the Helmholtz free energy per particle at density
ρ0 with N the number of particles and µ(ρ0) the chemical potential which is calculated
by the Widom’s particle insertion method [10]. The calculated chemical potentials at the
reference density ρ0 for various superballs are listed in Table 9.1.
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q ρ0a
3 N µ(ρ0)/kBT F (ρ0)/NkBT

0.7 0.1 500 1.85523 -1.63213
0.79248 0.1 500 3.32035 -1.14744
0.85 0.05 500 -0.945694 -3.07702
1.75 0.02 500 -2.56824 -4.29418
2.5 0.036 500 0.718079 -2.6957
3.0 0.028 500 -0.609041 -3.30777

Table 9.1: Helmholtz free energy per particle, F (ρ0)/NkBT , and the chemical potential, µ(ρ0),
in the fluid phase of hard superballs with various shape parameter q at density ρ0 calculated
from the Widom’s particle insertion method.

9.2.3 Crystal phases
For the free energy of a crystal we use the Einstein integration method, and the Helmholtz
free energy F of a crystal is

F (N, V, T ) = FEinst(N, V, T )−
∫ λmax

0
dλ
〈
∂UEinst(λ)

∂λ

〉
(9.4)

where V and T are the volume and temperature of the system, respectively, with kB the
Boltzmann constant, and FEinst is the free energy of the ideal Einstein crystal given by

FEinst(N, V, T )
kBT

= −3(N − 1)
2 ln

(
πkBT

λmax

)
+N ln

(
Λ3
t

a3

)
+N ln

(
Λr

a

)

+ ln
(

a3

V N1/2

)
− ln

{ 1
8π2

∫
dθ sin (θ)dφdχ

× exp
[
−λmax

kBT
(sin2 ψia + sin2 ψib)

]}
(9.5)

and

UEinst(λ) = λ
N∑
i=1

[(ri − ri,0)2 + (sin2 ψia + sin2 ψib)] (9.6)

is the aligning potential for fixing the particles onto a crystal lattice where (ri−ri,0) is the
displacement of the particle i from its rest position in the ideal Einstein crystal and the
angles ψia and ψib are the minimum angles formed by the two field vectors, i.e. a and b,
in the ideal Einstein crystal and the vectors defining the orientation of the particle in the
crystal. Λt and Λr in Eq. 9.5 are the translational and orientational thermal wavelengths
of the particles, respectively, and both are set to a. The last term on the right hand side
of Eq. 9.5 is calculated by Monte Carlo integrations with λmax/kBT = 1000 as

ln
{

1
8π2

∫
dθ sin (θ)dφdχ exp

[
−λmax

kBT
(sin2 ψia + sin2 ψib)

]}∣∣∣∣∣
λmax=1000

= −10.180034
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9.2.4 Plastic crystal phases

For the free energy calculations of a plastic crystal phase, we use a soft potential between
particles given by

ϕ(i, j)
kBT

=
{
γ[1− A(1 + ζ(i, j))] ζ(i, j) < 0

0 otherwise (9.7)

where ζ(i, j) is the overlapping potential as defined on Eq. 9.12 which is negative when
two particle i and j are overlapping and positive otherwise [178], and γ is the integration
parameter with the constant A = 0.9 [179]. This method was introduced in Ref. [179],
and allow us to change gradually from a non-interacting system, i.e., γ = 0, to a plastic
crystal phase of hard superballs where γ = γmax. The Helmholtz free energy of the plastic
crystal is then given by

F (N, V, T ) = FEinst(N, V, T )−
∫ λmax

0
dλ
〈
∂UEinst(λ)

∂λ

〉
γmax

+
∫ γmax

0
dγ
〈
∂
∑
i 6=j ϕ(i, j)
∂γ

〉
λmax

(9.8)

The calculated free energies F (ρ0) for the crystals and plastic crystal structures at
reference densities ρ0a

3 are listed in Table 9.2.

q crystal type N ρ0a
3 F (ρ0)/NkBT

0.7 plastic bcc 512 0.212 4.22893
0.7 plastic fcc 500 0.212 4.27468

0.79248 plastic bcc 512 0.175892 3.80535
0.79248 plastic fcc 500 0.175892 3.67894
0.85 plastic fcc 500 0.171887 4.45765
0.85 plastic bcc 432 0.171887 4.84055
0.85 bct 512 0.207163 11.9065
1.75 deformed C1 512 0.11654 9.42461
1.75 plastic fcc 500 0.0976 4.54847
2.5 deformed C1 512 0.10675 9.58457
2.5 plastic fcc 500 0.077 3.13303
3.0 deformed C1 512 0.10522 10.0684
3.0 plastic fcc 500 0.076 3.77605

Table 9.2: Helmholtz free energy per particle, F (ρ0)/NkBT , for the crystal phases of hard
superballs with various shape parameter values q at density ρ0 calculated from Einstein in-
tegration method, where fcc, bcc and bct mean face-centered cubic, body-centered cubic and
body-centered tetragonal crystal phases, respectively, and the C1 crystal is defined in Ref. [173].



132 Chapter 9

9.3 Results and Discussions

9.3.1 Cube-like superballs (1 < q <∞)
Following Refs. [76, 172], we first calculate the close-packed structures for systems of
hard superballs. For cube-like particles, it is found that at close packing there are so-
called C0 and C1 crystal phases in accordance with Ref. [173]. When we perform NPT
Monte Carlo simulations with variable box shape to determine the EOS of the crystal
phase as shown in Fig. 9.2, our simulation results show that both the C0 and the C1
crystals deform with decreasing density. The lattice vectors for C1 crystals are given by
e1 = 21−1/2q i + 21−1/2q j ,e2 = 21−1/2q i + 21−1/2q k , e3 = 2(s+ 2−1/2q) i− 2s j− 2sk, where
i, j and k are the unit vectors along the axes of the particle, s is the smallest positive root
of the equation (s+2−1/2q)2q +2s2q−1 = 0, and there is one particle in the unit cell [173].
For instance, when q = 2.5, one finds that 〈e1, e2〉 = 0.5, 〈e1, e3〉 = 〈e3, e2〉 = 0.60552,
|e2| / |e1| = 1 and |e3| / |e1| = 0.825737, where 〈ei, ej〉 is the cosine of the angle between ei
and ej. The calculated angles and the length ratios between lattice vectors as a function
of packing fraction φ for the cube-like particles with q = 2.5 are shown in Fig. 9.3. We find
that at packing fractions approaching close packing, the crystal remains in the C1 phase.
With decreasing packing fraction, the crystal lattice deforms towards an fcc structure:
〈e1, e2〉 = 〈e1, e3〉 = 〈e2, e3〉 = 0.5 and |e2| / |e1| = |e3| / |e1| = 1.
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Figure 9.2: Equation of state for cube-like hard superballs with various shape parameters q.
The solid, dashed and dotted lines are fluid, plastic fcc and deformed C1 phases, respectively.
P and φ are the pressure and packing fraction of the system, and v is the volume of a particle.

Moreover, when 1 < q < 3, it is found that the deformed C0 and deformed C1 crystal
melt into an fcc plastic crystal phase. Using the Einstein integration method, we calcu-
lated the Helmholtz free energy as a function of packing fraction for both the fcc plastic
crystal and the deformed C1/C0 crystal phases [10]. Combined with the free-energy cal-
culations for the fluid phase done by the Widom’s particle insertion method, we obtain
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Figure 9.3: The deformation of the crystal unit cell with lattice vectors ei as a function of
packing fraction φ in a system of hard superballs with q = 2.5. The dashed lines in the figures
indicate the values for the C1 crystal.

the phase boundaries in the phase diagram shown in Fig. 9.4. The part of the phase
diagram for hard cube-like superballs roughly agrees with the empirical phase diagram
by Batten et al. [174]. At high packing fractions, there are stable deformed C0 and C1
phases. When q > 1.1509, the close-packed structure is the C1 crystal, whereas it is the C0
crystal whenever 1 < q < 1.1509 [173]. To determine the location of the transition from
the deformed C0 crystal to the deformed C1 crystal, we performed two series of NPT MC
simulations with increasing value of q for the first series and decreasing q for the second
series of simulations at pressure P ∗ = Pv/kBT ' 250, with kB the Boltzmann constant,
T the temperature, and v the volume of the particle [175]. The first series started from a
C0 crystal phase, while the second series of simulations started from a C1 crystal phase.
Our simulations show that the phase transition occurred around q = 1.09 at packing
fraction φ = 0.736 as shown by the asterix in Fig. 9.4. Moreover, for hard cubes (q =∞)
the C1 crystal is a simple cubic (sc) crystal. In contrast to the result of Ref. [169], the
free-energy calculations show that there is no stable cubatic phase between the sc crystal
and the fluid phase for systems of hard cubes [176].

9.3.2 Octahedron-like superballs (0.5 ≤ q < 1)
The other part of the phase diagram concerns the octahedron-like superballs. For 0.79248 <
q < 1, we obtained a denser structure than the predicted O0 lattice of Ref. [173]. For
instance, after compressing the system to pressures around P ∗ = 107 at q = 0.85, we ob-
tained a bct crystal with φ = 0.7661. This is denser than the O0 crystal, which achieves
φ = 0.7656 at q = 0.85. Note however that these two crystals are very similar to each
other, since O0 is also a form of a bct lattice. The only difference is that the orientation
of the particles in the O0 crystal is the same as the symmetry of the axes in the crystal
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Figure 9.4: Phase diagram for hard superballs in the φ (packing fraction) versus 1/q repre-
sentation where q is the deformation parameter. Here the C1 and C0 crystals are defined in
Ref. [173], where the particles of the same color are in the same layer of stacking. The solid
diamonds indicate the close packing, and the locations of triple points are determined by ex-
trapolation as shown by the dashed lines. The phase boundaries for hard cubes are taken from
Ref. [176].

lattice, while in our bct crystal there is a small angle between these two orientations in the
square plane of the crystal. Furthermore, for q < 0.79248, we also found a crystal with a
denser packing than the predicted O1 crystal in Refs. [173, 180]. For q = 0.7, we performed
floppy-box MC simulations with several particles to compress the system to a high pressure
state, i.e., P ∗ = 107. We found a deformed bcc (dbcc) crystal shown in Fig. 9.4, which is
an intermediate form between the bcc lattice and the Minkowski crystal. The lattice vec-
tors are e1 = 0.912909i + 0.912403j− 0.912165k, e2 = −0.271668i + 1.80916j− 0.288051k
and e3 = 0.28834i − 0.272001j − 1.80882k, where i, j and k are the unit vectors along
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the axes of the particle. One can find that our dbcc crystal are very close the pre-
dicted O1 crystal, whose lattice vectors are e1 = 0.912492i + 0.912492j − 0.912492k,
e2 = −0.2884i + 1.80629j − 0.2884k, and e3 = 0.2884i − 0.2884k − 1.80629k. However,
it has a packing fraction of φ = 0.832839 which is denser than the predicted O1 crystal
with φ = 0.824976 in Refs. [173, 180] by roughly 1%. In Ref. [173], the O0 and O1 phases
are found to switch at q = 0.79248. We also observed that the bct and dbcc crystals both
transform into the bcc phase at q = 0.79248. Moreover, the equation of state for hard
octahedron-like superballs is shown in Fig. 9.5.
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Figure 9.5: Equation of state for octahedron-like hard superballs with various shape parame-
ters q. The solid, dashed, dotted and dash-dotted lines are fluid, plastic bcc, plastic fcc and bct
phases, respectively. P and φ are the pressure and packing fraction of the system, and v is the
volume of a particle.

As shown in Fig. 9.4, when the shape of the superballs is close to spherical, i.e.,
0.7 < q < 3, there is always a stable fcc plastic crystal phase. Surprisingly, when the
shape of superballs is octahedron-like, we find a stable bcc plastic crystal phase. Moreover,
around q = 0.8 we even find a fairly broad two-phase regime where a low-density fcc plastic
crystal coexists with a high-density bcc plastic crystal phase. In order to quantify the
orientational order in the bcc plastic crystal, we calculate the cubatic order parameter S4
given by [174]

S4 = max
n

 1
14N

∑
i,j

(
35|uij · n|4 − 30|uij · n|2 + 3

), (9.9)

where uij is the unit vector of the j-th axis of particle i, N the number of particles, and
n is the unit vector for which S4 is maximized. The cubatic order parameter S4 is shown
in Fig. 9.6 as a function of packing fraction for a system of superballs with q = 0.7. We
observe that at low packing fractions 〈S4〉 ' 0.2, which means that there is a very weak
orientational order in the system. With increasing packing fraction, the cubatic order
parameter increases monotonically to around 0.65 at a packing fraction of 0.7, which is
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indicative of a medium-ranged orientationally ordered system. This suggests that the
entropic repulsion due to the rotation of the octahedron-like superballs stablizes the bcc
lattice.
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Figure 9.6: Cubatic order parameter S4 as a function of packing fraction φ for a bcc plastic
crystal phase of hard superballs with q = 0.7. The inset shows a typical configuration of a bcc
plastic crystal of hard superballs with q = 0.7 and φ = 0.54.

Due to the numerical instability in the overlap algorithm, we are not able to investi-
gate systems of superballs with q < 0.7 [178]. However, we can use the separating axis
theorem [169] to simulate hard superballs with q = 0.5, i.e., perfect octahedra. When we
compressed the system from a fluid phase, we did not observe the spontaneous formation
of a crystal phase in our simulation box within our simulation time. When we expand
the Minkowski crystal, which is the close-packed structure of octahedra, in NPT MC
simulations by decreasing the pressure, the system melts into a bcc plastic crystal phase
as shown in Fig. 9.7. We also calculated the free energy for these three phases to deter-
mine the phase boundaries. To exclude finite-size effects in the free-energy calculation
of crystal phases, we performed Einstein integration for systems of N = 1024, 1458, and
2000 particles, and applied a finite-size correction [10]. We confirmed the errors in the
free-energy calculations to be on the order of 10−4kBT per particle. The calculated free-
energy densities for the three phases are shown in Fig. 9.7. Employing a common tangent
construction, we found that there is only phase coexistence between a fluid phase and a
Minkowski crystal phase, while the bcc plastic crystal phase is metastable. However, the
free-energy differences between the fluid and the plastic crystal phase at the bulk coexis-
tence pressure is very small , i.e., ∼ 10−2kBT per particle, and the Minkowski crystal does
melt into a bcc plastic crystal before melting into the fluid phase. This explains why in a
recent report the bcc (plastic) crystal was misidentified as a stable phase in an empirical
phase diagram of octahedra [181]. Our results thus show that the rounded corners of
octahedra play an important role in stablizing the bcc plastic crystal phase which is a
new plastic crystal phase for systems of hard particles.
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Figure 9.7: A part of the equation of state for hard octahedra. The pressure Pv/kBT and
free-energy density F/V − ρµc + Pc as a function of packing fraction φ. Here v is the volume
of the particle; F and V are the Helmholtz free energy and the volume of the system (in units
of particle volume) respectively; µc and Pc are the chemical potential and pressure at bulk
coexistence respectively with ρ the number density of the particles. The solid lines in the EOS
for the Minkowski and the bcc plastic crystal phases are obtained by melting the close packed
Minkowski crystal in floppy box NPT MC simulations, and the dotted line for the bcc plastic
crystal is obtained by compressing the crystal in cubic box NPT MC simulations. The black
points and dashed line show the coexistence between the fluid phase and the Minkowski crystal
phase.

9.4 Conclusions

In conclusion, using free-energy calculations we determined the full phase diagram of hard
superballs with shapes interpolating between cubes and octahedra, i.e., 0.5 ≤ q <∞. In
systems of cube-like superballs (q > 1), we find a stable deformed C1 phase at high packing
fraction, except close to the sphere-limit (q = 1) where a deformed C0 crystal is stable.
For q < 3 the crystal phase melts into an fcc plastic crystal before melting into a fluid
phase of cube-like superballs. In systems of octahedron-like superballs (0.5 < q < 1), we
find a stable bct or a deformed bcc crystal phase upon approaching close packing, with
a crossover at q = 0.79248. Moreover, a stable fcc plastic crystal appears at intermediate
densities for 0.7 < q ≤ 1. Interestingly, for q < 0.85, we find a novel stable bcc plastic
crystal phase, which can even coexist with the fcc plastic crystal phase at around q = 0.8.
More surprisingly, the bcc and fcc rotator phases are unstable for the flat-faced and sharp-
edged hard octahedra and hard cubes, respectively, which suggests that the rounded
corners play an important role in stabilizing rotator phases. It is tempting to argue that
entropic directional forces [181] that tend to align the flat faces of the polyhedral-shaped
particles destabilize rotator phases in favor of crystals. Finally, we also observed a two-
step melting phenomenon in the system of hard octahedra, such that the Minkowski
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crystal melts into a metastable bcc plastic crystal before melting into the fluid phase.
Nanoparticle self-assembly is surprisingly sensitive to particle curvature.
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9.6 Appendices

9.6.1 Overlap algorithm for superballs
The algorithm that we used to check for overlaps between superballs is based on the
Perram and Wertheim (PW) potential [182]. The details of the application of this general
method to the specific case of superballs can be found in Ref. [178]. A superball with
shape parameter q and size a, located at r0, and orientation matrix O = (o1,o2,o3) is
given by the set of points {r | ζ(r) ≤ 0, r ∈ R3} with ζ an appropriate shape function.
The shape function is strictly convex and defined by

ζ(r) = g
[
ζ̃(r̃)

]
− 1 (9.10)

with

g(x) = x1/q

ζ̃(r̃) =
(
r̃1

a

)2q
+
(
r̃2

a

)2q
+
(
r̃3

a

)2q

where r̃ = (r̃1, r̃2, r̃3)T = O−1 (r− r0) gives the relative coordinates of r with respect to
the particle centered at r0 with the reference orientation O.

The condition for overlap between a pair of particles A and B can be thought of as an
inequality between the position and orientation of the particles. For this purpose, we mea-
sure the distance between the two superballs using the overlap potential ζ(A,B), where
A and B contain the information for the location and orientation of the two superballs.
The sign of ζ(A,B) gives us an overlap criterion through

ζ(A,B) > 0 if A andB are disjoint
ζ(A,B) = 0 if A andB are externally tangent
ζ(A,B) < 0 if A andB are overlapping

(9.11)

ζ(A,B) is also at least twice continuously differentiable in the position and orientation of
A and B, respectively.

In the following we describe the procedure by which ζ(A,B) can be determined for two
superballs with given position and orientation. We define and compute the overlap condi-
tions using a procedure originally developed for ellipsoids by Perram and Wertheim [182].
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The PW overlap potential is defined by

ζ(A,B) = max
0≤λ≤1

min
rC

[λζA(rC) + (1− λ)ζB(rC)] , (9.12)

where ζA(rC) and ζB(rC) are the shape functions that define the two superballs A and B,
respectively. Here rC can be thought of as the first point of contact between A and B,
when these particles are uniformly expanded/scaled, whilst keeping their orientation and
position fixed. This is illustrated in Fig. S1.

For every λ, the solution of the inner optimization over rC is unique due to the strict
convexity of A and B, and it satisfies the gradient condition

∇ζ(A,B) = λ∇ζA(rC) + (1− λ)∇ζB(rC), (9.13)

which shows that the normal vectors are anti-parallel as shown in Fig. S1. The solution
of the outer optimization problem over λ is specified by the condition

ζ(A,B) = ζA(rC) = ζB(rC). (9.14)

A

B

rC

FIG. S1: An illustration of the scaling procedure applied to the two superballs A and B, which
results in the contact point at rC , and the two anti-parallel vectors that are normal to the scaled
surfaces of the particles at rC .

Calculating the PW overlap potential can be done by solving for rC(λ) in Eq. 9.13, and
then determining the λ that satisfies Eq. 9.14. The solution to Eq. 9.12 by solving a set
of ordinary differential equations (ODEs) and by making use of the ODE event location
method [183] to achieve ζA(rC) = ζB(rC). This method is rigorous in the sense that the
optimal λ can be determined within an arbitrary accuracy, however, it is inefficient since
it requires solving ODEs.
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If a good-enough initial guess can be provided for λ, one can directly use Newton-
Raphson (NR) method for the two equations. The method has the advantage that it is
more efficient than the one used in Ref. [183]. The Newton steps are determined as follows

∆λ = −1
ζλλ

[
(ζB − ζA)−∆gTM−1∇ζAB

]
, (9.15)

∆rC = M−1 (∆g∆λ−∇ζAB) , (9.16)

where

M = λ∇2ζA + (1− λ)∇2ζB,

∆g = ∇ζA −∇ζB,
ζλλ = ∆gTM−1∆g,

∇ζ(rC) = g′
[
ζ̃(r̃C)

]
∇ζ̃(r̃C),

∇2ζ(rC) = g′
[
ζ̃(r̃C)

] (
∇2ζ̃(r̃C)

)
+ g′′

[
ζ̃(r̃C)

] (
∇ζ̃(r̃C)

) (
∇ζ̃(r̃C)

)T
,

∇ζ̃(r̃C) = O ∇r̃C ζ̃(r̃C),
∇2ζ̃(r̃C) = O∇2

r̃C ζ̃(r̃C) OT ,

with O an orthogonal matrix, and ∇r̃C and ∇2
r̃C the gradient and Hessian matrix with

respect to r̃C , respectively. Here we also corrected the typographical errors in Ref. [178].
We have found that this NR method is only sufficiently numerically stable for simu-

lations of superballs with 0.85 ≤ q ≤ 1.7. Therefore, in order to improve the range of
stability, we make the following modifications to the Newton steps:

∆λ∗ = ∆λ · α
max (|∆λ| , |∆rC |)

(9.17)

∆r∗C = ∆rC · α
max (|∆λ| , |∆rC |)

(9.18)

where α is a uniform random number in the interval [0, 1). Essentially the modification
makes the length of the Newton step randomly smaller than unity. This helps to avoid
the divergence of the iterations in the NR procedure around singularities. With this
modification, we have shown that we are able to study systems of superballs with 0.7 ≤
q ≤ 3.5.

9.6.2 Lattice vectors of Minksowski crystal
The lattice vectors of a Minkowski crystal are given by

e1 = 2
3 i + 2

3j− 2
3k

e2 = −1
3 i + 4

3j− 1
3k

e3 = 1
3 i− 1

3j− 4
3k
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where i, j and k are the unit vectors along the axes of the octahedra, i.e., superball with
q = 1/2, given by

|x|+ |y|+ |z| ≤ 1 (9.19)
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Surface roughness directed
self-assembly of asymmetric

dumbbells into colloidal micelles

Colloidal particles with site-specific directional interactions, so called “patchy particles”,
have gained an increasing scientific attention in the past decades, because of their promis-
ing properties for bottom-up assembly routes towards complex structures. In this chapter,
we create a type of patchy particle by controlling the surface roughness of the specific
site on the particle. In particular, we study a system of particles with only one attractive
patch both in experiments and simulations. We found that when the interaction range
is relatively large, it can be well described with a Wertheim type theory. However, in
experiments, the interaction range is usually very small, which makes it very difficult to
reach equilibrium. Direct Monte Carlo simulations give rise to cluster size distributions
that are in good agreement with those found in experiments, although they both disagree
with results obtained from free energy calculations.
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10.1 Introduction
Recent breakthroughs in particle synthesis have resulted in a spectacular variety of build-
ing blocks with anisotropic interactions [3]. In particular, colloidal particles with site-
specific directional interactions, so called “patchy particles”, have gained a significant
amount of scientific attention in past decades, since they are promising candidates for
bottom-up assembly routes towards complex structures with rationally designed proper-
ties. [184–186] The size and geometry of the patches together with the shape of the inter-
particle potential are expected to determine the formed structures and phases, which may
range from empty liquids [187] and crystals [188–190] to finite-sized clusters [185, 191],
and lead to novel collective behavior. [192]

Recent approaches to assemble colloidal particles at specific sites include hydrophobic-
hydrophilic interactions, [189, 190] and lock-and-key recognition mechanisms. [193] With
a wide variability of colloidal shapes available today, the ultimate challenge is to identify
general methods to render specific areas of the colloids attractive or repulsive, while not
depending on a specific choice of material or surface chemistry. [3] Ideally, the attraction
strength and range is tunable and interactions are reversible to allow the formation of
equilibrium structures.

In this chapter, we investigate a system of “patchy” asymmetric dumbbells, of which
one sphere is smooth while the other is rough [194–197]. By adding non-adsorbing poly-
mers into the solution, the smooth spheres are shown to be exclusively attractive due to
their different overlap volume of depletion zones. We study the formation of colloidal mi-
celles and cluster size distribution. Our simulation results on the cluster size distributions
agree well with theoretical predictions as obtained from free energy calculations in the
case of relatively long interaction range. However, in experiments the depletion attraction
is very short ranged which makes it extremely difficult to reach equilibrium. Our results
obtained from direct simulations agree well with experiments but disagree with the free
energy calculations.

10.2 Methodology

10.2.1 Model
Our approach to achieve patchy particles employs depletion interactions between parti-
cles with locally different surface roughness as shown in Fig. 10.1. Depletion attractions
arise in dispersions of colloidal particles when a second, smaller type of non-adsorbing col-
loid or macromolecule, also termed depletant, is introduced in the suspension [198–201].
The center of mass of the depletant cannot approach the surface of the larger colloidal
particles closer than its radius rp, restricting the volume available to the depletant (see
Fig. 10.1B). The volume around the colloidal particles unavailable to the depletant is
called the exclusion volume. When the surfaces of two large colloids come closer to-
gether than the diameter of the depletant, 2rp, their exclusion volumes overlap and the
volume accessible to the depletant increases by the amount of this overlap volume ∆V .
The volume available to the depletant, and hence its entropy, increases, and an effective
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Figure 10.1: Patchy particles by roughness specific depletion interactions A) Colloidal
model systems consisting of one sphere with a smooth and one sphere with a rough surface. Scale
bars are 2µm. B) In the presence of small depletants (here depicted as polymers with radius
rp) the colloidal particles are surrounded by a layer inaccessible to the depletant (dotted line).
If colloidal particles approach such that their excluded volumes overlap, the depletant gains
entropy, which results in a net attraction between the colloids. The arising attraction, called the
depletion potential, is proportional to the overlapping excluded volume (blue regions). For two
rough spheres the overlap volume is significantly reduced compared to that for smooth particles.
Small arrows represent the effective forces on both colloids. C) Depletion potentials obtained
from simulations between two smooth, two rough and one smooth and one rough side of our
colloids, and polymer of size rp = 19nm (ρp = 0.038ρoverlap) as a function of the distance between
the surfaces of the colloids. D) Snapshots from a movie showing the breaking of a bond between
the smooth sides of two particles and later reformation of the bond. Dextran polymer with
radius rp = 19nm was used at a concentration of ρp = 0.4ρoverlap. Scale bar is 5µm. E) Rough
spheres as indicated by the black arrow are left out of the colloidal micelles formed from the
particles with one attractive patch. F) Bond formation between the larger smooth sides of two
particles and subsequent rearrangement due to the flexible bond (Dextran polymer, rp = 8.9nm,
ρp = 0.20ρoverlap). Scale bar is 5µm.

attractive depletion potential is induced between the two larger colloids. [198–201] The
depletion potential is roughly proportional to the number density of the depletant ρp and
the overlap volume ∆V as uAO/kBT = −ρp∆V . Here, kB is Boltzmann’s constant and T
is the temperature. Smooth surfaces have larger overlap volumes than incommensurate
rough surfaces, and hence are more strongly attracted towards each other by depletion
interactions as shown in Fig. 10.1B. [194–197] By employing Monte Carlo simulations,
we calculated the effective interactions between rough-rough and rough-smooth particles
in polymer solutions as shown in Fig. 10.1C. It can be observed that the depletion at-
tractions between rough-rough and rough-smooth spheres are significantly screened by
the surface roughness compared to those between smooth-smooth particles. Therefore,
we model the interactions between the rough spheres as hard-core interactions, while the
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depletion attraction between the smooth spheres is given by

uAO(r)
kBT

=


∞, r ≤ σ

ε
r3

2q3−
3r
2q+1

σ3
2q3−

3σ
2q +1

, σ < r ≤ q

0, r > q

, (10.1)

where r is the center-to-center distance between the smooth spheres of two dumbbells with
σ the diameter of smooth spheres. The interaction is described by the interaction strength
ε and the interaction range q, where q = σ + σp with σp the diameter of depletants. In
the solution of ideal polymer, the interaction strength is given by

ε = φp

σ3

2q3 − 3σ
2q + 1

(q − σ)3 q3 (10.2)

where φp = πσ3
pρp/6 is the packing fraction of ideal polymers in a reservoir in chemical

equilibrium with the system.

10.2.2 Simulation details
We studied this model system by simulating a system of N = 1000 particles at constant
density ρ and temperature T in Monte Carlo (MC) simulations. We directly measure
the cluster size distribution during the simulation. The initial configurations consist of
random located particles with random orientations. The simulation is equilibrated for
at least 107 MC cycles. In order to speed up equilibration of the system and increase
the mobility of the clusters with more than one particle, we employ cluster moves [10] to
collectively move the particles belonging to the same cluster. Two particles are clustered
when the center-to-center distance between their smooth spheres is less than the attraction
range q.

10.3 Results and Discussions

10.3.1 Cluster size distributions
We compare the cluster size distributions as obtained from direct MC simulations with
free energy calculations. To this end, we consider a system of N particles in a volume
V at temperature T . These particles form micelles under the constraint that the total
number of particles satisfies

N =
∞∑
n=1

nNn (10.3)

where Nn is the number of micelles consisting of n particles. For sufficiently dilute micelle
solutions the system can be modeled as an ideal gas of clusters, non-interacting but
capable of exchanging particles. This allows us to write the canonical partition function
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Z(N, V, T ) as

Z(N, V, T ) =
∞∏
n=1

QNn
n

Nn! , (10.4)

Qn = 1
(4π)nΛ3nn!

∫
V

drn
∫

dωn exp(−βU(rn, ωn))c(rn), (10.5)

where Qn is the internal configuration integral of a cluster of n particles, β = 1/kBT with
kB Boltzmann’s constant, Λ3 is the thermal volume of a particle, rn and ωn denote the
position and orientation of the particles in the cluster, respectively. c(rn) is the function
for clustering, which equals 1 when the particles at rn form a cluster, and zero otherwise.

The ratio Qn/Q1 can be measured using a grand-canonical (µV T ) MC simulation
(GCMC) [202]. By imposing the constraint of having only a single cluster in a GCMC
simulation, the probability of observing a cluster of size n is

P (n)
P (1) = Qn

Q1
exp[βµ(n− 1)] (10.6)

Hence, the ratio Qn/Q1 can be directly obtained for all n from GCMC simulations.

10.3.2 Comparison with experiments
Colloidal particles consisting of one smooth and one rough sphere were synthesized as
depicted in Fig. 10.1B. The final particles had a protrusion radius of 1.11 ± 0.06µm
(smooth side) and a seed radius of 1.46 ± 0.06µm (rough side),and the total length is
4.9 ± 0.12µm, which means that the size ratio of the two spheres of the dumbbell is
σ/σR = 0.76 with center-to-center distance d = 0.79σ. Furthermore, large rough spheres
of radius 1.6 ± 0.1µm were employed in the experiments. Although NaCl was added to
the system to screen the electrostatic interactions, some of the charge repulsion remains
between the particles. As a result, it is difficult to calculate the effective interaction
strength from the concentration of polymers. However, the size of the polymer (σp = 38
nm) and the packing fraction of the system (φ = 0.003) are known, and we expect that
the electrostatic repulsion mainly affects the effective strength of the interaction, without
strongly influencing the behavior of the system. Thus, the interaction strength ε will be
our only fitting parameter when comparing distributions to the experimental results. The
direct observations from light microscopy shows that it typically takes 10 minutes for a
particle to escape from a dimer. By using Kramers’ approach [203, 204], we estimate that
the interaction strength in Eq. 10.1 is around ε = −10kBT .

According to experimental settings, we perform canonical MC simulations (NV T ) to
study the self-assembly of this asymmetric dumbbell system of σ/σR = 0.76 and d = 0.79σ
at the packing fraction φ = 0.003 with the attraction strength between smooth spheres
ε = −10kBT . Due to the strong attraction between particles, they form clusters in
the solution, and the representative images of the colloidal clusters containing n = 1 to
n = 12 particles are presented in Fig. 10.2. Note that the colloids are free to move
within the limitations of the bonds and particularly the rough parts are free to sample
the accessible volume around the center of the clusters. These clusters are reminiscent of
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Figure 10.2: Typical cluster shapes obtained from colloids with attractive small smooth, and
large rough (non-attractive) side containing n = 1 to n = 12 patchy particles. On the left
side, experimentally observed clusters of colloids with small, smooth side are presented. Scale
bar is 5µm. The right side shows clusters obtained from Monte Carlo simulations on dimers
consisting of a rough and a smooth sphere. The smooth spheres interact by an attractive
depletion potential (green) and the rough spheres interact with a hard-sphere potential (red).
The interactions between rough and smooth spheres are also assumed to be hard-sphere-like. In
experiments and simulations, the smaller attractive sides are located at the core of the clusters,
reminiscent of micelles. Snapshots for experiments and MC simulations taken after the cluster
size distribution stopped evolving significantly.

surfactant micelles, where the colloids specifically bind at their smaller smooth sides inside
the clusters just like the hydrophobic parts of surfactants attract each other. The larger,
rough sides of the particles are located outside of the clusters similar to the hydrophilic
head group of surfactant micelles. These interactions together with their overall cone-like
shape make our colloids the simplest realization of “colloidal surfactants” [205], which in
analogy to molecular surfactants form “colloidal micelles”.

The strength of the attraction between the smooth spheres and the size of the clusters
can be tuned by the polymer concentration as shown in Fig. 10.3. When the polymer
concentration is low, i.e., ρp = 0.32ρoverlap, there are no clusters formed in the system,
where ρoverlap = (πσ3

p/6)−1 is the polymer overlap concentration. When the polymer
concentration increases to ρp = 0.35ρoverlap, there are small clusters consisting of two or
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Figure 10.3: Transmission light microscopy images of colloidal clusters from colloids with
small attractive patches at increasing polymer concentrations and corresponding cluster size
distributions for experiments (bars, σp = 38nm), and direct MC simulations (ε = −10kBT ,
σp = 38nm, after 108 MC cycles, shown as solid dots) and free energy calculations (shown as
open diamonds). Single particles are present in solution at ρp = 0.32ρoverlap (left of the top row).
Small clusters with an exponentially decaying size distribution for ρp = 0.35ρoverlap (middle of
the top row). Bonds between smooth patches are indicated by red arrows, and black/white arrow
indicates binding between smooth and rough sides of the particles. For ρp = 0.40ρoverlap a clear
peak in the cluster size distribution appears around n = 10 (right of the top row). Black arrows
point out rough spheres. Cluster distributions shown below the microscopy images corroborate
that experiments and direct MC simulations are in agreement. However, the distributions are not
in equilibrium yet as free energy calculations yield a significantly different cluster distribution.
Above a critical aggregation concentration site-specificity is lost. Scale bars are 10µm.

three particles formed in the system. Colloidal micelles are obtained at a slightly higher
polymer concentration, i.e., ρp = 0.38ρoverlap, and the cluster size distribution shows a
significant second peak located at n = 10, which is the most probably cluster size. The
MC simulation results agree very well with the experiments, but disagree with the results
from free energy calculation in equilibrium. This suggests that the MC simulations and
experiments are out of equilibrium.

10.4 Conclusions

In this chapter, we performed kinetic Monte Carlo simulations to study the self-assembly
of colloidal asymmetric dumbbells, of which one sphere is smooth and the other is rough.
In the solution of non-adsorbing polymers with certain sizes, the smooth spheres are
attractive to each other due to the depletion interaction while the depletion attraction
between the rough sphere is screened out. This makes the particle behave like a patchy
particle with only one attractive patch. We model such particles as asymmetric dumbbells
by employing the Asakura-Oosawa (AO) potential between smooth spheres and hard-core
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interactions between smooth-rough and rough-rough spheres. Our simulations show that
such asymmetric patchy dumbbells can form micelles in the presence of non-adsorbing
polymer, and when the interaction range of AO potential is relatively large, which means
that the system can easily reach equilibrium. However, in experiments, the interaction
range of AO potential is very short, which makes it very difficult to reach equilibrium. Our
direct simulation results agree very well with the experiments, but they both disagree with
the equilibrium free energy calculations. We demonstrate that this experimental method
is promising in making well controlled patchy particles while it still needs to increase the
interaction range to improve the chance of reaching equilibrium.
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Summary

In this thesis, we study the phase behavior and the kinetic pathway of phase transitions
in colloidal systems driven by entropy. In Chapter 1, we gave a general introduction on
colloid and the simulation methods we employed throught the thesis, i.e., Monte Carlo
and molecular dynamics simulation methods. Then the thesis is divided into two parts:
nucleation and phase behavior in colloidal systems.

In the first part of this thesis, we study the nucleation in systems consisting of different
colloidal particles. In Chapter 2, we introduce the physical background of nucleation by
taking an example of the gas-liquid nucleation in a system of Van der Waals fluid below
the critical temperature. Then we briefly derive the classical nucleation theory, which is a
widely used phenomenological theory to describe the free energy barrier and the kinetics
of nucleation. Furthermore, in the rest of the first part of this thesis, we studied the
nucleation in a variety of colloidal systems.

Hard sphere is almost the simplest model system for studying the phase behavior of
colloidal systems, and the calculated equilibrium phase diagram of hard spheres is in good
agreement with experiments [8]. However, the calculated crystal nucleation rates of hard
sphere systems from Monte Carlo simulations differ from those measured in experiments
by more than six orders of magnitude [18], which has induced an ongoing hot debate
in the past decade. In Chapter 3, we studied the crystal nucleation in a system of
hard spheres by using three different methods of rare events, i.e., umbrella sampling,
forward flux sampling and molecular dynamics simulations. We found that the nucleation
rates calculated from those three methods all agree with each other very well in long-
time diffusion units. Moreover, the nucleation rates calculated from simulations agree
with experimental results at high supersaturations, while there is still a markedly large
discrepancy at low supersaturations. Furthermore, we found that the structure of nuclei is
independent of simulation methods, and they contain on average significantly more face-
centered-cubic (fcc) ordered particles than hexagonal-close-packed (hcp) ordered particles
while the free energy difference between fcc and hcp is on the order of 10−3kBT per
particle.

In experiments, the synthesized particles can not be perfect hard spheres, and there
is always some soft repulsion between particles, thus it has be speculated that the dis-
crepancy in the nucleation rates obtained in experiments and computer simulations may
arise from such soft repulsions between particles in experiments. Therefore, in Chapter 4,
we examine the phase behavior of the Weeks-Chandler-Andersen (WCA) potential with
βε = 40, i.e, a hard-sphere like interaction. Crystal nucleation in this model system was
recently studied by Kawasaki and Tanaka [20], who argued that the computed nucleation
rates agree well with experiment, a finding that contradicted earlier simulation results.
Here we report an extensive numerical study of crystallization in the WCA model, using
three totally different techniques (Brownian Dynamics, Umbrella Sampling and Forward
Flux Sampling). We find that all simulations yield essentially the same nucleation rates.
However, these rates differ significantly from the values reported by Kawasaki and Tanaka
and hence we argue that the huge discrepancy in nucleation rates between simulation and
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experiment persists. When we map the WCA model onto a hard-sphere system, we find
good agreement between the present simulation results and those that had been obtained
for hard spheres.

In addition, the particles synthesized in experiments can not be perfect spherical,
and possibly the small anisotropy of the particles can influence the resulting nucleation
rates. Thus, in Chapter 5, we study the homogeneous crystal nucleation in suspensions
of colloidal hard dumbbells. When the shape of hard dumbbells is close to spherical, we
found that the system nucleate a plastic crystal phase which agrees with the equilibrium
phase diagram from free energy calculations [86]. In addition, at low supersaturations the
free energy barriers increases slightly with increasing dumbbell anisotropy, which can be
explained by a small increase in surface tension for more anisotropic dumbbells [96]. When
the supersaturation increases, the barrier height decreases with increasing dumbbell aspect
ratio, which can only be explained by a different pressure-dependence of the interfacial
tension for hard dumbbells with different aspect ratios. Although the nucleation rate for
the plastic crystal phase does not vary much with aspect ratio, the dynamics do decrease
significantly. We also carried out molecular dynamics simulations and compared the
nucleation rates obtained from spontaneous nucleation events with those obtained from
the umbrella sampling Monte Carlo simulations, and found good agreement within the
error bars of one order of magnitude. Moreover, we also studied the nucleation of the
aperiodic crystal phase of hard dumbbells, when the shape the dumbbells is close to that
of two touching spheres. Our results showed that at the same pressure, the nucleation
barrier of the aperiodic crystal phase of hard dumbbells with L∗ = 1.0 is slightly higher
than that of hard spheres which is mostly due to a small difference in supersaturation.

The interest in positionally and orientationally ordered assemblies of anisotropic par-
ticles is driven by their great technological potential as they exhibit anisotropic optical
properties, but arises from a more fundamental point of view as well. However, the
kinetic pathways of the self-assembly of anisotropic particles are not well understood.
For instance,the phase diagram of hard rods has been known for around fifteen years,
and shows that there are stable isotropic, nematic, smectic and crystal phases depending
on the aspect ratio [114]. Only very recently, the kinetic pathway of isotropic-nematic
(IN) phase transition for long rods was reported, but the isotropic-smectic (ISm) and
isotropic-crystal (IX) phase transitions of short rods still remain unknown. In Chapter 6,
we study the kinetic pathways of IX and ISm in systems of hard rods, and we identify
three dynamic regimes in supersaturated isotropic fluids of short hard rods: for moderate
supersaturations we observe nucleation of multi-layered crystalline clusters; at higher su-
persaturation, we find nucleation of small crystallites which arrange into long-lived locally
favored cubatic-like structures that get kinetically arrested, while at even higher super-
saturation the dynamic arrest is due to the conventional cage-trapping glass transition.
For longer rods we find that the formation of the (stable) smectic phase out of a supersat-
urated isotropic state is strongly suppressed by an isotropic-nematic spinodal instability,
and we showed for the first time that for quenches close to a spinodal the clusters diverge
in size.

Furthermore, in Chapter 7, by performing extensive molecular dynamics simulations,
we study nucleation in a system of particles with internal degrees of freedom, i.e., colloidal
polymers consisting flexibly connected hard spheres. It has been shown recently that
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random packings of granular ball chains show striking similarities with the glass transition
in polymers [131]. Therefore, these hard-sphere chains can serve as a simple model for
polymeric systems and a better understanding of the behavior of these bead chains may
shed light on the glass transition and crystallization of polymers. We present a novel
event-driven molecular dynamics simulation method, which is easy to implement and
very efficient. We find that the nucleation rates are predominately determined by the
number of bonds per sphere in the system, rather than the precise details of the chain
topology, chain length, and polymer composition. Our results thus show that the crystal
nucleation rate of bead chains can be enhanced by adding monomers to the system. In
addition, we find that the resulting crystal nuclei contain significantly more fcc than hcp
ordered particles. More surprisingly, the resulting crystal nuclei possess a range of crystal
morphologies including structures with a five-fold symmetry.

Compared to the nucleation in systems consisting of monodisperse particles, crystal
nucleation is much more complicated in the systems containing different types of particles.
For instance, in systems of binary mixtures, dynamical heterogeneities may make the
kinetic pathways of nucleation out of equilibrium [28], and they may be influenced by the
order parameter used in the umbrella sampling simulations. In the last chapter of the
first part of this thesis, i.e., Chapter 8, we study crystal nucleation in a binary mixture
of hard spheres and investigate the composition and size of (non)critical clusters using
Monte Carlo simulations. We show that the choice of order parameter can strongly
influence the composition of noncritical clusters due to the projection of the Gibbs free-
energy landscape in the two-dimensional composition plane onto a one-dimensional order
parameter. On the other hand, the critical cluster is independent of the choice of the
order parameter, due to the geometrical properties of the saddle point in the free-energy
landscape, which is invariant under coordinate transformation. We investigate the effect
of the order parameter on the cluster composition for nucleation of a substitutional solid
solution in a simple toy model of identical hard spheres but tagged with different colors
and for nucleation of an interstitial solid solution in a binary hard-sphere mixture with a
diameter ratio q = 0.3. In both cases, we find that the composition of noncritical clusters
depends on the order parameter choice, but are well explained by the predictions from
classical nucleation theory. More importantly, we find that the properties of the critical
cluster do not depend on the order parameter choice.

In the second part of this thesis, we study the entropy-driven phase behavior of col-
loidal systems. In Chapter 9, we determined the full phase diagram of colloidal hard
superballs, of which the shape interpolates between cubes and octahedra via spheres, by
free-energy calculations in Monte Carlo simulations. We discover not only a stable fcc
plastic crystal phase for near-spherical particles, but also a stable body-centered cubic
(bcc) plastic crystal close to the octahedron shape, and in fact even coexistence of these
two plastic crystals with a substantial density gap. The plastic fcc and bcc crystals are,
however, unstable in the cube and octahedron limit, suggesting that the rounded corners
of superballs play an important role in stablizing the rotator phases. In addition, we ob-
serve a two-step melting phenomenon for hard octahedra, in which the Minkowski crystal
melts into a metastable bcc plastic crystal before melting into the fluid phase.

Finally, in the last chapter of this thesis, i.e., Chapter 10, we realize a type of patchy
particle by controlling the surface roughness of specific sites on the particle. In particular,
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we study a system of particles with only one attractive patch. We found that when the
interaction range is relatively large, it can be well described with a Wertheim type theory.
However, in experiments, the interaction range is usually very small, which makes it very
difficult to reach equilibrium. Direct Monte Carlo simulations give rise to cluster size
distributions that are in good agreement with those found in experiments, although they
both disagree with results obtained from free energy calculations.



Samenvatting

In deze scriptie bestuderen we het fasegedrag en het kinetische reactiepad van faseover-
gangen in colloïdale systemen gedreven door entropie. Hoofdstuk 1 bevat een algemene
introductie in colloïden en de simulatiemethoden die gebruikt worden in deze scriptie,
namelijk Monte-Carlo- en moleculairedynamicamethoden. De scriptie is opgedeeld in
twee delen; een deel over de nucleatie en één over het fasegedrag van colloïdale systemen.

In het eerste deel van deze scriptie bestuderen we de nucleatie in systemen die bestaan
uit verschillende colloïdale deeltjes. In Hoofdstuk 2 introduceren we de fysische achter-
grond van nucleatie door te kijken naar een voorbeeld van de gas-vloeistof-nucleatie in
een systeem van Van der Waals fludum beneden de kritische temperatuur. Vervolgens
leiden we in het kort de klassieke nucleatietheorie af, hetgeen een veelvuldig toegepaste
fenomenologische theorie is voor het beschrijven de vrije-energiebarrières en de kinetika
van nucleatie. In de rest van het eerste deel van deze scriptie bestuderen we vervolgens
nucleatie in verscheidene colloïdale systemen.

Het hardebollenmodel is zo ongeveer het simpelste model voor het bestuderen van
fasegedrag in colloïdale systemen, en het berekende fasediagram van harde bollen is in
goede overeenstemming met experimenten [8]. De uit Monte-Carlosimulaties berekende
kristalnucleatiesnelheden van hardebollensystemen verschillen echter meer dan zes orde-
groottes van de experimenteel gemeten waardes, hetgeen in het afgelopen decennium een
felle, nog voortdurende discussie teweeg heeft gebracht. In Hoofdstuk 3 bestudeerden
we kristalnucleatie in een hardebollensysteem door gebruik te maken van drie verschil-
lende methoden voor rare events, namelijk Umbrella Sampling, Forward Flux Sampling en
moleculairedynamicasimulaties. We ontdekten dat de nucleatiesnelheden berekend met
deze drie methoden heel goed met elkaar overeenstemden in eenheden van langetijdsd-
iffusie. De nucleatiesnelheden berekend met deze simulaties kwamen ook overeen met
experimentele resultaten bij hoge oververzadiging, maar bij lage oververzadiging was er
duidelijk een grote discrepantie. Daarbij ontdekten we dat de structuur van de nuclei
onafhankelijk is van de simulatiemethoden, en dat ze gemiddeld aanzienlijk meer deeltjes
bevatten die geordend zijn in een kubisch vlakgecentreerd (fcc) rooster dan in een hexag-
onale dichtste stapeling (hcp), terwijl het verschil in vrije energie per deeltje tussen fcc
en hcp slechts in de ordegrootte van 10−3kBT is.

Omdat in experimenten de gesynthetiseerde deeltjes nooit perfecte harde bollen zijn,
en er altijd een zachte repulsie tussen de deeltjes is, is er gespeculeerd dat de dis-
crepantie tussen de nucleatiesnelheden verkregen uit experimenten en uit computersimu-
laties afkomstig zou kunnen zijn van deze zachte repulsies tussen de deeltjes in de exper-
imenten. Hoofdstuk 4 onderzoeken we daarom het fasegedrag van de Weeks-Chandler-
Andersonpotentiaal (WCA) met βε = 40, d.w.z. een interactie lijkend op die van harde
bollen. Kristalnucleatie in dit modelsysteem is recentelijk bestudeerd door Kawasaki en
Tanaka [20], die stelden dat de berekende nucleatiesnelheden goed overeenkwamen met ex-
perimenten, een ontdekking die eerdere simulatieresultaten tegensprak. Wij rapporteren
hier ons uitvoerige numerieke onderzoek naar kristalisatie in het WCA-model, gebruik
makend van drie geheel verschillende technieken (Brownse dynamica, Umbrella Sampling
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en Forward Flux Sampling). We bemerken dat al deze simulaties in wezen identieke simu-
latiesnelheden opleveren. Deze snelheden verschillen echter aanzienlijk van de waardes die
Kawasaki en Tanaka noemen en daarom stellen wij dat de enorme discrepantie van nu-
cleatiesnelheden tussen simulaties en experimenten voortduurt. Als we het WCA-model
afbeelden op een hardebollensysteem vinden we een goede overeenstemming tussen de
resultaten van huidige simulaties en die van hardebollensimulaties.

Bovendien kunnen in het lab gesynthetiseerde deeltjes niet perfect bolvormig zijn, en
mogelijkerwijs zou de kleine anisotropie van de deeltjes de resulterende nucleatiesnelhe-
den kunnen benvloeden. Daarom bestuderen we in Hoofdstuk 5 de homogene kristalnu-
cleatie in suspensies van colloïdale harde dumbbelldeeltjes. Als de vorm van de harde
dumbbells bijna bolvormig is, blijkt dat het systeem nucleëert tot een plastic kristalfase,
in overeenstemming met het equilibriumfasediagram uit vrije energieberekeningen [86].
Ook blijkt dat bij lage oververzadiging de vrije energiebarrières lichtelijk hoger worden
bij toenemende anisotropie van de dumbbells [96]. Als de oververzadiging groter wordt,
krimpen de barrières juist bij toenemende anisotropie, hetgeen alleen maar verklaard kan
worden door een verschillende drukafhankelijkheid van de oppervlaktespanning voor ver-
schillende lengtebreedteverhoudingen van de dumbbells. Hoewel de nucleatiesnelheid voor
de plastic kristalfase niet veel varieert met de afmetingsverhouding, wordt de dynamica
wel aanzienlijk langzamer. We hebben ook moleculairedynamicasimulaties uitgevoerd en
de nucleatiesnelheden verkregen uit spontane nucleatie-events vergeleken met die uit de
Umbrella Sampling Monte-Carlosimulaties en vonden een goede overeenkomst binnen een
foutenmarge van één ordegrootte. Ook hebben we de nucleatie van de aperiodieke kristal-
fase van harde dumbbells bestudeerd voor het geval dat de vorm van de dumbbells dichtbij
die van twee elkaar rakende bollen ligt. Onze resultaten lieten zien dat bij dezelfde druk
de nucleatiebarrière van de aperiodieke kristalfase van harde dumbbells met L∗ = 1.0
lichtelijk hoger is dan die van harde bollen, hetgeen vooral komt door een klein verschil
in oververzadiging.

De aandacht voor positioneel en oriantationeel geordende assemblages van anisotropis-
che deeltjes is gedreven door hun enorme technologische potentie vanwege hun anisotropis-
che optische eigenschappen, maar komt ook voort uit een fundamenteler interesse. De
kinetische reactiepaden van de zelfassemblage van anisotropische deeltjes worden echter
niet goed begrepen. Het fasediagram van harde staafjes is bijvoorbeeld al zo’n vijftien jaar
bekend en laat zien dat er stabiele isotropische, nematische, smectische en kristalijne fases
zijn, afhankelijk van de afmetingsverhouding [114]. Heel recent pas werd het kinetische re-
actiepad van de faseovergang tussen isotroop en nemaat beschreven, maar de faseovergang
tussen isotroop en smectisch (ISm) en tussen isotroop en kristal (IX) is nog steeds niet
ontrafeld. In Hoofdstuk 6 bestuderen we de kinetische reactiepadedn van IX en ISm in sys-
temen van harde staafjes, en identificeren we drie dynamische regimes in oververzadigde
isotrope fludums van korte harde staafjes: bij gematigde oververzadiging zien we nucleatie
van gelaagde kristalijne structuren; bij hogere oververzadiging vinden we nucleatie van
kleine kristallieten die zich ordenen in langlevende lokaal geprefereerde kubaat-achtige
structuren die kinetisch opgesloten worden, terwijl bij nog hogere oververzadiging de
dynamische opsluiting komt door de conventionele “cage-trapping” glasovergang. Voor
langere staafjes ontdekken we dat de formatie van de (stabiele) smectische fase uit een
oververzadigde isotrope staat sterk wordt onderdrukt door een isotropische-nematische
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spinodale instabiliteit, en we lieten voor het eerst zien dat de clusters voor temperingen
dichtbij een spinodale divergeren in grootte.

De aandacht voor positioneel en oriantationeel geordende assemblages van anisotropis-
che deeltjes is gedreven door hun enorme technologische potentie vanwege hun anisotropis-
che optische eigenschappen, maar komt ook voort uit een fundamenteler interesse. De
kinetische reactiepaden van de zelfassemblage van anisotropische deeltjes worden echter
niet goed begrepen. Het fasediagram van harde staafjes is bijvoorbeeld al zo’n vijftien jaar
bekend en laat zien dat er stabiele isotropische, nematische, smectische en kristalijne fases
zijn, afhankelijk van de afmetingsverhouding [114]. Heel recent pas werd het kinetische re-
actiepad van de faseovergang tussen isotroop en nemaat beschreven, maar de faseovergang
tussen isotroop en smectisch (ISm) en tussen isotroop en kristal (IX) is nog steeds niet
ontrafeld. In Hoofdstuk 6 bestuderen we de kinetische reactiepadedn van IX en ISm in sys-
temen van harde staafjes, en identificeren we drie dynamische regimes in oververzadigde
isotrope fludums van korte harde staafjes: bij gematigde oververzadiging zien we nucleatie
van gelaagde kristalijne structuren; bij hogere oververzadiging vinden we nucleatie van
kleine kristallieten die zich ordenen in langlevende lokaal geprefereerde kubaat-achtige
structuren die kinetisch opgesloten worden, terwijl bij nog hogere oververzadiging de dy-
namische opsluiting komt door de conventionele “cage-trapping” glasovergang. Voor
langere staafjes ontdekken we dat de formatie van de (stabiele) smectische fase uit een
oververzadigde isotrope staat sterk wordt onderdrukt door een isotropische-nematische
spinodale instabiliteit, en we lieten voor het eerst zien dat de clusters voor temperingen
dichtbij een spinodale divergeren in grootte.

Door uitvoerige moleculairedynamicasimulaties uit te voeren bestuderen we voorts, in
Hoofdstuk 7, nucleatie in een systeem van deeltjes met interne vrijheidsgraden, namelijk
colloïdale polymeren die bestaan uit flexibel verbonden harde bollen. Het is recentelijk ger-
apporteerd dat willekeurige pakkings van granulaire balkettingen opvallende overeenkom-
sten met de glastransitie in polymeren laten zien [131]. Daarom kunnen deze hardebollen-
kettingen dienen als een eenvoudig model voor polymeersystemen en een beter begrip van
het gedrag van deze kralenkettingen zou de glastransitie en kristallisatie van polymeren
kunnen ophelderen. Wij presenteren een nieuwe gebeurtenisgedreven moleculairedynami-
casimulatiemethode die zowel gemakkelijk te implenteren als zeer efficint is. We ontdekken
dat de nucleatiesnelheden overwegend bepaald worden door het aantal banden per bol in
het systeem, in plaats van de exacte bijzonderheden van de kettingtopologie, kettinglengte
en polymeersamenstelling. Onze resultaten laten dus zien dat de kristalnucleatiesnelheid
van kralenkettingen verhoogd kan worden door monomeren toe te voegen aan het sys-
teem. Bovendien ontekken we dat de resulterende kristalnuclei aanzienlijk meer fcc- dan
hcp-geordende deeltjes bevatten. Verassender is dat de resulterende kristalnuclei een
verscheidenheid aan kristalmorfologin bevatten, inclusief structuren met een vijfvoudige
symmetrie.

Vergeleken met de nucleatie in systemen die bestaan uit monodisperse deeltjes is
kristalnucleatie in systemen die verschillende typen deeltjes bevatten veel ingewikkelder.
In systemen met binaire mengsels zouden dynamische heterogeniteiten bijvoorbeeld de
kinetische reactiepaden van nucleatie kunnen vormen [28], of ze zouden benvloed kunnen
worden door de orde-parameter die gebruikt wordt in de Umbrella Sampling-simulaties.
In het laatste hoofdstuk van het eerste deel van deze scriptie, namelijk Hoofdstuk 8,
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bestuderen we kristalnucleatie in een binair mengsel van harde bollen en onderzoeken we
de samenstelling en grootte van (niet-)kritische clusters met Monte-Carlosimulaties. We
laten zien dat de keuze van orde-parameter de samenstelling van niet-kritische clusters
sterk kan bevloeden vanwege de projectie van het Gibbs vrije-energielandschap in het
tweedimensionale samenstellingsvlak op een ééndimensionale orde-parameter. Anderz-
ijds is de kritische cluster onafhankelijk van de keuze van orde-parameter, vanwege de
geometrische eigenshappen van het zadelpunt in het vrije-energielandschap, dat invari-
ant is onder cordinatentransformaties. We onderzoeken het effect van de orde-parameter
op de clustersamenstelling voor nucleatie in een substitutionelevastestofoplossing in een
eenvoudig model van identieke harde bollen maar gemarkeerd met verschillende kleuren,
en voor nucleatie van een interstitilevastestofoplossing in een binair hardebollenmengsel
met diameterverhouding q = 0.3. In beide gevallen vinden we dat de samenstelling van
niet-kritische clusters afhangt van de keuze van orde-parameter, maar dat dat goed verk-
laarbaar is met behulp van de voorspellingen uit klassieke nucleatietheorie. Belangrijker is
dat de eigenschappen van het kritische cluster niet afhangt van de orde-parameterkeuze.

In het tweede deel van deze scriptie bestuderen we het entropiegedreven fasegedrag van
colloïdale systemen. In Hoofdstuk 9 bepaalden we met behulp van vrije-energieberekeningen
in Monte-Carlosimulaties het volledige fasediagram van colloïdale harde superballen, waar-
van de vorm interpoleert tussen kubussen en octaders, via bollen. We ontdekken niet
alleen een stabiel fcc-plastickristalfase voor bijna-bolvormige deeltjes, maar ook een sta-
biel kubisch ruimtelijk gecentreerd (bcc-) plastic kristal dichtbij de octadervorm, en zelfs
coxistentie van deze twee plastic kristallen met een aanzienlijke energiekloof. De plastic
fcc- en bcc-kristallen zijn echter instabiel in de kubus- en octaderlimiet, hetgeen erop wijst
dat de afgeronde hoeken van de superballen een belangrijke rol spelen bij het stabiliseren
van de rotatorfases. Verder bemerken we een smeltfenomeen in twee stappen voor harde
octaders, waarin het Minkowski-kristal smelt tot een metastabiele bcc-plastickristal voor-
dat het smelt tot een fludumfase.

Tenslotte verwezenlijken we in Hoofdstuk 10 een type patchy deetlje door de opper-
vlakteruwheid op specifieke plaatsen op het deeltje te beheersen. We bestuderen in het bij-
zonder een systeem van deeltjes met slechtséén attractieve patch. We ontdekken dat als
het interactiebereik relatief groot is, hij goed beschreven kan worden met een Wertheim-
achtige theorie. In experimenten is het interactiebereik echter meestal klein, wat het
zeer moeilijk maakt om evenwicht te bereiken. Directe Monte-Carlosimulaties zorgen
voor clustergroottedistributies die in goede overeenkomst zijn met experimenten, hoewel
beiden niet overeenkomen met de resultaten verkregen uit vrije-energieberekeningen.
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本论文研究了熵驱动胶体体系的相行为以及相变的动力学路径。在第一章中，我们首
先概括性的介绍了胶体以及本论文用到的计算机模拟方法，即Monte Carlo和分子动力
学模拟方法。论文的研究内容可以被分为两个部分：胶体体系内的成核和相行为。

在本文的第一部分中，我们研究了由各种胶体粒子组成的体系内的成核问题。在第
二章中，首先以临界温度下Van der Waals流体的汽－液相变为例，介绍了成核的物理
背景。 随后我们给出了一个常用于描述成核问题的唯象理论，即经典成核理论。在接
下来的章节中，我们进一步研究了不同胶体体系中的成核问题。

硬球流体可能是我们研究胶体体系所能使用的最简单的模型系统，且计算机模拟的
平衡态相图和实验结果吻合得很好 [8]。然而，采用Monte Carlo模拟方法计算得到的硬
球流体的晶体成核率和实验观测到的数值相差至少六个数量级，在过去的十多年内，
学术界对此巨大的差异的成因存在很大争议。 为了解决这个问题，我们在第三章中采
用了三种完全不同的计算机模拟方法，即umbrella sampling、forward flux sampling及
分子动力学模拟方法，系统研究了硬球流体的晶体成核问题。我们发现采用长时扩散
时间为单位，三种方法得到的成核率几乎一样。 此外，我们还发现这三种模拟方法
得到的成核率在高压的情况下和实验结果吻合的很好，但是在低压的情况下仍然有巨
大的差别。我们进一步研究发现 形成的核的结构不受模拟方法的影响，且三种模拟
方法都发现包含较多的具有面心立方（fcc）对称性的粒子，但是只有少量具有六边形
（hcp）对称性的粒子。这个结果是让人意想不到的，因为fcc和hcp两种晶体的自由能
差别很小，即每个粒子10−3kBT的数量级上。

此外，实验中得到的胶体粒子不可能是完美的硬球，且粒子之间总是有一些软
的排斥作用。因此，一些学者认为也许成核率的差别是源于 这些软的排斥相互
作用。所以，我们在第四章中研究了一种类硬球的软排斥粒子体系的相变，即具
有βε = 40的Weeks-Chandler-Andersen（WCA）相互作用。该体系的成核已经于近期
被Kawasaki和Tanaka [20]用布朗动力学方法研究过，且他们认为计算机模拟得到的成
核率和实验结果吻合的很好，但和前人的模拟结果不一样。我们采用三种完全不一
样的模拟方法，即布朗动力学模拟、umbrella sampling和forward flux sampling模拟，
研究该WCA体系的成核问题。我们发现三种方法得到的模拟结果几乎一致，但是
与Kawasaki和Tanaka得到的结果存在差异，因此我们认为计算机模拟得到的成核率和
实验观测值之间的差异仍然存在。但如果将WCA模型的相边界映射到硬球体系上，我
们发现模拟结果和硬球的成核率吻合的很好。

另外，实验里合成的也不可能是完美的球形粒子，也许粒子的非均向的形状也是
影响成核率的一个原因。因此，在第五章，我们研究了哑铃状胶体粒子体系的均向成
核。当粒子的形状接近球形的时候，我们发现体系会成核生成一种塑性晶体，该结果
和通过自由能计算得到的平衡态相图吻合的很好 [86]。此外，在低压情况下，成核的自
由能能垒随着粒子的非球性增加而缓慢增加，我们认为这是由于界面自由能随着粒子
形状发生变化导致的差异 [96]。当压强增大的时候，成核的能垒随着粒子的非球性增
加而降低，这是由于界面自由能对于压强的依赖随着粒子形状的变化而变化导致的。
虽然成核率随着形状的改变并没有发生太大变化，但是体系的运动速度却随着粒子的
非球性的增加而明显降低。此外，我们还进行了分子动力学的模拟，并将得到的成核
率和umbrella sampling模拟得到的成核率做比较，其结果吻合的很好，这也验证了我们
的umbrella sampling模拟的结果是可靠的。除此以外，我们还研究了由较长哑铃状粒子
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形成的非周期性晶体的成核问题。我们发现当形状因子L∗ = 1.0时，哑铃状粒子的成核
能垒稍稍低于同压强下的硬球流体，我们认为这是由于过饱和度的少量增加导致的。

非球形粒子形成具有位置和取向都有序的结构的研究重要性不仅仅由于其在光学器
件上的应用，从更加基础的物理研究来看也是有重大意义的。然而，目前对于非球形
粒子自组装的动力学路径中物理规律一直没有清楚的理解。例如，硬棒体系的相行为
已经在十五年前就被报道了，其相图显示由于形状因子的不同，硬棒体系可以行成稳
定的流体态、向列型（nematic）和层列型（smectic）液晶态及晶体态 [114]。仅仅在最
近几年，硬棒流体从流体到向列型液晶态（IN）的成核路径才被发现，但是流体到层
列型液晶态（ISm）及流体到晶体（IX）的成核路径仍然是亟待解决的问题。在第六章
中，我们研究了硬棒流体的IN和IX成核路径问题，我们在过饱和的短硬棒流体里发现
了三个动力学区域：当压强较低的时候，硬棒流体会通过成核相变成晶体；在稍微高
一些的压强下，硬棒流体会形成一种类cubatic局部最优结构；再高的压强会使得体系
发生玻璃态转变。对于稍长一些的硬棒，我们发现稳态的层列型液晶由于亚稳态的列
向型液晶spinodal的微扰导致不能成核，并且我们观察到当逼近spinodal的时候相关长
度的发散。

在第七章中，我们采用分子动力学的方法研究了具有内部自由度的粒子体系（即由
自由链接的硬球行成的胶体高分子）的晶体成核问题。最近，研究者发现颗粒链的随
机堆积问题和高分子的玻璃态转变有着惊人的相似 [131]。这表明硬球链是一种研究高
分子体系物理的一个很好的模型，对其的研究可以加深我们对于高分子结晶和玻璃态
转变的理解。我们提出了一种高效且易于实现的事件驱动分子动力学方法。我们发现
硬球链体系的成核率主要取决于链上每个节点所具有的键的数目，而其具体的拓朴结
构、链长和组分结构都不是很重要。且我们的模拟结果表明此种长链高分子的成核率
可以通过添加单体的方式得到提升。此外，我们还发现最终得到的晶体里，绝大部分
粒子都是具有fcc对称性的，而只有很少一部分粒子具有hcp对称性。更加让人吃惊的
是，我们在晶体生长过程中发现了大量具有五阶对称性的粒子。

和单组分体系的成核相比，多组分体系的成核就更加复杂了。比如，在二元体系
里，动力学的不均匀性可以使得成核路径完全脱离平衡态 [28]，且在umbrella sam-
pling模拟中很容易被所采用的序参数影响。因此，在第一部分的最后一个章节里，即
第八章，我们采用Monte Carlo方法研究了二元硬球体系的晶体成核及其非临界核的
组分问题。我们发现序参数的选择可以很大程度地影响非临界核的组分。另外一个方
面，我们也发现，临界核的组分不受序参数选择的影响，这是由于自由能面上鞍点的
几何性质导致的。我们研究了尺寸比为1 : 1和1 : 0.3的硬球混合物，发现得到的非临界
核的组成符合经典成核理论的预测。

在本文的第二部分，我们研究了熵驱动胶体体系的相行为。在第九章中，我们通
过Monte Carlo自由能计算得到了胶体超级球从立方体变化成正八面体的相图。当超级
球的形状接近球的时候，我们不仅发现了一种fcc塑性晶体，也发现当超级球的形状接
近正八面体的时候，超级球具有一种稳定的体心立方（bcc）的塑性晶体结构。但是这
两种塑性晶体在完美多面体，即立方体和正八面体，的时候都不是热力学稳定态，这
表明光滑的顶点和楞对于稳定塑性晶体起到了很重要的作用。此外，在硬正八面体的
体系内，我们还发现一个两步融化过程，即闵可夫斯基晶体在融化成流体前先融化成
一个亚稳的bcc塑性晶体。
最后，在本文的第十章中，我们通过控制粒子表面的粗糙度实现了一种斑块粒

子。特别地，我们研究了具有一个活性位点的斑块粒子（即两面不对称粒子）的自
组装。我们发现当相互作用的距离相对较长的时候，可以采用一种类Wertheim的理论
去描述该体系。然而，在实验中，相互作用的距离往往非常短，导致体系很难达到平
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衡。Monte Carlo模拟的结果和实验结果吻合很好，但是和平衡态自由能计算得到的结
果差别较大。
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