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1

Introduction

In this introductory chapter, we attempt to explain the most important concepts of this thesis

in an intuitive manner. First, the notion and the possible applications of photonic crystals are

introduced in an analogy with electronic semiconductors. One of the most important properties

of photonic crystals is the possibility of their having a photonic band gap. In a simple model,

the basic physics behind photonic band gaps is clarified.

Although the concept of photonic band-gap materials is well-established, their fabrication

remains challenging. Fabricating structures at submicrometer length scales using materials that

have a high refractive index has turned out to be difficult. After a short overview of possible

fabrication methods, self-assembly of colloidal particles is introduced as a possible fabrication

method. The study of colloids is not limited to their self-assembly for photonic applications.

What colloids are and the potential of colloidal dispersions to act as model systems for the phase

behavior of atomic and molecular systems is discussed, after which their use as templates for

the fabrication of photonic crystals is elaborated upon.

Characterization of crystalline structures consisting of submicrometer particles is discussed.

Although far from trivial, real-space imaging is only touched upon briefly, as the notion of real

space is intuitively clear. A large part of this thesis, however, is about characterization by scat-

tering or diffraction, both of which are most easily described in reciprocal space. The concept

of reciprocal space is more abstract than that of real space. Near the end of this introductory

chapter, we ‘derive’ reciprocal space intuitively from the general real-space structure of crystals.

Finally, the last section of the introduction contains a short outline of this thesis.
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1.1 Photonic crystals – semiconductors for light

In 1947 William Shockley, John Bardeen and Walter Brattain built the first practical point-

contact transistor at Bell Labs [1]. Nine years later, the three of them received the Nobel Prize

in physics “for their researches on semiconductors and their discovery of the transistor effect”

[2]. The importance of the transistor in today’s society can hardly be exaggerated. For example,

present-day computers contain billions of transistors on chips that are the size of a finger tip!

Actually, the transistor is the key component in nearly all modern electronics, ranging from

cellular phones and MP3 players to digital cameras and DVD players.

Transistors are made of materials called ‘semiconductors’, examples of which are silicon

and gallium arsenide. The ‘transistor effect’ itself relies on the electronic properties of semi-

conductors, the latter allowing accurate control over the flow of electric currents [3–5]. In a

computer, for example, this ability to switch electric currents is used to transfer and store data.

However, for long-distance data transfer between computers, like downloading websites, the

data is usually converted to an optical signal and transferred via glass fibres. It would be faster

and more reliable if the computer itself could handle optical instead of electronic signals. This

would require the optical analogue of a transistor. Optical transistors, in turn, could possibly be

realized using semiconductors for light in combination with non-linear optical effects.

The optical analogues of semiconductors are called photonic crystals [6]. These are struc-

tures in which the refractive index varies periodically in space in one, two or three dimensions

(3-D) [7–9]. The refractive index nm of a material is a measure of how strongly the material

interacts with light. More specifically, it is the ratio of the speed of light c in vacuum and the

speed of light cm in the material [10, 11].

nm =
c

cm
(1.1)

Differences in refractive index between materials cause phenomena such as refraction. It is

straightforward to demonstrate refraction, just put a chopstick in a glass of water - when viewed

from the outside in, the stick suddenly appears to be kinked (see Figure 2.1a). The kink is ac-

tually an optical illusion that is caused by refraction [12]. In a photonic crystal, the variation in

refractive index forms a varying potential for light. In a way, this is similar to mountains and

valleys forming a varying potential for cyclists. The periodicity in a photonic crystal is typi-

cally on the order of the wavelength of light. Matching the wavelength λ to the lattice spacing a
results in Bragg diffraction. In photonic crystals, Bragg diffraction is the basic principle under-

lying important optical properties, including photonic band gaps. This is similar to electronic

semiconductors, where Bragg diffraction of electrons can lead to electronic band gaps.

Electronic semiconductors consist of atoms, which have a typical size of 0.1 nm, about

100,000,000× smaller than a typical marble, the latter having a diameter of approximately

1 cm. Electrons flowing through such a semiconductor interact with the atoms of which the

material consists, a process that is analogous to water waves interacting with floats bobbing

up and down the water. According to quantum mechanics, every particle also has a wave-like

nature. The equation for the wavelength λDB that is associated with a particle was formulated

by De Broglie [13].

λDB =
h

mv
(1.2)
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Here m is the mass of the particle, v is its speed and h ≈ 6.6 · 10−34 Js [14] is a physical

constant that is known as Planck’s constant. To give an idea of associated length scales, a

human being walking at a speed of v = 4 km/h ≈ 1 m/s has a De Broglie wavelength on

the order of 10−35 m. As typical length scales in their environment are on the order of a meter,

humans never notice their wave-like nature in daily life. Electrons in a semiconductor, however,

have a typical wavelength of λDB ∼ 0.1 nm [15], which is similar to the size of and the spacing

between surrounding atoms. In a photonic crystal, one would like to manipulate the flow of

(visible) light, which has a typical wavelength of 500 nm. Therefore, photonic-crystal building

blocks should have a size that is comparable to 500 nm, which brings them into the realm of

colloids (see Section 1.2).

Provided the refractive-index contrast between the photonic-crystal building blocks and

their host medium is large enough, and a suitable crystal structure is chosen, three-dimensional

(3-D) photonic crystals can exhibit a photonic band gap. This means that light of a certain fre-

quency range (‘color range’) cannot propagate within the crystal in any direction, regardless of

its polarization [16–18]. Thus, a photonic band gap is the optical analogue of an electronic band

gap in semiconductors. Photonic band-gap materials interact strongly with light and can provide

unprecedented control over both the emission and the propagation of light [19–25], allowing im-

portant applications in, for example, optical integrated circuits and infrared telecommunications

[26–28].

1.1.1 Photonic band gaps – a model

To get an intuitive idea of what a photonic band gap is, consider a linear chain of very thin,

semi-transparent, two-sided mirrors (see Figure 1.1a). This configuration forms a 1-D crystal

in which the mirrors have a lattice spacing a. An electromagnetic wave is incident from the

left and travels towards the right (see Figure 1.1a), which can be described mathematically by a

cosine function [10, 11].

E+(z, t) = E0 cos(kz−ωt) . (1.3)

Here E+(z, t) is the electric field of the light wave, E0 is its amplitude, including the direction of

polarization, k = (2π/λ ) is the wave vector, with λ the wavelength, ω is the (angular) frequency

of the wave, z is the position coordinate along the z-axis and t is time. Maxima of the wave are

reached when its phase

ϕ(z, t) = kz−ωt (1.4)

is equal to 2π ·m for integer m. If we consider the maximum for which the phase is 0 (see Figure

1.1a), it is clear that its z-coordinate z0 increases with increasing t, as kz0 = ωt in that case. In

other words, the wave is indeed travelling towards the right, which is why its electric field E+
has a subscript +.

The semi-transparent mirrors allow part of the light to pass, while the other part is reflected.

Because of reflections from the mirrors, several waves in the 1-D crystal travel towards the right

(E+), while other waves travel towards the left (E−). Being an elastic process, the wavelength

λ and the angular frequency ω of the wave do not change upon reflection, only the sign of k.

E−(z, t) = E0 cos(−kz−ωt) . (1.5)
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a a1 2+

z

n1 n2

a

z

arg=0

a b

Figure 1.1: Panel (a) is a schematic representation of a 1-D crystal of very thin, semi-transparent, two-

sided mirrors with lattice spacing a. An electromagnetic wave propagating to the right (solid line) and the

profile of a standing wave caused by Bragg diffraction (dotted line) have been drawn as well. The dashed

vertical line intersects the maximum of the wave that we have, arbitrarily, chosen as the maximum for

which the absolute value of the argument of the cosine function is 0. Panel (b) shows the same system

after insertion of dielectric slabs with refractive indices n1,n2 and subsequent removal of the mirrors. The

optical thickness of the slabs is a1 and a2, respectively. Both the solid line and the dotted line represent

standing-wave profiles. For clarity, the amplitude of the standing waves has been rescaled compared to

panel (a).
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Electromagnetic waves obey the superposition principle, which means the electric field E(z, t) at

any position z and any time t is equal to the sum of the individual electric fields. For simplicity,

consider one wave E+ that is travelling through the 1-D crystal towards the right and one wave

E− that is travelling towards the left. The total electric field is then

E = E0 · (cos(kz−ωt)+ cos(−kz−ωt)) . (1.6)

Using trigonometry [29],

cosα + cosβ = 2cos

(
1

2
(α +β )

)
cos

(
1

2
(α −β )

)
, (1.7)

the total electric field can be written as

E = 2E0 · cos(kz) · cos(ωt) . (1.8)

Note that we have not attributed an additional phase shift to the argument of the wave trav-

elling towards the left in Equation 1.6. This is only possible if transmitted and reflected waves

are in phase, i.e. the positions z where the electric fields are 0 overlap for all t. In this case, the

waves ‘fit’ the lattice:

p ·
(

λ
2

)
= a with p ∈ Z . (1.9)

If Equation 1.9 is combined with the definitions of k and ω

ω = 2πν =
2πc
λ

, (1.10)

after which these expressions for k and ω are inserted into Equation 1.8, the final result is

E = 2E0 cos
((π

a

)
pz

)
cos

((πc
a

)
pt

)
with p ∈ Z . (1.11)

In Equations 1.8 and 1.11, the position zmax of a maximum no longer depends on the time t.
At any moment in time, the total electromagnetic field E(z, t) has a spatial distribution that is

described by a cosine function. The amplitude of this sinusoidal profile varies in time with

an angular frequency ω . This means the total wave is not travelling anymore, it is a standing

wave. Thus, if the wavelength matches the lattice parameter, our 1-D crystal of mirrors does not

support propagating modes, i.e. it has a stop gap along the z-axis at the corresponding (angular)

frequency ω . It is basically the result of coherent, or in-phase, reflections from the mirrors.

Real 1-D photonic crystals do not consist of mirrors on a lattice. To make a transition to

a more realistic model, the space in between two mirrors is filled with two slabs of dielectric

material, having a refractive index of n1 and n2, respectively (Figure 1.1b). If n1 �= n2, the wave-

length of light travelling through the crystal is different in different slabs, which complicates

our discussion. Fortunately, we can introduce a useful concept from optics, the so-called optical

distance, which is the distance Δxop that light travels in vacuum in the same amount of time that

it requires to travel a distance Δx in the material under consideration. From Equation 1.1, it is

clear that real and optical distances are proportional and that the proportionality constant is the

material refractive index nm.

Δxop = nm ·Δx (1.12)
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The major advantage of using optical thicknesses is that the wavelength of light in the dielectric

slab of optical thickness a1,a2 is the same as its wavelength in vacuum. After all, the decrease

of the speed of light in the material has been incorporated in the optical thickness. Note that the

(angular) frequency ν ,ω of an electromagnetic wave is independent of the material refractive

index - blue light that travels from air into a piece of glass will stay blue.

If n1 = n2, nothing really changes in our model, except for the frequency at which standing

waves are generated, for that depends on the optical thickness of the slab (Equation 1.11). If

n1 �= n2, thus obtaining the well-known Bragg stack [7], we can actually remove the mirrors

(see Figure 1.1b). After all, any dielectric interface between two substances with non-equal

refractive indices n1,n2 acts as a partially transparent mirror with a transmission and a reflection

coefficient that can be derived from the boundary conditions of the Maxwell equations [10].

Being analogous to the previously discussed crystal of mirrors, it is not hard to see that standing

waves can also be generated in Bragg stacks. Two possible standing waves are shown in Figure

1.1b. The energy that is stored in such a standing wave is mainly concentrated at the positions

of the maxima. One of the standing waves concentrates its energy in the low-dielectric phase,

n1 for example (solid line), while the other concentrates its energy in the high-dielectric phase

n2 (dotted line). Modes that store their energy in the high-dielectric phases have a lower energy

than modes that store their energy in the low-dielectric phase [7]. Modes that have a lower

energy also have a lower frequency (Uphoton = h̄ω). In other words, the difference in refractive

index of the slabs causes two non-propagating modes that have the same wavelength, and thus

the same absolute value for the wave vector, but different angular frequencies ω1 and ω2. If

n1 ≈ n2, the difference between ω1 and ω2 will be small. Increasing the refractive-index contrast

(n2/n1) will cause ω1 and ω2 to move further apart along the frequency axis, thus opening up a

range of forbidden frequencies (‘colors’) for propagating modes along the z-axis, i.e. a stop gap

along z. For a more rigorous treatment of the (1-D) Bragg stack, we refer to Reference [30].

In a 3-D photonic crystal, crystal planes act as dielectric slabs, effectively forming Bragg

stacks along directions in the crystal that are perpendicular to the different sets of planes. For

specific frequency ranges, Bragg diffraction along such a crystal direction can open up stop

gaps. If stop gaps along all crystal directions (partly) overlap, there is a frequency range for

which electromagnetic-wave propagation within the crystal is forbidden in any direction, re-

gardless of polarization [16–18]. That frequency range is referred to as a photonic band gap. To

find photonic band gaps for 3-D structures, the dispersion relation ω(k) is plotted along care-

fully selected directions in reciprocal space, the latter being the collection of all possible wave

vectors k. The gaps are recognized as frequency ranges for which corresponding wave vectors

do not exist. Such band diagrams are discussed in more detail in Chapter 2.

1.1.2 Photonic crystals – fabrication

Although the photonic properties of periodic dielectric media were already theoretically inves-

tigated in the 70s of the 20th century [16], the concept of a photonic crystal really took flight

with the publications of Yablonovitch and John in 1987 [17, 18]. Early calculations showed

that face-centered cubic structures of low-dielectric spheres in a background medium with a

higher dielectric constant, a so-called inverse FCC structure, should have a gap between bands

8 and 9 if the dielectric contrast exceeds ∼ 7 [31]. Diamond has always been a strong candidate

for photonic band-gap materials as well, though early calculations for the diamond structure
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were plagued by convergence issues [31–34]. One of the first proposals for the fabrication of

photonic crystals was the so-called Yablonovite-structure [35]. Drilling cylindrical holes along

specific directions in a block of material would create a connected network with a symmetry

that resembles that of diamond [36, 37]. The latter is, together with pyrochlore, the presently

known clear champion structure, both for opening up a band gap at the lowest refractive-index-

contrast ratio (∼ 2) and the largest band-gap width to center-frequency ratio [32, 38]. A few

years after the introduction of its concept, Yablonovite was actually fabricated at the micron

scale by chemically assisted ion-beam etching [39].

Since Yablonovite, several other schemes and fabrication methods have been developed for

the fabrication of 3-D photonic crystals. One of the first was lithography [40–42], which relies

on techniques that were borrowed from the semiconductor industry. The major advantage of

lithography is that it allows great flexibility in the shape of the features that are written into

a 2-D slab of material. Although the periodicity with which structures can be written is quite

accurate, the size-dispersion of the features themselves is rather large. Moreover, lithography is

essentially a 2-D technique, making it less suitable for the fabrication of truly 3-D structures. In

a layer-by-layer fashion, lithography can be used to build, for example, a 3-D woodpile structure

[41–43]. The symmetry of the woodpile structure is similar to that of diamond. It is no surprise

then that it has a relatively wide band gap [44]. Unfortunately, the 2-D nature of lithography

causes lateral alignment problems when the number of layers gets larger than approximately 7.

This means that, for example, the 5th layer is not always exactly above the 1st layer, as it should.

Recently, concentrated polyelectrolyte inks were developed to directly ‘write’ microperiodic

structures without using masks [45]. The inks flow readily through fine deposition nozzles,

but solidify quickly upon deposition. In this way, structures can be literally written in 2-D,

seemingly not unlike writing your name on a cake with whipped cream. Layer-by-layer writing

subsequently results in truly 3-D structures. Methods to obtain 3-D photonic crystals without

layer-by-layer processing include multibeam holography and two-photon lithography [46–48].

An interference pattern that mimics the crystals symmetry of the desired structure is set up in

a 3-D block of photo-resist (usually SU-8 [46, 49]). At the positions where the laser beams

interfere constructively, the intensity gets high enough for polymerization of the photo-resist to

take place. After illumination with laser light, the unexposed parts of the resist can be washed

away, resulting in a 3-D photonic crystal. Mechanical stability limits the possible structures to

bicontinuous ones. More importantly, the polymerized photo-resist is not heat-resistent, which

means raising the refractive-index contrast within such a crystal above the threshold is difficult,

though major progress has recently been made [50]. Finally, a promising route towards 3-D

photonic crystals having areas on the order of mm2 and a large number of layers (� 25) is

self-assembly of colloidal particles.

1.2 Colloids

Though many people may not realize it, we eat and use colloids almost daily. Milk, paint, ink,

toothpaste, shampoo and sunblock are but a few examples of colloidal systems in everyday

life. More than that, a large fraction of the material of which our own body consists, our blood

namely, is colloidal in nature. The term ‘colloidal’ refers to a state of matter in which the mate-

rial is finely distributed in a suspending medium. With that in mind, one could define colloids
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as mesoscopic particles of which at least one dimension has a size between a few nanometers

(∼ 0.000001 mm) and a few micrometers (∼ 0.001 mm) [51]. Asbestos, for example, is a col-

loidal rod that typically has a length of 3 μm to 20 μm, the latter exceeding the colloidal size

range, but it can be as thin as 0.01 μm [1]. For comparison, a human hair is typically 17 μm to

181 μm in width [1]. Another example of a colloidal system is clay, for it consists of colloidal

platelets in water. It is no surprise then that colloids are also important to farmers, though they

may not be conscious of it, as colloidal processes can have a major impact on the structure of

soil [52].

The word ‘colloid’ was derived from the Greek word ‘κoλλα’, meaning ‘glue’. It was

introduced by Thomas Graham in his 1861 paper Liquid Diffusion Applied to Analysis [53],

where he describes two classes of matter, ‘crystalloids’ and ‘colloids’. In his experiments,

crystalloids diffused through a membrane separating pure water from an aqueous solution of

such crystalloids (like salt). Other substances, including gum arabic and gelatin, did not diffuse

through the membrane. Because of the gluey nature of these substances, he called them colloids

[51]. Nowadays, the material of which a particle consists no longer determines whether it

is a colloid or not, it is the size of the particle that matters. Colloids, and the suspending

medium, can consist of various materials in various phases. Fog, for instance, consists of finely

distributed water droplets in air. Emulsions, like vinaigrette, consist of colloidal droplets of one

liquid that are suspended in another liquid. In the case of vinaigrette, small droplets of water

(vinegar) are suspended in oil (typically olive oil). As water is polar and oil is apolar, the two

liquids do not like to mix. If we mix water and oil, they will separate into a system with a water-

phase and an oil-phase. Everyone who prepares vinaigrette occasionally knows this - you have

to add mustard to prevent the separation. The mustard acts as an emulsifier that stabilizes the

emulsion against phase separation. In the research that is described in this thesis, we fabricated

photonic crystals from colloidal dispersions - systems in which solid particles are suspended in

a solvent. Paint and ink are common examples of dispersions. We used chemically synthesized

colloidal silica (‘glass’) spheres in organic solvents, including ethanol (‘alcohol’) and dimethyl

sulfoxide (DMSO).

The colloidal size range of several nanometers (nm) up to several micrometers (μm) may

seem arbitrary. There are, however, good reasons for the lower and upper limits on the size of

colloidal particles. Consider, for example, a dispersion of silica spheres in ethanol. We wish

to describe this system as a collection of solid spheres in a homogeneous, smooth background

medium. If our colloids are very small, about the size of the ethanol molecules themselves,

the background cannot be treated as a homogeneous medium, for the colloids will be hard to

distinguish from the ethanol molecules by size. Ethanol molecules have a size on the order of

0.5 nm. If the silica colloids are a couple of nm in diameter, we can integrate out the degrees of

freedom of the solvent molecules. The integration procedure yields a homogeneous background

medium in which the colloids then have acquired a mutual, effective interaction [54]. In short,

the lower limit on the size of colloids is set by the size of the solvent molecules.

The upper limit on the length scale of colloids is related to the phenomenon of Brownian

motion. The name is derived from the 19th century botanist Robert Brown, who observed a jit-

tery motion of plant spores while studying plant pollen floating in water [55]. The explanation

for the random walk of small (solid) particles suspended in a liquid was provided by Albert

Einstein [56], who claimed that the motion was due to unbalanced momentum, at any time t,
from collisions with solvent molecules. Not only did the paper explain the origin of Brownian
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motion, in combination with the experimental verification by Jean Baptiste Perrin, it also con-

vinced many scientists of the existence of molecules, a concept that was not generally accepted

in the 19th century. Colloids are still small enough to experience Brownian motion due to colli-

sions with solvent molecules. A grain of sand in water on the other hand, with a typical size of

about 1 mm, does not perform Brownian motion on the length scale of a mm, for it is too large

and too heavy to ‘feel’ the water molecules - it will just sink to the bottom of the container.

The fact that colloids perform Brownian motion enables them to redistribute (kinetic) energy

via the thermal motion of the solvent molecules. Therefore, they can explore many different

configurations, moving along a trajectory in phase space. In other words, a colloidal system can

reach thermodynamic equilibrium.

Their ability to reach thermodynamic equilibrium is one of the key properties of colloidal

systems. It basically means that colloidal systems exhibit analogous phase behavior as atoms

and molecules. For example, a dispersion of colloids with a hard-sphere interaction potential,

which means they only interact when they physically collide, can form a liquid phase, a crys-

talline phase and even a glassy phase [57]. Which phase is formed, depends on the concentration

of colloids. In other words, colloidal dispersions are a model system for atomic and molecular

processes [58], including melting and crystallization.

One might wonder why processes such as melting and crystallization are studied in colloidal

systems in addition to the actual atomic and molecular systems. The reason is straightforward -

atoms and molecules are so small that it is very hard to observe them individually. Even if they

can be visualized, using high-resolution transmission electron microscopy (TEM) or atomic

force microscopy (AFM) for example, it is still impossible to probe their trajectories. As col-

loids are much larger than a typical molecule, and severely overdamped due to friction with

the solvent, they are much more accessible experimentally. Jean Baptiste Perrin used ordinary

light microscopy to observe the sedimentation profile of colloids in a dispersion, from which

he could extract Avogadro’s number, i.e. the number of particles in one mole of substance

(NA ≈ 6 · 1023 mol−1). His work was basically an experimental verification of Einstein’s the-

ory of Brownian motion. In 1926, Perrin received the Nobel Prize in Physics “for his work on

the discontinuous structure of matter, and especially for his discovery of sedimentation equi-

librium” [59], which is one of the few Nobel Prizes that have been awarded to colloid research

since its introduction in 1901. Nowadays, the more advanced technique of confocal microscopy

can be used to image dispersed colloids in 3-D and in real time, thus allowing quantitative real-

space characterization using image-analysis software. Another advantage of studying phase

behavior in colloidal systems is that the interactions between colloidal particles can be tuned

using chemical synthesis or external fields (see Chapter 6).

1.3 Photonic colloidal crystals

Colloids are not only interesting from a fundamental point of view, they are also used for various

applications, including smart shock absorbers and electronic paper (e-paper) [60, 61]. More-

over, due to their ability to reach thermodynamic equilibrium, monodisperse colloids are able

to self-assembly into regular arrays, which are known as colloidal crystals [57]. If the refractive

index of the colloids is different from that of the surrounding medium, they form a 3-D structure

in which the refractive index varies periodically in space, i.e. they form a photonic crystal. In
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other words, if ncolloid �= nmedium, colloidal crystals are photonic crystals by definition. Even

colloids that only have a hard-sphere interaction can form colloidal crystals. The only prereq-

uisite is that the polydispersity of the particles, i.e. the relative width of their size distribution,

is small enough (� 0.07) [62].

The driving mechanism behind crystallization of hard-sphere colloids is maximization of

entropy. A system reaches thermodynamic equilibrium when it minimizes its free energy F
[63].

F = U −T S (1.13)

Here, U is the total (interaction) energy of the system, T is its temperature and S is the entropy

of the system. In the case of hard spheres, the energy U plays no role in minimizing the free

energy F , for the interaction energy of two spheres is either 0 (no overlap) or infinitely large

(overlap). Thus, the hard-sphere interaction only reduces the volume that is available to the

colloids. Entropy is a measure of the number of possible microscopic configurations, a single

configuration being a set of values for all particle coordinates and momenta, that the system can

assume for given values of some macroscopic observables, such as temperature and pressure.

Even in textbooks on thermodynamics, entropy is sometimes related to chaos or disorder. The

idea is that there are more ways for a system to be disordered than there are ways to be ordered.

However, entropy is actually a measure of the volume that is available to the system in phase

space, a volume that we cannot ‘see’ in real space. Colloids in a crystal are, of course, ‘trapped’

in the unit cell surrounding their lattice position. However, at high concentrations of colloids,

the particles can have more freedom of movement within their cell than they would have had in

a liquid at the same concentration. In a way, this is similar to a crowded disco. If everyone in the

disco would be assigned an equally large area on which they should dance, many more party

people would fit in the same disco without feeling crowded. In this way, we can understand

intuitively why an ordered system may have a larger number of possible microscopic configu-

rations than a disordered system having the same values for some macroscopic observables, i.e.

why an ordered system can have a higher entropy than a disordered system [64].

As was already mentioned, colloidal crystals are photonic crystals by definition. Unfortu-

nately, in the case of silica colloids in ethanol, the refractive-index contrast between silica and

ethanol is too small to open up a band gap [31, 65, 66]. Even if we allow the ethanol to evapo-

rate, leaving behind a crystal of silica spheres in air, the index contrast would be no larger than

approximately 1.5, which is still too low to open up a band gap. Even worse, increasing the

refractive index of the spheres is of no avail in this case. At best, the colloids self-assemble

into face-centered cubic (FCC) structures, which only have a band gap if the index contrast

(nmax/nmin) � 3 and the refractive index of the spheres must be smaller than that of the sur-

rounding medium (ncolloid < nmedium). It is possible, however, to use the colloidal crystal as a

template for infiltration with high-index materials, such as silicon or germanium [67–69]. The

space in between the spheres can be filled with such materials by, for example, chemical vapor

deposition (CVD) and atomic layer deposition (ALD) [70, 71]. In such processes, no material

can be deposited at the contact point of two spheres. If the spheres could be removed, the contact

point would be a connecting hole between two air spheres. Hydrofluoric acid (HF) can be used

to etch the silica template. Through the connecting holes, the HF can reach all of the spheres in

the crystal, thus allowing complete removal of the silica template. The resulting crystal consists

of air spheres in a background of, for example, silicon (Figure 1.2a). Calculations have shown

that such an inverse FCC crystal of air spheres in silicon has a photonic band gap [31, 65, 66].
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Optimization of the gap width is possible by tuning the thickness of the deposited silicon layer.

Several ways of fabricating colloidal-crystal templates by self-assembly have been explored

over the past few years. One of the most straightforward ones is sedimentation - allow colloids

with a density that is higher than that of the solvent to settle under the influence of gravity.

At the bottom of the container, the volume fraction of spheres will increase (locally), thus

causing crystallization. The 1st layer of the crystal, which rests on the bottom of the container,

is hexagonally packed. Particles in the 2nd layer, which is also hexagonal, will rest on 3 particles

of the 1st layer. In a way, this is similar to stacking oranges in a crate. However, there are 2

possible, lateral positions for the 2nd layer, denoted by B and C, the 1st layer being denoted

by A (see Figure 4.1b). If the stacking sequence of subsequent layers is ABAB, the resulting

crystal is hexagonal close-packed (HCP). If the stacking sequence is ABCABC, the final crystal

structure is face-centered cubic (FCC). Unfortunately, the free-energy difference between HCP

and FCC is small (∼ 10−3kBT ) [72, 73], resulting in uncontrolled mixtures of FCC and HCP,

which is referred to as random hexagonal close-packed (RHCP). Calculations have shown that

(stacking) disorder in these crystals deteriorates their photonic properties [74, 75]. In addition,

for entropic reasons, sedimented colloidal crystals have a layer of colloidal fluid on top. For

1.4 μm diameter silica particles, a layer of colloidal fluid as thick as 8 interlayer spacings is

required to build up enough pressure to keep the crystal below from melting. As it leads to

isotropic scattering, such a fluid layer is undesirable.

To circumvent problems encountered in sedimentation, several other self-assembly schemes

have been explored. Controlled drying, also known as convective assembly, yields close-packed

crystals that are uniform in orientation and thickness over areas on the order of cm2 [76]. These

crystals do not have a layer of colloidal fluid on top. Tuning the particle volume fraction even

allows control over the number of layers in the resulting crystals [77]. The 3-D structure of the

crystals is generally considered to be face-centered cubic (FCC, see also Chapter 4). Unfortu-

nately, controlled drying is difficult for larger particles (� 400 nm), as their weight causes them

to sediment too fast. Methods have been developed to counteract sedimentation in controlled

drying of larger particles, but it has proven to be difficult to tune experimental parameters such

that these methods work reproducibly. Other self-assembly techniques include colloidal epitaxy

[78, 79], spin coating [80] and the application of shear flows [81, 82].

Compared to other PC fabrication methods, colloidal self-assembly is rather inexpensive.

An additional advantage is that structure, size and composition of the individual building blocks

can be modified in order to tune their optical properties. Advances in chemical synthesis have

resulted in, for example, anisotropic particles [83–86], core-shell morphologies [87–89], met-

allodielectric colloids [90], and the incorporation of luminescent materials, such as fluorescent

dyes [91, 92], rare-earth ions [93] and even quantum dots [94]. Furthermore, the interparticle

potential can be affected by external fields [95], including electric fields (Chapter 6) and optical

fields [96, 97].

1.4 Reciprocal space

As was explained in the previous section, colloidal crystals can be used as templates for the

fabrication of photonic crystals. However, the multistep fabrication procedure can significantly

affect the final 3-D structure of the resulting photonic crystals. For example, the force that
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is exerted on particles in a colloidal crystal upon drying can be compared, after scaling, with

the force that is exerted on a crystal of oranges when a truck drives over it [98]. Therefore,

it is important to characterize the photonic colloidal crystals in 3-D at the various stages of

their fabrication. Initial characterization is usually performed in real space. Although sound,

quantitative analysis of real-space data is far from trivial, the concept of real-space imaging is

easy. Real-space imaging is WYSIWYG (what-you-see-is-what-you-get) - if you want to have

a real-space image of a crystal of marbles, just take a digital camera and make a photograph of

the structure.

As colloids are approximately 10,000× smaller than marbles, techniques to image them in

real space are more advanced than the average digital camera. A popular imaging technique

for colloidal systems is scanning electron microscopy (SEM). Although SEM yields beautiful

images, thus yielding important information on mostly qualitative sample characteristics, it only

provides topological information on a small part of the accessible 2-D surface. To obtain truly 3-

D information, optical techniques are more suitable, as the penetration depth of electrons is only

on the order of 10 nm. Over the past few years, it has been recognized that fluorescence confocal

microscopy is a very useful technique to characterize photonic crystals at several stages of their

fabrication [78, 99, 100]. The 3-D coordinates of all particles in the measurement volume can

be extracted from 3-D stacks, thus allowing quantitative, real-space analysis using bond-order

parameters [101, 102]. Unfortunately, it requires refractive-index matching, which is impossible

for structures with a high dielectric contrast, such as colloidal crystals of air spheres in silicon.

Apart from the necessity of index matching, confocal microscopy has two additional disad-

vantages. First of all, it has limited resolution, because of which it is mainly useful for particles

with a diameter larger than 600 nm. Secondly, its field of view is rather small, on the order of

150 μm× 150 μm for sub-micron resolutions, which is a typical problem for most real-space

characterization techniques. However, using convolution algorithms, several real-space images

of adjacent sample areas can be stitched into a ‘panorama’ view. Scattering techniques, on the

other hand, are able to provide detailed macroscopically-averaged information and are superior

in quantitative determination of the order parameters over large distances, as long as the coher-

ence length is not a limiting factor. In Chapter 7, we demonstrate that X-ray scattering is an

excellent way to characterize photonic crystals, even if refractive-index matching is no longer

an option.

As photonic crystals are spatially regular structures, scattering from different particles is

coherent, leading to constructive interference in some directions and destructive interference in

other directions, i.e. diffraction. Interference manifests itself in many phenomena in everyday

life. If one drops two stones in a pond of water, the pattern that is formed on the surface is caused

by interference of the water waves emanating from the positions where the stones hit the water.

Colors in rain droplets on your glasses, rainbows, colors in soap bubbles or oil films, these are

all examples of interference of light [12]. Even nature itself employs interference to produce

colors, e.g. in the tail feathers of peacocks and the wings of butterflies [103]. Because they rely

on interference, such colors are more vibrant, less diffuse, than colors caused by scattering &

absorption, such as colors in paints.

The basic idea behind diffraction as a characterization technique for colloidal crystals is to

look at the directions in which an incident wave is scattered by the sample and to derive from

that the 3-D structure of the crystal. In the case of light scattering or X-ray diffraction, the

incident wave is an electromagnetic wave. As any wave can be described as a superposition of
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Figure 1.2: Panel (a) is a side-view of a photonic crystal of air spheres in silicon. After fabrication,

the crystal was cleaved, allowing images of the bulk of the crystal to be taken in a scanning electron

microscope (SEM). The ‘holes’ in the silicon used to be the contact points of the spheres in the colloidal-

crystal template consisting of silica spheres. The white scale bar is 2 μm, image courtesy of Dannis ’t

Hart. Panel (b) is a schematic image of a 1-D crystal. The crystal planes, indicated by the gray lines, are

separated by an interplanar distance d. An electromagnetic (light) wave with wave vector k0 is incident

under an angle θ .

plane waves, we can restrict our attention to plane waves.

E(r, t) = E0 cos(ϕ(r, t)) (1.14)

Here E(r, t) is the electric field of the wave, E0 is its amplitude, including the polarization, and

ϕ(r, t) is the phase of the wave at position r and time t

ϕ(r, t) = k0 · r−ωt . (1.15)

The amplitude of the wave in Equation 1.14 is constant in space, which means it is not a good

probe of spatial periodicity in crystals. As the phase ϕ(r, t) depends on r, it can be used to probe

the spatial coherence within the sample. Since we are not interested in temporal coherence, we

will neglect the time-dependence of the phase here.

Consider a 1-D crystal on which an electromagnetic wave with wave vector k0 is incident

(see Figure 1.2b). The distance between the crystal layers is d. As the wave propagates through

the crystal, its phase changes with the distance travelled by the wave front.

Δϕ = k0Δr (1.16)

Using the triangle OPQ, it is straightforward to show that Δr = Δzcos(θ), yielding

Δϕ = k0Δzcos(θ) . (1.17)

Taking the limit for Δz → 0, we can derive an expression for the partial phase derivative ϕ ′(z).

ϕ ′(z) =
∂ϕ
∂ z

= lim
Δz→0

(
Δϕ
Δz

)
= k0 cos(θ) (1.18)



14 CHAPTER 1

It follows directly from Equation 1.18 that the phase derivative ϕ ′(z) is maximal, and the crystal

planes are surfaces of constant phase, for normal incidence (θ = 0). From vector calculus [104],

it is known that the direction in which a function changes its value fastest is the direction of its

gradient. So, in our example, the phase gradient ∇ϕ points in the z-direction and has a length

of k0.

One could say that the direction of the phase gradient probes the periodicity of the crystal

most effectively, as it is the direction along which phase changes as a function of displacement

are maximal. Moreover, as was already mentioned, crystal planes are also surfaces of constant

phase along the direction of the phase gradient. Since plane waves k0 have a planar wave front

that is perpendicular to their direction of propagation, it seems only natural to describe wave

vectors as linear combinations of basis vectors (bi) that point in directions that are perpendicular

to sets of crystal planes. The vector space that is spanned by such a set of basis vectors {bi} is

called reciprocal space. The set of all points in reciprocal space that are a linear combination of

the reciprocal-space basis vectors {bi} for integer coordinates is called the reciprocal lattice. In

a 1-D crystal, there is only one set of crystal planes, so there is only one reciprocal-space basis

vector b. It points in the same direction and it has the same unit as the phase gradient.

So far, we have only considered the direction of the reciprocal-space basis vector b in our

1-D model. The length of b is determined by the condition for constructive interference at

normal incidence. As we are only interested in how the crystal under considerations changes the

direction of the incident wave k0, we introduce the scattering vector q as the vector difference

between the outgoing wave k and the incoming wave k0

q = k−k0 . (1.19)

Furthermore, instead of the wave vectors themselves, we write q as a linear combination of b.

q = �b (1.20)

At normal incidence, in the case of constructive interference, the standing wave that is set up

in the crystal (Section 1.1) causes the incoming wave k0 = k0ẑ to be reflected into the outgoing

wave k = −k0ẑ.
q = −k0ẑ− k0ẑ = �b3ẑ

= −2k0ẑ = �b3ẑ

⇒ b3 = ‖
(

2k0
�

)
‖ =

(
4π
�λ

) (1.21)

Constructive interference occurs if waves ‘fit’ the lattice (see Equation 1.9),

p ·
(

λ
2

)
= d with p ∈ Z

b3 =
(

4π
�λ

)
=

(
4π
2d · p

�

)
⇒ b3 =

(
2π
d

)
,

(1.22)

where (p/�) has been set to 1, to ensure that the phase difference that a scattered wave picks up

in between planes is a multiple of 2π .
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In the previous paragraph, the notion of reciprocal-space basis vectors was introduced and

it was shown that they are useful in describing diffraction. We can extend this intuitive idea to

3-D. Any point of a 3-D lattice in real space can be reached by a lattice vector t. A lattice vector

t in 3-D is a linear combination of 3 real-space basis vectors (a1,a2,a3) with integer coordinates

(l1, l2, l3).
t = l1a1 + l2a2 + l3a3 (1.23)

Each set of two lattice basis vectors spans a crystal plane, of course. Directions along which

we should probe periodicity are the directions perpendicular to these planes, as these are the

directions of phase gradients.

Without loss of generality, consider the crystal plane W that is spanned by the lattice vectors

(a1,a2).
W = sp(a1,a2) (1.24)

The reciprocal-space basis vector b3, which should be perpendicular to the plane W , has a

direction that is parallel to the cross product of a1 and a2.

b3 ∝ a1 ×a2

b3 = A‖a1 ×a2‖
(1.25)

As in the 1-D example, the length b3 of the reciprocal-space basis vector b3 is determined by

the interplanar spacing d.

b3 = 2π
d = 2π

a3 cos(ϑ)

where ϑ = ∠(a3,b3)
= ∠(a3,(a1 ×a2))

(1.26)

Combining Equations 1.25 and 1.26 yields an expression for the factor A,

A = 2π
‖a3‖·‖a1×a2‖·cos(ϑ)

= 2π
a3·(a1×a2)

,

(1.27)

finally resulting in an expression for the vector b3.

b3 = 2π
a3·(a1×a2)

· (a1 ×a2)

= 2π · a1×a2
a1·(a2×a3)

(1.28)

In a similar way, we obtain two additional reciprocal-space basis vectors b1 and b2. Together

with b3, they form the so-called reciprocal triad {bi}.

b1 = 2π · a2×a3

a1·(a2×a3)

b2 = 2π · a3×a1

a1·(a2×a3)

b3 = 2π · a1×a2
a1·(a2×a3)

(1.29)
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As was mentioned before, the reciprocal triad {bi} forms a set of basis vectors for a lattice

that corresponds to the real-space lattice - it is known as the reciprocal lattice. Diffraction is

usually described in reciprocal space, which is not surprising, for its basis vectors {bi} can be

considered as phase gradients of the corresponding real-space structure.∗

1.5 This thesis
This thesis is mainly about the characterization of photonic crystals, which were fabricated by

self-assembly of colloidal particles, in real and reciprocal space. In Chapter 2, we start with a re-

view of how to deal with photonic crystals within the framework of classical electrodynamics.

It allows the calculation of photonic band diagrams, which effectively summarize the optical

properties of photonic crystals. To demonstrate their use, we present calculations that assisted

the development of a self-assembly route towards photonic crystals with a band gap in the vis-

ible. Furthermore, band diagrams are calculated for body-centered tetragonal (BCT) crystals.

Their fabrication using colloids in external, high-frequency electric fields is presented in Chap-

ter 6. At the end of Chapter 2, we describe the use of photonic band-structure calculations for

data analysis in optical spectroscopy.

One of the main reciprocal-space characterization techniques that we used is small-angle X-

ray diffraction. As our colloids are about 10,000× larger than the typical X-ray wavelength, the

diffraction angles are tiny. It required the development of a microradian X-ray diffraction setup,

which we describe in Chapter 3, together with some examples of its application to colloidal sys-

tems. The setup was also used to quantitatively characterize the orientation and 3-D structure of

colloidal crystals that were fabricated by convective assembly, also known as controlled drying

(Chapter 4). As controlled drying is a popular method for growing colloidal-crystal templates,

the latter acting as scaffolds for the fabrication of photonic crystals, our results are relevant for

this community. In Chapter 7, we demonstrate that X-ray diffraction is an excellent probe of

the internal 3-D structure of photonic colloidal crystals at various stages of their fabrication.

Throughout all of these chapters, results from reciprocal space are compared with data sets

that were obtained using real-space techniques, including confocal microscopy and electron

microscopy.

In Chapter 5, to conclude this overview with, binary colloidal crystals of organic spheres

(polystyrene, PMMA) and/or inorganic spheres (silica) are introduced as promising templates

for the fabrication of strongly photonic crystals via the infiltration of high-index materials.

Organic templates cannot be infiltrated with standard techniques like chemical vapor deposi-

tion (CVD), but we demonstrate that atomic layer deposition (ALD) is a promising alternative.

Binary crystals of silica spheres are often plagued by layers of colloidal fluid on top, which

have to be removed before further processing. We experimentally investigated the applicabil-

ity of plasma etching and removal of crystal layers using adhesive tape. Both real-space and

reciprocal-space techniques were used to characterize the colloidal crystals at various stages of

processing.

∗Note that the intuitive notion of reciprocal space that is derived in this section assumes a crystalline real-space

structure. Bear in mind that reciprocal space is also a sensible concept in the case of non-crystalline samples [105].



2

Photonic band-structure calculations

As the fabrication of 3-D photonic band-gap materials remains a major challenge, calculations

that predict their optical properties play a very important, guiding role. This chapter starts with a

review of how to deal with photonic crystals within the framework of classical electrodynamics.

Next, it is shown that band diagrams can effectively describe the optical properties of photonic

band-gap materials. For this thesis, such band diagrams were calculated using an expansion

of the electromagnetic fields in plane waves (MPB). Now and then, we compare our results to

calculations in which an expansion in spherical waves (KKR) is used instead.

In subsequent sections, the power and versatility of photonic band-structure calculations is

demonstrated in various examples. We start with calculations for binary Laves phases, espe-

cially MgCu2. By removal of one of the two species of colloids from the MgCu2 structure,

either diamond or pyrochlore structures can be fabricated. Our calculations confirm that both of

these structures have a relatively wide photonic band gap between low-lying bands for modest

refractive-index contrasts. The issue of convergence of MPB plane-wave calculations in such

strongly photonic crystals is also discussed. Combined with thermodynamic stability simula-

tions by Antti-Pekka Hynninen, our results have led to a proposed route towards photonic col-

loidal crystals with a band gap in the visible region. Next, we present photonic band diagrams

of (inverse) body-centered tetragonal (BCT) crystals. In contradiction to results in literature, we

found that there is no photonic band gap for inverse BCT crystals. Finally, we demonstrate that

photonic band-structure calculations can be used in the analysis of optical spectra of photonic

colloidal crystals, probing quantities that were difficult to measure before, including the average

refractive index of a colloidal crystal and the diameter of colloidal spheres in such a crystal.
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2.1 Introduction

From a theoretical point of view, photonic crystals are nothing more and nothing less than

structures in which the refractive index varies periodically in space in one, two or three dimen-

sions. The periodicity is typically on the order of the wavelength of light [7, 8]. Provided the

refractive-index contrast between the building blocks and their host medium is large enough,

and a suitable crystal structure is chosen, three-dimensional (3-D) photonic crystals can have

a full photonic band gap. This means that light of a certain frequency range cannot propa-

gate inside the crystal in any direction, regardless of its polarization [16–18]. Because of their

strong interaction with light, photonic band-gap materials may provide unprecedented control

over both the emission and the propagation of light [19], giving way to important applications

in, for example, optical integrated circuits and infrared telecommunications [7, 8].

Several methods have been proposed for the fabrication of photonic crystals, including

lithography [47, 106], colloidal self-assembly [107–110], direct-writing assembly [45], multi-

beam holography [46, 48, 111] and even nanorobotic manipulation [112]. Despite the enormous

efforts in photonic-crystal fabrication, it is still challenging to make a material with a photonic

band gap. Ironically enough, it is not that difficult to make a structure in which the refractive

index varies periodically in 3-D. For example, face-centered cubic (FCC) colloidal crystals can

be grown by convective-assembly [67]. Inverse FCC crystals have a band gap for dielectric con-

trasts larger than ∼ 8.3 [65]. Chemical vapor deposition (CVD) can be used to infiltrate FCC

colloidal crystal templates with silicon, the latter having a dielectric constant of approximately

12. After removal of the colloidal crystal template by a wet-chemical etch, the contrast is large

enough to open up a band gap. However, silicon strongly absorbs light with a wavelength below

1 μm, which makes it unsuitable for the fabrication of materials with a band gap in the visible.

Other crystal structures, such as diamond and pyrochlore, would allow the use of non-absorbing

materials with a high refractive index, like titania [113] or zinc sulfide [87], but these structures

have not yet been explored experimentally [114].

Numerical calculations play a very important role in guiding the fabrication of photonic

crystals. First of all, if it is known in advance that a structure does not have a band gap, no effort

has to be directed into its fabrication unnecessarily. Current technology is able to fabricate a

host of photonic crystals, but only a small fraction of those actually have a photonic band gap,

so some form of pre-selection is definitely desirable. For example, in Section 2.4, we present

a route towards materials with a photonic band gap in the visible via binary Laves phases.

Though the fabrication of such crystals is challenging, it may yield self-assembled diamond

and pyrochlore structures by selective removal of one of the two components. Both of these

structures are strongly photonic. Secondly, calculations can predict the effects on an existing

photonic band gap of specific sample treatments such as sintering [115] and (partial) infiltration

with materials having a high refractive index [67, 68, 116]. The guiding, or rather steering, role

of calculations is even more obvious in so-called ‘reverse engineering’. For example, genetic

algorithms have been used to optimize the design of photonic materials within given boundary

conditions [117–119]. Finally, several optical properties of photonic crystals have been found

for the first time in simulations. New properties, such as the non-relativistic Doppler shift [120],

may allow new characterization techniques or applications that were previously unthought of.

The importance of photonic calculations has been established by now. The question re-

mains, however, How should the optical properties of photonic crystals be represented? For
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Figure 2.1: (a) Wooden chopstick in a glass of tap water. Both the kink and the magnification of the

markings are due to the difference in refractive index between water and air. (b) Bragg colors coming

from a photonic crystal, which is on the inside of a glass bottle, under white-light illumination. The

white scale bar in panel (a) is 5 cm, the one in panel (b) is 2 cm.

atomic and molecular substances, like water, the optical response is summarized by its refrac-

tive index n. It is basically a number, or a second-rank tensor, which describes the interaction of

electromagnetic radiation with the atoms or molecules of which the substance consists, leading

to phenomena such as refraction (Figure 2.1a). The interaction is averaged over a volume that

is large compared to the size of the constituent entities. Averaging the optical response of a

molecular substance is permitted, because the wavelength of visible light is typically 5000×
larger than the average molecule. This enormous size difference is also the reason why Bragg

diffraction of visible light does not occur in atomic and molecular substances. In such materials,

the typical length scale is on the order of 0.1 nm, as is demonstrated in X-ray diffraction [121].

For Bragg diffraction of visible or infrared electromagnetic radiation to occur in a material,

thus allowing greater control over the propagation of light in such a substance, the size of its

constituents needs to be matched to the wavelength of light, which is approximately 500 nm.

This is why colloids are excellent building blocks for photonic crystals, as they have a size

of approximately 1 μm. Crystals consisting of colloids, so-called colloidal crystals, interact

strongly with light, as demonstrated in Figure 2.1b. The periodicity of the crystal, and the

length-scale of the lattice spacings, cause beautiful Bragg colors under white-light illumination.

However, as the size of the particles is on the same order as the wavelength of the light they

interact with, the material can no longer be considered as isotropic. Moreover, spatial averaging

of the local optical response of the material no longer yields an average refractive index that

correctly describes the interaction of the material with light. Thus, a different way to summarize

the optical properties of such a material is required.

The ‘refractive index’ of a photonic crystal is its photonic band diagram. It contains the pho-

tonic band structure of the crystal, which is basically the dispersion relation of electromagnetic

radiation inside the crystal. In other words, it is a plot of the energy of propagating modes ver-

sus their wave vector, plotted along correctly selected crystal directions. The dispersion relation

has several, separate bands due to translational symmetry of the crystal. If the crystal directions

are indeed carefully selected, symmetry ensures that the diagram is a complete representation
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of the optical properties of the photonic crystal. How to select the correct crystal directions and

how to actually calculate such a diagram will be discussed in Sections 2.2 and 2.3.

In this chapter, we will first review the theoretical concepts that underly photonic band

diagrams (Section 2.2). Starting from the Maxwell equations, a master equation for purely

dielectric photonic crystals will be derived. Group theory will be applied to explain why the

dispersion relation for electromagnetic waves in photonic crystals need only be calculated from

the master equation along a piecewise-linear trajectory in reciprocal space. Numerical simula-

tions are required to actually solve the master equation, which will be described in Section 2.3.

Once the necessary tools have been discussed, we will continue with an example of how pho-

tonic band structure calculations can guide the fabrication of photonic crystals with a band gap

in the visible region (Section 2.4). Here, we present a route towards photonic band-gap materi-

als with the diamond or pyrochlore structure via the self-assembly of binary Laves phases using

colloidal particles. Next, we consider the photonic band diagram of body-centered tetragonal

(BCT) crystals and find results that contradict results with literature data (Section 2.5). Finally,

the use of photonic band-structure calculations in the analysis of spectroscopic measurements

on colloidal crystals is presented (Section 2.6). In this way, we probed the size of colloidal

spheres in a colloidal crystal, a quantity that was previously difficult to determine.

2.2 Theoretical background

2.2.1 The Maxwell equations in photonic crystals
At the start of the 20th century, scientists realized that classical physics cannot correctly describe

the behavior of very small particles, such as electrons and atoms. It took the community a couple

of decades to develop the required theoretical framework, which is known nowadays as quantum

mechanics [13]. Although photonic crystals strongly interact with one of the elementary par-

ticles, the photon, no quantum description of light is necessary to calculate the photonic band

structure of a photonic crystal, which describes their interaction with light. Typical photonic

crystal building blocks have a size on the order of a micron, which is approximately 10,000×
larger than the typical size of an atom. The De Broglie wavelength of an electron in an atom is

on the order of 0.1 nm as well [15]. As the characteristic length scale of atoms and electrons is

much smaller than the wavelength of visible light (∼ 500 nm), the latter will not be diffracted by

individual atoms and electrons in photonic crystals. Therefore, the optical response of photonic

band gap materials can be described theoretically using classical electrodynamics [10].

Phenomena in classical electrodynamics are governed by the Maxwell equations (2.1).

∇ ·D = ρfree

∇ ·B = 0

∇×E+ ∂B
∂ t = 0

∇×H− ∂D
∂ t = Jfree

(2.1)

The free-charge density ρfree and the free-current density Jfree are the basic sources of, respec-

tively, electrostatic and magnetostatic fields. In this thesis, we will mostly consider purely
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dielectric photonic crystals, which are mixed dielectric media [7]. They consist of regions of

homogeneous, dielectric material without any free charges or currents.

ρfree = 0

Jfree = 0
(2.2)

This assumption turns the two inhomogeneous Maxwell equations into homogeneous equations,

making it significantly easier to solve the resulting set of Maxwell equations (2.3), though that

may still be quite vexing.
∇ ·D = 0

∇ ·B = 0

∇×E+ ∂B
∂ t = 0

∇×H− ∂D
∂ t = 0

(2.3)

In order to solve the Maxwell equations, the displacement field D and the magnetic in-

duction B have to be written in terms of the electric field E and the magnetic field H. The

equations describing these relations are called the constitutive relations. In vacuum, the electric

displacement D and the electric field E are proportional, the proportionality constant being the

permittivity of free space ε0 ≈ 8.854 ·10−12 F/m [14]. The magnetic field H and the magnetic

induction B are also proportional in vacuum - they are connected by the permeability of free

space μ0 = 4π ·10−7 H/m [14].

To treat dielectric media, the constitutive relations must first be written in their general form.

D = ε0E+P

B = μ0H+M
(2.4)

The relation between the polarization P and the electric field E depends on the material under

consideration, just as the relation between the magnetization M and the magnetic field H. For

simplicity, we assume that our photonic crystals only consist of non-magnetic materials (Equa-

tion 2.5), which is usually a valid assumption in pure dielectrics, as they carry no macroscopic

electric currents.

M = 0 (2.5)

For simplicity, we also assume that the field strengths are so small that the response of materials

to electric fields is linear. Not only is the response linear, we also assume the dielectric materials

are isotropic, such that the displacement field D and the electric field E are related by a scalar∗
dielectric function ε(r).

D = ε0ε(r)E

B = μ0H
(2.6)

∗The formalism that is described in this section can be generalized to anisotropic media in a straightforward

manner. However, the more general formalism will require the use of a dielectric tensor εi j(r) instead of a dielectric

scalar function ε(r), which complicates subsequent calculations.
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The scalar dielectric function ε(r) only depends on the position vector r, not on the frequency ω
of the electromagnetic waves. In other words, the dispersion of the dielectric material is ignored.

The value of the dielectric constant is chosen such that it is appropriate to the frequency range

of interest for the physical system under consideration.

Using the constitutive relations for linear and isotropic media (Equation 2.6), the displace-

ment field D and the magnetic induction B can be eliminated from the homogeneous Maxwell

equations (2.3), yielding
∇ · (ε(r)E) = 0

∇ ·H = 0

∇×E+ μ0
∂H
∂ t = 0

∇×H− ε0ε(r)∂E
∂ t = 0 .

(2.7)

In principle, the electric field E and the magnetic field H are complicated functions of time and

space. Although interesting in themselves, we do not concern ourselves with time-dependent

optical phenomena in this thesis. If only time-independent optical phenomena are considered,

only the dispersion relation of light in photonic materials needs to be calculated. In addition, it

is useful to determine the spatial distribution of the electric and magnetic fields, as the distri-

bution may explain the existence or absence of gaps and it reveals where the field is strongly

enhanced or reduced. The latter is especially useful if fluorescent dyes or quantum dots are to

be incorporated. Because of the restriction to time-independent phenomena, we will separate

out the time-dependence of the fields by imposing a harmonic time-dependence of the fields

(Equation 2.8), This is allowed because the Maxwell equations are linear in time.

H(r, t) = H(r)eıωt

E(r, t) = E(r)eıωt
(2.8)

Please note that assuming a harmonic time-dependence is no great limitation. According to

Fourier theory, any solution can be written as an appropriate combination of harmonic modes.

However, in most cases, the general solution will not be constructed from the Fourier compo-

nents, they will just be referred to as different modes.

In order to calculate the frequency ω of propagating modes, and the corresponding mode

profiles, the above equations are substituted into Equation 2.7, resulting in

∇ · (ε(r)E) = 0

∇ ·H = 0

∇×E = −μ0ıωH

∇×H = ε0ε(r)ıωE .

(2.9)

The two divergence equations require the fields to be built up of transverse electromagnetic

waves. As long as this transversality is carefully enforced upon the field solutions, only the curl
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equations have to be solved. Unfortunately, the two curl equations are coupled. They can be

decoupled by dividing the fourth Maxwell equation (see Equation 2.9) by ε(r) and then taking

the curl, after which the third Maxwell equation can be inserted to eliminate the electric field E.

The result is an equation (2.10), which has been named a “master equation” [7], in which only

the magnetic field H occurs.

ΘH(r) =
(ω

c

)2 H(r)

where ΘH(r) ≡ ∇×
(

1
ε(r)∇×H(r)

) (2.10)

The master equation (2.10), together with the transversality condition for H and the func-

tional form of the dielectric constant ε(r), completely determine the magnetic field H. Once

the magnetic field is determined, the fourth Maxwell equation (see Equation 2.9) can be used to

calculate the electric field E. Most people prefer to write the master equation (2.10) in terms of

the magnetic field H, because the operator Θ is Hermitian, whereas the corresponding operator

for the electric field E is not. Please note that the dielectric function ε(r) need not be a scalar for

the operator Θ to be Hermitian. If the dielectric function ε(r) itself is Hermitian, the operator

Θ will be Hermitian as well.

The master equation is a so-called eigenvalue equation: applying the operator Θ to the mag-

netic field H yields a scalar (ω/c)2 times the same magnetic field H. It is very similar to the

time-independent Schrödinger equation [7, 122]. Just as the Hamiltonian operator H in quan-

tum mechanics, the operator Θ is linear and Hermitian. In quantum mechanics, a translational

symmetry of the electronic potential Ve causes the dispersion relation of the electron to split into

separate energy bands. Similarly, the translational symmetry of a photonic crystal will cause

the dispersion relation of electromagnetic radiation to split into photonic bands. However, the

vector nature of the electromagnetic field complicates calculations, for the operator Θ couples

different directions, even if the dielectric function ε(r) is separable. Another difference is that

there is usually a typical length scale in quantum mechanical problems, an estimate of which

can be given using Heisenberg’s uncertainty relation, while the Maxwell equations are scaleless.

The latter means that photonic band structure calculations that are valid for a crystal of marbles

are still valid for a crystal of colloids, as long as wavelengths are scaled accordingly and disper-

sion of the constituent materials is negligible! Thus, photonic band diagrams for specific crystal

structures, such as body-centered tetragonal (Section 2.5) or MgCu2 (Section 2.4), only have

to be calculated once. For example, if the diameter of the spheres is changed in experiments,

the position of a stop gap in units of (c/a) will not change! As was already mentioned, scaling

only applies if dispersion of the constituent dielectric materials can be neglected. Thus, if the

size of the constituents changes drastically, the frequency range of interest shifts significantly,

which means different values for the dielectric constants of several composite materials may be

required. In that case, the photonic band diagram will have to be calculated again, this time

with the dielectric constants that are appropriate to the frequency range of interest.

2.2.2 The irreducible Brillouin zone
An important goal in photonics is the fabrication of materials with a photonic band gap in the

visible or near-infrared. As explained in Section 2.1, their fabrication process is guided by
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Figure 2.2: (a) Real-space structure, (b) reciprocal-space lattice with the irreducible Brillouin zone in

gray and (c) the corresponding band diagram of a 2-D, square lattice of silicon cylinders in air. The

band diagram was calculated for TM-modes, which have their magnetic field H in the plane that is

perpendicular to the long axis of the cylinders.

calculated photonic band structures. Such calculations are used to trace frequency gaps in the

dispersion relation ω(k) of light, called photonic band gaps, which means that light cannot

propagate in the material in any direction, regardless of polarization. Such gaps open up if

the maximum of band n has a lower frequency than the minimum of band (n + 1). However,

how can the minima and maxima of a band be located? Usually, the derivative of a function

is set equal to 0 in order to find its extrema. However, this requires a functional form for the

dispersion relation ω(k). Such a functional form, in turn, requires an analytical solution for the

master equation (2.10). Unfortunately, except for some very special cases, the master equation

cannot be solved analytically.

If the master equation typically needs to be solved numerically, the most obvious way to

find the extrema of bands is by calculating the frequencies ω for all possible wave vectors k.

Binning frequencies belonging to the same wave vector k, the extrema of bands can be located.

However, this scheme requires the calculation of frequencies belonging to an infinite number

of wave vectors. In other words, frequencies need to be calculated for each point in reciprocal

space, which is generally 3-D and infinite. Fortunately, symmetries of the crystal can be used

to reduce the volume of reciprocal space that has to be probed in order to find band extrema.

Using Bloch’s theorem [3], we can restrict ourselves to the Wigner-Seitz cell of reciprocal

space: the first Brillouin zone (BZ). Bloch’s theorem fully exploits the translational symmetry

of the crystal lattice. However, the other symmetry properties of the crystal (the point group)

have not been exploited yet. These remaining symmetries can be used to construct a set of

wave vectors within the BZ that do not transform into themselves under any of the symmetry

operations of the space group G, except for the identity element I of G. This set is called the

irreducible Brillouin zone (IBZ) and can be considered as the smallest possible set of non-

equivalent wave vectors that can still generate the entire reciprocal space of the crystal (see

Figure 2.2 for a 2-D example) [4].

Up till now, the argument has been quite easy to understand intuitively. However, why

do we only need to plot the band diagram along the edges of the IBZ? It follows from group
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theory that all wave vectors k′ in the neighborhood of an arbitrary wave vector k have an energy

eigenvalue E ′ close to the energy eigenvalue E of k [123]. For a wave vector in the interior

of the IBZ, the only associated symmetry element is the identity I. This means that symmetry

does not force neighboring wave vectors to all have lower/higher energy eigenvalues; we only

know that their energy eigenvalues are close to E. In other words, the dispersion relation is a

continuous function of the wave vector k. However, wave vectors on the edges of the IBZ do

have symmetry operations other than the identity associated with them. It follows from group

theory that only if a wave vector k is on an edge of the IBZ can symmetry force other wave

vectors in the neighborhood of k, that are not on the same edge, to all have a higher energy

eigenvalue or to all have a lower energy eigenvalue [123]. It is a consequence of the fact that

symmetry forces this eigenvalue to be degenerate. Thus, the extrema of bands can only occur on

the edges of the IBZ, not in its interior. Of course, it could be that a wave vector in the interior

of the IBZ belongs to a degenerate energy eigenvalue, but this is not due to symmetry. These

degeneracies are referred to as accidental degeneracies. They depend critically on the specific

functional form of the Hamiltonian and are lifted if the Hamiltonian is slightly changed (e.g.

changing the dielectric contrast) [123].

2.2.3 Irreducible Brillouin zones and crystal bases
As was explained in Section 2.2.2, photonic band diagrams only have to be calculated along the

edges of the irreducible Brillouin zone of the crystal under consideration. If a crystal has only

one particle in its basis, the symmetry group of the crystal is a sub-group of the symmetry group

of the corresponding lattice.† After all, if the particle is invariant under a symmetry operation

that is not part of the symmetry group of the lattice, application of that symmetry operation will

not transform the lattice into itself. The latter amounts to the positions of the particles being

changed, which means the crystal has not been transformed into itself either. Thus, the particle

in the basis of a Bravais crystal can only remove symmetry elements from the symmetry group

of the Bravais lattice.

If the symmetry group of the crystal is a sub-group of the symmetry group of the lattice,

plotting photonic band diagrams along the irreducible Brillouin zone of the lattice is safe. After

all, the true edges of the irreducible Brillouin zone of the crystal are still probed, possibly

together with some additional edges, which are actually inside the true zone. As band extrema

are always on the true edges of the irreducible Brillouin zone, the true minima and maxima of

each band will still be found. If there is no gap between bands n and (n+1), the diagram along

the additional edges cannot open up such a gap, as it has already been closed along one of the

true edges. If there is a gap between these two bands, it cannot be closed by plotting along the

additional edges. The true maximum/minimum of band n/(n+1) has already been found along

the true edges, so no frequencies in the gap will be found along the additional edges.

However, if the structure cannot be described as a Bravais crystal with one particle in its

basis, care has to be taken in the selection of the underlying lattice. In this case, one has to

make sure that the symmetry group of the crystal is still a sub-group of the symmetry group of

the lattice. If not, plotting band diagrams along the edges of the irreducible Brillouin zone of the

lattice, as is common practice, means that not all symmetry directions of the crystal are probed.

†In solid state physics, a crystal is considered to be the ‘sum’ of an underlying, mathematical lattice and a basis,

the latter containing one or more particles. Thus, a crystal can be built up by placing one basis on each lattice site.
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In other words, not all true edges of the irreducible Brillouin zone are probed. For example,

the FCC structure can be described as an FCC lattice with a single particle on each lattice site.

However, it can also be described as a simple cubic lattice with four particles attached to each

lattice site. If the band diagram of an FCC structure would be plotted along the irreducible

Brillouin zone of the simple cubic lattice, the edge of the irreducible Brillouin zone of the

structure along the hexagonal symmetry axis would not be probed. If the true maximum or

minimum of band n is on one of the forgotten edges, it will not be found. This might incorrectly

open up a gap between bands (n−1) and n or between bands n and (n+1), thus leading to false

conclusions regarding the existence of band gaps.

2.2.4 Photonic band diagrams
Plotting the dispersion relation along a characteristic path along the edges of the irreducible

Brillouin zone results in the so-called photonic band diagram [123]. Corners and symmetry

axes of the irreducible Brillouin zone are conventionally labelled with letters such as Γ, X, M

and so on [124]. Thus, the letters on the horizontal axis of a photonic band diagram correspond

to a piecewise-linear trajectory through reciprocal space. As explained in the introduction of

this chapter (Section 2.1), the band diagram is a summary of the optical properties of a photonic

crystal, its ‘refractive index’. There is a lot of information in such a diagram. If there is a

frequency range for which no modes exist along one specific direction, this range is called

a stop gap. Such stop gaps correspond to standing waves in the photonic crystal, which are

basically the extension of Bragg reflections. If there is a frequency range for which stop gaps

along all directions (partly) overlap, that frequency range is called a photonic band gap. Finally,

if a band runs (nearly) horizontal, the derivative of the frequency ω with respect to the length

of the wave vector along that direction k is nearly zero. This derivative is identical to the group

velocity vg. Thus, flat bands along specific crystal directions correspond to light propagating at

a very low speeds along those directions.

2.2.5 Summary
Starting from the Maxwell equations (2.1), we derived the master equation (2.10) for electro-

magnetic waves in photonic crystals. Several assumptions have been used in the derivation.

• The photonic crystals under consideration are mixed dielectric media, without any free

charges or free currents.

• All materials are non-magnetic.

• The polarization of all materials is proportional to the electric field E, the proportionality

constant between the electric field E and the displacement field D being ε0ε(r).

• The dielectric function ε(r) is isotropic. Although this is not a necessary requirement, it

does significantly simplify calculations.

• The dielectric function ε(r) is a function of position r only, not of the frequency ω .

Neglecting the dispersion of materials is not a serious restriction, but it does affect

scaling properties indirectly.
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• Harmonic time-dependence of the electric and magnetic fields. This is no serious

restriction, as any field pattern can be decomposed into such Fourier modes.

Together with the transversality condition, the master equation completely determines the mag-

netic field H, from which the electric field E can be calculated using the Maxwell equations.

From the master equation, the dispersion relation ω(k) of electromagnetic waves in photonic

crystals can be calculated. Using group theory, it can be shown that, in order to find the gaps of

a photonic crystal, the dispersion relation only needs to be plotted along a specific trajectory in

reciprocal space, in a so-called photonic band diagram.

2.3 Methods
In the previous section (2.2), classical electrodynamics [7, 10], solid-state theory [3, 4] and

group theory [29] were applied to prove that photonic band gaps can be found by plotting

appropriate photonic band diagrams [123]. However, it was not discussed how to actually

calculate such a diagram numerically. For this thesis, photonic band diagrams were calculated

using the MIT Photonic Bands (MPB) software package [125], version 1.4.2. Calculations

were typically performed up to band 10 and for dielectric contrasts ranging from 2 to 20 using

32×32×32 grid points to discretize the unit cell. MPB computes fully-vectorial eigenmodes of

Maxwell’s equations with periodic boundary conditions by preconditioned conjugate-gradient

minimization of the block Rayleigh quotient in a plane-wave basis [126].

In most cases presented here, we used MPB 1.4.2 extended with Mischa Megens’ patch

file [127] for calculating the effective dielectric constant over Wigner-Seitz real-space unit cells

instead of the parallelepiped unit cells spanned by the lattice vectors. Moreover, the patch en-

sures proper weighting of the dielectric constant at the edges of the unit cells, thus avoiding

double-counting. We note here that we have not noticed any major differences between calcu-

lations that were performed with or without this patch, though differences in relative gap width

of 0.2%-points have been observed.

MPB itself calls several packages, including libctl 3.0.1, Guile 1.6.4 and lapack 1.1. Most

plane-wave calculations were performed on VENUS [128], which is a UNIX server of the

department of Physics & Astronomy at Utrecht University. VENUS is an SMP server with 4

AMD Opteron 848 processors and 16 Gb of memory. The Opteron is a 64 bit CPU with 32 bit

capabilities. Its operating system is RedHat Enteprise 4 AS.

Parameters of the physical system under considerations are passed to MPB via Scheme code

in an input control file (.ctl). The user has to specify the lattice geometry, the crystal basis, the

dielectric constants of the composite materials and the trajectory along which to plot the band

diagram. As part of its output, MPB returns the dielectric function to the user. We used an IDL

(Interactive Data Language) procedure to plot isosurfaces of this dielectric function to double-

check the input against the real-space structure. In addition, we compared the filling fraction of

our structure, as calculated by MPB, with the analytical value.

MPB also requires the user to provide the values of some calculational parameters, including

resolution, mesh-size, number of bands and tolerance (1 ·10−7). The resolution determines the

number of plane waves that are used in the calculation. The real-space unit-cell is discretized

using (resolution)3 grid points, the number of grid points being equal to the number of plane

waves [126]. The value of the dielectric function at a specific grid point is determined by
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averaging the dielectric function over a sub-grid. Each resolution grid point is surrounded by

a sub-grid consisting of (mesh-size)3 sub-grid points. Typical values for the resolution and the

mesh-size were, respectively, 32 and 25.

The calculations for nearly all structures with a photonic band gap were checked for con-

vergence by plotting the relative gap width against the resolution used. For many of these

calculations, the mesh-size was also scanned to check for convergence. Moreover, we checked

the convergence of the MPB calculations for diamond and pyrochlore using the photonic ana-

logue of the Koringa-Kohn-Rostoker (KKR) method [32, 129, 130] and found that MPB and

KKR agree on the midgap frequency of the gap between bands 2 and 3, and on the dielectric

contrast at which the gap opens, but not always on the gap width.

Reflection and transmission spectra of colloidal crystals with a finite number of layers were

calculated using the photonic analogue of the layered Koringa-Kohn-Rostoker (LKKR) method

[32, 129, 130]. We used an approximately 5-year-old code that was written by Alexander

Moroz. A more recent version of this LKKR code is or will be freely available [131]. The

code was compiled using an F77 compiler and run on RUUNAT, which is the predecessor of

VENUS. RUUNAT is a UNIX server with a couple of Compaq Tru64 processors. The operating

system is Unix v5.1A.

2.4 Photonic band structure of Laves-phase colloidal crystals

In Section 2.1, we have explained that photonic band-structure calculations can be used to

guide the fabrication of photonic crystals. This is important, because the fabrication of periodic

structures with a high index contrast on the sub-micron scale is challenging. For example,

photonic crystals with a band gap in the visible have not been realized yet. Assembling 3-D

periodic structures with feature sizes of the right length scale is not the main problem. However,

most of these materials have the face-centered cubic (FCC) structure, at best. Inverse FCC

crystals are predicted to have a photonic band gap between bands 8 and 9, but only if the index

contrast exceeds ∼ 2.9 [31, 65, 66]. Unfortunately, there are hardly any non-absorbing materials

available that have such a high refractive index in the visible region.

Calculations have been performed which predict that there are structures with a photonic

band gap at lower index contrasts. The presently known clear champion structures, both for

opening up a band gap at the lowest refractive-index-contrast ratio (around 2) and the largest

band-gap width to center-frequency ratio, are dielectric diamond [32, 36] and pyrochlore [38]

structures. Both these structures also give rise to gaps at low lying bands which makes them

more stable against disorder [74, 75]. Conventional methods like lithography have not realized

these structures for a band gap in the visible, as this requires 3-D feature sizes of just a few

hundred nanometers. This size range is easily achieved with colloidal particles. Therefore,

recently, several methods to realize structures with diamond symmetry by self-organization

of colloids have been proposed. However, they require inter-particle potentials that are not

spherically symmetric [132] or that are even more complicated [133], both of which have yet

to be realized experimentally. Although it is proposed in [134] to use four spheres combined in

the form of tetrahedrons to arrive at diamond and pyrochlore structures, the fabrication process

is not described. Garcia-Adeva [38] proposed making pyrochlore lattices by a layer-by-layer

growth procedure, as shown by Velikov et al. [135], which is a laborious route.
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a b
Figure 2.3: Figure (a) is the conventional, real-space unit cell of the MgCu2 structure. The large

spheres (gray) are on the sites of a diamond structure, whereas the small spheres (black) are on the

sites of a pyrochlore structure. At maximum sphere packing, the large spheres are touching each other,

the small spheres are touching each other, but the large spheres do not touch the small spheres. The

maximum sphere packing fraction is approximately 71.0%, at which the ratio of the sphere diameters

σS/σL = (
√

2/
√

3) ≈ 0.816. The underlying Bravais lattice of the MgCu2 structure is face-centered

cubic (FCC). The first Brillouin zone for FCC is depicted in panel (b), together with its irreducible

part: ΓXUWKLΓ. In FCC photonic band-structure calculations, the dispersion relation is usually plotted

along the characteristic path: XULΓXWK.

In a recent paper, we have shown how both the pyrochlore and diamond structures can be

obtained from a binary mixture of colloidal spheres with easily realizable interaction poten-

tials [114]. The removal of the large or small spheres from the so-called binary Laves phase

[136] MgCu2 can be done using already well-established procedures such as dissolution [67]

or burning [135]. The paper focuses mostly on Monte-Carlo simulations that demonstrate the

possibility of fabricating binary Laves phases by colloidal self-assembly. The MgCu2 structure,

which is the most favorable of the binary Laves phases from a photonic point of view, can be

selected using a specific template as the sample substrate. Although the optical properties of the

binary Laves phases are considered in the article, it does not go into the details of the photonic

calculations. Therefore, we will now elaborate on photonic band-structure calculations for the

MgCu2 structure and its derivatives. These investigations have led, amongst other things, to

a clearer understanding of why diamond is one of the two champion structures for photonic

band-gap materials.
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2.4.1 Photonic band structure of MgCu2

We consider a MgCu2 structure consisting of large spheres L and small spheres S with diam-

eters of σL and σS, respectively. Figure 2.3a is a schematic representation of the conventional

unit cell of such a MgCu2 structure. The large spheres form a diamond structure, which is it-

self equivalent to two interpenetrating face-centered cubic (FCC) lattices, one being displaced

along (1/4) of the body diagonal of the conventional, cubic unit cell. The small spheres form

tetrahedrons that fill up the voids of the diamond structure, thus forming a pyrochlore structure.

In the case of optimal packing, the large spheres are mutually touching and have a diameter

σL = a · (√3/4), in which a is the length of the cube edge (Figure 2.3a). The small spheres are

also touching, having a diameter of σS = a · (√2/4). However, the distance between a large

sphere and a neighboring small sphere is a · (√11/8), which is larger than the sum of σL and

σS, so the large and the small spheres are not touching one another. At closest-packing, the

size ratio ζ of large and small spheres in the MgCu2 structure is (
√

2/
√

3) ≈ 0.816, yielding a

sphere volume fraction ϕmax of approximately 71.0% (Equation 2.11).

at max. packing
(

σS
σL

)
=

√
6

3 ≈ 0.816

ϕmax =
(

4π
3

) ·((σL
a

)3 +2
(σS

a

)3
)
≈ 0.710

(2.11)

As was explained in Section 2.2.2, the photonic band diagram only has to be plotted along

a characteristic path in reciprocal space. In addition, the case of crystals with more than one

particle in the crystal basis was discussed. The MgCu2 structure has at least six particles in

its basis, so care should be taken in selecting the underlying lattice. The lattice of a certain

crystal structure should always be selected such that the symmetry group of the structure is a

sub-group of the symmetry group of the lattice. This can be accomplished by selecting the

underlying lattice having the largest possible number of elements in its symmetry group. In that

case, the corresponding basis of the crystal can only remove elements from the lattice symmetry

group, which means plotting band diagrams along the edges of the irreducible Brillouin zone of

the lattice is always safe. For MgCu2, the lattice with the highest possible symmetry is an FCC

lattice, the first Brillouin zone of which is depicted in Figure 2.3b. The irreducible part of this

zone is ΓXUWKLΓ - photonic band diagrams are conventionally plotted along the characteristic

path XULΓXWK.

Figure 2.4a displays the photonic band structure of a MgCu2 structure of silicon spheres

(ε = 12) in air at optimal packing. Dielectric spheres in air were selected instead of an inverse

structure, because both pyrochlore and diamond have a large gap between bands 2 and 3 for

silicon spheres in air. However, it is clear from Figure 2.4 that the MgCu2 structure does not

have a band gap in this geometry. To explain why the diamond/pyrochlore gap between bands 2

and 3 closes for MgCu2, a series of calculations have been performed in which the diameter of

the small spheres σS was varied. At the start, the diameter of the small spheres was set to zero,

which yielded a diamond structure at its maximum sphere packing fraction of approximately

34%. Increasing the diameter of the small spheres in small steps, the width of the gap between

bands 2 and 3 was determined for each diameter, negative gap widths corresponding to the

absence of a gap. The graph in Figure 2.4b starts at a relative gap width of approximately 7%,

which is indeed the width of that gap for the diamond structure, at least according to plane-wave

calculations [33]. The graph clearly proves that introducing the small spheres deteriorates and

finally closes the gap completely.
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a b

Figure 2.4: Figure (a) is the calculated photonic band diagram for a close-packed, MgCu2 structure of

silicon spheres (ε = 12) in air. Panel (b) shows the relative width of the gap between bands 2 and 3 for

a MgCu2 structure in which the large spheres are touching and in which the small spheres have a radius

σS = S ·σL. The small spheres start overlapping at σS ≈ 0.816 ·σL. Negative gap widths correspond to

the absence of a gap. It is clear that introducing small spheres deteriorates the gap width.

Strangely enough, the small spheres themselves form a structure that also has a large gap

between bands 2 and 3 at optimal packing. How is it possible that a structure that consists

of the sum of two strongly photonic crystals is itself hardly photonic at all? In order to get a

grip on this problem, the origin of the gap needs to be found, for which energy-density maps are

very useful. Figure 2.5 compares the dielectric functions of a diamond and a MgCu2 structure of

silicon spheres in air at optimal packing with energy density plots of bands 2 and 3. In diamond,

the energy densities of bands 2 and 3 are clearly arranged in bands. One band concentrates

its field energy in the low-dielectric phase, while the other band concentrates the energy in

the high-dielectric phase. According to the variational principle [7], this enables the bands to

separate their frequencies, thus causing a stop gap to open up. The local tetrahedral symmetry

of diamond ensures that stop gaps along different directions overlap [36], leading to a frequency

range with an omnidirectional stop gap - a photonic band gap. Introducing the small spheres into

the voids of diamond causes the energy densities of bands 2 and 3 to be much more scattered.

Field lines of the D field, which have to be continuous, now have to cross dielectric interfaces

between sphere and host media, simply because there is no longer enough space in the air phase

to contain all the field lines of an entire frequency band. The result is that the two successive

bands can no longer concentrate their field energy in different dielectric phases. Thus, they

cannot separate their frequencies, which means that no gap will open up. Though qualitative

and in hindsight, such a reasoning based on the variational principle can provide some insight

into why gaps open or close upon changes in the geometry of a structure.

Removing one of the components of MgCu2, leaves either diamond (large spheres) or py-

rochlore (small spheres). Both of these structures are strongly photonic, especially in their

inverse geometry (to be discussed more below) with the low-dielectric spheres heavily over-

lapping. To start with, we have only investigated diamond and pyrochlore geometries with

non-overlapping spheres at optimal packing, as these are easiest to realize experimentally. Note
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Figure 2.5: Panels (a,d) show iso-surface representations of the dielectric function of (a) a diamond and

(d) a MgCu2 structure of silicon spheres (ε = 12) in air at maximum sphere packing. This representation

shows the projection along the [111] direction in the conventional unit cell of the dielectric function, the

latter being part of the MPB output. Iso-surface representations of the energy densities of the displace-

ment field D at the L-point (see Figure 2.3b) of the (b,e) 2nd and (c,f) 3rd bands in the (b,c) diamond and

(e,f) MgCu2 structure, as calculated by MPB, are plotted over the same area as panels (a,c).
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c d
Figure 2.6: Calculated photonic band diagrams of four different structures: (a) inverse diamond, (b)

inverse pyrochlore (air spheres in silicon) and (c) direct diamond, (d) direct pyrochlore. For all structures,

MPB band diagrams were calculated at maximum sphere packing fraction. The dashed lines and gray

boxes indicate the position of the gap between bands 2 and 3.



34 CHAPTER 2

a b

Figure 2.7: Calculated relative width of the gap between bands 2 and 3, as a function of the dielectric

contrast, for four different structures: direct pyrochlore ( ϕ = 0.37), direct diamond (ϕ = 0.34) (dielectric

spheres in air) and inverse pyrochlore, inverse diamond (air spheres in a dielectric background). Both

MPB plane-wave and KKR calculations are shown. It is clear that MPB and KKR agree with each other

for the inverse structures, but not for the direct ones. The relative gap width is defined as the gap width

divided by the midgap frequency. The solid lines are a guide to the eye.

that the underlying lattice of the diamond and pyrochlore structures is still FCC, so the same

characteristic path through reciprocal space can be taken for band-structure calculations. At

a dielectric contrast of 12, which is close to the contrast of silicon and air, both inverse dia-

mond/pyrochlore and direct diamond/pyrochlore have a gap between bands 2 and 3, though the

photonic band gap of the direct structures is larger than that of the inverse ones (Figure 2.6). A

gap between such low-lying bands is advantageous, because it makes them more stable against

disorder [74].

Figure 2.7 shows the relative width of the photonic band gap between bands 2 and 3, as a

function of the dielectric contrast, for (a) the direct diamond and pyrochlore structures (dielec-

tric spheres in air), and (b) their inverse structures (air spheres in a dielectric background), at

maximum sphere packing fraction. Results of both MPB and KKR calculations are shown for

easy comparison. The direct structures (Figure 2.7a) in particular possess large photonic band

gaps for moderate dielectric contrasts. Their gap opens up at a dielectric contrast of 5, which is

much lower than the required contrast of 8.4 for an inverse FCC structure [31, 65]. At a contrast

of 12 (silicon spheres in air), the gap width has increased to approximately 7% and 11% for the

direct diamond and direct pyrochlore structure, respectively. These gaps are much larger and

open up at lower contrasts than for the inverse structures. We did not find any band gaps for the

other two binary Laves structures. Neither did we find any significant gaps for the small/large

particle components of the MgZn2 and MgNi2 structures.

2.4.2 Convergence in band-structure calculations
Photonic band diagrams for diamond are notoriously difficult to calculate using plane-wave

expansions [32]. KKR calculations have shown, for example, that plane-wave calculations

severely overestimate the relative width of the gap between bands 2 and 3 for diamond structures
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of silicon spheres in air [32]. One explanation could be that KKR employs an expansion in

spherical instead of plane waves and that spherical waves fit the boundary condition at the

edge of the sphere better than plane waves. However, in that case, it is difficult to understand

why plane-wave calculations for FCC structures do converge very rapidly. Another explanation

could be that plane-wave calculations get into trouble if the crystal basis contains more than

one particle. This seems unlikely as well, as MPB calculations for the sodium-chloride (NaCl)

structure seem to converge just fine (see Chapter 5). All the same, a combination of the above-

mentioned arguments is likely to play a role. If the structure has a basis with spherical particles,

and the sphere volume fraction is low or the number of particles in the basis is large, then the

number of grid points that is available in or near the edge of a particular sphere is low, which

may result in moderate convergence.

To check the convergence of MPB plane-wave calculations, we plot the relative width of

the gap under consideration as a function of the resolution (res). In MPB, (resolution)3 is the

number of grid points that is used to discretize the real-space unit cell, which is equal to the

number of plane waves that is used in the band-structure calculation. In the case of a diamond

structure of close-packed silicon spheres in air, this convergence plot displays a peculiar, oscil-

latory behavior (Figure 2.8a). The oscillations reach local maxima for values of the resolution

that are a multiple of 8, while they reach local minima for values that are a multiple of 4 but

not of 8. This peculiar behavior may be a numerical artefact of the discretization of the dia-

mond unit cell. The vector connecting the two spheres in the diamond crystal basis runs along

the body diagonal of the conventional, cubic diamond real-space unit cell and has a length of

(a/4) ·√3, in which a is the length of the cube edge. The body diagonal of a grid cell is parallel

to the vector connecting the spheres and has a length of (a/res) ·√3. Thus, the length of the

vector connecting the spheres has a length of (res/4) body-diagonal grid units. This means that

its length, in units of grid body diagonals, is odd if the resolution is a multiple of 4 but not of

8 and that it is even if the resolution is a multiple of 8. The question remains how the distance

between the two spheres in the diamond crystal basis being even or odd can have an effect on

the relative width of the gap between bands 2 and 3.

The center of one of the spheres in the diamond crystal basis is on the origin grid point.

As the displacement vector between the two spheres in this basis has a length of (res/4) body-

diagonal grid units, the center of the second sphere is also on a grid point if the resolution is a

multiple of 4. Then, at maximum packing, the contact point of the two spheres in the diamond

crystal basis is on an edge at which two grid cells touch if the resolution is a multiple of 4 but

not of 8. One of the touching grid cells is in one sphere, the other one is in the other sphere.

In other words, one grid point is situated in one of the spheres, the other grid point is situated

in the other sphere. In this case, the spheres are clearly not overlapping. Alternatively, if the

resolution is a multiple of 8, the contact point of two spheres will be inside a grid cell. The

grid point of this grid cell is actually the contact point. This means that this grid point is shared

by the two spheres. In a way, this situation is similar to a situation in which the spheres are

overlapping. In both cases, one or more grid points are shared by adjacent spheres.

Figure 2.8b shows that the relative width of the gap between bands 2 and 3 for a diamond

structure of silicon spheres in air is significantly larger if the spheres slightly overlap than if

they touch. We have not found an explanation yet for the sensitivity of this gap to overlap

of the spheres. In KKR calculations, spherical coordinates are used, which means that the

boundary of the spheres does not have to be discretized. Thus, independent of the calculational
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Figure 2.8: (a) Calculated relative width of the gap between bands 2 and 3 for a close-packed (ϕ = 0.34)

diamond structure of silicon spheres (ε = 12) in air as a function of the resolution. The (resolution)3 is

the number of grid points with which the unit cell is discretized, which is equal to the number of planes

waves that is used in the field expansion. It is clear that the calculations do not converge very well for

diamond structures. (b) Calculated relative width, at resolution 32, of the gap between bands 2 and 3 for

a diamond structure of silicon spheres in air as a function of the radius of the silicon spheres. Note that

the radius of the silicon spheres in panel (b) is given in units of the close-packed radius of spheres in a

diamond structure. The relative gap width is defined as the gap width divided by the midgap frequency.

The solid lines are a guide to the eye.

resolution in KKR, which is the number of spherical waves that are used for the expansion of

the electromagnetic fields, touching spheres are not overlapping. Thus, if we wish to compare

our plane-wave calculations to KKR calculations, we should compare calculations for touching

spheres, which means only resolutions that are a multiple of 4 but not of 8 should be used. For

those resolutions, MPB predicts a relative gap width of approximately 3% instead of 7%, the

former being in reasonable agreement with KKR results [32]. Note that the convergence plot

for diamond structures of silicon spheres in air (Figure 2.8a) is nearly flat if only resolutions

that are a multiple of 4 but not of 8 are considered.

2.4.3 Summary

Concluding, our photonic band-structure calculations indicate that one of the binary Laves

phases, the MgCu2 structure, holds great potential for the fabrication of photonic crystals with a

band gap in the visible. Although it does not seem to have a band gap itself, removing the small

spheres yields diamond and removing the large spheres yields pyrochlore, both of which are

strongly photonic. We have shown that, starting with diamond, introducing the small spheres

to form MgCu2 actually closes the diamond gap between bands 2 and 3. The structure gets

too crowded, because of which different bands can no longer completely store their energy

in different dielectric phases. According to the variational principle, the latter prohibits the

bands from separating their frequencies, thus closing a possible gap. Furthermore, comparing

MPB with KKR calculations, we found that MPB calculations for direct diamond and direct
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pyrochlore converge badly. For diamond, this bad convergence seems to be a numerical arte-

fact of the discretization of the real-space unit cell. Finally, we emphasize that the structures

for which the large gaps are calculated have not been optimized in any way. This optimization

might be achieved for instance by using incomplete filling, which increases gaps for inverse

FCC structures [116], or by sintering the structures [115]. Nevertheless, as shown in Figure

2.7, several materials that do not absorb in the visible region, such as titania and zinc sulfide,

could open a gap in the visible for close-packed diamond and pyrochlore structures. Although

we have focused in this chapter on purely dielectric materials, interesting possibilities also exist

for structures consisting of metallodielectric spheres [32].

2.5 Photonic band structure of BCT crystals

In Chapter 6, we present a procedure for fabricating large-area, electric-field-induced colloidal

single crystals for photonic applications [109]. The dipole-dipole interaction between the col-

loidal spheres, which is induced by the external electric field, favors the formation of body-

centered tetragonal (BCT) crystals over close-packed (CP) crystals [137, 138]. Figure 2.9a is

a schematic picture of the conventional unit cell for BCT crystals in real-space. The primitive,

BCT unit cell is spanned by the primitive, real-space lattice vectors {ti}. If b/a = (
√

6/2),
as is the case at maximum packing, the diagonal (110)conv plane, indicated by the dark-gray

spheres, has hexagonal symmetry.‡ In that case, BCT crystals consist of hexagonal layers that

are bridge-site stacked and have an ABAB stacking sequence (Chapter 6).

As can be expected from the analogy with BCC and FCC lattices, the reciprocal space of

BCT is face-centered tetragonal (FCT). However, the FCT lattice is identical to the BCT lattice

after a rotation by 45◦, so BCT reciprocal space is actually BCT. Figure 2.9b shows the first

Brillouin zone for BCT for b/a = (
√

6/2), spanned by the primitive, reciprocal-space lattice

vectors {gi} [124]. The irreducible part of the Brillouin zone, which is important for calculating

photonic band diagrams (Section 2.2.2), has been labelled with ΓLNVZXP. Although shorter

paths along the edges of the irreducible part of the Brillouin zone are possible, we plot band

diagrams along XZVNLΓXPNL in order to include directions that can be easily probed in

experiments. Please note that the ΓX direction in BCT reciprocal space corresponds to the

direction perpendicular to the hexagonal (110)conv planes in real space.

To our knowledge, there is only one article in literature that discusses the photonic band

structure of colloidal BCT crystals consisting of spheres [139]. Tao et al. consider inverse

BCT crystals of air spheres in a dielectric host at the maximum sphere packing fraction of

(2π/9) ≈ 0.698. They claim that such structures have a photonic band gap between bands 5

and 6 if the dielectric contrast is larger than 15.7. As many of the samples that are considered

in Chapters 6 and 7 are BCT crystals, we decided to perform similar calculations ourselves

using the MIT Photonic Bands (MPB) package (Section 2.3). Figure 2.10a shows the photonic

band diagram for a BCT crystal of air spheres in a host with dielectric constant εh = 20 at the

maximum sphere packing fraction. Though the diagram looks similar to the one by Tao et al.,
especially for the low-frequency bands, our calculations do not yield a photonic band gap at all!

Unfortunately, we have no explanation for the results by Tao et al. [139].

‡The subscript “conv” refers to the conventional real-space unit cell of the crystal structure under consideration.
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Figure 2.9: Panel (a) is a schematic picture of the conventional unit cell for the BCT structure in real

space. For a/b = (2/
√

6), the (110)conv plane, which is indicated by the dark-gray spheres, has hexagonal

symmetry. The dashed lines in panel (a) represent the primitive, real-space basis vectors {ti}. The

spheres have not been drawn to scale for clarity. Panel (b) is a schematic image of the first Brillouin

zone for the BCT lattice. The reciprocal-space lattice vectors {gi} have been drawn in, at half their

length, as dashed lines. The irreducible part of the Brillouin zone has been labelled ΓLNVZXP. In the

{gi} basis, the coordinates of these labelled points are: Γ(000), N
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6/2), the coordinates of the other two points are: L
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)
. Although

shorter paths along the edges of the irreducible part of the Brillouin zone are possible, we plot band

diagrams along XZVNLΓXPNL. In real space, the direction perpendicular to the hexagonal (110)conv

plane is [110]conv, which corresponds to the ΓX direction.

a b
Figure 2.10: Calculated photonic band diagrams for body-centered tetragonal (BCT) crystal structures

at maximum sphere packing fraction for (a) air spheres in a background with a dielectric constant εh = 20

and (b) for silica spheres with a dielectric constant εs = 2.1025 in air.
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Figure 2.11: Panel (a) shows calculated (KKR) transmission spectra of an FCC and a BCT crystal of

338 nm diameter silica spheres in air at maximum packing. Both crystals consist of 18 hexagonal layers

in simulation. Panel (b) is the calculated (KKR) transmission spectrum of a single hexagonal layer of

close-packed, 338 nm diameter spheres of refractive index 1.05 in air. All these spectra were calculated

for the direction perpendicular to the hexagonal layers.

Even though BCT may not have a photonic band gap at all, it might still be a very in-

teresting structure for photonic applications. For example, Figure 2.10b shows the photonic

band diagram for a BCT structure of close-packed silica spheres in air. Along the [110]conv (or

ΓX) direction, the BCT crystal (ϕcrys = (2π/9) ≈ 0.698) has a stop gap between bands 2 and

3 at a frequency of 0.440 · (c/a) with a relative width of 6.85%. A close-packed, FCC crystal

(ϕcrys = (π
√

2/6)≈ 0.740) of silica spheres in air also has a stop gap along the direction perpen-

dicular to the hexagonal planes, the [111]conv direction. This stop gap is also situated between

bands 2 and 3, but it only has a relative width of 5.26%. Thus, at the same refractive-index

contrast, BCT crystals of dielectric spheres in air have a stop gap that is wider than for FCC

crystals. In the next section, KKR calculations that support the latter observation are presented.

2.5.1 KKR transmission spectra of body-centered tetragonal crystals

To check the results of our plane-wave calculations, we extended Alexander Moroz’ code for

the photonic analogue of the layered Koringa-Kohn-Rostoker (KKR) method [32, 129, 130],

such that it could handle BCT crystals along the ΓX direction as well. KKR transmission spec-

tra of BCT and FCC crystals, both consisting of 18 hexagonal layers of close-packed, 338 nm

diameter silica particles in air, confirm that BCT crystals indeed have a stop gap that is wider

than the stop gap in FCC crystals, for the first-order (110)/(111)conv Bragg dip is deeper and

wider in the case of BCT (Figure 2.11a). For crystals of silica spheres in air having approxi-

mately 20 layers or more, we expect that the number of layers hardly affects the depth or the

width of the Bragg dip (Figure 2.14b).

The wavelength of the maximum of the Bragg diffraction can also be calculated from the
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center frequency of the stop gap in the MPB band diagram (Figure 2.10b).

λ (1)
(110) =

c
ν

=
c ·a
ν̂ · c =

a
ν̂

=
σ
ν̂

=
338 nm

0.440
= 768 nm (2.12)

Here, c is the speed of light in vacuum, ν is the frequency, ν̂ is the same frequency in units

of (c/a), a is the lattice parameter (Figure 2.9)a and σ is the particle diameter. Thus, the

MPB calculations predict that the Bragg peak should be at a wavelength of 768 nm. The KKR

transmission spectrum indicates a wavelength of 770 nm, which is in reasonable agreement with

the MPB result.

2.5.2 Surface modes in KKR transmission spectra
Another common feature of the calculated KKR spectra is the ‘forest’ of spikes below 400 nm.

These spikes may be caused by coupling of the incoming light to surface modes. In this case,

the diffracted light grazes the 2-D surface of the colloidal crystal. This scattering process, which

is assumed to be elastic, must obey in-plane conservation of momentum. As the 2-D surface of

the crystals is hexagonal in the KKR calculations, one can prove that coupling to these surface

modes can only occur at specific wavelengths λsurf,

kout,‖ = kin,‖ +m ·b1 +n ·b2

λsurf =
(

a·n̄2D·
√

3
2

)
·
(

1√
m2+m·n+n2

)
,

(2.13)

in which kout,in,‖ are the components of the outgoing and incoming waves parallel to the crys-

tal surface, b1,2 are the reciprocal-space basis vectors of the hexagonal surface, a is the lattice

constant of the crystal surface, n̄2D is the 2-D average refractive index and (m,n) are integers.

Equation 2.13 assumes single-scattering and, therefore, it should be applied to a single hexag-

onal layer of spheres with a small dielectric contrast only. Figure 2.11b presents the calculated

transmission spectrum of a single hexagonal layer of 338 nm diameter spheres of refractive in-

dex 1.05 in air. Although the spikes are quite small due to the low refractive-index contrast, it

is clear that every spike in the spectrum in Figure 2.11b can be attributed to a surface mode. It

is not yet understood why the surface modes appear as a ‘forest’ of spikes in 3-D calculations,

but it may have something to do with the larger index contrast. Anyway, Equation 2.13 can

still be used to predict the wavelength λmax above which coupling to surface modes should no

longer occur, by using the lowest-order surface mode (m,n) = (1,0). This gives a maximum

wavelength for coupling of surface modes of approximately 412 nm for Figure 2.11a and 306

nm for Figure 2.11b.

2.5.3 Summary
To summarize, our photonic band-structure calculations do not predict a band gap between

band 5 and 6 for inverse BCT crystals at high dielectric contrast, contrary to what was predicted

by Tao et al. [139]. Though BCT crystals may not have a band gap, they are still interesting

for photonic applications, as plane-wave calculations show that they have a larger stop gap

than FCC crystals at the same dielectric contrast. KKR calculations of transmission spectra

confirmed the MPB calculations and additional low-wavelength features seen in these spectra

have been explained as surface modes.
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2.6 Photonic band-structure calculations & optical spectra
In Section 2.4, photonic band diagrams have been used to steer the development of a promising

self-assembly route towards photonic crystals with a band gap in the visible. As the fabrication

of these materials on the submicron scale remains challenging, band diagrams are typically

calculated to predict the optical properties of photonic crystals before a lot of time and effort is

invested in their actual fabrication. However, we demonstrate in this section that band-structure

calculations can also be of great value in the analysis of spectroscopic data. Even better, we

will show here that they can be used to probe, via optical spectroscopy, the average diameter of

spheres within colloidal crystals in air, a quantity that was hardly accessible before! Electron

microscopy, for example, can be used to accurately determine the size of colloidal particles,

but the particles are heated up by the electron beam and they have to be in vacuum during the

measurement. In the case of silica, for example, it is known that this can cause the particles to

shrink up to 9% in electron microscopy measurements [140]. Furthermore, only particles at the

surface of the crystal can be probed, as the penetration length of electrons in dielectric materials

is only on the order of 10 nm.

Optical spectroscopy is a popular method for characterizing the quality of colloidal crystals

[76]. However, it is a well-known problem that obtaining absolute values from experimental

spectra is difficult, for what is actually measured, are optical distances Δxop.

Δxop = n̄Δx (2.14)

In order to convert such optical distances to real distances, a value for the average refractive

index n̄ of the colloidal crystal slab must be known. For this, several schemes are being used:

averaging the refractive index or the dielectric constant by volume, or using the Bruggeman

approximation. Another approximation that is often used to average refractive indices is the

Maxwell-Garnet approximation [141].

ε̄MG = (1−ϕcrys)εm+ϕcrysβεp

1−ϕcrys+ϕcrysβ

with β = 3εm
εp+2εm

for spheres

(2.15)

Here, ϕcrys is the filling fraction of spheres in the crystal (∼ 0.74 for close-packed FCC), εm

is the dielectric constant of the background medium (air in our case) and εp is the dielectric

constant of the particles. However, there is no rigorous derivation available that supports the

use of any of these schemes.

A value for the average refractive index of a colloidal crystal can be extracted from experi-

mental spectroscopy data, but it requires an accurate value for the size of the colloidal spheres

as well as knowledge of the 3-D structure of the sample. In the case of convective assembly

of colloidal crystals of silica spheres, a close-packed structure is usually assumed§, but the par-

ticle diameter is not accurately known. Silica particles that have been synthesized using the

Stöber method are ultramicroporous [142, 143], leading to different sizes in static light scat-

tering (SLS) and transmission electron microscopy (TEM) due to shrinkage upon drying [140].

§In Chapter 4, we show that colloidal crystals grown by convective assembly are not exactly close-packed.

However, the observed deformation of the hexagonal layers hardly affects the interlayer spacing, so we can safely

assume close-packing as far as the interlayer spacing is concerned.
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a b

Figure 2.12: Figure (a) is the FTIR transmission spectrum of an approximately 17-layer colloidal crystal

of σTEM = 337 nm diameter silica spheres in air (see also Figure 4.11a). The Bragg peak at 734 nm

corresponds to the stop gap (gray), along the ΓL direction in the band diagram shown in panel (b). The

dashed line represents the light line in vacuum.

However, transmission spectra of such colloidal crystals (Figure 2.12a) can be used to obtain an

upper limit on the value for their average refractive index n̄.

First of all, we will rewrite Bragg’s law and use it as the definition of the average refractive

index n̄. For normal incidence onto the set of planes (hkl)

2n̄d(hkl) = m ·λ (m)
(hkl) ⇒ n̄ =

m ·λ (m)
(hkl)

2d(hkl)
. (2.16)

Typically, spectra are obtained along the [111]conv direction. If close-packing is assumed, the

interlayer spacing d(111) along this direction can be written in terms of the particle diameter σ .

d(111) =
σ
√

6

3
≥ σTEM

√
6

3
(2.17)

Unfortunately, as mentioned before, the particle diameter of our silica particles in the colloidal

crystals is not accurately known. However, due to shrinkage in the TEM, we can safely assume

that those spheres have a diameter of which the value is at least as large as the one determined

by TEM (Equation 2.17). For a close-packed colloidal crystal, consisting of approximately 17

layers of 336.6 nm diameter silica spheres in air, the Fourier transform infrared (FTIR) spectrum

shown in Figure 2.12a results in an upper limit for n̄ of (1.335±0.008).
The upper limit on n̄ that was just obtained from spectroscopy measurements is a useful

quantity to know, but as it is an upper limit, it does not allow the determination of absolute

values for interlayer spacings in colloidal crystals. MPB is able to calculate the average re-

fractive index n̄ of a photonic crystal at the wavelength of a Bragg diffraction, if the refractive

indices of the constituent components are known, thus allowing extraction of absolute distances

from experimental spectra. In the following, we assume that our colloidal silica spheres are

homogeneous in their refractive index, though this need not necessarily be the case [144]. The
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first-order (111)conv Bragg peak corresponds to the stop gap, along the ΓL or [111]conv direction,

between bands 2 and 3 (Figure 2.12b). Using Equations 2.16 and 2.17, we calculate n̄ from the

center frequency of the corresponding gap according to,

n̄ =
m ·λ m

(hkl)

2d(hkl)
=

(√
6

4

)
·
(√

2

ν̂

)
, (2.18)

in which ν̂ is again the center frequency of the gap in units of (c/a). In the case of colloidal

silica, its refractive index varies between syntheses, so a graph of n̄ versus the refractive index

of silica around 1.45 is very useful. Figure 2.13 shows a comparison of four of such graphs

obtained by averaging in different ways. KKR calculations also provide values for n̄, for the

wavelength λ (1)
(111) can be taken directly from the calculated transmission spectra. They can

subsequently be inserted into Equation 2.16. Two of such values are also plotted in Figure 2.13

and they agree with the MPB result quite reasonably. For easy comparison, the experimental

upper limit for the average refractive index has been incorporated in Figure 2.13 as well. It can

be compared to the theoretical value from MPB, assuming a refractive index of 1.45 for silica:

n̄ = (1.328±0.007). As expected, the value of the upper limit for n̄ that was extracted from the

FTIR spectrum is slightly larger than the value calculated via MPB.

We used MPB averaging to extract from optical spectroscopy measurements the size of the

silica spheres in one of our colloidal crystals (Section 4.3). The average diameter of these

spheres was determined to be (336.6± 2.0) nm by TEM after drying a droplet of dispersion

on a grid. Due to the ultra-micro-porosity of Stöber silica, SLS and TEM results can differ up

to 9% for such particles [140]. However, experiments involving index-matching with solvent

mixtures showed that our Stöber particles typically have a refractive index of n = (1.45±0.02)
at a wavelength of λ = 546 nm [145, 146]. Reading off the value for n̄ from the graph in Figure

2.13, inserting that number into Bragg’s law (Equation 2.16), the experimental transmission

spectrum in Figure 2.12a yields a value for the interlayer spacing. Assuming close-packing,

the diameter of the spheres in the crystal was determined to be (338.5± 3.8) nm, which is

reasonably close to the TEM diameter. Note that the accuracy with which the diameter of the

colloidal spheres can be extracted from spectroscopic data is comparable to the accuracy of

results from TEM and SLS measurements!

It may come as a surprise that the ‘spectroscopic’ diameter of the colloids in the crystal is

so close to their TEM diameter. The sample of which a spectrum is shown in Figure 2.12a had

been in an SEM, but that was at least several months before the spectroscopic measurements

presented here. Because of the severe conditions in an SEM, a pressure that is approximately

107× lower than 1 atmosphere to name one, our ultramicroporous Stöber silica particles lose

most of the water that they absorbed during synthesis in an SEM measurement. In a TEM,

conditions are even more severe than in an SEM, for the energy of the electron beam is typically

on the order of 100 keV instead of 5 keV. This causes silica particles to shrink even more! We

observed, however, that silica particles that were dried under a lamp gained approximately 10%

in weight after switching off the light, which is probably due to adsorption of water from the

air. Therefore, it is no surprise that the ‘spectroscopic’ diameter of silica spheres is close to, but

slightly larger than, the TEM diameter.

Although it is a bit more involved, KKR spectra were also fitted to experimental data (Figure

2.14a). These normal-incidence spectra were calculated for a free-standing, colloidal crystal of
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Figure 2.13: Calculated average refractive index of an infinite, FCC crystal of colloidal silica spheres

in air as a function of the refractive index of silica. The black dots correspond to MPB plane-wave

calculations, the gray squares to averaging the refractive index by volume, the gray triangles pointing

upwards to averaging the dielectric constant by volume and the gray triangles pointing downwards to

averaging the dielectric constant using Maxwell-Garnet. In addition, KKR calculations were performed

for a 96-layer FCC crystal using MULTEM (dark gray triangle pointing to the right) and for 32 layers

using a KKR code by Alexander Moroz (dark gray triangle pointing to the left). Finally, an upper limit

for the average refractive index of the crystal was obtained from FTIR spectroscopy in combination with

TEM measurements, which is plotted as a dark-gray star.
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a b

Figure 2.14: Figure (a) is the FTIR transmission spectrum of an approximately 17-layer colloidal crystal

of σTEM = 336.6 nm silica spheres in air (see Figure 2.12a). The gray line is a fit using a KKR code by

Alexander Moroz for a free-standing, colloidal crystal of 338 nm silica (n = 1.45) spheres in air, having

15 layers. The same code was used to calculate transmission spectra for a similar crystal in which the

number of layers was varied (panel b). Spectra are shown for 2 layers (upper graph) to 20 layers (lower

graph).

338 nm diameter silica (n = 1.45) spheres in air, having 15 layers. The position of the Bragg

peak can be fitted quite well, just as the fringe spacing. However, the average transmission of

the real crystal was quite small compared to the theoretical prediction, which might be due to

scattering from the sample substrate and from crystal defects. KKR calculations are also useful

to determine the effect of finite size of colloidal crystals on their optical properties. As the

refractive-index contrast between silica and air is relatively small, interference needs to build

up over several layers. Figure 2.14b clearly proves that the Bragg diffraction shifts to smaller

wavelengths and becomes deeper if the number of layers increases. However, it is quite clear

from the same figure that the peak will hardly shift anymore if the number of layers is larger

than 20.

In short, we have shown that photonic band-structure calculations are not only able to guide

the fabrication of photonic band-gap materials, they can also be used in the analysis of experi-

mental data. Combining optical spectroscopy with MPB plane-wave calculations, we have been

able to obtain a value for the average refractive index of a colloidal crystal of silica spheres in

air. Using that value, we have probed the size of the spheres in the crystal, a quantity that was

hardly accessible before.

2.7 General conclusions and outlook
In this chapter, we have first explained what a photonic crystal is and why it is important to

be able to calculate its optical properties. Next, the concept of a photonic band diagram was

introduced. Starting from the Maxwell equations, we derived the master equation for electro-

magnetic waves in photonic crystals. From the master equation, enforcing transversality of

the magnetic and displacement fields, the dispersion relation ω(k) of electromagnetic waves in
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photonic crystals can be calculated. Using group theory, it can be shown that, in order to find

the gaps of a photonic crystal, the dispersion relation only needs to be plotted along a specific

trajectory in reciprocal space, resulting in a photonic band diagram.

Subsequently, it was shown that such photonic band-structure calculations can be used to

guide the fabrication of photonic band-gap materials. Our calculations confirmed that both

diamond and pyrochlore are strongly photonic crystals, i.e. they have low-lying gaps, possibly

in the visible region, that are relatively wide at low refractive-index contrasts. They can be

fabricated via the self-assembly of one of the binary Laves phases, as they are the large and

small-sphere components, respectively, of the MgCu2 structure.

Furthermore, we have calculated the photonic band diagram of inverse body-centered tetrag-

onal (BCT) crystals. In contradiction to results in literature [139], we found that there is no pho-

tonic band gap for inverse BCT crystals. Finally, we have demonstrated that photonic band-gap

calculations can be used in the data-analysis of spectroscopic measurements. As an example,

we have been able to obtain a value for the average refractive index of a colloidal crystal of

silica spheres in air. Using that value, we have probed the size of the spheres in the crystal, a

quantity that was very hard to probe before. In the near future, the proposed scheme for cal-

culating average refractive indices of colloidal crystals, thus allowing accurate determination

of interlayer spacings, can be used to correct distances measured along the optical axis of a

confocal-microscope objective for spherical abberations [147].

Although we think it is due to a numerical artefact of the discretization of the real-space

unit cell, the slow convergence of plane-wave calculations for direct diamond and pyrochlore

structures should be looked into more carefully. In general, convergence in photonic band-

structure calculations, be it MPB plane-wave or KKR calculations, should be studied more

extensively, as experimentalists start to rely on numerical results more and more. Another

important issue in photonic calculations is the incorporation of metals in photonic crystals.

Recent simulations have demonstrated that metallodielectric photonic crystals may have very

interesting optical properties [32, 148]. KKR codes can deal with the strong dispersion in

metals, more or less, but it would be of great value if a plane-wave code would be developed

that can deal with the negative real part of the dielectric constant and the absorption in metals.

Finally, once the optical properties of ideal photonic crystals can be calculated, the effect of

(dielectric) doping on these optical properties should be investigated from a theoretical point of

view. As such defects break the translational symmetry of their host crystal, finite-difference

time-domain (FDTD) simulations may be more suitable to deal with defects. Still, plane-wave

band-structure calculations for supercell geometries will be a valuable addition to the FDTD

results.
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Microradian X-ray diffraction from
photonic colloidal crystals

Ultra-high resolution, small-angle X-ray scattering (SAXS) in various photonic colloidal crys-

tals is reported. It is demonstrated that an angular resolution of about 2 microradians is readily

achievable at a third-generation synchrotron source using compound refractive optics. The

scheme allows for fast acquisition of two-dimensional X-ray diffraction data and can be real-

ized at sample-detector separations of only a few meters. As a result, diffraction measurements

in colloidal crystals with interplanar spacings larger than a micron, as well as determination of

the range of various order parameters from the width of the Bragg peaks are made possible.
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3.1 Introduction
As was discussed in Chapter 2, photonic crystals are structures in which the refractive index

varies periodically in space in one, two or three dimensions. The periodicity is typically on

the order of the wavelength of light [7]. Because of their strong interaction with light, pho-

tonic crystals may lead to important applications in infrared telecommunications [8, 67]. A

promising route towards relatively cheap photonic crystals with many crystal layers is colloidal

self-assembly [95, 107, 108]. Colloids are excellent building blocks for photonic band-gap

materials, as they have a size comparable to the wavelength of light. Monodisperse colloidal

particles can self-assemble into 3-D periodic arrangements, analogous to thermodynamic crys-

tal phases [57]. These so-called colloidal crystals are then used as templates for infiltration with

a high-index material, such as silicon, to enhance the refractive-index contrast [67, 68]. After

infiltration, the original template is removed by a wet-chemical etch, resulting in a strongly

photonic crystal.

Microscopic techniques, including confocal microscopy and electron microscopy, have been

successfully applied in order to probe the structure of the resulting colloidal crystals [78, 88,

99, 149]. These real-space techniques, however, suffer from a couple of disadvantages. First of

all, they provide structural data only on a microscopic scale. Typically, only a small part of the

sample volume is imaged, making it difficult to probe long-range order. In addition, electron

microscopy only provides topological data on the surface of the sample. Samples have to be

cleaved, causing structural damage, to get an idea of the 3-D structure in the bulk of the crystal.

Confocal microscopy has the ability to obtain true 3-D structural information from the bulk of a

sample, but it requires refractive-index matching of the particles and the surrounding medium,

which is impossible in the case of, for example, a crystal of air spheres in silicon.

Small-angle X-ray scattering (SAXS) has proven to be a powerful technique to study the

structure of colloidal crystals made of submicron particles [150–153]. In comparison to light

scattering [154–157], X-rays have an extremely small refractive-index contrast (typically on the

order of 10−6) and do not require index matching in most cases. SAXS can thus be applied to

crystals that are strongly scattering or absorbing in the visible region. Moreover, scattering of X-

rays can be measured in a wide range of scattering vector values q and can therefore be applied

to colloidal crystals with periodicities that are too small to be accessed with visible light (see

Chapter 4).∗ Finally, diffraction techniques, which are able to provide detailed macroscopically-

averaged information, are superior in quantitative determination of the order parameters over

large distances, as long as coherence length is not the limiting factor.

The challenge of the application of SAXS for structural characterization of self-assembled

photonic colloidal crystals stems from the 3 to 4 orders of magnitude difference between the

typical size of colloidal particles (∼ 1 μm) and typical X-ray wavelengths (∼ 0.1 nm). To

resolve the diffraction pattern, one often needs an angular resolution well beyond 10−4 rad.

Even higher resolution, on the order of 10−6 rad, is needed to determine the intrinsic width

of the diffraction peaks, which would allow for detailed characterization of long-range order.

Moreover, in some cases [158], the distinction between different thermodynamic phases can

only be made on the basis of the difference in the intrinsic width of the reflections [158].

The so-called ultra-small-angle X-ray scattering (USAXS) technique is commonly believed

∗Throughout this chapter, the scattering vector q = ks −ki is defined as the vector difference between the wave

vectors of the scattered ks and the incident ki waves with ks = ki = (2π/λ ), where λ denotes the wavelength.
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to facilitate the highest angular resolution possible [159, 160]. It uses a point detector and a

set of so-called Bonse-Hart cameras [161], each consisting of a pair of Bragg-reflecting crys-

tals. USAXS allows one to resolve the angular spectrum of scattered radiation with a resolution

determined by the angular width of the rocking curve of the Bragg reflection. The presently

used Si-(111) and Si-(220) reflections have an angular width on the order of 10−5 rad, which

is often not sufficient to resolve the intrinsic width of the reflections in colloidal crystals. The

resolution of the Bonse-Hart camera can be further enhanced by choosing higher-order reflec-

tions [162], but such a possibility has not been realized yet for USAXS applications. More

importantly, the USAXS scheme requires a long acquisition time due to its point-by-point data

collection. It has been used for samples consisting of colloidal-crystal powders [163], but in the

case of single crystals, yielding essentially two-dimensional (2-D) patterns, the USAXS scheme

is impractical.

Much shorter acquisition times (from minutes down to milliseconds) can be achieved in an

ordinary SAXS scheme with a 2-D detector. Most of the reported studies of colloidal crystals

using a SAXS setup [150–153] were performed with an angular resolution on the order of 10−4

rad. A few examples of studies at resolutions of 1 ·10−5 rad to 5 ·10−5 rad were also reported

for sample-detector distances on the order of 10 m [164–166] and more than 100 m [167].

For colloidal crystals with submicron lattice spacings this resolution is sufficient to resolve the

Bragg reflections, but the information on the intrinsic width of the reflections can hardly be

obtained from the apparent size of the reflections on the detector. Moreover, the resolution of

an ordinary SAXS setup is often insufficient for photonic crystals with spacings larger than a

micron.

A significant increase in terms of the angular resolution well into the 10−6 rad range can be

achieved at third-generation synchrotron sources using refractive optics [168]. In this chapter,

we further demonstrate that this gives access to information on long-range order in colloidal

crystals, which was not achievable before, and which opens up new avenues for future funda-

mental and applied research. The rest of the chapter is organized as follows. First, in Section

3.2, the different types of disorder in (colloidal) crystals are discussed. Next, in Section 3.3 we

briefly review the conditions needed to achieve high angular resolution. Experimental details

are summarized in Section 3.4. We then present several examples of our results obtained in

various self-organized colloidal crystals. Section 3.5 describes the results on a wall-induced

crystal of PMMA spheres. In Section 3.6, application of the technique to photonic crystals

with interplanar spacings as large as 1.35 μm is demonstrated. A study of disorder in random

hexagonal close-packed (RHCP) crystals of hard silica spheres is briefly described in Section

3.7. The ultimate limit of the angular resolution which can be achieved by the optical setup was

measured with high-resolution X-ray films, as described in Section 3.8. Finally, the results are

summarized in Section 3.9.

3.2 Disorder in colloidal crystals

For atomic crystals there are two main types of disorder [105]. In so-called perfect crystals

one finds only disorder of the first type, such as the thermal motion of atoms around the lattice

points. It does not disturb the average, ideal lattice of the crystal and the positional correlations

between the atoms extend over the whole crystal. In real crystals, however, one can also find
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disorder of the second type, which disturbs the average lattice so that the positional correla-

tions have only a finite spatial extent, which is smaller than the crystal size. In real colloidal

crystals one can expect that different types of disorder play an important role. In addition to

various growth defects, which are also typical for atomic crystals, colloids possess inherent size

polydispersity, which can contribute to the disorder of the first type in a colloidal crystal. It

can also induce various internal stress fields, which can deform the average lattice and thus can

lead to disorder of the second type. The long-range order can be of fundamental importance

since it can greatly affect the crystallization rate and it can influence the size of the grown crys-

tallites. Moreover, the various types of disorder can also lead to a significant degradation of

the performance of the photonic materials fabricated from such self-organized colloidal crystals

[149, 169].

Disorder of various types manifests itself in different ways in a diffraction pattern. For

small crystals, finite size effects lead to broadening of the diffraction peaks, which is indepen-

dent of the diffraction order. In a so-called mosaic, consisting of small crystallites which are

orientationally correlated but positionally independent, the peak width in the azimuthal direc-

tion apparently increases with the diffraction order due to small fluctuations in the orientation

of different crystallites. However, the radial width is still independent of the diffraction order.

Disorder of the first type does not broaden the Bragg peaks but manifests itself in the Debye-

Waller factor, which can be accurately measured by SAXS [170]. Disorder of the second type

leads to additional peak broadening, which increases with diffraction order [105].

3.3 Resolution and coherence

An X-ray diffraction pattern originates from interference of waves scattered coherently by col-

loidal particles. To resolve it, the conditions for constructive interference of coherent waves

scattered from particles separated by a few structure periods must be met. To resolve the intrin-

sic width of Bragg reflections, one needs coherence over distances that are comparable to the

positional correlation length of the structure [171].

In the longitudinal, direction this condition can be easily fulfilled over macroscopic (>
100 μm) distances for small diffraction angles [152, 166]. By tilting the crystal from a certain

crystallographic direction and observing the variation of the integrated intensity of reflections,

one can achieve a reciprocal-space resolution on the order of 10−6 ·ki. This technique, however,

is only applicable to single crystals and only allows one to measure intrinsic widths of Bragg

reflections along the X-ray beam, i.e. orthogonal to the scattering vector q for small diffraction

angles 2θ . Moreover, one often needs to collect diffraction data for many crystal orientations

in order to reconstruct rocking curves, which requires longer data-acquisition times.

Of much more importance is the width of reflections in the radial direction, along q. It

can only be probed if a very high angular resolution is achieved. The latter is also much more

challenging, since it requires the random fluctuations of the phase front to be much smaller than

the tiny X-ray wavelength λ on macroscopic distances. For a freely propagating X-ray wave,

this condition is fulfilled over the so-called transverse coherence length ltrans, which is equal to

ltrans =
Lλ
σ

, (3.1)
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Figure 3.1: Sketch of the setup. Only the principal components (the primary slits SS0, the Si-(111)

monochromator, the sample, the lens (CRL) and the detector) are shown. The numbers indicate distances

from the undulator source.

where σ is the source size and L is the distance travelled by the beam. Furthermore, beamline

optics can affect beam coherence. Apart from imperfections in optical elements, which can

introduce additional distortions of the phase front, beam focusing can significantly reduce ltrans

[166]. A simple solution to this problem is to avoid beam focusing before the sample and to

let the X-ray beam propagate freely to the sample. With a typical source size σ ∼ 100 μm and

a source-sample distance L ∼ 50 meters at a synchrotron X-ray source, a transverse coherence

length on the order of ltrans ∼ 50 μm to 100 μm can be reached, i.e. the transmitted X-ray

beam will contain information on the positional correlations of the colloidal particles over a

distance of about 100 lattice periods. To extract this information, we used a compound refractive

lens (CRL) [172], which can recover the Fourier spectrum of the transmitted beam [173] by

performing beam focusing onto the detector within a relatively short sample-detector distance

(usually limited to several meters by the length of the experimental hutch).

3.4 Experimental methods

The experiments were performed at beamline ID10A “TROÏKA” of the European Synchrotron

Radiation Facility (ESRF) in Grenoble, France. The fifth harmonic of the undulator source with

a photon energy of 13.4 keV (wavelength λ = 0.0925 nm) was selected by a flat, channel-cut

Si-(111) monochromator. Due to the particular properties of the electron β -function of the

ESRF storage ring, the X-ray source of ID10 has dimensions of about 25 μm× 1000 μm, i.e.
it is too large in the horizontal direction to obtain a sufficient coherence length at the sample

position. We therefore used a rather small opening of the primary slits (SS0) of 30 μm in

both the horizontal and the vertical direction, as illustrated in Figure 3.1. This scheme leads to

a significant loss of beam intensity. Fortunately, most of our samples scatter X-rays strongly

enough to allow collection of sufficient signal within short exposure times τ (typically on the

order of a few seconds).

The 30 μm× 30 μm slit size was on the order of the transverse coherence length at the

position of the SS0 slits in the vertical direction, but about one order of magnitude larger than

the transverse coherence length in the horizontal direction. Considering the primary slits as a

secondary X-ray source for the rest of the setup, we estimated the transverse coherence length

at the sample position to be on the order of ltrans = 100 μm and the beam size of a few hundreds

of μm. Thus, we intentionally did not create conditions for fully coherent X-ray illumination to

avoid the appearance of speckle patterns [174].
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The transmitted and diffracted X-ray beams were focused by a CRL [168, 172] that was

positioned just behind the sample. The lens position and its focal length were adjusted such

that it created an image of the secondary X-ray source (SS0) at the position of the detector. For

the given SS0-lens and lens-detector distances, the magnification of the imaging system was

about 1:8.5, such that the CRL should have produced an image of about 3.5 μm of the 30 μm

wide SS0 slits. With a lens-detector distance of Lld = 3.25 meters, one can therefore expect an

angular resolution of the setup on the order of 1 μrad.

The vast majority of the results (Sections 3.5 to 3.7) were recorded with a 12-bit CCD

camera (Sensicam) with a pixel size of 6.7 μm× 6.7 μm and a field size of 8.6 mm×6.9 mm.

The camera was supplemented by an X-ray sensitive phosphor screen and a 1:1 projecting

objective. Since CCD detectors have a rather limited dynamic range (i.e. the ratio of maximum

to minimum intensity that can be measured reliably at the same instant), every diffraction pattern

was recorded several times with different exposure times τ . The shortest exposure was used to

quantify the strongest reflections, while the longer exposures were used for analysis of weaker,

higher-order reflections. Furthermore, X-ray sensitive films (Kodak) with a spatial resolution

better than 1 micron were used to probe the angular-resolution limit provided by the optical

setup as described in Section 3.8.

3.5 Wall crystallization of PMMA spheres

Cylindrical glass capillaries (diameter 1.5 mm, wall thickness 10 μm) were filled with suspen-

sions of poly(methyl methacrylate) (PMMA) colloidal hard spheres in cis-decalin at an initial

volume fraction of 30%. The particles (diameter 230 nm) are sterically stabilized with 10 nm

chemically-grafted polyhydrostearic acid. The capillaries were stored vertically to establish a

sedimentation-diffusion equilibrium. Visual inspection revealed that the top part of the capil-

lary contained a turbid colloidal fluid. Colloidal crystals yielding strong Bragg reflections of

visible light formed in the sediment at the bottom of the capillary. Figure 3.2a presents a pattern

measured a few millimeters above the crystalline sediment. The broad rings in the scattering

field originate from the fluid phase in the bulk of the suspension. In addition, sharp Bragg peaks

in the pattern reveal that a colloidal crystal had grown at the capillary wall.

The diffraction pattern is typical for a random hexagonal close-packed (RHCP) crystal. The

reciprocal lattice of the RHCP structure consists of Bragg spots and Bragg rods [151, 153]. The

stacking-independent Bragg spots are found at the (hkl) reflections with (h− k) divisible by

3 and integer values of �. The stacking-disorder-induced Bragg rods with a smooth intensity

variation along � are observed for (h−k) not divisible by 3. For the crystal orientation in Figure

3.2a, the X-ray beam is orthogonal to the hexagonal planes and thus � = 0. One can clearly see

the (110) and (300) reflections originating from the true Bragg spots. Here the contributions

from all the hexagonal layers have the same phase leading to a large structure factor. For (h−k)
not divisible by 3, the contributions of the hexagonal layers possess an additional stacking-

dependent phase of 0◦ or ±120◦ leading to significant cancellation between them and therefore

a much smaller structure factor. This explains the significantly weaker diffraction intensity of

the (100) reflection relative to the (110) reflection, despite the much larger form factor of the

former. Similarly, the (300) reflection is much stronger than the (200) reflection, which has a

much higher value for the form factor. The (220) reflection with a strong structure factor is,
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Figure 3.2: (a) Diffraction pattern (1280 pixels × 1024 pixels) of wall-induced crystals, in coexistence

with a colloidal fluid, in a cylindrical capillary with a PMMA hard-sphere colloidal suspension. Exposure

time τ = 10 s. Note that the strong (110)-class reflections saturate the detector here. Panel (b) presents a

zoom (21 pixels × 21 pixels) into the (110)-class reflection marked in (a) by a white arrow. It was taken

from a similar pattern, but measured with an exposure time of τ = 1 s. For comparison, panel (c) shows

a magnified view of the direct beam after removing the beam stop (τ = 1 ms). Note that a linear intensity

scale is used in panels (b) and (c) and a logarithmic scale in panel (a). In panel (d), the squares and

circles represent pixel readings in horizontal slices through the peaks in panels (b) and (c), respectively.

The lines are Lorentzian fits to the data. The vertical scale for both data sets is slightly readjusted.
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however, hardly visible since it appears very close to a zero of the sphere form factor.

Figure 3.2b presents a magnified (×20) view of one of the (110)-class reflections. For

comparison, an image of the direct beam is also given in Figure 3.2c. By adjusting the exposure

time τ , we made sure that the intensity scale was similar in the data presented in Figures 3.2b

and 3.2c. It is seen that both peaks have practically the same width, i.e. the (110) reflection

from the colloidal crystal is practically instrument-limited. This is further illustrated in Figure

3.2d, where the horizontal profiles through both peaks are presented. The pixel intensities were

fitted with Lorentzian line profiles. For the profile of the direct beam, which can be considered

as the instrument resolution function, the fit yields a full-width-at-half-maximum (FWHM) of

Δver = 3.12 ·10−4 nm−1 and Δhor = 3.09 ·10−4 nm−1 in the vertical and horizontal directions,

respectively. This means that, in angular terms, the digital data recorded with the CCD detector

have a resolution of about 4.6 μrad. We will show in Section 3.8 that this value is mainly limited

by the resolution of the detector itself.

For the (110) reflection in Figure 3.2b, the Lorentzian fits yield a FWHM of 3.87 ·10−4 nm−1

and 3.62 · 10−4 nm−1 in the vertical and horizontal directions, respectively. These values are

slightly higher than those for the instrument resolution. Since the intrinsic width of the sample

reflection δqintr and the width of the instrument resolution Δ yield statistically independent

contributions to the apparent reflection width δqapp, we may assume that

δq2
app = Δ2 +δq2

intr . (3.2)

Substituting the obtained widths of the Lorentzian fits, one gets δqintr = 2.3 · 10−4 nm−1

and 1.9 ·10−4 nm−1 in the vertical and horizontal directions, respectively. For comparison, the

magnitude of the diffraction vector of the (110) reflection is q(110) = 4.70 · 10−2 nm−1. It is

worth stressing that these values of δqintr can only be used as an order-of-magnitude indication

for the upper limit of the width of the crystal reflections. Peak profiles of the direct beam

and the crystal reflections are very close to each other (Figure 3.2d) and a small inaccuracy in

the determination of their widths can lead to a significant change of δqintr due to the relation

assumed in Equation 3.2.

3.6 Photonic crystals with a periodicity larger than a micron

In order to open up a photonic band gap, photonic crystals require a large refractive-index con-

trast for visible and near infrared light. This complicates characterization of their structure

using optical techniques. As X-rays interact relatively weakly with matter, they form an excel-

lent probe for the internal 3-D structure of and the long-range order in photonic crystals (see

Chapter 7). Photonic materials for near-infrared-telecommunication applications, with spacings

on the order of 1 μm, are especially challenging for X-ray scattering techniques, because the

diffraction angles are extremely small. Here we demonstrate the application of microradian

SAXS to such a crystal with lattice spacings larger than a micron.

Colloidal crystals were fabricated using a method described by Yethiraj et al. [109], which

allows the growth of large colloidal single crystals (see Chapter 6). Silica colloidal spheres

(diameter d = 1.4 μm) in a refractive-index-matching solvent mixture of water and dimethyl

sulfoxide (DMSO) were allowed to sediment in an AC electric field perpendicular to gravity.



MICRORADIAN X-RAY DIFFRACTION FROM PHOTONIC COLLOIDAL CRYSTALS 57

10

100

1000

3000

In
te

n
s
it
y

110

002

Beam
stop

004

112

114

222 332

330220

Figure 3.3: A zoom (300 pixels × 300 pixels) of the central part of the diffraction pattern of a BCT

colloidal crystal. The white cross marks the position of the direct beam, which is behind the beam stop.

Note that the (110) and (002) reflections saturate the detector because of which their widths are greatly

exaggerated. See text for further details.
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The external electric field adds a long-range dipolar term to the interaction potential of the par-

ticles [175]. For high field strengths, the dipolar term dominates over the steric or electrostatic

repulsion, favoring the formation of body-centered tetragonal (BCT) instead of close-packed

structures [176]. Such BCT samples consist of ABAB-stacked, hexagonal layers that are ori-

ented parallel to the glass substrate. However, the layers are bridge-site instead of hollow-site

stacked. Using a polymerization process, this metastable BCT structure can be preserved, even

after switching off the electric field (see Chapter 6).

An example of a diffraction pattern from a BCT colloidal crystal is presented in Figure

3.3. The crystal consists of (15± 1) hexagonally packed layers of silica spheres. The X-ray

beam is normal to the hexagonal planes. The reflections are indexed using orthogonal basis

vectors of length b1 = b2 = ((4π)/(a
√

6)) and b3 = (2π/a), where a is the nearest-neighbor

distance. Here the b3 vector is parallel to the direction of the applied electric field. Reflections

of a BCT crystal can be observed for even values of (h + k + �). For the crystal orientation

used here only the reflections with h = k and even values of � can be seen. The dashed arrows

point to lines of reflections, which should be absent in a perfect BCT crystal because of the

cancellation of contributions of 2 subsequent hexagonal layers. Their small but finite intensity

can be related to the small number of layers in the crystal and lattice imperfections. The solid

arrows point to two of these non-BCT reflections. This presence of these CP reflections indicate

that a small portion of the crystal has changed its stacking from bridge-site to hollow-site. These

reflections correspond to the (110)-class reflections in Figure 3.2a. Their intensity, however, is

very much smaller than that of the (002) reflection with the same form factor and, thus, BCT is

the dominating structure in the crystal.

The smallest diffraction angle of 2θ(110) = 69μrad originates from the largest real-space

interplanar spacing, which corresponds to the distance between lines of close-packed particles

in a hexagonal layer. From the magnitude of the diffraction vector q(110) in the pattern in Figure

3.3, a value for the d(110) distance of (1.35± 0.04) μm was found. The 3% uncertainty in the

absolute value of d(110) mostly originates from inaccuracies in q-space calibration. It compares

well with d(110) = (1.32±0.01) μm determined by confocal microscopy.

The angular resolution achieved in this experiment allowed us not only to resolve the diffrac-

tion pattern at tiny diffraction angles 2θ , but also to detect further details related to the crystal

quality. For example, in the crystal used in Figure 3.3, the FWHM of reflections in the radial di-

rection is 4.5 ·10−4 nm−1 to 5 ·10−4 nm−1, i.e. somewhat larger than the width of the instrument

resolution function. This means that the crystal possesses a finite spatial extent of positional cor-

relations. Moreover, the diffraction peaks are seen to be broadened in the azimuthal direction,

which reveals a mosaic structure of the crystal with a small degree of misorientation between

the crystallites.

3.7 Disorder in a crystal of silica spheres

Figure 3.4 displays two diffraction patterns measured from two different RHCP crystals of

sterically-stabilized hard silica spheres (diameter 224 nm, dispersed in cyclohexane). The sys-

tem is described in more detail in [166]. The crystals spontaneously formed in the sediment

at the bottom of two different flat glass capillaries (4 mm wide, internal path length 0.2 mm).

The two patterns in Figure 3.4 show Bragg reflections with remarkably different shapes. While
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Figure 3.4: Diffraction patterns from two different crystals of silica hard spheres. Both crystals are

oriented such that the X-ray beam is orthogonal to the hexagonal planes. The exposure time τ = 10 s.

Note that at this exposure the (100) reflection and, especially, the intense (110) reflection saturate the

detector so that their width is greatly exaggerated.

panel (a) displays reflections that are (almost) circularly symmetric, panel (b) has reflections

that are strongly spread in the azimuthal direction. It is obvious that the improved resolution is

crucial to observe the distinction between the two crystals, which would not have been possible

with the resolution used by [150–152, 177].

We have further studied the reflection width δqapp in the radial direction. For all reflections

in Figure 3.4a, except the (110) reflection, the apparent width is found to be notably (2× to

4×) larger than the width of the instrument resolution function Δ that was determined from

the width of the direct beam. Thus, the improved resolution allowed us to determine intrinsic

widths of different reflections δqintr using Equation 3.2. The result is summarized in Figure

3.5 for reflections of different order. Due to very distinct differences in the intensities of the

reflections, the intrinsic width δq(hkl) for different (hkl) reflections is determined from patterns

taken with different exposure times τ . For the crystal that yielded the diffraction pattern shown

in Figure 3.4a, τ = 1, 0.01, 10 and 60 s was used for the (100), (110), (200) and (210) reflec-

tions, respectively. For the other crystal, which produced the pattern shown in Figure 3.4b, the

corresponding exposure times were respectively τ = 10, 1, 300 and 300 s. As one can expect,

δq(hkl) in Figure 3.4b is larger than that in Figure 3.4a. We also observe a slight increase of

radial width with reflection order. Surprisingly, a difference in δq(hkl) is found between the

(100), (200) and (210) reflections originating from the Bragg rods and the (110) reflection orig-

inating from the true Bragg spot. This difference in width is especially pronounced in the case

of the crystal yielding the pattern presented in Figure 3.4a, where the apparent width δq(110) of

the (110) reflection is yet instrument-dominated so that it is difficult to precisely determine its

intrinsic width. In the following section we give another estimate of the upper limit of δq(110)
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Figure 3.5: The radial intrinsic width δq(hkl) of the different-order reflections in the patterns shown

in Figure 3.4 as a function of the scattering vector q(hkl). The error bars represent the spread of the

values obtained from different reflections of the same class. The lines are linear fits to the widths of

the (hkl) = (100), (200) and (210)-class reflections originating from the Bragg rods induced by stacking

disorder. The values of δq and q(hkl) on both axes are rescaled to the q-value of the lowest order reflection

q(100) = 0.0310 nm−1 and q(100) = 0.0309 nm−1 in Figure 3.4a and Figure 3.4b, respectively. The filled

symbols represent the results obtained from the analysis of the data taken with the CCD detector. The

larger triangle is the estimate of the upper limit of the width of the (110) reflection of the crystal in Figure

3.4a as obtained with X-ray films (see Section 3.8).

for this crystal. The additional broadening of the (100), (200) and (210) reflections compared

to the (110) can be understood by assuming that stacking disorder is not limited to the direction

perpendicular to the hexagonal planes, which means parallel to the direction of the X-ray beam

in Figure 3.4, but can also be found in the lateral direction. It was shown recently that such lat-

eral stacking disorder is not uncommon in self-assembled crystals of spherical PMMA colloids

[178].

We propose that the width of reflections has two components. One component is indepen-

dent of the diffraction order and can be related to the effect of the finite size of crystallites Λ in

the mosaic constituting the macro-crystal. The other component, which increases with increas-

ing q, can be induced by disorder of the second type [105]. We further assume a simple linear

relation

δq(hkl) = δq0 + γq(hkl) . (3.3)

Using a linear fit to the data, one can estimate δq0 to be (4.1± 0.8) · 10−4 nm−1 and (6.0±
0.8) · 10−4 nm−1 for the reflections originating from the Bragg rods intersected by the Ewald

sphere in the first (Figure 3.4a) and the second (Figure 3.4b) crystals, respectively. The typical
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size of the crystallites can be estimated as Λ = (2πB)/(δq0), where B is a factor on the order of

1, which depends on the crystal shape. Using B = 1, Λ = 16 μm and Λ = 10 μm are obtained,

respectively. For the slope γ , we find values of (3±2) ·10−3 and (7±2) ·10−3 in the first and

the second crystals, respectively.

Unfortunately, due to the limited q-range, our current data do not allow us to distinguish the

q-dependent and the q-independent components of the width of the true Bragg spots (with � = 0

and (h−k) divisible by 3). A more elaborate experimental study as well as theoretical modelling

of the long-range order parameters in colloidal crystals grown from concentrated dispersions is

needed and will be performed in the future. However, this example already shows that the

improved angular resolution allows us to access novel, more detailed information on the range

of various order parameters in colloidal crystals, including disorder of the first and second types.

3.8 Measurements with X-ray films
As shown above, the data measured with the CCD detector had an angular resolution of 4.6

μrad. To test the ultimate limit of the angular resolution of our setup, we also recorded the

direct beam and the diffracted beams on high-resolution, X-ray-sensitive films. Unfortunately,

all the images of the direct beam turned out to be severely overexposed. During the experiment,

no fast beam shutter was available to ensure sufficiently short exposure times. Thus, instead of

the direct beam, we present in Figure 3.6 (insert) an image of one of the (110)-class reflections

of the RHCP hard-sphere colloidal crystal (see Figure 3.4a).

The image on the X-ray film was digitized using an optical microscope (32× magnification,

spatial resolution of 0.5 μm) equipped with a CCD camera. The result was corrected for the

blackening curve of the film. A slice through the reflection in the radial direction had a FWHM

width of less than 6 μm. For our experimental geometry, that width corresponds to an apparent

radial width of about δqapp = 1.2 ·10−4 nm−1. Unfortunately, we did not have the information

that was needed to determine the contributions of the instrument resolution and the intrinsic

reflection width of the crystal. However, the value of 1.2 · 10−4 nm−1 sets an upper limit for

both of them. The open triangle in Figure 3.5 presents the result of this estimate.

Thus, our results show that the SAXS scheme with refractive optics at a synchrotron source

allows an angular resolution that is even higher than that in the data presented in Sections 3.5

to 3.7, where the spatial resolution of the CCD detector was the limiting factor. The higher

resolution achieved in X-ray-film measurements also revealed that the (110) reflection is slightly

broadened in the azimuthal direction. This broadening is practically invisible in Figure 3.4a.

3.9 Concluding remarks
In this chapter, we presented a few examples of the application of ultra-high resolution SAXS

to colloidal crystals. We demonstrated that an angular resolution better than 2 μrad can be

achieved using a synchrotron X-ray source and refractive optics for sample-detector distances

of only a few meters. This resolution is about one order of magnitude better than the reso-

lution of presently-realized USAXS installations exploiting Si-(111) and Si-(220) Bonse-Hart

cameras [159, 160]. The setup allows for fast recording of two-dimensional diffraction data

within the (sub)second acquisition times. One has to note, however, that compound refractive
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Figure 3.6: Image of one of the (110)-class reflections from the colloidal crystal shown in Figure 3.4a

obtained with high-resolution X-ray film. The X-ray intensities at every pixel are calculated from the

film density using a blackening curve. A 50 μm× 50 μm area is presented in the insert. The profile is

taken in the radial direction (dashed line in the image).
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lenses have a rather high level of parasitic scattering at present, which leads to an increase of

scattering background. This might create an obstacle for weakly-scattering samples and further

improvement of the quality of the lenses is highly desirable.

The breakthrough in terms of angular resolution to a few microradians makes SAXS a pow-

erful analytical tool, which allows for detailed quantitative characterization of colloidal crys-

tals. It can provide a clear distinction between the X-ray scattering from a colloidal fluid and

the X-ray diffraction from a small colloidal crystal grown at the capillary wall, the fluid and

the crystal being in coexistence (Section 3.5). Microradian-resolution SAXS is able to perform

detailed structural evaluation of colloidal crystals with particle separations that are even larger

than 1 μm (Section 3.6). Our technique can also give access to new detailed knowledge on

order parameters, including the presence of disorder of the second type (Section 3.7).

Photonic colloidal crystals are presumably not the only example where improvement of

the angular resolution in two-dimensional data acquisition can play an important role. For

example, it can be of importance for biological objects with large-scale organization such as

that in muscles [164, 165, 167]. Microradian resolution may also be needed to further enlarge

the unit-cell size accessible to protein crystallography in order to study large protein complexes

such as viruses [179].
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4

Orientation, packing and stacking in
convective assembly

Over the past few years, convective assembly or controlled drying has become a popular method

for the fabrication of colloidal-crystal templates of silica spheres in air. Such templates can be

infiltrated with high-index materials, including silicon, by chemical vapor deposition (CVD).

Removal of the original silica template by a wet-chemical etch results in a 3-D photonic crystal.

Although it is a popular method, the mechanism behind convective assembly remains unclear.

The orientation of the hexagonal layers with respect to the meniscus of the suspending medium

during convective assembly, and the stacking sequence of these layers, contain important in-

formation about this growth mechanism. Furthermore, the stacking of the hexagonal layers in,

and thus the 3-D structure of, the resulting colloidal crystals affect their photonic properties. In

the first part of this chapter, we present electron microscopy and X-ray diffraction data suggest-

ing that the orientation of the hexagonal layers is such that the lines of touching particles are

perpendicular to the meniscus if the crystal has approximately 5 layers or more. At the start

of crystal growth, where the number of layers is smaller, the lines were found to be parallel to

the meniscus in most crystallites. In the second part, we demonstrate that small-angle X-ray

scattering (SAXS) is an excellent tool to obtain information about the 3-D structure of colloidal

crystals grown by conventional convective assembly. It turns out that the layers parallel to the

sample substrate are not exactly hexagonal and that the stacking sequence is mainly that of

face-centered cubic (FCC) crystals, though stacking faults may occur.
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4.1 Introduction

In Chapter 1, self-assembly of colloidal particles has been presented as an attractive route to-

wards 3-D photonic crystals [95, 107, 108], using colloidal crystals as templates for infiltra-

tion with high-refractive-index materials [67–69, 181, 182]. One of the most popular ways of

fabricating colloidal-crystal templates is convective assembly, also known as controlled dry-

ing [67, 77]. Colloidal spheres are deposited onto a flat substrate that is positioned (nearly)

vertically in a colloidal dispersion, the latter having a typical colloid volume fraction of 1%.

Evaporation of the solvent causes an influx of particles from the bulk suspension towards the

liquid film that wets the surface of the substrate. Subsequently, capillary forces cause colloids

in the vicinity of the meniscus to assemble into close-packed structures [183].

Controlled drying results in colloidal-crystal templates with a finite number of hexagonally

packed layers which are parallel to the substrate. One of the major advantages of controlled

drying is that the resulting close-packed structure is uniform in orientation and thickness over

areas that are on the order of cm2 [76]. The number of layers can be controlled by the particle

volume fraction of the dispersion [77]. After drying of the (thin) opaline film, Van der Waals

forces between the spheres keep the colloidal crystal from disintegrating, while Van der Waals

forces between the spheres and the substrate keep the crystal from detaching. The mechanical

stability of such crystals allows easy handling, facilitating post-fabrication processing. The

controlled-drying process can even be repeated in a layer-by-layer fashion, using spheres of

different size in consecutive layers, in order to arrive at binary colloidal crystals [135].

Although colloidal crystals grown by controlled drying have been successfully used as tem-

plates for infiltration with high-index-materials [67–70, 181, 182], the exact mechanism behind

this self-assembly technique is still unclear [108, 184, 185]. In literature, an important obser-

vation which is usually connected to this mechanism, is the orientation of the hexagonal layers.

Wostyn et al. [76] observed that the meniscus of the drying film directs the orientation of the

layers, such that the lines of touching particles within a layer are perpendicular to the meniscus

(Figure 4.1a), and claimed that it is an intrinsic property of controlled drying. Based on their

observations in layer-by-layer growth of binary colloidal crystals, Velikov et al. [135] proposed

a model which explains why the lines of touching particles are parallel to the meniscus in their

experiments. Meng et al. [184] observed that the regions in which a growing crystal makes a

transition from n to (n+1) layers have square instead of hexagonal symmetry. They claim that

these transition regions play an important role in the crystallization process. Furthermore, the

data they present seems to indicate that the orientation in thin crystals (∼ 4 layers) is such that

the lines of particles are parallel to the meniscus.

Apart from the mechanism behind controlled drying, the 3-D structure of the resulting sam-

ples is unresolved as well. It is well-known that the crystal planes parallel to the substrate

have hexagonal symmetry, and that consecutive layers are hollow-site stacked, but the order in

which they are stacked has not been determined unambiguously yet. In hollow-site stacked,

close-packed colloidal crystals, the hexagonal layers can have three lateral positions: A, B and

C (Figure 4.1b). If their sequence is ABCABC, the resulting structure is a face-centered cubic

(FCC) crystal. If the sequence is ABABAB, a hexagonal close-packed (HCP) crystal is ob-

tained, while a structure with a random sequence is usually referred to as a random hexagonal

close-packed (RHCP) structure. In their experiments on controlled drying, Vlasov et al. ob-

served a tendency towards FCC stacking [67]. It is true that FCC is more stable than HCP ac-
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Figure 4.1: (a) Schematic representation of a deformed hexagonal layer, together with the coordinate

system, the real-space basis vectors ai and the orientation of the meniscus if the lines of touching particles

are oriented perpendicular to it. (b) Hollow-site stacking in controlled drying. The three different lateral

position of the hexagonal layers are labelled A, B and C.
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cording to free-energy calculations, but the latter assume that thermodynamic equilibrium has

been reached [72, 73, 186]. As the calculated free-energy difference between FCC and HCP is

very small (∼ 10−3 kBT ), and the controlled-drying process is probably far from equilibrium,

it is unlikely that these calculations actually apply in this case. On the other hand, preliminary

results presented in Reference [187] indicate that kinetics favor FCC over RHCP stacking.

Kinetics were also considered by Norris et al. [108], who proposed a model which attributes

the observed tendency towards FCC structures to the flow of solvent through holes in the already

deposited crystal layers. Meng et al. confirm that there is a strong tendency towards FCC struc-

tures for controlled-drying samples with a relatively small number of layers (≤ 7) [184]. They

claim that the square transition region, where a growing crystal makes a transition from n to

(n+1) layers, can initiate specific stacking sequences which are then propagated in subsequent

growth. Using a simple model, they argue that the crystallization mechanism is an interplay

between capillary forces, the physical constraint of the meniscus and the constant feedback be-

tween the deposited structure and the incoming particles. In thicker crystals, other effects could

also be involved. A tendency towards FCC structures was also found in confocal microscopy

measurements, though the crystals also contained stacking faults [185]. Moreover, for sam-

ples with 6 layers or more, the relative number of stacking faults appeared to be more or less

constant. Finally, García-Santamaría et al. used spectroscopy to show that controlled-drying

colloidal crystals are not really close-packed crystals [188], with measured sphere volume frac-

tions of 71% to 73%, indicating that the structure cannot be a truly close-packed FCC structure.

As it is such a popular method, it is important that the mechanism behind controlled drying

is revealed, for it may allow controllable tuning of growth parameters to improve the quality

of the resulting colloidal crystals. The orientation of the hexagonal layers contains information

about this mechanism. Additional clues can be obtained from the stacking of the hexagonal

layers, which also affects the 3-D structure, and thus the photonic properties, of the resulting

colloidal crystals [75]. In the first part of this chapter, we present electron microscopy and X-

ray diffraction data suggesting that the orientation of the hexagonal layers is such that the lines

of touching particles are perpendicular to the meniscus if the crystal has approximately 5 layers

or more. At the start of crystal growth, where the number of layers is smaller, the lines were

found to be parallel to the meniscus in most crystallites. In the second part, the 3-D structure of

controlled-drying colloidal crystals is considered. As the particles have a diameter smaller than

400 nm, which allows controlled drying at room temperature, it is impossible to probe their

internal 3-D structure using conventional optical techniques, such as confocal microscopy. We

demonstrate that small-angle X-ray scattering (SAXS) is an excellent tool to obtain additional

information about the 3-D structure of colloidal crystals grown by conventional controlled dry-

ing. As an example, the in-plane packing and the stacking of the hexagonal layers will be

considered.

4.2 Theoretical model

4.2.1 Real space

Controlled drying leads to colloidal crystals consisting of (nearly) hexagonal layers that are

oriented parallel to the sample substrate [67, 77, 108], as is often the case in self-assembly of
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colloidal spheres [95, 107]. Therefore, we will analyze scattering data using a model in which

crystals consist of a finite number N of infinitely large layers [189]. This has the advantage

that finite-size effects can be taken into account and it allows easy comparison of scattering by

several crystal structures, including face-centered cubic (FCC), hexagonal close-packed (HCP),

random hexagonal close-packed (RHCP), body-centered tetragonal (BCT) and even simple cu-

bic (SC). In our model, the infinite layers are spanned by two real-space lattice vectors a1 and

a2 (see Figure 4.1a). We define the third real-space basis vector a3 such that it is orthogonal to

the layer spanned by (a1,a2) and has a length that is equal to the interlayer spacing d. Note that

a3 is not a lattice vector, for it has to be supplemented by an additional, lateral shift vector to

connect particles from layer j with those in layer j +1 (see Equation 4.24).

a1 = [ax,−ay,0]

a2 = [ax,ay,0]

a3 = [0,0,d]

(4.1)

Here ay is equal to half of the distance between the colloidal particles in lines that run along

the y-axis in Figure 4.1a and ax is the distance between those lines. In truly close-packed (CP)

crystals, the layers have hexagonal symmetry and all neighboring particles are touching. In

that case, ay = (σ/2), ax = σ · (√3/2) and dCP = σ ·√2/3, with σ the particle diameter. For

generality, we do not assume hexagonal packing. Instead, we do not specify expressions for ax
and ay yet, we only assume that ax > ay and that the layers are invariant under reflections in

both the x-axis and the y-axis in Figure 4.1a.

Because controlled-drying colloidal crystals are known to be mechanically stable in air, we

assume that the layers are hollow-site stacked (see Figure 4.1b). This means that, for example,

a particle P in the second layer rests on three particles (K, L, M) of the first layer, such that its

z-projection P’ is in the middle of the triangle suspended by K, L and M (see Figure 4.1a). As

the layer is symmetric under reflections in the x-axis, the projection P’ must be on the median

KQ, which is also an altitude of the isosceles triangle KLM. We define τ as the ratio of KP’ and

ax (see also Figure 4.1a).

KP′ = τ ·KQ

= τax

(4.2)

Note that τ = (2/3) for hexagonal layers. Because of mechanical stability, we can also safely

assume that particle P is touching all particles (K, L, M) on which it is resting. This condition

connects the parameter τ with the interlayer spacing d and the particle diameter σ .

(KP′)2 +(PP′)2 = (KP)2

(τax)
2 +d2 = σ2

(4.3)

Actually, the mechanical-stability condition also ensures that the z-projection P’ of P is the
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centroid of the triangle KLM, which means that τ can be expressed in terms of ax and ay.

(QP′) = (1− τ) ·ax

(LP′) = (MP′) = (KP′) = τax

τ =
(

1
2

) ·(1+
(

ay
ax

)2
) (4.4)

Note that inserting values for ax and ay for a hexagonal layer yields τ = (2/3). This makes

perfect sense, as the triangle KLM is equilateral then.

In order to quantify possible distortions of the layers with respect to their expected hexago-

nal symmetry, we introduce the distortion parameter ε .

α =
ay

ax
= ε ·

(
1√
3

)
(4.5)

If the layers are truly hexagonal, then ε = 1. If the layers are (slightly) distorted, it will also

affect the interlayer spacing d and the volume faction of spheres ϕ . In the case of distortion,

the particles in a layer are slightly pulled apart. As particles in the next layer are resting upon

those particles, the layers slightly move towards one another. The interlayer spacing d can be

expressed in terms of the interlayer spacing in close-packed structures dCP and the interparticle

spacing along the y-axis in Figure 4.1a, the latter being 2 ·ay.

d = dCP ·
√√√√(

3

2

)
·
(

1−
(

1

3

)
·
(

2ay

σ

)2

·
(

3

4ε
+

ε
4

))
(4.6)

Although the interlayer spacing d slightly decreases, the distortion within the layers results in

a decrease of the sphere volume fraction ϕ . Under the assumptions, the actual sphere volume

fraction ϕ in structures consisting of hollow-site stacked, distorted hexagonal layers can be

expressed in terms of the sphere volume fraction in a truly close-packed crystal ϕCP = (π
√

2/6).

ϕ = ϕCP ·
(

σ
2ay

)2

·

⎛
⎜⎜⎜⎜⎝

1√(
3

2ε2

)
·
(

1− (
1
3

) ·(2ay
σ

)2 · ( 3
4ε + ε

4

))
⎞
⎟⎟⎟⎟⎠ (4.7)

4.2.2 Reciprocal space
Scattering is most easily described in reciprocal space [3, 105]. The 2-D reciprocal lattice of a

single hexagonal plane is hexagonal. Similarly, using the definition of the reciprocal triad {b′
i}

of the real-space basis {ai},

b′
i = 2π · a j ×ak

ai ·
(
a j ×ak

) , (4.8)
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Figure 4.2: (a) Schematic representation of the 2-D reciprocal lattice of a single, deformed hexagonal

plane, together with the reciprocal-space coordinate system, the calculated reciprocal-space basis {b′
i}

and the conventional reciprocal-space basis {bi}. (b) Calculated graph of the form factor, in the Rayleigh-

Gans-Debye approximation (see Equation 4.18), of spheres with radius R. The values of the form factor

for several points in the reciprocal space of a CP structure have been plotted as black dots. These

black dots correspond, respectively, to the (100), (110), (200), (210), (300), (220), (310) and (311)
reflections. The Miller-indices are given in the reciprocal-space basis {bi} (see Equation 4.10).
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it can be shown that the 2-D reciprocal lattice of a distorted hexagonal plane is distorted hexag-

onal itself (see Figure 4.2a). We define the third reciprocal-space basis vector such that its

direction is orthogonal to the plane spanned by (b′
1, b′

2) and its length is determined by the

interplanar spacing d, e.g. b′3 = (2π/d).

b′
1 =

[
π
ax

,− π
ay

,0
]

b′
2 =

[
π
ax

, π
ay

,0
]

b′
3 =

[
0,0, 2π

d

]
(4.9)

The 2-D reciprocal lattice of a single hexagonal plane can also be spanned by a different, more

conventional choice of basis vectors {bi} (see Figure 4.2a). Together with b′
3, they form the

reciprocal-space basis vectors with which we describe scattering by our colloidal crystals.

b1 =
[
− π

ax
, π

ay
,0

]

b2 =
[

π
ax

, π
ay

,0
]

b3 =
[
0,0, 2π

d

]
(4.10)

Consider an incoming wave of wave vector k0 and assume it is scattered elastically. This

scattering process results in an outgoing wave of wave vector k, having the same length as

k0. We define the scattering vector q as the vector difference between the wave vectors of the

incoming and outgoing waves.

q = k−k0 (4.11)

Furthermore, we decompose any scattering vector q in the reciprocal-space basis {bi}
q = hb1 + kb2 + �b3 , (4.12)

in which (h,k, �) are called Miller-indices. The scattered intensity I(q) is proportional to the

square of the matrix element that describes the transition from k0 to k.

I ∝ |Mk,k0
|2

= |〈k|V (r)|k0〉|2
(4.13)

Here, V (r) is the scattering potential of all colloidal particles in the crystal. In the case of

spherical particles, which all have the same orientation, the individual colloid potentials Vc(r)
are identical, isotropic and non-overlapping. In other words, the potential of all particles can be

written as a sum of disjunct, identical colloid potentials Vc(r). Thus, the matrix element Mk,k0

can be factorized

Mk,k0
= 〈k|V (r)|k0〉
=

∫
crys e−ιk·rV (r)eιk0·r dr

=
[

1
vc

∫
crysVc(u)e−ιq·u du

]
· [1

n ∑l e−ιq·Rl
]

,

(4.14)
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in which n is the number of unit cells in a macroscopic unit of volume of the crystal and vc is

the volume per unit cell.

Inserting Equation 4.14 into Equation 4.13 yields the well-known factorization of the scat-

tered intensity in a form factor F(q) and a structure factor S(q)

I(q) ∝ F(q) ·S(q), (4.15)

in which

F(q) =
∣∣∣∣ 1

vc

∫
crys

Vc(u)e−ιq·u du
∣∣∣∣
2

(4.16)

S(q) =

∣∣∣∣∣1

n ∑
l

e−ιq·Rl

∣∣∣∣∣
2

. (4.17)

It is clear from Equation 4.17 that the structure factor depends solely on the positions of the

individual colloids Rl, where l sums over all unit cells. On the other hand, the form factor only

depends on the functional form of the individual colloid potential Vc. In other words, the form

factor contains information about the scattering from a single colloidal particle. Actually, as

spheres are isotropic, the form factor only depends on the length of q. In the Rayleigh-Gans-

Debye (RGD) approximation, the form factor of a sphere can be calculated analytically in a

straightforward manner [141].

F (q) =
∣∣∣∣3 ·

(
sin(qR)− (qR)cos(qR)

(qR)3

)∣∣∣∣
2

(4.18)

As in Equation 4.18, the form factor is usually normalized such that F(q = 0) = 1. Figure

4.2b displays a graph of the form factor of monodisperse spheres of radius R in the RGD-

approximation.

As our colloidal crystals usually consist of a finite number N of infinite layers, we prefer to

decompose the structure factor S(q) in a term corresponding to in-plane scattering and a term

corresponding to the stacking of the layers. First, the position vector Rl of a colloid is written

as the vector sum of the position vector R j of the origin of layer j and the in-plane vector

connecting the origin of that layer with colloid i in that layer (li1a1 + li2a2).

Rl = R j + li1a1 + li2a2 (4.19)

Inserting Equation 4.19 into Equation 4.17 results in

S(q) = 1
n2

∣∣∣∑N−1
j=0 ∑M1−1

li1=0 ∑M2−1
li2=0 e−ιq·(li1a1)e−ιq·(li2a2)e−ιq·R j

∣∣∣2

= 1
n2

∣∣∣∑N−1
j=0 e−ιq·R j ∑M1−1

li1=0 e2πιhli1 ∑M2−1
li2=0 e−2πιkli2

∣∣∣2
,

(4.20)

where we have used an important property of the real-space and reciprocal-space bases, {ai}
and {b j} respectively

a1 ·b1 = −2π

a2 ·b2 = 2π

a3 ·b3 = 2π

ai ·b j = 0 for i �= j .

(4.21)
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As the number of in-plane particles that contributes to scattering is large, M1×M2 ∼ 103×103,

the summations over (li1, li2) will vanish if (h,k) are not integer. If (h,k) are integer, interference

will be constructive and the sums can be evaluated explicitly.

M1−1

∑
li1=0

e2πιhli1 =
M1−1

∑
li1=0

(1) = M1 (4.22)

In other words, the structure factor S(q) takes the functional form

S(q) =
1

n2
M2

1M2
2

∣∣∣∣∣
N−1

∑
j=0

e−ιq·R j

∣∣∣∣∣
2

(4.23)

for integer values of h and k, otherwise it is 0.

Finally, we wish to split the effect of stacking on scattering by colloidal crystals in a term

corresponding to the phase shift that is induced by the interlayer spacing and a term correspond-

ing to the phase shift that is induced by the lateral displacement of the planes with respect to

each other. Therefore, we write the position vector R j of the origin of layer j as the vector sum

of the spacing j ·a3 between the 0th and jth layers, and the lateral shift of the jth layer s j.

R j = j ·a3 + s j (4.24)

That way, the structure factor can be written as

S(q) = 1
n2 M2

1M2
2

∣∣∣∑N−1
j=0 e−ιq·( j·a3+s j)

∣∣∣2

= 1
n2 M2

1M2
2

∣∣∣∑N−1
j=0 e−ιΔφ j

∣∣∣2
,

(4.25)

in which we have introduced the phase shift of the jth layer Δφ j.

Δφ j = q · ( j ·a3 + s j)
= (hb1 + kb2 + �b3) · ( j ·a3 + s j)
= 2π j�+(hb1 + kb2) · s j

(4.26)

In the last step of Equation 4.26, we used the explicit forms of a3 and b3 (see Equations 4.1 and

4.10). The phase shift Δφ j is a useful quantity in (X-ray) scattering as constructive interference

will occur if and only if both h and k are integers and Δφ j is an integer times 2π for all j.
As an example, we derive the coherence relation for an FCC structure. In this case, the shift

vector s j can be written as

s j = p ·
(

a1 +a2

3

)
, (4.27)

where p = +1 for B-layers and p = −1 for C-layers (see Figure 4.1). Inserting Equation 4.27

into Equation 4.26 yields the desired coherence relation

Δφ j = 2π j�− p ·
(

2π
3

)
· (h− k) = 2π ·m , (4.28)
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in which m is an integer. As our colloidal particles our typically 103 to 104 times larger than

the X-ray wavelength, the Ewald sphere [3, 105] is nearly flat and oriented perpendicular to the

incoming X-ray beam. Equation 4.28 proves that, at normal incidence (� = 0), interference is

always constructive for reflections for which (h− k) is a multiple of 3. These reflections are

usually referred to as the stacking-independent peaks, for interference is also constructive for

these reflections in the case of HCP and RHCP. If (h− k) is not a multiple of 3, interference is

destructive for � = 0, but constructive for � = (m± 1
3), which can be reached by specific sample

rotations. These reflections depend on the stacking sequence of the hexagonal layers and can

be used, in principle, to distinguish FCC, HCP and RHCP structures in X-ray scattering.

4.3 Experimental methods

4.3.1 Sample fabrication

Colloidal crystals were fabricated from dispersions of silica spheres in ethanol. The silica col-

loids were synthesized using a seeded-growth procedure based on the Stöber-Fink-Bohn method

[91, 190, 191]. The stock dispersions were centrifuged and redispersed in technical ethanol

(Lamers & Pleuger, 100%) at least three times. The particle size distribution was probed us-

ing transmission electron microscopy (TEM, typically a Philips Tecnai 12, operated at 120

kV) on 88 particles, yielding an average diameter of (353±1) nm and a polydispersity (PD)

of (2.6±0.2)%. One of the samples, of which results are shown in this chapter, was fabri-

cated using a colloidal dispersion of silica spheres having a slightly different size. They were

synthesized in two steps, the first of which was the formation of small nano-clusters using a

micro-emulsion [192]. These small silica particles were subsequently grown larger following

the Stöber-Fink-Bohn method [190]. The particle size distribution was probed by TEM on

203 particles. Results from two TEM images were combined, yielding an average diameter of

(336.6±2.0) nm and a PD of (1.17±0.06)%. The latter TEM measurements were calibrated

versus a line grid (Polaron Equipment Ltd., line grating 0734, 2160 lines/mm).

Colloidal crystals were grown from the above-mentioned dispersions onto flat, glass sub-

strates by controlled drying [77]. The stock dispersions were diluted to volume fractions of

approximately 0.6% to 1%, after which 10.0 ml to 15.0 ml of dispersion was transferred to a

growth bottle. Glass, 20 ml, screw-neck vials with a flat bottom were used as growth bottles.

They were placed on a sedimentation-dedicated table (Figure 4.3), thus minimizing mechani-

cal vibrations. A glass substrate was inserted vertically into the dispersion, after which it was

tilted off-vertical by approximately 5◦ in most cases. A vertical cut through the neck of the vial

ensured that the substrate would remain (nearly) vertical after insertion (Figure 4.3a). Next, in

order to avoid dust falling into the growth bottle, the latter was covered with a 600 ml to 2 l

glass beaker. To allow the evaporated ethanol to escape more easily, the beaker was slightly

tilted by supporting one side of the beaker with an approximately 5 mm thick piece of glass

or metal. Sometimes, several growth bottles were placed under the same beaker. However, we

note without proof that this may lead to some amorphous deposition. During growth, the tem-

perature in the room was kept at approximately 20 ◦C. It was monitored twice a day, showing

deviations on the order of 0.5 ◦C.

Two kinds of glass substrates were used: Menzel-Gläser, #1 cover slip, ca. 150 μm in thick-
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Figure 4.3: Photographs of typical setups for fabrication of colloidal crystals by controlled drying. The

scale bars in both images are 5 cm.

ness and Menzel-Gläser, standard microscopy slide, ca. 1 mm thick. All glassware, bottles and

slides, were cleaned prior to use with tap water, commercially available soap, deionized water

(16 MΩcm to 18 MΩcm) and technical ethanol (Lamers & Pleuger, ≥ 96%). After cleaning,

the growth bottles were dried in an oven at approximately (50±5) ◦C, whereas the slides were

dried with a Kimwipe tissue, after which dust was removed with flowing nitrogen. For some

samples, the growth bottles and the substrates were additionally submerged in chromosulfuric

acid for at least 15 minutes, after which they were copiously rinsed with deionized water and

technical ethanol. However, we have not noticed any major, qualitative differences between

samples fabricated with or without chromosulfuric acid cleaning.

After 5 to 10 days, samples were retrieved from the growth bottles. They were kept (nearly)

vertical for at least 2 hours to allow (partial) evaporation of residual solvent. Next, the deposi-

tion on one side of the substrate was removed using a Kimwipe tissue that had been drenched

in technical ethanol. Finally, colloidal-crystal samples were kept in storage boxes to avoid

contamination with dust.

4.3.2 Characterization
Most macroscopic images of colloidal-crystal samples were recorded using a Fuji FinePix

A340, 4.0 mega pixels digital camera. Typically, a Leica CLS 150 cold-light source illumi-

nated the sample with white light. Optical microscopy images were taken with a Nikon D70

using a shutter time of (1/10) s. This single-lens reflex (SLR) digital camera was coupled to

the vertical phototube of a Leica DM IRB inverted microscope using a 2.5× lens tube. A Le-

ica HC FLUOTAR 10×/0.3 NA dry lens was combined with a 1.6× front lens, to achieve a

total magnification of 16×. Before the measurements, the microscope was set up for Köhler

illumination.

Electron microscopy measurements were performed with a Philips XL30FEG scanning

electron microscope (SEM). The vacuum in the sample chamber was kept below 8.8 ·10−5 mbar.

To avoid image distortions due to charging effects in the uncoated samples, the SEM was typi-

cally operated at 3.0 kV, a spot size of 2.0 nm and a working distance of 5 mm to 6 mm. Images
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were recorded using a secondary-electron (SE) detector. At the start of a measurement session,

the electromagnetic lenses were aligned and subsequently corrected for astigmatism.

A Bruker Vertex70 Fourier transform infrared (FTIR) spectroscope with a tungsten source

and a Si-diode detector was used to obtain transmission spectra. Typical settings of the FTIR

spectroscope during our measurements include a resolution of 16 cm−1, averaging over 60 scans

and a scanner velocity of 10 kHz. A beam aperture of 0.5 mm was selected, leading to a spot

size of approximately 1 mm diameter at the sample position. All spectra were background

corrected using a spectrum of a similar substrate.

X-ray diffraction experiments were performed at beamline BM26B “DUBBLE” of the Eu-

ropean Synchrotron Radiation Facility (ESRF) in Grenoble, France (Chapter 3). The required

synchrotron radiation was produced by a bending magnet source. A typical photon energy of

11 keV (wavelength λ = 0.11 nm) was selected using a Si-(111) monochromator. The setup

was aligned such that an image of the source was created at the detector screen, thus increas-

ing q-space resolution, which is necessary to measure Bragg reflections at very small angles.

Furthermore, in the diffraction experiments presented in this chapter, X-rays were allowed to

propagate freely towards the sample. They were focused onto the detector screen by a com-

pound refractive lens positioned just before the sample [168, 180]. The diffraction patterns

were recorded using a 12-bit charge-coupled device (CCD) camera (Photonic Science) with an

X-ray phosphor screen in front, the effective pixel size being 22 μm×22 μm and the image size

being 4008 pixels× 2671 pixels. The q-space calibration of the Photonic Science camera was

performed using a silicon calibration grid with a hexagonal pattern of air holes (1.5 μm pitch).

Because of the limited dynamic range of CCD cameras, diffraction patterns were recorded sev-

eral times with exposure times ranging from 10 ms up to 10 min. The variation in exposure time

and sample absorption complicates the comparison of intensities of corresponding reflections

in different diffraction patterns presented here. All diffraction patterns have been corrected

for background scattering. Further details concerning the experimental setup are presented in

Chapter 3.

4.4 Results and discussion

4.4.1 Orientation

After fabrication of a sample by controlled drying, as described in Section 4.3, one of the

quickest ways to check whether the deposited structure was crystalline or not, was to look

for Bragg colors by eye. When colloidal crystals are illuminated with white light, they show

beautiful, ‘metallic’ iridescence for some angles of incidence (Figure 4.4a). These Bragg colors

are caused by constructive interference of light that is reflected by 3-D periodic structures. As

it is an interference phenomenon, the actual color observed depends on the angle of incidence,

the viewing angle, the size of the constituent particles, and the refractive indices of the particles

and their host medium.

Apart from revealing crystalline order, there is much more to Bragg colors from colloidal

crystals than meets the eye at first. With a little bit of experience, additional information can

be extracted from these colors. First of all, being caused by interference, Bragg colors have a

metallic appearance. In other words, they look much brighter than colors that are caused by
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Figure 4.4: Panel (a) is a photograph of a colloidal crystal grown by convective assembly. It consists of

337 nm diameter silica spheres in air and displays beautiful Bragg colors in white-light illumination. The

alternation of bright and dark stripes is clearly visible in this picture. Panel (b) is an optical micrograph

of a similar colloidal crystal of 353 nm diameter silica spheres, showing different domains and long

vertical cracks. In panel (a), the orientation of the meniscus during sample growth is indicated by the

white dashed line, in panel (b) it is indicated by the scale bar. The scale bar in panel (a) is 1 cm, the one

in panel (b) is 0.2 mm.

scattering & absorption, paint being an example of the latter. If the crystal is covered with an

amorphous layer, for example, the Bragg colors coming from the sample will look a little dull.

Secondly, in samples with a modest index contrast, silica spheres in air for example, interference

needs to build up over several crystal layers. Thus, if the samples consists of only 1 or 2 layers,

the colors will not look as bright as from a sample with 10 or more layers.

A striking feature of Bragg colors from colloidal crystals grown by controlled drying is the

alternation of bright and dark stripes (Figure 4.4a). If samples are slightly tilted, the dark stripes

become bright stripes and vice versa. The stripes are oriented perpendicular to the meniscus.

Even close to the vertical edge of the sample, where the meniscus curves upwards during growth

due to capillary forces (Figure 4.1a), the stripes stay perpendicular to the meniscus, causing

them to slightly deviate from the vertical direction. In optical microscopy (Figure 4.4b), long

cracks are visible that run vertically along the sample. It is tempting to interpret these cracks as

the boundaries of the stripes. The stripes could then correspond to crystal areas having different

stacking sequences [193]. Although we have not investigated this link in detail, we note here

that we have seen color differences in optical microscopy using a 15× / 0.4 NA Cassegrain

objective on a Bruker Hyperion 2000 microscope, but we have not observed any qualitative

differences between bright and dark stripes in SEM and FTIR spectroscopy. All the same, the

stripes seem to indicate the presence of a preferential direction in colloidal crystals grown by

controlled drying.

Another fast method to obtain some mesoscopic information on colloidal crystals is opti-

cal microscopy. Although the resolution in optical microscopy is not sufficient for observing

individual colloidal particles with a diameter around 400 nm, it does provide valuable sample

characteristics such as the number of cracks, typical domain sizes and the number of layers.

Furthermore, it allows the identification of markers which can be used for positioning purposes

in SEM (Figure 4.5). From optical microscopy, it is already clear that in controlled drying, the
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Figure 4.5: Optical microscopy and SEM top views of a colloidal crystal of 353 nm diameter silica

spheres in air, grown by controlled drying. The images show a clear, unintentional marker for positioning

purposes in electron microscopy. In both images, the meniscus was oriented horizontally during crystal

growth. The scale bars in both panels are 0.2 mm.

number of layers of the colloidal crystal at the start is 1. As the meniscus sweeps the substrate,

the number of layers increases one by one.

Unfortunately, optical microscopy does not have the resolution that is required to probe the

orientation of the hexagonal layers in real space. Using positioning markers, the same spot on

the sample was studied using SEM, in which the required resolution could easily be obtained.

Similar observations were made in other controlled-drying crystals that we studied. In SEM,

it was very clear that crystal growth indeed started with only 1 layer (Figure 4.6a). The edge

of the first crystal layer was not straight, rather jagged, which could have been caused by the

solvent not wetting the substrate properly. The lines of touching particles, which were clearly

parallel to the meniscus in the first layer, even followed the jagged shape of the meniscus. This

implies that surface tension is the dominating mechanism orienting the hexagonal layer at the

start of crystal growth.

Moving downwards, away from the meniscus, the orientation of the hexagonal layers still

seemed to have a preference for aligning the lines of particles parallel to the meniscus (Figures

4.6c and 4.6d), although domains in which the lines of particles are oriented perpendicular to

the meniscus were also observed. As far as ∼ 500 μm downwards, the lines of particles were

still oriented parallel to the meniscus in at least a substantial number of domains (Figure 4.6b).

As was observed in optical microscopy, the number of layers increased one by one. At the

transition from n to (n+1) layers, a thin region with square instead of hexagonal symmetry was

observed (Figure 4.6c and 4.6d), as was reported by Meng et al. [184]. At such a transition,

the orientation of a domain was either conserved or it switched. As square symmetry has lines

of particles both perpendicular and parallel to the meniscus, this transition region could be the

manifestation of a mechanism for crystal domains to switch from one orientation to the other.

Note that if the crystal is hollow-site stacked, as expected, the orientation of a crystal domain

has to be the same from the top to the bottom layer, otherwise the hexagonal layers will not fit
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Figure 4.6: SEM top views of colloidal crystals grown by controlled drying at different distances below

the start of crystal growth: (a) at the start of crystal growth, (b) at ∼ 475 μm, (c,d) at ∼ 100 μm, (e,f)

at ∼ 1.15 cm. The crystal consists of 353 nm diameter silica spheres. From panel (a) to panel (f),

the orientation of the hexagonal layers changes from parallel to perpendicular to the meniscus. During

convective assembly, the meniscus was oriented vertically in all panels, as indicated by the white, dashed

line. The movement of the meniscus during controlled drying is indicated by the white arrow. The white

scale bars in panels (a,b,c,e) are 5 μm, the ones in panels (d,f) are 2 μm.
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Figure 4.7: X-ray diffraction patterns of a colloidal crystal grown by controlled drying at angles of

incidence of approximately (a) 0◦ and (b) −21.5◦. The colloidal crystal consisted of 337 nm diameter

silica spheres in air. The (1̄1̄0) and (110) reflections are visible in both panels, as they are on the axis

of rotation. Both white scale bars are 25 μm−1. The numbers below the intensity scale bar are detector

pixel values. Line profiles for measuring distances in reciprocal space were taken along the red lines.

onto each other in the direction perpendicular to the substrate.

Far from the meniscus, on the order of 1 cm downwards, all domains were oriented with

their lines of particles perpendicular to the meniscus, apparently without any exception (Figure

4.6e and 4.6f). Unfortunately, we did not probe intermediate distances in SEM, but we did by X-

ray diffraction. A major advantage of X-ray diffraction over SEM is that it shows the orientation

of the hexagonal layers over the entire cross-section of the beam in a single shot. With a typical

size of the X-ray source of about 380 μm× 260 μm, primary slits with a 300 μm× 500 μm

gap at 27.6 m from the source and the sample at 48.7 m, the X-ray beam should form a spot on

the sample of approximately 0.8 mm×0.6 mm. This estimate of the cross-section of the X-ray

beam corresponds pretty well with the size of the brown spot (∼ 1 mm diameter) that was left

in the glass substrate after prolonged exposure to X-rays. Such brown spots are probably due to

the formation of color centers within the glass substrate during exposure to X-rays [3, 4].

We analyzed the diffraction data in terms of a deformed hexagonal lattice (Section 4.2). The

reason for this is that all our crystals, as is often the case in colloidal self-assembly, consist of

stackings of (nearly) hexagonally packed layers that orient parallel to the substrate. Figure 4.7

presents typical X-ray diffraction patterns of a colloidal crystal, grown by controlled drying, at

angles of incidence of 0◦ and −21.5◦ relative to the substrate normal. The X-ray beam was

positioned 4.5 to 5.5 mm below the start of crystal growth. The meniscus would have been
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parallel to the horizontal axis in this case. In both diffraction patterns, the (110) and
(
1̄1̄0

)
reflections are on the vertical axis, which means the reciprocal-space basis vectors b1 and b2

are not on the vertical axis. This, in turn, means that one of the two real-space basis vectors, a1

or a2, was on the vertical axis, implying that the lines of touching particles ran perpendicular

to the meniscus in this sample. The orientation of the hexagonal layers in several controlled-

drying colloidal crystals was determined by X-ray diffraction and we have not encountered any

sample in which the lines of particles were oriented parallel to the meniscus.

4.4.2 Packing
Normal-incidence, X-ray diffraction patterns of colloidal crystals grown by controlled drying

do not only reveal the orientation of the hexagonal layers over ∼mm2 areas, they also con-

tain valuable information about the (3-D) structure of these crystals. For example, it has been

observed in spectroscopic measurements that the volume fraction of colloidal crystals grown

by controlled drying is 71% to 73%, which is smaller than the close-packing value of ∼ 74%

[188]. A possible explanation claims that the ‘missing’ volume corresponds to cracks and other

defects, which are always present in such colloidal crystals [76]. Another explanation could

be that the hexagonal layers in controlled-drying colloidal crystals are not exactly hexagonal.

Whether or not these layers are really hexagonal can be extracted from diffraction patterns such

as shown in Figure 4.7. Taking line profiles through
(
11̄0

)
&

(
1̄10

)
and

(
1̄1̄0

)
& (110), as

indicated in Figure 4.7 by red/dark-gray lines, the deformation coefficient α or ε (see Equation

4.5) can be calculated using

α =
ay

ax
= ε ·

(
1√
3

)
=

Δqx

Δqy
. (4.29)

The values for Δqx and Δqy can be obtained from the line profiles (Figure 4.8) using

Δqx = ‖(
1̄10

)− (
11̄0

)‖
Δqy = ‖(110)− (

1̄1̄0
)‖ .

(4.30)

Note that the line profiles for Δqx and Δqy should be perpendicular to one another, but they are

actually at an angle of approximately 88◦ in both measurements. At this moment, we do not

have an explanation for this observation, but cos(2◦) is so close to 1 that the tilt hardly affects

the results presented here. Although it requires a correction for the angle of rotation, we prefer

to extract the Δq values from diffraction patterns at an angle of incidence of −21.5◦, because

the reflections in the line profiles of these patterns are either allowed, or they are on the axis of

rotation. This means the signal-to-noise ratio in these line profiles is much better than in those

taken from normal-incidence diffraction patterns, where the
(
11̄0

)
and

(
1̄10

)
reflections are

not allowed. The
(
11̄0

)
and

(
1̄10

)
reflections should actually reach their maximum at � = ±1

3
[105], which corresponds to an angle of incidence of −19.5◦. However, the angle of −21.5◦ is

much closer to the experimental value of −21.8◦, which was determined using a rocking curve

(Figure 4.10, discussed later on).

From the line profiles in Figure 4.8, a value for ε of (0.961± 0.007) was extracted. Val-

ues for the deformation parameter ε were extracted from diffraction patterns of several other

samples as well. The measured deformation in those samples was approximately as large as,
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a b

Figure 4.8: Line profiles along the dark-gray lines through the (a)
(
11̄0

)
&

(
1̄10

)
reflections & the (b)(

1̄1̄0
)

and (110) reflections in the diffraction pattern shown in Figure 4.7b, which was taken at an angle

of incidence of −21.5◦. The colloidal crystal in the X-ray beam consisted of 337 nm diameter silica

spheres and was grown by controlled drying. The peak profiles were obtained by averaging the intensity

over a band approximately as wide as the reflections in Figure 4.7. As we are currently only interested

in ratios of distances in reciprocal space, the unit of that distance need not be converted from pixels to

μm−1. The numbers on the vertical axes of the graphs are detector pixel values.

or larger than, the deformation presented here. As ε equals 1 for a hexagonal layer, this result

indicates that the hexagonal layers in colloidal crystals grown by controlled drying are slightly

expanded parallel to the meniscus. To check whether the measured deformation was not due to

a detector artefact, a value for ε was also extracted from a normal-incidence, X-ray diffraction

pattern of the same sample at an orthogonal orientation. The pattern was recorded at the same

position on the detector and yielded ε = (0.953±0.008). As these two values are so close, we

conclude that the measured deformation of approximately 4% in colloidal crystals grown by

controlled drying is accurate within 1 percentage point.

In order to check the deformation of controlled-drying colloidal crystals in real space, scan-

ning electron microscopy (SEM) top views at orthogonal orientations were recorded (Figure

4.9). For the sample of which diffraction patterns were shown in Figure 4.7, an estimate for

ε was obtained from Figures 4.9a and 4.9b by measuring at least 28 spacings for both ax and

ay, yielding ε = 0.98 and ε = 0.97, respectively. Although better statistics are required to draw

definite conclusions, these SEM measurements do not contradict the X-ray result. More im-

portantly, the SEM images provide a possible explanation for the deformation. Upon careful

inspection of the images, one can observe that the lines of touching particles, which are oriented

perpendicular to the meniscus, are not straight lines. Instead, they appear to wiggle around an

average straight line. In X-ray scattering, which provides macroscopically-averaged data, this

wiggling looks like a distorted hexagonal plane, resulting in a value of ε lower than 1.

The in-plane deformation that was observed both in X-ray diffraction and in SEM allows the

interlayer spacing to be slightly smaller than in the case of close-packing (Equation 4.6). For the

above-mentioned sample, assuming that particles were touching along the lines perpendicular

to the meniscus, the interlayer spacing obtained from Equation 4.6 is (0.9948± 0.0010) · dCP,

using ε = (0.961 ± 0.007) as measured in X-ray diffraction. Because the hexagonal layers
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Figure 4.9: SEM top views, at orthogonal orientations of the SEM sample stage, of a colloidal crystal

grown by controlled drying. The colloidal crystal consists of 337 nm diameter silica spheres in air (see

also figure 4.7). The white scale bars are 5 micron.

are slightly deformed and the interlayer spacing is slightly decreased, the volume fraction of

spheres in these crystals changes as well (Equation 4.7), yielding (0.715±0.004). Such a value

for the sphere volume fraction is significantly lower than the maximum packing fraction of

(π
√

2/6) ≈ 0.740 for close-packed crystals and is in reasonable agreement with the 71% to

73% obtained from spectroscopic measurements [188]. This indicates that colloidal crystals

grown by controlled drying are not truly close-packed, which was independently observed in

FTIR spectroscopy [188].

4.4.3 Stacking
After determining the in-plane packing in controlled-drying colloidal crystals, the stacking of

the nearly hexagonal layers is still left to be determined. In order to probe the stacking of

colloidal crystals, one of the stacking-dependent reflections should be considered. For close-

packed colloidal crystals, it was shown in Section 4.2.2 that interference is always constructive

at normal incidence for reflections for which (h − k) is a multiple of 3, independent of the

stacking sequence of the hexagonal layers. However, interference turned out to be destructive

for reflections for which (h− k) is not a multiple of 3. For those reflections, the stacking-

induced phase difference can be compensated at non-zero values of �, which can be reached by

specific sample rotations. In the case of an FCC structure (ABC-stacking), the phase difference

is compensated at � =±1
3 . For HCP stacking, the phase difference cannot be fully compensated

at any value of �, whereas it is compensated at half-integer values of � for random stacking

(RHCP).

Figure 4.10a shows the rocking curve for the
(
11̄�

)
reflection, which is one of the stacking-

dependent reflections, from a colloidal crystal grown by controlled drying. Actually, it is the

same sample of which diffraction patterns at two different angles of incidence are shown in

Figure 4.7. In our setup (Chapter 3), the angle of incidence can be varied by rotating the

sample around the vertical axis. After measuring the X-ray diffraction pattern at various angles

of rotation γ , a rocking curve is obtained by plotting the total intensity of the
(
11̄0

)
reflection
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a b
Figure 4.10: Rocking curves for the

(
11̄�

)
reflection from a colloidal crystal of 337 nm diameter silica

spheres in air, grown by controlled drying. Panel (a) shows the shift of the position of the maximum

of the experimental rocking curve upon correction for the deformation of the hexagonal layers. Panel

(b) shows the corrected experimental curve (black), together with theoretical curves that were calculated

for different numbers of layers N. Calculations for different N were scaled to the intensity maximum

of the experimental rocking curve. The numbers along the vertical axis in both panels are rescaled total

detector pixel values (/1000) over a fixed area around the
(
11̄�

)
reflection.

versus the angle γ . Usually, the angle is converted to a value of �, after which I(�) is plotted. The

conversion from γ to � requires a value for the deformation coefficient ε and for the interlayer

spacing d.

l =
(

2εd
σ
√

3
· tanγ

)
(4.31)

The two rocking curves in Figure 4.10a differ only in whether or not the approximately 4%

deformation of the hexagonal layers was taken into account. Correcting for the deformation

clearly causes the maximum of the measured rocking curve to shift towards the theoretical value

of l = −1
3 for FCC crystals. The deformation also enters the phase condition for constructive

interference (see Section 4.2.2). For our crystals, consisting of deformed hexagonal layers, the

lateral shift vector can be written as

s j = j · [τax,0,0] . (4.32)

If this shift vector is inserted into Equation 4.26, the resulting coherence relation is

Δφ j = 2π j�−2π ·
(

jτ
2

)
· (h− k) . (4.33)

The required value for τ can be calculated from the measured value of ε = (0.961± 0.007)
using Equation 4.2, yielding τ = 0.654 < (2/3). The deformation ε thus causes τ to decrease

with respect to non-deformed CP crystals, which means � has to increase in absolute value to

compensate for the deformation-induced phase difference. Qualitatively, the shift in the position

of the rocking-curve maximum confirms the deformation of the hexagonal layers in controlled-

drying samples.
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a b

Figure 4.11: FTIR transmission spectrum (a) and SEM side view (b) of one and the same crystal of silica

spheres in air, grown by controlled drying. The transmission spectrum was taken at the same position on

the sample as the X-ray diffraction patterns and rocking curves in Figures 4.7 and 4.10. The scale bar in

panel (b) is 2 μm.

In addition, the width of a rocking curve contains important information about the stacking

of the hexagonal layers. Stacking faults will broaden the nodes in reciprocal space along �
[105]. In other words, stacking faults cause points in reciprocal space to be elongated along

�. Unfortunately, a finite number of layers will also cause broadening of the points, along

the same direction [105]. If the number of layers is small, it might be difficult to distinguish

between broadening due to finite-size effects and broadening due to stacking faults. Figure

4.10b shows the experimental rocking curve of the (11̄0) reflection from the above-mentioned

sample. The deformation of the nearly hexagonal layers has been taken into account. Finite-

size effects along the stacking directions can be taken into account by fitting the experimental

rocking curve to

I(�) ∝
(

sin(πN�)
π�

)2

, (4.34)

in which N is the number of ‘hexagonal’ layers of the colloidal crystal [105]. Using Equation

4.34, theoretical curves for several numbers of layers have been plotted along with the experi-

mental rocking curve, using the position and the height of the experimental curve as input for

the calculated curves (see Figure 4.10b). It is quite clear that a curve for 9 to 12 layers fits the

experimental curve best.

However, the sample may have consisted of more than approximately 10 layers, if stacking

faults broadened the reflection. A conclusive answer could only be obtained after independent

determination of the number of layers in a different measurement. Figure 4.11a shows a trans-

mission spectrum of the same colloidal crystal, taken with a beam spot of approximately 1 mm

in diameter, i.e. similar to the X-ray beam. Using the brown spot on the glass substrate (color

centers) as a marker, the spectrum was taken at the very same spot that was probed using X-

rays. From such a spectrum, the number of layers can be extracted using Fabry-Pérot fringes

(450 nm to 650 nm in Figure 4.11a) [77]. The spacing of the fringes yielded an optical thick-

ness top = n̄ · t of the colloidal crystal of (6.25±0.08) μm. The optical thickness of the crystal
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can be converted to the number of layers N using the position of the first-order (111) Bragg

reflection and Bragg’s law (Equation 4.35), without using the average refractive index n̄ of the

crystal (Equation 4.36).

2n̄d(1)
(111) = λ (1)

(111) (4.35)

This leads to

N −1 =
t
d

=
top

n̄
· 2n̄

λ (1)
(111)

= 2

⎛
⎝ top

λ (1)
(111)

⎞
⎠ . (4.36)

FTIR measurements indicated that the number of interlayer spacings was (17.0± 0.2). This

number has to be corrected for finite-size effects, half of the top and bottom layers ‘sticking

out’ of the sample, leading to a number of layers of N = 17. SEM side views of the same

sample, though taken at a different spot of the sample, indicated a layer number of 15, which is

in good agreement with the FTIR result.

The experimental rocking curve in Figure 4.10 is clearly wider than the theoretical curve

for 16 layers. As the sample consisted of 17 layers at the position that was probed using X-ray

diffraction, our measurements seem to indicate that the sample did not have a single stacking

sequence. However, the experimental rocking curve is much narrower than the theoretical curve

for 6 layers (Figure 4.10b) and the position of the maximum is much closer to � = −1
3 than

to l = −1
2 , which clearly excludes random stacking. In the case of hexagonal close-packing,

maxima of different heights can be expected at integer and half-integer values of l, which is not

the case here either. Therefore, the ABCABC stacking sequence of FCC is the most probable

stacking sequence, although 1 or more stacking faults could have been present, thus explaining

peak broadening.

Strangely enough, we have not observed stacking faults in SEM (Figure 4.11b). Although

stacking sequences are hard to determine in SEM side views, which is why we have not ex-

tensively studied it in SEM, stacking faults should have been discernable. It may be that the

peak broadening in our samples was not caused by stacking faults, but by the deformation of

the hexagonal layers. Inserting the experimentally obtained value for τ in Equation 4.33 yields

the following coherence relation

Δφ j = 2π j�−2π · ( j · (0.327) · (h− k)) . (4.37)

At normal incidence (� = 0), the phase shift of layer j was caused solely by its lateral shift

with respect to the first layer ( j = 0). In CP crystals, the term in between brackets is an inte-

ger for all values of j if (h− k) is a multiple of 3, because (τ/2) = (1/3). In our deformed

crystals, however, τ/2 = (0.327) �= (1/3). This means that the term in between brackets in

Equation 4.37 is, in general, not an integer if (h− k) is a multiple of 3. For small values of

j, the deformation-induced phase shift will still be close to an integer times 2π , thus allowing

constructive interference. However, if j = 12 for example, the phase shift is approximately

(11.8 · 2π), which significantly deviates from an integer multiple of 2π . In other words, in-

terference between the first A-layer ( j = 0) and consecutive A-layers ( j a multiple of 3) is no

longer completely constructive in our deformed colloidal crystals at normal incidence. In our

case, this deformation-induced phase shift becomes substantial after 9 to 12 layers.

Actually, rewriting Equation 4.33

Δφ j = 2π j
(
�−

(τ
2

)
· (h− k)

)
(4.38)
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shows that interference is constructive for all values of j if

� =
(τ

2

)
· (h− k) , (4.39)

which means the maximum of the experimental rocking curve for the
(
11̄0

)
reflection in Figure

4.10 should be reached for � ≈ −0.346 < −1
3 . At angles close to � = −0.346, interference

is no longer completely constructive. This is also true for non-deformed crystals, but a non-

uniform deformation of the hexagonal layers may cause additional peak broadening. A more

detailed analysis of both the theoretical model and the X-ray diffraction data will be required to

resolve whether peak broadening in controlled-drying colloidal crystals is due to stacking faults

or (non-uniform) in-plane deformation.

4.5 Conclusions and outlook
In this chapter, we have considered orientation, packing and stacking of ‘hexagonal’ layers

in colloidal crystals grown by controlled drying of silica particles with a diameter around ∼
350 nm. We find in SEM that the lines of touching particles in the hexagonal layers are parallel

to the meniscus close to the start of crystal growth, where the number of layers is still small (<
5). This result agrees with observations by Meng et al. [184]. At larger distances from the start

of the crystal (∼ 1 cm), where the number of layers is larger, the orientation of the hexagonal

layers has switched, such that lines of touching particles are perpendicular to the meniscus.

X-ray diffraction measurements confirm the perpendicular orientation and show that it already

starts at a distance of no more than 3 mm from the start of the crystal. These observations seem

to indicate that for small numbers of layers, for which lines of touching particles line up parallel

to the meniscus, surface tension is the dominating mechanism orienting the hexagonal layers

in controlled drying. However, as the number of layers gets larger, shear forces take over and

orient the layers such that lines of touching particles are perpendicular to the meniscus.

A more detailed analysis of X-ray diffraction patterns, taken at normal and off-normal in-

cidence, shows that the hexagonal layers in controlled-drying colloidal crystals are not exactly

hexagonal, but are expanded along the meniscus by (4± 1)%. Although better statistics are

required, real-space measurement in scanning electron microscopy (SEM) confirm the defor-

mation. This means that such crystals are not truly close-packed, but have a sphere volume

fraction of approximately 71.5%, assuming optimal stacking of the deformed layers. This value

for the volume fraction agrees quite well with values obtained from FTIR spectroscopy [188].

A shift in the position of the maximum of the rocking curve for the (11̄0) reflection in

such a controlled-drying sample further confirms the deformation of the hexagonal layers. The

position and width of the rocking curve indicate that the crystal was ABCABC stacked, which

means its 3-D structure was close to (slightly deformed) face-centered cubic (FCC). Broadening

of the rocking curve of the
(
11̄0

)
reflection indicates that this 17-layer crystal contained at least

1 stacking fault, which would not contradict the results from experiments by Wei et al. [185].

We argue, however, that the broadening of the rocking curve may also have been caused by non-

uniform deformation, causing additional phase shifts. In order to draw definite conclusions on

the 3-D structure of colloidal crystals grown by controlled drying, better statistics are required

and both the theoretical model (Section 4.2) and the X-ray diffraction data need to be studied
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more extensively. Nevertheless, we have demonstrated that small-angle X-ray scattering is a

valuable characterization technique for 3-D colloidal crystals.
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Towards binary colloidal crystals for
photonic applications

In this chapter, binary colloidal crystals of organic spheres (polystyrene, PMMA) and/or in-

organic spheres (silica) are introduced as promising templates for the fabrication of strongly

photonic crystals via the infiltration of high-index materials. Unfortunately, organic templates

cannot be directly infiltrated by chemical vapor deposition (CVD), for its reaction temperature

of approximately 350 ◦C is far above the glass transition temperature of polystyrene (PS) and

PMMA. Silica templates can be infiltrated by CVD directly, but binary colloidal crystals of

silica spheres have a layer of colloidal fluid on top. Because of its isotropic scattering, this

layer has to be removed before further processing. In test experiments, we demonstrate that

atomic layer deposition (ALD) of alumina can be used to infiltrate even organic templates. Af-

ter burning of the original template, the refractive-index contrast can be further enhanced by

infiltration with silicon using CVD. This results in silicon being deposited onto both sides of

the alumina frame - in the air-sphere cavities and in the interstitial voids. Unfortunately, our

calculations show that an FCC crystal of air spheres with such a silicon-alumina-silicon coat-

ing does not have a band gap, contrary to FCC crystals of air spheres in silicon. Preliminary

etching experiments show that successive treatments with different plasmas can be used to etch

polymer-embedded, colloidal-crystal templates of silica spheres. A first trial with peeling off

crystal layers using adhesive tape shows that this may be a much easier, faster and cheaper

technique for ‘etching’ such templates.
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5.1 Introduction

Photonic crystals (PCs) are 3-D structures in which the refractive index varies periodically

throughout space, such that strong interactions with electromagnetic radiation can occur [7–

9, 194]. If the refractive-index contrast is large enough (∼ 2 in Reference [114]), and a suitable

periodic arrangement is chosen, PCs can exhibit a photonic band gap, which is the optical ana-

logue of electronic band gaps in semiconductors [16–18]. Photonic band-gap materials are

interesting both from a fundamental and a technological point of view. As PCs allow modifi-

cation of the (local) density of states of photons [195–197], they are ideal laboratories to study

the interaction of electromagnetic radiation with matter under extreme conditions [120]. Their

strong interaction with light may also lead to supreme control over the emission and propagation

of light [19–25], giving way to important applications in, for example, infrared telecommuni-

cations [26–28].

A promising route towards 3-D PCs is the self-assembly of colloidal particles [95, 107, 108].

Monodisperse microspheres can spontaneously form 3-D periodic arrangements, which are

analogous to thermodynamic crystal phases [57, 198, 199]. If the refractive index of the parti-

cles is different than that of the surrounding medium, such colloidal crystals are PCs by defini-

tion, though the index contrast in such self-assembled structures is typically too low to open up

a photonic band gap [65]. Compared to other PC fabrication methods, colloidal self-assembly

is rather inexpensive. An additional advantage is that structure, size and composition of the

individual building blocks can be modified in order to tune their optical properties. Advances

in chemical synthesis have resulted in, for example, anisotropic particles [83–86] core-shell

morphologies [87–89], metallodielectric colloids [90], and the incorporation of luminescent

materials, such as fluorescent dyes [91, 92], rare-earth ions [93] and even quantum dots [94].

Furthermore, the interparticle potential can be affected by external fields [95], including pat-

terned walls in colloidal epitaxy [78, 79], geometric confinement [200], electric fields [175],

optical fields [96, 97] and shear flows [81, 82].

The symmetry of self-assembled colloidal crystals is determined by thermodynamics. This

resulted, until recently, in a limited number of available crystal structures. However, as control

over interparticle interactions is improving rapidly, the number of observed crystal structures is

increasing significantly [201–204]. Unfortunately, only a few of those structures can be used

as templates for further processing in order to increase the refractive-index contrast - the latter

is required to open up a photonic band gap. There are, of course, other fabrication methods

for PCs, including lithography, direct-writing assembly and multibeam holography. Although

they have restrictions of their own, these techniques offer greater flexibility in crystal structure.

Still, increasing the refractive-index contrast remains a challenge. Currently, one of the few

routes towards photonic band-gap materials that have been realized experimentally is convective

assembly [67, 77, 108], which is also known as ‘controlled drying’. The latter yields single-

crystals with, at best, the face-centered cubic (FCC) crystal structure (see Chapter 4). As these

templates can be grown with silica spheres, they can be inverted by infiltration with silicon

using chemical vapor deposition (CVD) [182]. Subsequent removal of the silica spheres by

a wet-chemical etch yields an FCC crystal of air spheres in silicon [67, 68]. Photonic band-

structure calculations have predicted that such a structure has a photonic band gap [65, 66, 116],

but its width relative to the midgap frequency is only ∼ 5%. Moreover, the gap is situated

between high-lying bands, 8 and 9 in this case, which means the gap is not very stable against
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disorder [74, 205].

The lack of flexibility in crystal structure is a pity, for it has already been known for quite

a while that crystal symmetry has a huge effect on the optical properties of PCs. The currently

known clear champion structures, both for opening up a band gap at the lowest refractive-index

contrast (around 2) and the largest gap-to-midgap ratio, are dielectric diamond [32, 36, 37] and

pyrochlore [38, 206, 207]. Both of these structures also give rise to gaps at low-lying bands.

However, both diamond and pyrochlore are difficult to fabricate by self-assembly, because the

volume fraction of spheres in those structures is relatively low. All the same, several meth-

ods to realize structures with diamond or pyrochlore symmetry by self-organization of colloids

have been proposed [206, 208]. However, they require complicated and/or non-spherically-

symmetric potentials that are yet to be realized experimentally [132, 133]. Recently, a new

self-assembly route towards PCs with the structure of diamond and/or pyrochlore, having a

band gap in the visible, was proposed. It involves the fabrication of these structures through the

self-assembly of one of the Laves phases, MgCu2, using a binary mixture of colloidal spheres

[114]. Although the proposed scheme has not yet been implemented experimentally, it only

requires techniques that have been demonstrated before: the preparation of two species of col-

loidal spheres, surface patterning and the removal of one of the species.

Although it would not lead to diamond and/or pyrochlore structures, the use of binary mix-

tures of colloids for the fabrication of photonic band-gap materials has been proposed before.

Biswas et al. already showed that binary colloidal crystals, such as the AB2 structure [209],

might be interesting PC templates. Their calculations show that the resulting PCs can have band

gaps with relative widths that exceed those of inverse FCC at the same refractive index contrast

[65]. Such AB2 structures can form spontaneously in dispersions of poly(methyl methacrylate)

(PMMA) spheres if the ratio of the volume fractions of particle species A and B, and the total

volume fraction, are chosen carefully. However, the underlying homogeneous nucleation re-

sults in crystallites with varying orientation, which is not favorable for photonic applications.

Velikov et al. developed a layer-by-layer fabrication method for AB2 structures [135], result-

ing in binary crystals with a single orientation. Unfortunately, as it is a layer-by-layer growth

technique, fabricating crystals with a large number of layers is laborious and time-consuming.

In a recent article, Leunissen et al. showed that a host of different binary crystals can be

grown by self-assembly of oppositely-charged colloidal PMMA particles [201]. Due to homo-

geneous nucleation, these crystals also have varying orientations with respect to the sample wall.

However, for approximately 2 μm diameter particles, crystallites as large as 100× 100 μm2,

having a single orientation, were observed. As a thickness of 10 lattice constants is sufficient for

most applications [75, 210], single-crystals of approximately 50×50 particles will be more than

satisfactory. In the same article, the authors demonstrate that binary crystals with the structure

of sodium chloride (NaCl) can be grown by self-assembly of oppositely-charged silica colloids

with a size ratio of approximately 0.31 [201, 202]. In a particle system with the same size ratio,

NaCl colloidal crystals can also be realized in an external electric field [211]. To predict their

optical properties, we performed photonic band-structure calculations with the MIT Photonic

Bands package (MPB, see Chapter 2) for NaCl structures of air spheres in silicon. As can be

seen in Figure 5.1a, NaCl crystals can have a gap between bands 8 and 9 with a relative width

of approximately 9%. Note that this is 4 percentage points wider than the gap between bands 8

and 9 in an FCC structure of air spheres in silicon. Although the NaCl crystal basis is slightly

more complicated than that of FCC, the former having 2 instead of 1 particle in a unit cell, MPB
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Figure 5.1: MPB photonic band-structure calculations for an NaCl structure of air spheres (ε = 1) in

silicon (ε = 12.25). The large air spheres of the NaCl structure are touching, the size ratio of the small

and large spheres is approximately 0.29. Panel (a) shows the calculated photonic band diagram for such

a structure at three different values of the calculational resolution (see Chapter 2). There is a gap between

bands 8 and 9 with a relative width of approximately 9%. From panel (b), it is clear that the calculations

converge for resolutions larger than 16.

calculations converge for a calculational resolution of 16 or larger (see Section 2.4.2), which is

similar to convergence in MPB calculations for FCC structures.

Although the fabrication of binary colloidal crystals was demonstrated in experiments, it is

not straightforward to use them as templates for strongly photonic crystals. First of all, binary

crystals of PMMA spheres cannot be infiltrated with high-index materials by chemical vapor

deposition directly. The CVD process takes place at a temperature of approximately 350 ◦C,

which excludes the use of organic templates consisting of PMMA or polystyrene (PS), for

these materials have a glass transition temperature around 100 ◦C [212, 213]. In other words,

such organic templates would melt during the CVD process. In principle, CVD can be used to

infiltrate the above-mentioned sodium-chloride crystals with silicon, for they consist of silica

spheres. Unfortunately, they also have a layer of colloidal fluid on top, typically having a

thickness that is equal to of a couple of interlayer spacings of the crystal on which it rests. The

isotropic scattering of light by the fluid layer will strongly deteriorate the optical properties

of resulting photonic crystals. The same problem arises in other self-assembly procedures for

photonic band-gap materials, including sedimentation.

In this chapter, we first show that colloidal crystals of approximately 377 nm diameter PS

spheres can be infiltrated with silicon by CVD after atomic layer deposition (ALD) of a 15 nm

to 25 nm thick layer of alumina. ALD is a deposition technique in which sequential application

of reactants, coupled with substrate temperature optimization, leads to layer-by-layer growth of

materials such as alumina (Al2O3(s)) or titania (TiO2(s)) at temperatures that can be lower than

100 ◦C [70, 71]. As PS and PMMA have similar glass transition temperatures, these results are

relevant for PMMA crystals as well. Our experiments with ALD on sediments of approximately

750 nm diameter PMMA spheres underline this relevance. Note that these experiments are also

important for the fabrication of inverse (FCC) crystals in general. Due to the relatively high

density of silica, growing crystals of > 400 nm diameter silica colloids by controlled drying is
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difficult. Controlled drying of micron-sized spheres is more feasible if PS colloids are used,

for its density is approximately half that of silica. Finally, we show that removing layers of

colloidal fluid from the top of colloidal crystals may be possible by plasma etching, though

it will be a laborious and time-consuming procedure. Though accuracy may be an issue, i.e.

it may be difficult to remove exactly one crystal layer at a time, preliminary experiments on

removal of crystal layers using adhesive tape show that this may be a much easier, faster and

cheaper technique for ‘etching’ colloidal-crystal templates.

5.2 Experimental methods

5.2.1 Sample fabrication

In this chapter, we show results on colloidal crystals or sediments grown by controlled drying

of polystyrene (PS), poly(methyl methacrylate) (PMMA) or silica particles. The fabrication of

PS and PMMA colloidal crystals is described below, the fabrication of silica colloidal crystals

is described in Section 4.3.1.

The PS colloidal-crystal templates were fabricated from dispersions of PS spheres in etha-

nol. These colloids had been synthesized by emulsion polymerization with a cationic initiator

[212], which finally resulted in positively charged polystyrene spheres [214] in absolute etha-

nol. After sedimentation of the particles to the bottom of the storage bottle, the supernatant was

removed with a pipette, after which the bottle was refilled up to the original level with ethanol

pro analysi (Merck). Static light scattering (SLS) measurements on these PS particles in diluted

dispersions showed that they had an average diameter of 377 nm with a polydispersity (PD) of

approximately 4%.

Colloidal crystals were grown from the above-mentioned dispersions onto flat, glass sub-

strates by convective assembly [77], also known as ‘controlled drying’, as has been described in

Section 4.3 too. The stock dispersion was diluted to a volume fraction of approximately 0.9%,

after which 10.0 ml of dispersion was transferred to a growth bottle. Glass, 20 ml, screw-neck

vials with a flat bottom were used as growth bottles. They were placed on a table that was

dedicated to sedimentation experiments (Figure 4.3), thus minimizing mechanical vibrations.

A glass substrate was inserted vertically into the dispersion, after which it was tilted off-vertical

by approximately 5◦. A vertical cut through the neck of the vial ensured that the substrate

would remain (nearly) vertical after insertion (Figure 4.3a). Next, in order to avoid dust falling

into the growth bottle, the latter was covered with a 2 l glass beaker. To allow the evaporated

ethanol to escape, the beaker was slightly tilted by supporting one side of the beaker with an

approximately 5 mm thick piece of glass or metal. During growth, the temperature in the room

was kept at (21±1) ◦C.

Menzel-Gläser, standard microscopy slides, ca. 1 mm thick were used as glass substrates.

All glassware, bottles and slides, were cleaned prior to use with tap water, commercially avail-

able soap, deionized water (16 MΩcm to 18 MΩcm) and technical-grade ethanol (Lamers &

Pleuger, ≥ 96%). After cleaning, the growth bottles were dried in an oven at (50± 5) ◦C,

whereas the slides were dried with a Kimwipe tissue, after which dust was removed with flow-

ing nitrogen. After 2 to 7 days, the samples were retrieved from the growth bottles. They

were kept (nearly) vertical for at least 2 hours to allow evaporation of residual ethanol. Next,
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the deposition on one side of the substrate was removed using a Kimwipe tissue that had been

drenched in technical-grade ethanol. Finally, colloidal crystal samples were kept in storage

boxes to avoid contamination with dust.

In a similar way, PMMA sediments were fabricated from dispersions of spherical PMMA

colloids in hexane. The stock dispersion consisted of PMMA particles in a mixture of hexane

and dodecane. Part of the stock dispersion was transferred to hexane (Biosolve), by centrifu-

gation and redispersion, and subsequently diluted to a volume fraction of approximately 1%.

The PMMA spheres had an average diameter of approximately 750 nm and a PD of ca. 5%

[215]. Sediments were formed by controlled drying, as described for PS spheres above, within

24 hours.

5.2.2 Atomic layer deposition and silicon infiltration
PS crystals and PMMA sediments were infiltrated with alumina (Al2O3(s)) by atomic layer

deposition (ALD, Cambridge Nanotech, Inc., Savannah 100) at the University of Illinois at

Urbana-Champaign (IL, USA). Two precursor gases were used: de-ionized water (H2O(g)) and

trimethylaluminum (TMAl(g)). In a typical ALD run, water/TMAl vapor pulses of 0.05/0.1 s

and exposure times of 0.0/0.0 s were used. In between consecutive pulses, the sample chamber

was pumped vacuum for 10 s. In total, 90 cycles to 150 cycles were performed at gas flows of 20

sccm, a pressure of approximately 0.3 Torr and a temperature of 80 ◦C. These settings resulted

in a 12 nm to 26 nm thick layer of alumina being deposited onto the spheres, the thickness of

the layer depending on the number of cycles used. The actual thickness of the deposited layer

was determined by ellipsometry on a clean silicon substrate that was in the sample chamber

during the same run.

After infiltration with alumina by ALD, the PS spheres of the colloidal-crystal template were

removed by heating. Samples were placed in a glass tube, which was subsequently inserted in a

Lindberg/Blue tube furnace. Samples were heated up to 300 ◦C within 5 minutes and they were

subsequently kept at 300 ◦C for 30 minutes. Next, the samples were heated from 300 ◦C to

375 ◦C within 5 minutes, at which temperature they were kept for several hours. After burning

away the PS spheres, the samples were infiltrated using chemical vapor deposition (CVD) in

a set-up in the group of Prof. Paul Braun at the University of Illinois at Urbana-Champaign

(IL, USA), which was built there by Dr. Florencio-García Santamaría. For CVD, samples were

heated up to 360 ◦C with a ramp rate of 8 ◦C/min. The pressure during the reaction was on the

order of 10−6 mbar. During the CVD process, which took approximately 2 hours, the disilane

precursor gas reacted at the alumina surface to form silicon (Si(s)).

5.2.3 Silica etching
Plasma etching was performed using a Plasmalab 80+ ICP (Oxford Instruments) at the AMOLF

NanoCenter in Amsterdam, The Netherlands. To etch silica, a mixture of CHF3(g) and Ar(g)
was used, with gas flows of 25.0 sccm and 25.0 sccm respectively. The forward power that

was delivered to the plasma was set at 300 W. The pressure was set to 30 mTorr; the sample

was not subjected to additional heating. To etch approximately 1 layer of a colloidal crystal of

336 nm diameter silica spheres, a reaction duration of approximately 14 minutes was used. As

the plasma is pulled from the ionization chamber towards the sample by an anode, instead of
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the sample being inside the chamber itself, we refer to this kind of plasma etch as a ‘directional

plasma etch’.

Removing layers from colloidal crystals of silica spheres in air on a glass substrate using ad-

hesive tape, which will be referred to as ‘tape etching’ from this point onwards, was performed

with Scotch Magic (3M). The tape was gently laid down on top of the colloidal crystal, after

which it was gently tapped with one finger over the entire area of the sample. Next, the tape

was removed from the sample in a single pull.

5.2.4 Sample characterization

Most macroscopic images of the colloidal crystal samples were recorded using a Fuji FinePix

A340, 4.0 mega pixels digital camera. The flashlight of the camera acted as a source for white

light illumination.

Most scanning electron microscopy (SEM) images were taken with a Hitachi S-4700 SEM.

It was typically operated at 2.0 kV, except if samples were coated with an approximately 5 nm

thick layer of a gold/palladium alloy to reduce charging effects; in that case, it was operated

at 10 kV. For the colloidal crystals of silica spheres, SEM images were taken with a Philips

XL30FEG SEM. The vacuum in the sample chamber was kept below 9 ·10−5 mbar at all times.

To avoid image distortions due to charging effects in the uncoated samples, this SEM was

typically operated at 3.0 kV, a spot size of 2.0 nm and a working distance of 5 mm to 7 mm.

Images were recorded using the secondary-electron (SE) detector. At the start of a measurement

session, the electromagnetic lenses were aligned and subsequently corrected for astigmatism.

The SEM images in Figure 5.12 were recorded, after coating them with an approximately 30

nm thick layer of carbon, with a JEOL JSM-6460 SEM that was operated at 30 kV.

All transmission and reflection spectra that are presented in this chapter have been recorded

with a Fourier transform infrared (FTIR) spectroscope. A Bruker Vertex 70 FTIR spectroscope

was coupled to a Bruker Hyperion 2000 microscope; the sample was placed on the microscope

sample stage. For these measurements, a microscope aperture of 0.6 mm was used in combi-

nation with a 4×/ 0.10 NA objective/condenser [216], yielding a typical spot size of 150 μm

at the sample. A near-infrared (NIR) source was used for all spectra, the transmitted or re-

flected signals were measured with Si-diode detector in the visible and a InSb-detector in the

NIR. Transmission measurements were taken after the microscope was set up for Köhler illu-

mination with the sample in place. Reflection measurements were calibrated versus a silver

mirror.

5.3 Results and discussion

5.3.1 Infiltrating crystals of organic colloids

Immediately after retrieval of the controlled drying PS samples from the growth bottles, it was

clear that the deposited PS particles had formed crystalline structures. In white light illumina-

tion, the samples showed beautiful Bragg colors, which became slightly brighter after removing

the deposition from the back side of the substrate (see Figure 5.2a). Just like for controlled dry-

ing colloidal crystals of silica spheres, the Bragg colors in PS crystals show an alternation of
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Figure 5.2: Panel (a) is a digital photograph of a colloidal crystal of PS spheres that was grown by

controlled drying onto a glass substrate. It consists of 377 nm diameter PS spheres in air and displays

beautiful Bragg colors in white light illumination (flashlight). The alternation of bright and dark stripes

is clearly visible in this picture. A bright and a dark stripe have been labelled by intentional scratches.

Panel (b) is a digital photograph of a similar crystal of 337 nm diameter silica spheres (see Figure 4.4).

Both scale bars are 10 mm.

dark and bright stripes. In Section 4.4, we suggested that these stripes have different colors

because they correspond to sample areas with different stackings [193], though we have not

investigated this issue thoroughly. Using scratches as intentional markers (see Figure 5.2a), we

did compare differently colored areas in SEM and by FTIR spectroscopy, but we have found no

qualitative differences.

Note that the formation of cm2 colloidal crystals of these PS spheres is quite remarkable

in itself. To our knowledge, controlled drying has not been attempted before with positively

charged colloidal particles. Although it is difficult to observe in printed photographs, Bragg

colors from our PS samples (Figure 5.2a) are slightly hazier than Bragg colors from our silica

samples (Figure 5.2b). It could mean that part of the PS deposition is amorphous, though most

of the deposition must be crystalline, because the PS samples would have a white appearance

otherwise. For example, due to the positive charge on the PS particles and the negative charge on

the glass substrate, the bottom layer of these PS crystals may be non-crystalline, adding a hazy

appearance to the Bragg colors. We note without proof that indications for a non-crystalline

bottom layer were obtained from SEM images. Furthermore, comparing FTIR measurements

for a controlled drying colloidal crystal of silica spheres (Figure 4.11a) with similar measure-

ments for the PS sample in Figure 5.2a (see Figure 5.7), it is striking that the Bragg dip is only

20%T for the PS sample, whereas it is close to 30%T for the silica sample. Though the number

of layers is larger in the silica sample, the refractive-index contrast is larger in the PS sample.

In short, FTIR measurements do not contradict the hypothesis of a non-crystalline bottom layer

in our PS colloidal crystals.
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Figure 5.3: SEM images of a colloidal crystal of 377 nm diameter PS spheres on a glass substrate: (a)

top view and (b) side view. The crystal was grown by controlled drying and it consists of approximately

12 hexagonal layers parallel to the sample substrate. Note that there appear to be no stacking faults. For

image (B), an approximately 5 nm thick layer of a gold/palladium alloy was deposited onto the side of

the crystal. Both scale bars are 5 μm.

SEM images of the PS samples confirm that the deposition is mostly crystalline (see Figure

5.3a). Many cracks are present in the PS samples, dividing the crystal in single-crystalline do-

mains with an area on the order of 20 μm×20 μm. All these domains have the same orientation,

as is the case in controlled drying samples of silica particles. For the latter, the orientational cor-

relation of the domains is explained by assuming that a single-crystal is formed at first. Cracks

are then formed upon drying of the solvent. Side views of PS colloidal crystals in SEM indicate

that these crystals had approximately 12 layers. These layers are parallel to the substrate, more

or less hexagonal and hollow-site stacked. Although it is difficult to determine the exact stack-

ing sequence in SEM, there appear to be no stacking faults in these crystals. Bear in mind that

the interaction potential of our PS particles, specifically the Debye-Hückel screening length,

may have been different than that of our silica particles.

Several colloidal crystals of PS spheres were partly infiltrated with alumina by ALD to

test whether (binary) colloidal crystals of organic particles can be inverted. After ALD, the

PS samples were studied by SEM. It is clear from Figure 5.4a that the colloidal particles are

still spherical, which means PS can stand ALD at 80 ◦C. In Figure 5.4b, the particles seem

to be non-spherical, but this is an SEM imaging artefact caused by drift of the SEM stage. It

is also clear from Figure 5.4 that the particles in the crystal are overlapping, as the deposited

alumina partly fills up the voids in between the spheres. At the contact point of two spheres

in a crystal, no alumina can be deposited, causing a dimple/hole in the ALD layer if the two

spheres are pulled apart after ALD (Figure 5.4b). After deposition of a thin layer of alumina,

the mechanical stability of the alumina frame was tested by burning the original PS spheres.

For 377 nm diameter spheres, a layer of alumina of only 12 nm thick results in a self-supporting

frame, as can be seen in Figure 5.5a.∗ Figure 5.5b is a similar image of the same sample,

∗Growth of binary colloidal crystals from dispersions of PMMA particles was demonstrated with colloidal

spheres having a diameter of approximately 2 μm [201]. In principle, mechanical stability of alumina frames

that were fabricated using PS templates of 377 nm diameter spheres is no guarantee for mechanical stability of
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Figure 5.4: SEM (a) top view and (b) side view of a colloidal crystal of 377 nm diameter PS spheres on a

glass substrate after ALD of a 12 nm thick, conformal layer of alumina. Note the dimples on the spheres

in panel (b) at the points where the spheres touched before ALD. The particles in image (B) seem to be

non-spherical, but this is an imaging artefact that is due to drift of the SEM stage. The scale bar in panel

(a) is 4 micron, the one in panel (b) is 500 nm, the particles in both images were 377 nm diameter.

at a higher magnification, clearly proving that the PS spheres have been removed by the heat

treatment. At the contact point of two spheres in a crystal, no alumina can be deposited, causing

connecting holes between air spheres in the crystal upon removal of the PS colloids (see also the

dimples in Figure 5.4b). The figure also shows that the alumina frame consists of overlapping

shells, that were formed around the PS spheres, thus proving that the PS spheres did not melt

during ALD. Furthermore, Figure 5.5a shows that the entire crystal, down to the substrate, has

been infiltrated with alumina.

The PS samples were characterized by FTIR spectroscopy as well. At the various stages

of the fabrication process, FTIR spectra of the samples were obtained and the position of the

first-order (111) Bragg peak was monitored (see Figure 5.6). The spectrum of the PS colloidal-

crystal template itself features a first-order (111) Bragg dip of approximately 20%T at 848 nm.

Using a volume-averaged refractive index, assuming a refractive index nPS = 1.59 for the PS

particles, this wavelength corresponds to an interlayer spacing of 295 nm, which agrees quite

well with the interlayer spacing in a close-packed crystal of 377 nm diameter spheres. Analysis

of the Fabry-Pérot fringe spacing yields a crystal thickness of 11 interlayer spacings, which

means (12± 1) layers after correcting for finite-size scattering effects. After ALD of a 26 nm

thick layer of alumina, the spectrum no longer features a first-order (111) Bragg dip, though it

still shows Fabry-Pérot fringes. As the deposited alumina has nearly the same refractive index

(nalumina ≈ 1.6) as the PS spheres (nPS = 1.59), the crystal has effectively been refractive-index

matched, thus nearly eliminating coherent scattering. However, the refractive-index contrast

over the crystal-air and substrate-crystal interfaces is still appreciable, explaining the presence

of the Fabry-Pérot fringes.

If the deposited layer of alumina is thinner, the structure is not completely refractive-index-

alumina frames if they are fabricated using PS frames of micron-sized spheres. However, experiments by Xindi Yu

at the University of Illinois at Urbana-Champaign (IL, USA) have shown that a 15 nm layer of alumina also yields

mechanically stable frames if a PS template of 1 μm diameter spheres is used.
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Figure 5.5: SEM side view of (a) a 9-layer colloidal crystal of air spheres in alumina. The colloidal-

crystal template, consisting of 377 nm diameter PS spheres, was burnt after ALD of a 12 nm alumina

layer. Panel (b) is a similar image of the same sample at a higher magnification. Note the holes in the

alumina layer that connect the air spheres (see also the dimples in Figure 5.4b). Approximately 5 nm of

a gold/palladium alloy was deposited onto the side of the crystal. The scale bar in panel (a) is 3 μm, the

one in panel (b) is 500 nm.

template,T

ALD,T

burned,T

SiCVD,R

Figure 5.6: FTIR spectra of a colloidal crystal of, originally, 377 nm diameter PS spheres on a glass

substrate at different stages of the fabrication process: PS template, (gray) after ALD of a 26 nm thick

layer of alumina, after removal of the PS spheres by heating and after infiltration with silicon by CVD.

Note that most graphs represent transmission (T) measurements, but some represent reflection (R) mea-

surements.
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matched, allowing detection of the Bragg dip after ALD before burning the PS (see Figure

5.7). From the shift of the first-order Bragg diffraction upon ALD, we can extract an estimate

of the thickness of the alumina layer that was deposited on the PS spheres in the colloidal

crystal. Figure 5.6 shows an FTIR spectrum of a crystal of PS spheres before ALD (black line).

The average refractive index n̄ = (1.44±0.01) of the crystal was calculated by averaging the

refractive indices of the composite materials by volume (nPS = 1.59 and nair = 1). From the

position of the first-order Bragg diffraction at (857.3±1.1) nm, an interlayer spacing d(111) =
(297.7±2.1) nm was extracted using Bragg’s law

2n̄d(hkl) = m ·λ (m)
(hkl) . (5.1)

ALD of a ΔtALD = 12 nm alumina layer, as determined by ellipsometry measurements on a

cleaned silicon substrate that was in the sample chamber during the same ALD run, caused the

first-order Bragg diffraction to shift to (903.7±1.2) nm. Inserting this wavelength into Bragg’s

law (Equation 5.1), together with the measured value of d(111), resulted in a value for the average

refractive index of the interstitial voids n̄voids = (1.31±0.05). Averaging the refractive indices

of alumina (nalumina = 1.59) and air by volume yielded the ratio of the volume of alumina and

the volume of the interstitial voids: φALD = (0.53±0.09). Note that deposition of a 12 nm layer

of alumina fills up 53% of interstitial space! An estimate of the thickness of the alumina layer

ΔtALD can be extracted from φALD by solving equation

φALD =
(

π
√

2
6

)
·
(
[1+ x]3 −1

)
−

(
π√
2

)
·
(

2 [1+ x]3 −3 [1+ x]2 +1
)

with x = ΔtALD
R ,

(5.2)

which is based on a geometric model of the structure after ALD. The model only assumes that

PS spheres and their alumina layers are concentric and that the overlap volume of two alumina

layers consists of alumina. Using the graph of φALD(x) (Figure 5.8), the thickness of the alumina

layer according to FTIR spectroscopy was (14±3) nm. Note that this value is in reasonable

agreement with the thickness of 12 nm from ellipsometry.

After burning the original PS colloidal-crystal template, the structure is no longer refractive-

index matched, not even for thick alumina frames, causing the Bragg dip to reappear in Figure

5.6. The Bragg dip, however, has blue-shifted compared to the case of the PS colloidal-crystal

template, for the filling fraction of alumina in the inverse structure is much smaller than the

filling fraction of polystyrene in the template.

After infiltration of silicon by CVD, transmission measurements are no longer possible in

the visible and near-infrared (NIR), as silicon strongly absorbs light with a wavelength smaller

than approximately 1 μm. That is why the reflection (R) signal in Figure 5.6 drops almost to

0 below a wavelength of 1 μm, rising again around 850 nm due to Bragg reflections from the

first couple of crystal layers that can be probed by unabsorbed light. The red-shift of the Bragg

peak is, of course, caused by the enhanced average refractive index after silicon CVD.

As was explained in the introduction, our test experiments on infiltrating PS colloidal crys-

tals using ALD should ensure successful infiltration of PMMA colloidal crystals as well, for

the glass transition temperatures of both materials are similar. Of course, ALD on colloidal

crystals of PMMA spheres would have been an even better test, as the binary colloidal-crystal
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Figure 5.7: FTIR spectra of a colloidal crystal of, originally, 377 nm diameter PS spheres on a glass

substrate both before (black) and after (gray) ALD of a 12 nm layer of alumina.

Figure 5.8: Calculated graph of the volume fraction of deposited material in the interstitial voids φALD

of a CP crystal of spheres as a function of the thickness ΔtALD of the deposited layer relative to the radius

R of the spheres (x = ΔtALD/R). For the functional form of this graph, see Equation 5.2.
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Figure 5.9: SEM top views of sediments of approximately 750 nm diameter PMMA spheres on a glass

substrate (a) before and (b) after ALD of a 12 nm thick alumina layer. Note the contamination with

small (� 25 nm) particles on top of the colloidal particles (see white arrow). The sample in panel (b) was

coated with approximately 5 nm of a gold/palladium alloy. The scale bar in panel (a) is 2 μm, the one in

panel (b) is 1 μm.

templates were also fabricated using PMMA spheres [201]. Unfortunately, we have not been

able to grow colloidal crystals of PMMA spheres by controlled drying. The hexane in which

the PMMA particles are dispersed probably does not wet the surface of the glass substrate well

enough. All the same, infiltrating colloidal crystals of PMMA spheres with alumina by ALD

will reveal whether PMMA melts during ALD or not. Figure 5.9 shows SEM images of sedi-

ments of approximately 750 nm diameter PMMA spheres on a glass substrate, both before and

after ALD. It is clear in Figure 5.9b that alumina has been deposited in the sediment, for some

of the spheres are apparently overlapping. These were probably touching PMMA spheres that

are now overlapping due to the additional alumina layer that was deposited onto them. Most

importantly, the PMMA particles are still spherical, which means that PMMA does not melt

during ALD.

5.3.2 Future challenges

Two problems were encountered during our ALD experiments. First of all, as shown in Figure

5.9b, small (� 25 nm) particles could sometimes be found on the colloidal crystals after ALD

of an alumina layer. The size and number of these ‘dust-like’ particles seems to depend on the

specific values of the ALD parameters and on the way the sample chamber is pumped/vented

before/after the ALD process. Moreover, these dust-like particles seem to appear only in SEM

top views of our samples, not in side views. This suggests that these particles are formed in

the sample chamber during ALD and are subsequently deposited onto the sample. Suspending

the sample upside-down will probably not alleviate this problem, as the dust-like particles are

so small that they will be dragged along in gas flows. Fine-tuning the ALD process parameters

will probably be the only way to avoid the formation of these dust-like particles. However, no

effect of these particles on, for example, FTIR spectra has been observed, which is due to the

fact that they are much smaller than the typical wavelength of light.
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Figure 5.10: Calculated (MPB) photonic band diagrams for (a) an FCC crystal after ALD of alumina,

removal of the original PS template and partial silicon infiltration, and (b) an FCC crystal after silicon

infiltration and removal of the original silica template. If 350 nm diameter spheres are used for the

template, the inner silicon layer, alumina layer and outer silicon layer in (a) all have a thickness of 15 nm

(see text for further details). For panel (b), if 350 nm diameter spheres are used in the colloidal crystal

template, the silicon layer would have a thickness of 30 nm. Note that there is a gap between bands 8

and 9 in panel (b) but not in panel (a).

Secondly, after ALD of alumina and removal of the original PS or PMMA template, the

refractive-index contrast can be enhanced even further by infiltration with silicon by CVD.

However, the inside volume of the air spheres left behind by the burnt PS or PMMA spheres

is then available for the disilane CVD precursor gas as well, causing deposition of silicon on

the outside and on the inside of the air-sphere cavities. Unfortunately, MPB calculations have

shown that the presence of the alumina layer and the inner silicon layer closes the gap between

bands 8 and 9 for inverse FCC structures (see Figure 5.10), basically because light no longer

‘sees’ the structure as bicontinuous.

5.3.3 Etching crystals of silica colloids

As was mentioned in the introduction, it is also possible to grow binary crystals from a bi-

disperse dispersion of silica spheres having a specific size ratio [201]. Although a silica tem-

plate can be infiltrated with silicon without an intermediate ALD step, the growth of these

binary, sodium chloride (NaCl) colloidal crystals is often accompanied by a layer of colloidal

fluid on top of the crystals. Because of its isotropic scattering, it is essential for photonic appli-

cations that such a layer of colloidal fluid is removed. In this section, we present preliminary

measurements on attempts to remove crystal layers of colloidal crystals of silica spheres with

two different etching techniques: plasma and tape etching.

Before etching, the colloidal silica crystals looked like typical crystals grown by controlled

drying (see Chapter 4). Thus, no layer of colloidal fluid was present in this case. After etching

using a CHF3/Ar-plasma, the exposed crystal surface looks severely damaged, especially if it

is compared with a part of the crystal that was not exposed to the plasma during etching (see

Figure 5.11a). Not only SEM reveals the damage, it is also clear from the corresponding optical
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Figure 5.11: (a) SEM top view of a colloidal crystal of 347 nm diameter silica spheres on a glass

substrate after plasma etching. The sample consisted of approximately 11 hexagonal layers parallel to

the sample substrate, approximately 1.5 of which were removed by etching. In the lower right part of the

image, the top of the crystal after etching is visible. The upper left part of the image is probably a piece

of crystal that broke off and turned over after plasma etching. During the etching process, the colloids

in this layer would then be shielded from the plasma by the layers above, explaining why they appear

to be undamaged. The scale bar is 2 μm. (b) Optical transmission spectra of the same colloidal crystal

(gray) before and (black) after plasma etching. Because of the damage that the top layer suffered during

etching the first-order (111) Bragg dip has disappeared. Some features of the second-order peak are still

visible.

spectra that crystals etched with a plasma undergo severe morphological changes (see Figure

5.11b). All the same, some of the features of the second-order (111) Bragg dip are visible,

possibly because they correspond to scattering by layers that are not parallel to the exposed

(111) plane(s).

We think that a directional plasma etch will not be successful in removing layers of colloidal

crystals, if no mechanism is introduced to terminate etching after 1 or 2 (crystal) layers [67, 80],

because the surface of the crystal is not a flat, homogeneous slab of dielectric material. During

etching, some parts of the crystal layer below the top layer can still be shielded from the plasma

by what is left of the spheres on top, while other parts are already being etched. If so, plasma

etching of colloidal crystals could work if etching of the second layer is prevented while the top

layer is being etched.

Although shielding of the layer below the top layer during plasma etching of the top layer

itself might sound complicated, it can actually be realized quite easily. For example, the polymer

that is used to immobilize colloidal particles in body-centered tetragonal (BCT) crystals (see

Chapter 6) turns out not to be affected by the plasma that was used for silica etching (see Figure

5.12). If, after UV-polymerization, the silica spheres of the top layer stick out of the polymer

network in which the colloids have been fixed, these spheres can be etched by a plasma etch

without the polymer network being destroyed (Figure 5.12). The polymer itself, in turn, can be

etched using an oxygen plasma that does not affect the silica particles.

As the plasma is drawn towards the sample by an anode just above the sample itself, etching

is directional in this particular plasma etcher. This means that only the polymer between the
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Figure 5.12: SEM top views of a colloidal crystal of 336 nm diameter silica spheres in a polymer

network on a glass substrate after plasma etching. It is clear from panels (a) and (b) that the polymer is

hardly affected by the plasma, therefore acting as an etching stop. The plasma has removed the spheres

in the top layer of the sample, leaving behind the polymer sockets of those spheres. Objects on top of the

sample, such as dust particles, can block the plasma, as was clearly the case in panel (b). Both scale bars

are 1 μm. Images courtesy of Yu Ling Wu.

spheres of the top 2 or 3 layers is etched during a plasma etch, as the polymer in the layers

below is shielded by the silica particles of the top few layers. Combined with this shadow

effect, the two different plasmas for silica and polymer, CHF3/Ar and O2 respectively, can be

used to etch away the fluid layer on top of colloidal-crystal templates of silica spheres. If the

polymer overfills the crystal, a plasma etch can be used to etch away the superfluous polymer,

thus exposing the top silica spheres. These silica spheres will eventually stop the etching of

polymer due to the shadow effect. Subsequently, the top part of the silica template can be

removed by a silica plasma etch, which will be stopped because of shielding by the polymer.

Next, the exposed polymer can be removed again by a polymer plasma etch and so on. Note

that, because the polymer is removed from more than 1 layer at the same time, this scheme may

result in the loss of 1 or 2 crystal layers of silica spheres if the polymer is used as a stop for the

silica etch.

Although this scheme may succeed in etching the top fluid layer, it is a laborious route,

especially if the fluid layer of colloids is thick. In that case, multiple polymer and silica plasma

etches are required. With typical reaction times of 15 minutes for etching 1 crystal layer of silica

spheres, etching thick depositions of silica will take quite some time, even more so because the

plasma chamber needs to be cleaned with an additional oxygen etch when switching between

the two different gas mixtures for silica and polymer etches. Therefore, a faster etching method

would be more than welcome. In two recent papers [217, 218], Zhang et al. mention that

crystal layers can be peeled off colloidal crystals using adhesive tape. Although we only tried

it once, the results are promising, as can be seen in Figure 5.13. We have not checked yet in

spectroscopy how many layers were actually peeled off by tape etching, but the SEM images

seem to indicate that at most 2 layers were removed. In some places, it seems as if no layers

were removed, in other areas 1 or 2 layers were removed.

This patchy removal is probably due to specifics of the tape etching procedure. In our test
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Figure 5.13: Scanning electron microscopy (SEM) top views, at a tilt angle of approximately 45◦ of a

colloidal crystal of 347 nm diameter silica spheres on a glass substrate after removal of 1 or several of the

top layers using adhesive tape. Before tape etching, the sample consisted of approximately 13 hexagonal

layers parallel to the sample substrate. Panels (a) and (b) differ only in the magnification used during

imaging. The white scale bar in panel (a) is 20 μm, the one in panel (b) is 5 μm.

experiments, we gently laid down the adhesive tape on top of the colloidal crystal, after which

it was gently tapped with a single finger over the entire area of the sample. Next, the tape was

removed from the sample in a single pull. Some colloids were definitely removed from the

sample, as a white deposition could be discerned on the tape by eye. However, the tapping

probably caused the tape to adhere with different strengths to different areas of the colloidal

crystal. After laying down the tape on top of the sample, it may be better just to give it one single

stroke with the thumb to let the tape adhere to the colloidal particles more homogeneously. It

may require some tuning, but we think crystal layers can be removed by tape etching one by

one. Whether it will also work for fluid layers on top of colloidal crystals remains to be checked

experimentally. Fortunately, tape etching is fast and cheap, so multiple tests can be performed

quite quickly.

5.4 Conclusions and outlook

In this chapter, we have investigated methods to invert colloidal crystals that should be com-

patible with (binary) colloidal crystals consisting of organic particles. The latter have recently

been described in literature as candidates for the fabrication of strongly photonic crystals. Un-

fortunately, these relatively new templates also lead to new challenges in the post-fabrication

towards 3-D materials with a photonic band gap. Some of the colloidal-crystal templates have to

be grown from dispersions of polystyrene (PS) or poly(methyl methacrylate) (PMMA) spheres.

The refractive-index contrast in such organic templates cannot be enhanced by chemical vapor

deposition (CVD) of silicon directly, because that infiltration method requires temperatures of

approximately 350 ◦C, which is far above the glass transition temperatures of PS and PMMA

(∼ 100 ◦C). Other binary templates can be grown from dispersion of silica colloids, therefore

allowing infiltration with high-index materials by CVD, but these templates often have a layer
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of colloidal fluid on top. Because of its isotropic scattering, this fluid layer has to be removed

before further processing can take place.

For the colloidal-crystal templates of PS or PMMA spheres, we have shown that atomic

layer deposition (ALD) is a promising infiltration technique. The original template can be burnt

after ALD of an approximately 15 nm thick layer of alumina, yielding a self-supporting alumina

frame. Subsequently, the mechanically stable alumina frame can be used for further processing,

such as infiltration with silicon by CVD. All the same, two problems are left to be tackled.

First of all, silicon will also be deposited on the inside of the air-sphere cavities left behind

by the burnt template spheres, causing the remaining air spheres to be smaller than at close-

packing. MPB calculations have shown, for example, that this will close the photonic band gap

in inverse FCC structures. Furthermore, dust-like particles with a size of approximately 10 nm

are deposited onto the samples during ALD, which might be circumvented by fine-tuning the

ALD process parameters. We expect, however, that such small particles will not have a major

influence on the optical properties of these photonic crystals.

Furthermore, we attempted to remove crystal layers of templates consisting of silica col-

loids by plasma etching. The plasma causes significant damage to the top of the crystal, leaving

behind a surface that seriously deteriorates its optical properties. If the silica template is em-

bedded in a polymer matrix, successive treatments with plasmas that etch either the polymer or

the silica can in principle be used to etch the template in a layer(s)-by-layer(s) fashion. How-

ever, this is a laborious and time-consuming route, partly because the plasma chamber has to

be cleaned with an oxygen etch in between successive plasma treatments. Although the ex-

periments were preliminary in nature, etching colloidal crystals of silica spheres with adhesive

tape seems promising. It may require some tuning of the experimental procedure, but it is a

much faster and cheaper method. After some additional tuning, it may work just as well for

other types of particles, including PS and PMMA. As tape etching is of no use after infiltration

with silicon or germanium, for example, the possibility of ultramicrotomy should be considered

[142, 219–221].
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Electric-field-induced photonic colloidal
crystals

Photonic crystals are materials with a refractive index that varies periodically in space. Because

of their strong interaction with light, they can provide unprecedented control over the emission

and propagation of light. A promising route towards three-dimensional (3-D) photonic crys-

tals is self-assembly of colloidal particles. In this chapter, we show that large crystals can be

grown by sedimentation of colloidal particles in an external, high-frequency electric field. The

method results in body-centered tetragonal (BCT) crystals that do not have a layer of colloidal

fluid on top. In addition, the electric field can be used as an external control to switch between

close-packed (CP) and BCT crystal structures within seconds. Since the BCT crystal structure

is not close-packed, we also developed two procedures to invert it without loss of structure.

Both methods involve immobilization of the colloidal particles by means of polymerization of

the surrounding solvent mixture, either by diffusion-polymerization or by photo-induced poly-

merization. We even infiltrated the BCT crystals with silicon using chemical vapor deposition

(CVD), though this leads to some damage at the bottom of the crystal. Finally, we show that

light scattering can be used to monitor the 3-D structure of colloidal crystals over macroscopic

areas in real time.
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6.1 Introduction

Materials with a periodic modulation of refractive index on the (sub)micron scale interact

strongly with light and can exhibit a photonic band gap, the optical analogue of the electronic

band gap in semiconductors [7, 8, 16–18]. Colloidal suspensions of monodisperse microspheres

that self-organize into periodic structures having the lowest free energy, analogously to atomic

crystals, are promising as three-dimensional (3-D) photonic materials [8, 68, 81, 108, 114, 222–

224]. Most photonic applications require periodic structures with a lower filling fraction of the

component with the highest refractive index. This can be achieved by preparing ‘wet’ colloidal

crystals with a high particle volume fraction and inverting the lattice by drying the crystal, re-

infiltrating it with a high-index material and ultimately removing the solid spheres by etching

or burning [223].

Colloidal crystals with a high volume fraction can be made by allowing colloids in suspen-

sion to sediment in gravity and densify. When colloids interact with each other as hard spheres,

or as slightly charged spheres having a hard-core plus a repulsive interparticle interaction, the re-

sulting equilibrium structure is a face-centered cubic (FCC) crystal. However, for hard spheres,

the difference in free energy between FCC and hexagonal close-packed (HCP) structures is very

small [225]. In experiments, this often gives rise to random-hexagonal close packing (RHCP),

an uncontrolled mixture of FCC and HCP crystal stackings [154, 226, 227]. The latter is un-

desirable, because the photonic properties of, for example, FCC crystals deteriorate upon the

introduction of stacking faults [75].

In addition, self-assembled colloidal sediments always contain, for entropic reasons, a layer

of colloidal fluid on top and are thus never completely crystalline [227, 228]. The colloidal-

fluid layer typically has a thickness that is equal to of a couple of interlayer spacings of the

crystal on which it rests. Alternatively, the popular method of convective assembly [67, 77] uses

capillary forces to grow large and complete crystals, but generally produces twinned crystals

[76]. For these reasons, preparing large single-domain crystals is challenging and necessitates

the use of external fields, such as structured surfaces in colloidal epitaxy [78] or flow fields [81].

External electric fields have been used in various ways: direct-current (DC) electrophoresis

to accelerate gravitational settling [229], low-frequency electrohydrodynamics to create close-

packed structures in systems of charged colloids [230, 231] and dielectrophoresis to create

two-dimensional crystals [232].

Recently an external, high-frequency (1 MHz) electric field was used to switch between

close-packed (CP) and body-centered tetragonal (BCT) crystal structures in a colloidal sus-

pension of fluorescently labelled, silica microspheres in a refractive-index-matching solvent

mixture [137]. The use of a high-frequency electric field has the advantage that it polarizes

the dielectric core of the colloidal particle and not its double-layer. The dipole moments that

are thus induced in the particles add a dipolar term to the interaction potential of the parti-

cle. If the field strength is large enough, the mutual dipolar interaction will dominate over

the steric or electrostatic repulsion, thus favoring the formation of BCT over FCC structures

[137, 138, 175, 176]. As the dipole moments are induced in the dielectric core of the particles,

the method works for both charged and uncharged particles.

To increase the interaction of light with photonic crystals fabricated from colloidal-crystal

templates, the refractive-index contrast in such structures needs to be increased. If the index

contrast is high enough and the template has the right structure, a photonic band gap could be
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opened up this way. In a purely dielectric FCC crystal, an index contrast at optical frequencies

of δn = (nmax/nmin) > 2.9 and an “inverse lattice” (nmedium > nspheres) configuration are required

to open a photonic band gap [31, 65, 66]. According to Tao et al., a band gap is also possible for

purely dielectric, inverse BCT crystals for δn > 3.96 [139], although our calculations indicate

that there is no band gap for such BCT structures (Section 2.5). Note that restrictions on crystal

symmetry dictated by such contrast requirements are possibly less strict for metallodielectric

structures [32]. Even if no band gap can be opened up, there exist applications, including pho-

tonic sensors [222], where a stop gap is all that is required. For most applications, a thickness

of 10 lattice constants is sufficient [75, 210], but a macroscopic lateral extent is beneficial.

In this chapter, we demonstrate that external, high-frequency electric fields can be used to

grow colloidal crystals with a body-centered tetragonal (BCT) crystal structure for the fabrica-

tion of photonic materials. The homogeneity of the electric field, in combination with a pro-

cedure that involves annealing out defects by repeated sedimentation while ramping the field,

results in large, ∼ mm2 colloidal crystals. Because the BCT structure is not close-packed, we

also developed a procedure to invert it without loss of structure, which involves immobilization

of the colloidal particles by means of diffusion-polymerization. More specifically, the colloids

are dispersed in a solvent that contains a low volume fraction of monomer. Dispersed particles

are immobilized when the monomer gets cross-linked. The procedure is rather lengthy, for it

takes 7 to 12 days for dissolved monomer components to diffuse from the edges to the center

of the sample cell. Immobilized crystals can be inverted without loss of structure by infiltra-

tion with a UV-curable monomer. Alternatively, after solvent evaporation, immobilized crystals

can be infiltrated with silicon by chemical vapor deposition (CVD), though this leads to some

damage at the bottom of the crystal.

In addition, we present here a fast and robust fabrication method for colloidal BCT crystals

that is based on photo-induced polymerization of a solvent mixture containing monomer [100].

Not only does photo-induced polymerization allow immobilization of the colloids at almost

every stage of the fabrication of colloidal-crystal templates, it also reduces the time that is

required to grow one crystal sample from 7 to 12 days to approximately 4 hours! We also show

results on infiltrating such BCT structures with silicon by CVD.

In this chapter, we mainly rely on confocal and electron microscopy for the characterization

of colloidal crystals at various stages of their fabrication. However, in Section 6.5, we show

that light-scattering experiments can provide complementary, 3-D structural information. For

example, the external electric field can be used in our experimental system to switch between

CP and BCT crystal structures within seconds. This means we can switch Bragg reflections

“on” and “off” within seconds! We show that scattering is an excellent tool to monitor such

macroscopic, structural changes in real time.

6.2 Experimental methods

6.2.1 Sample fabrication involving diffusion-polymerization

Colloidal suspensions were composed of core-shell silica particles (3% polydispersity) in a

refractive-index-matching, liquid mixture of water and dimethyl sulfoxide (88.4 wt-% DMSO).

The spheres had a 193 nm radius silica core that was fluorescently labelled. It was surrounded
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Figure 6.1: (a) Schematic picture of the sample cell geometry in which colloidal BCT crystals were

grown by sedimentation in a high-frequency, external electric field. Note that, for reasons of image

clarity, gravity is pointing upwards in panel (a). Panel (b) is a photograph of the electronic setup that

was used to generate the external electric field. To avoid premature, photo-induced polymerization, the

sample itself was covered with a box.

by a non-fluorescent shell of thickness 492 nm (transmission electron microscopy, TEM). The

total radius was 702 nm (static light scattering, SLS). In the absence of an electric field and

added salt, the particles did not strictly interact as hard spheres, for the interparticle spacing a
was 1.0 ·σ to 1.06 ·σ , where σ = 2R is the total diameter of the particles. However, under the

conditions of this experiment, but without an electric field, the behavior found for this system

was consistent with the behavior of hard spheres [227]. The core-shell architecture allows

three-dimensional (3-D) position determination without ambiguity, even for touching spheres,

via fluorescent confocal microscopy [89, 99].

From the above-mentioned dispersions, colloidal crystals were fabricated by the following

procedure. Two lengths of 50 μm diameter electrode wire (Goodfellow T2 Thermocouple Alloy

Ni95/(Al+Mn+Si)5) were placed parallel atop a clean 25 mm× 75 mm× 1 mm microscope

slide, 1.1 mm or 1.25 mm apart, and glued under tension using Bison Epoxy Rapide (the gluing

points were outside the sample area). Contacts were made to insulated electric wires using

silver epoxy or tin solder. A clean cover slide was placed atop the wires, which thus also served

as sample spacers, and glued down at the 4 corners. The edges parallel to the wires were sealed

with high-density wax (White Microcrystalline Wax 863, Frank B. Ross Co. Inc.): half a pellet

(roughly 3 mm diameter) was placed on each edge and made to carefully fill the sample up

to the closest wire by melting the wax using a hotplate. Next, a drop of colloidal suspension

was placed at one of the open ends of the sample. Capillary forces caused the dispersion to fill

the sample cell, after which the open ends were glued with a two-component adhesive - Bison

Epoxy Rapide. The epoxy resin of this adhesive is based on bisphenol A - epichlorohydrin

with an average molecular weight < 700 g/mol [233]. The main ingredient of the hardener is

N(3-dimethylaminopropyl)-1,3-propylenediamine. This sample ensured a controlled geometry

for the slow dissolution and subsequent (re)polymerization of the epoxy.

Large single-domain, field-aligned crystals were made as follows. The electric field was

applied between the two electrode wires (for a description of the electronic setup, see Section
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6.2.2). During colloidal sedimentation, the voltage was ramped up to its final value in 5 steps.

Prior to each increase in field strength, the sample was turned over for 10 s, during which

the field was turned off. The final value of the peak-to-peak (pp) voltage that was applied

across the electrode wires was approximately 250 Vpp. This repeated sedimentation, while

not an optimized procedure, was seen in this work to successfully anneal out defects in the

structure. Moreover, it increased both crystallite size and the orientational correlation between

different crystallites. After the final field strength was reached, it took 7 to 12 days for the

dissolved epoxy to reach the middle of the sample cell and (re)polymerize, thus immobilizing

the particles.

6.2.2 Sample fabrication involving photo-induced polymerization

The dispersions used in these preparations consisted of core-shell silica spheres [91, 190, 191]

with a total diameter of 1.1 μm and a polydispersity of 3%, as determined by static light scat-

tering (SLS). The approximately 400 nm diameter silica cores of all the particles were labelled

with fluorescein isothiocyanate (FITC). The particles were dispersed in a 10.1 vol-% solution of

trimethylolpropane ethoxylate triacrylate (Aldrich, average molecular weight = 428 g/mol) in

dimethyl sulfoxide (DMSO, Aldrich, > 99.6%). Next, 10 μ l of a 1.0 vol-% solution of photo-

initiator 2-hydroxy-2-methyl-propiophenone (Aldrich, 97%) in DMSO was added to 50 μ l of

the dispersion. The resulting dispersion was used for crystal growth. The final number of crys-

tal layers parallel to the sample substrate depends on the crystal structure, the diameter of the

particles, the field strength, the sample geometry and so on. We note that, if the sample cell that

is described below was used, a particle volume fraction of approximately 16% resulted in BCT

crystals of 20 to 25 crystal layers for 1.1 μm diameter spheres.

Body-centered tetragonal (BCT) crystals were fabricated from the above-mentioned disper-

sions by sedimentation onto a glass cover slide (Menzel-Gläser, #1 cover slip, ca. 150 μm thick)

in an alternating-current (AC) electric field (see below) perpendicular to gravity [109, 175].

Crystals were grown in a sample cell that is similar to the one described in Section 6.2.1 (see

Figure 6.1a), although the spacing between the electric spacer wires was 1.0 mm to 1.2 mm.

During sedimentation of the colloids onto the sample substrate, the peak-to-peak voltage across

the wires was typically (100±2) Vpp. After 15 minutes to 30 minutes, the voltage was in-

creased to (200±2) Vpp. The stepwise increase of the voltage was continued until a voltage of

350 Vpp to 400 Vpp was reached. Colloidal particles in the sample were subsequently immobi-

lized by illumination with UV-light (UVP, UVGL-58, 365 nm, 6 W) for 2 minutes at a distance

on the order of a centimeter.

The electronic setup that was used for the generation of external electric fields has under-

gone several improvements during the research described in this chapter. Figure 6.1b shows a

photograph of a typical example of the final electronic setup. The setup that was used in the

fabrication of the colloidal BCT crystal presented in Figure 6.7 is provided below. A Hewlet

Packard function/arbitrary-waveform generator (33120A, 15 MHz) was used to generate an AC,

sinusoidal voltage signal with a frequency of (1.000±0.005) MHz. This source signal was

amplified by a wideband amplifier (Krohn-Hite Corporation, model 7602M). Any DC signals

coming from the amplifier were short-circuited by a home-made DC-filter. Using this combi-

nation of amplifier and DC-filter, the peak-to-peak voltage across the wires was amplified up

to a maximum of 400 Vpp. In the fabrication of colloidal BCT crystals involving diffusion-
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polymerization, the DC-filter was not used yet. Peak-to-peak voltages and frequencies of sam-

ple signals were measured using a digital, real-time oscilloscope (Tektronix TDS224) via a

10x probe (Tektronix P2100). A second input of the oscilloscope was used to probe the signal

coming from the function generator, which was used for the triggering of the oscilloscope.

6.2.3 Infiltrating crystals with silicon
After fabrication of a colloidal BCT crystal in solution, the solvent (mixture) was allowed to

evaporate, after which the sample was opened up, removing the cover slide with the colloidal

crystal from the 1 mm thick microscopy slide. Before infiltration, the crystals were typically

heated up in an oven to 425 ◦C to 500 ◦C, at an average rate of 100 ◦C/h at most. They were

kept at the final temperature for at least 3 h in order to remove the polymer network, which was

found to inhibit infiltration of the crystal layers below the top layer in some cases. Infiltration of

the resulting colloidal-crystal templates was performed using chemical vapor deposition (CVD)

[234]. Disilane (Si2H6) was used as the precursor gas. In the CVD run for the sample in Figure

6.14, for example, gas flows of 10 sccm for the disilane gas and 100 sccm for the hydrogen gas

were used. The temperature at the sample was approximately 450 ◦C, the pressure was 0.020

mbar, and the reaction duration was 300 min. The CVD process resulted in the deposition of

amorphous silicon, which has a refractive index that is slightly larger than that of crystalline

silicon (3.59 instead of 3.5 [235]).

6.2.4 Sample characterization
Confocal microscopy measurements were performed using a Leica TCS SP2 or TCS NT con-

focal scan head mounted on a Leica DM IRB inverted microscope. After solvent evaporation,

crystal samples were index matched by infiltration with a mixture of water and DMSO (80 vol-

% DMSO) or a mixture of water and glycerol (87 vol-% glycerol). Typically, a Leica PL APO

100x (1.4 NA) oil-immersion objective was used, in combination with Cargille immersion oil

(type B). The FITC in the cores of the particles was excited using the 488 nm line of an Ar

laser. Dry and infiltrated crystals were (additionally) characterized, uncoated, using a Philips

XL30FEG scanning electron microscope (SEM), operating at an accelerating voltage of 2 keV

to 5 keV and a working distance of approximately 5 mm to 7 mm.

Some confocal microscopy measurements were calibrated by imaging a calibration slide in

the same measurement session. The slide that was used for calibrating measurements in the

confocal xy-plane, which is the plane perpendicular to the optical axis of the microscope, con-

tains crossed micrometer scales that are oriented orthogonally (Ted Pella Inc, product number

2280-16, 1 mm in 0.010 mm divisions). The relative calibration of the two crossed micrometer

scales was checked in a laser diffraction experiment, indicating that the two orthogonal scales

do not differ by more than (0.5±0.35)%. In other words, if calibrated distances, measured

along the x and y-axis in our confocal microscopes, differed by more than 1%, the difference

was significant.

In a typical laser diffraction experiment, a green HeNe laser (Melles Griot, maximum output

5 mW at 543.5 nm) acted as the source. After reflection off a mirror, the beam was passed

through an aperture in a screen to catch the back-reflected diffraction pattern of the sample. To

avoid stray light, care was taken to make the diameter of the pinhole slightly larger than the
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beam diameter of approximately 1 mm. Using the zero-order reflection of the laser beam, the

sample was aligned perpendicular to the primary beam. The transmitted and diffracted light

were collected at the backside of the sample by a white sheet of paper, acting as the detector

screen. Because the sheet of paper is not very thick, of the order of 0.1 mm, Bragg reflections

could easily be observed at the backside of the sheet. A Nikon D70 single-lens reflex (SLR)

digital camera with a Nikkor AF-S 18 mm to 70 mm lens was used to capture images of the

diffraction pattern using various shutter times. If the transmitted, primary beam was allowed to

hit the detector screen, the spot was usually so bright that other Bragg reflections were no longer

visible in the digital image. Therefore, the primary beam was blocked by a circular, black piece

of paper that was taped to the front side of the detector screen. Both the detector screen and the

digital camera were aligned perpendicular to the primary beam by eye. To image the internal

structure of a single Bragg reflection, a particular diffracted beam was reflected directly onto

the charge-coupled device (CCD) detector of the digital camera using a mirror at the backside

of the sample.

Transmission spectra were measured with a Varian Cary 5, double-grating, UV-Vis-NIR

spectrophotometer. For these measurements, machine parameters included a step size of 0.5 nm

and a spectral bandwidth of 2 nm. The spectrum in Figure 6.11 was taken with a similar, empty

sample cell in the reference beam. The cross-sections of both the sample and the reference

beam were reduced to approximately 1 mm diameter using one aperture per beam. All spectra

were measured against 0%T and 100%T baselines, which were taken in the same experimental

session. The baselines were measured without the samples but with the pinholes in both the

sample and the reference beams.

6.3 Results and discussion – diffusion-polymerization
Figure 6.3A is a region of a two-dimensional (2-D), confocal xy-scan of the bottom hexagonal

plane of an approximately 7-layer, body-centered tetragonal (BCT) crystal grown as described

in Section 6.2.1. Adjacent spheres were nearly touching, but only their fluorescent cores are

visible. Figure 6.3B is a projection of all hexagonal planes in the crystal showing the charac-

teristic 2-layer bridge-site stacking. A model projection (Figure 6.3B, inset) shows 2 adjacent

(110)conv hexagonal-packed planes of gray or white spheres, respectively, of a BCT crystal (see

also Figure 6.2). The spheres in both layers are nearly touching, but they have been drawn

smaller for clarity. The symmetry of the observed projection corresponds well with the model.∗
A slice in the xz plane (Figure 6.3C) shows the stacking of the BCT (110)conv planes.

The crystalline order over macroscopic areas of the colloidal BCT crystals is demonstrated

in Figure 6.3D, which shows a He-Ne laser diffraction image. The 1 mm diameter beam was

positioned in between the electrode wires. The BCT structure shows a rectangular symmetry

that is distinct from the high 6-fold symmetry seen in diffraction patterns of FCC or HCP struc-

tures. An additional, striking feature of the diffraction pattern is the presence of vertical stripes

that connect, for example, the (10�) & (01�) and
(
11̄�

)
&

(
1̄1�

)
reflections. They are probably

∗When we used low-ionic-strength 16 MΩcm water, analysis by 3-D particle position determination showed

that the crystal was slightly non-tetragonal and in actual fact face-centered orthorhombic (FCO), whereas the

crystals were perfectly tetragonal when 2 MΩcm water was used. As the deviation from the tetragonal case was

rather small, we will continue calling our crystals BCT in this chapter.
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Figure 6.2: Schematic picture of the conventional unit cell for the BCT structure in real space. The

conventional laboratory frame is labelled (xconv,yconv,zconv), the coordinate frame in confocal microscopy

is labelled (xcm,ycm,zcm). For b/a = (
√

6/2), the (110)conv plane, which is indicated by the dark gray

spheres, has hexagonal symmetry. The spheres have not been drawn to scale for clarity.

caused by the fact that the lines of touching particles in a hexagonal (110)conv plane, along the

y-direction in Figure 6.3A, are not exactly straight - they are slightly wiggling. Furthermore, the

four reflections of the
(
21̄�

)
-family seem to be slightly too far from the direct beam, the latter

was blocked by a beam stop, which is due to refraction of the diffracted beams at the sample-

air interface and to the curvature of the Ewald sphere (Section 6.5). Diffraction images taken

as a function of position in the sample exhibited an orientational correlation that spanned the

extent of the sample (2.4 cm) and that was much larger than the extent of one single crystallite.

Large-area crystalline order was also clear from the nearly uniform Bragg color coming from

such BCT crystals under white-light illumination (Figure 6.4). Only a small part of the crystal

had a slightly different orientation, which resulted in a blue instead of a red Bragg color.

The BCT crystal structure is not close-packed and cannot be preserved simply by drying

because of its vulnerability to capillary forces. We immobilized the “wet crystals” by means of

a diffusion-polymerization process to create a low-volume-fraction polymer gel that was strong

enough to keep the particles in place while drying. First, we utilized the slow solubility of

a two-component adhesive (applied at the sample edges) in the solvent mixture of water and

dimethyl sulfoxide. The epoxy dissolved and polymerized in the solution over a period of 7

to 12 days. This process was limited by diffusion of the monomer components of the epoxy.

The remarkable feature of this “pre-polymerization” step is that a polymer network is created

slowly, such that possible strain that builds up during diffusion-polymerization does not destroy

the BCT crystal. Yet, the resulting polymer network is strong enough to allow drying and

refilling with liquids or a polymer. Next, we carefully cleaved the cell into two halves. One half

was used to produce the scanning electron micrograph of the pre-polymerized and dried BCT



ELECTRIC-FIELD-INDUCED PHOTONIC COLLOIDAL CRYSTALS 119

D

E

x

z

C

x

y

B

x

y

A

Figure 6.3: A 7-layer, electric-field-induced BCT crystal. (A) A 42 μm× 22 μm (including the label

area) xycm optical slice, with the electric field along ycm and gravity along zcm, of an in-focus hexagonal

(110)conv plane. Neighboring spheres are nearly touching, but only the fluorescent cores are visible. (B)

A projection of all the hexagonal planes in the BCT crystal. When the images of 2 adjacent hexagonal

close-packed layers are overlaid, the projection exhibits rectangular symmetry, while those of close-

packed crystals (not shown here) exhibit the higher 6-fold symmetry. The inset shows 2 model hexagonal

planes that have been overlaid, with gray and white spheres corresponding to different hexagonal layers,

and the circles drawn smaller; at actual size adjacent gray spheres (and white spheres) would be touching.

(C) An xzcm scan shows the 2-layer periodicity in stacking. Thus, the projection of the entire crystal

along the zcm direction in a BCT crystal is identical in symmetry to the 2-layer projection. (D) A laser

diffraction picture (beam diameter 1 mm) of a pre-polymerized BCT crystal shows the characteristic

rectangular symmetry. (E) An electron micrograph of a BCT crystal that has been immobilized by the

diffusion-polymerization procedure shows clearly that the BCT order is preserved in dry form. The

coordinate labels in this figure refer to the confocal coordinate frame (Figure 6.2).
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Figure 6.4: Photograph of Bragg colors coming from an approximately 7-layer, colloidal BCT crystal

under white light illumination. The crystal consists of 1.4 μm diameter silica spheres. After fabrication in

solution, the colloids were immobilized using the diffusion-polymerization procedure. The blue colored

area corresponds to a crystallite that had a slightly different orientation with respect to the electric field

vector than the red colored area. The white scale bar is 0.5 cm.

crystal (Figure 6.3E) - one sees successive (110)conv lattice planes of a BCT crystal.

To demonstrate that we could turn our dried BCT crystals into ones with an ‘inverse’ con-

trast, we filled the other half of the dried, pre-polymerized cell with a UV-curable epoxy (Nor-

land Optical Adhesive NOA 73, viscosity 130 cP). Filling and subsequent polymerization did

not perturb the structures. Figure 6.5A shows single-domain BCT order in a projection, through

the sample bulk, of images in which consecutive hexagonal planes were in focus. The sample

was cured in ultraviolet light while on the microscope stage. We verified the absence of par-

ticle motion during this process. Figure 6.5B shows an image (time-averaged over 930 s) of

an immobile, and hence well-resolved, in-focus hexagonal layer after the UV cure. Finally,

we removed the top plate of the sample and imaged (Figure 6.5C) the immobilized structure

of an incomplete layer with a scanning electron microscope (SEM). This layer was originally

complete and in the sample bulk, but it was torn apart while taking apart the sample. Spheres

in polymer-inverted BCT crystals touch along the field direction (Figure 6.5C). No polymer

network can be formed at the contact point of two such spheres. After removal, they will leave

behind two connected air spheres. Thus, all the spheres could have been dissolved by hydroflu-

oric acid, as in the creation of air-sphere FCC crystals [67], for the acid could have penetrated

the entire crystal via the connecting holes.

Unfortunately, BCT crystals of air spheres in a polymer network have a relative modest di-

electric contrast (εm/εp ≈ 1.5) [236]. To obtain strongly photonic materials, the BCT template

should be infiltrated with a material having a high refractive index, such as silicon or germa-

nium. As is shown in Figure 6.3E, the pre-polymerization immobilizes colloidal spheres in BCT

crystals in a polymer matrix that is strong enough to preserve the BCT structure upon solvent

evaporation. We attempted to infiltrate these non-close-packed colloidal-crystal templates with

amorphous silicon. Samples were first heated up to 425 ◦C in air to burn away the polymer in

the interstitial space. After this heat treatment, samples were infiltrated with amorphous silicon

by chemical vapor deposition (CVD).

Figure 6.6 clearly shows that the infiltration of BCT crystals was successful. The interstitial

space in between the spheres has partly been filled with silicon, because of which the colloidal

building blocks of the crystal seem to be hexagonal instead of spherical. After infiltration, the

sample was broken in two pieces. Figure 6.6B is an SEM image of the side of one of the pieces

of the cleaved BCT crystal. The crystal has clearly been infiltrated with silicon all the way
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Figure 6.5: (A) After refilling the dried BCT sample with UV-curable epoxy, the resulting structure is

still BCT, as evidenced by the projection of all the hexagonal layers in the crystal. (B) The time-average

of a single hexagonal plane over 930 s shows that the spheres are indeed stationary. (C) Scanning

electron microscopy (SEM) images (magnified region in inset) show the characteristic BCT stacking

with adjacent hexagonal layers shifted by half a lattice spacing in the direction of the bead-chains. The

coordinate labels in this figure refer to the confocal coordinate frame (Figure 6.2).
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Figure 6.6: SEM images of a colloidal BCT crystal of 1.4 μm diameter silica spheres on a #1 glass cover

slide, after infiltration of the crystal with silicon. The top view through a crack (a) shows that the crystal

consists of approximately 7 layers. The incomplete, 8th layer on top provides some information on the

stacking of the top layers, which is mostly (BCT) bridge-site stacking. Although care has to be taken

with images of crystal cracks, it seems as if the bottom 2 layers of the crystal are shifted out of register,

being (CP) hollow-site stacked. After cleaving, side-views can be imaged in SEM, at a tilt angle of 45◦

in panel (b). The spheres have been covered with a layer of silicon, all the way down to the substrate,

which is especially clear for spheres that have been cut in two and at places where part of the silicon

layer has broken off. The white scale bars in both panels are 5 μm.

down to the substrate. A striking feature of infiltrated crystals is that spheres are often cut in

half upon cleaving of the sample. Although we have not performed a thorough investigation,

we think it may be analogous to the cutting of glass using scissors. If one tries to cut glass in

air, it will splinter, whereas cutting is possible if the piece of glass is suspended in water. In

infiltrated colloidal crystals, the silicon absorbs vibrations, causing the silica spheres to be cut

in two instead of breaking off.

6.4 Results and discussion – photo-induced polymerization

The diffusion-polymerization procedure that is described in the previous section (6.3) turned

out to be slightly less robust than we thought at first. Attempts to reproduce the results with

1.1 μm instead of 1.4 μm diameter silica spheres failed. Because of the smaller sphere size,

stronger electric fields were required to grow BCT crystals. Unfortunately, the colloidal par-

ticles could then no longer be immobilized in the BCT structure within 2 weeks using the

diffusion-polymerization procedure. Sometimes, only a small part of the sample would poly-

merize, sometimes it would only polymerize after switching off the field (resulting in CP in-

stead of BCT crystals). Although we have not thoroughly investigated this issue, we think the

diffusion-polymerization may depend on spurious direct-current (DC) signals coming from the

amplifier in our electric setup. After all, a typical sample capacitance on the order of 100 pF,

which is mainly caused by the coaxial cables connecting the sample to the amplifier, is a heavy

load for the amplifier at 1 MHz. Increasing the field strength to compensate for the smaller
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sphere size may have changed the amplitude of these spurious DC signals, thus causing the

pre-polymerization to fail, possibly because of hydrolysis reaction products. To eliminate the

dependence on spurious DC signals, the electronic setup for the fabrication procedure involving

photo-induced polymerization was extended with a DC-filter that basically short-circuited DC

signals.

Not only did we require a more robust fabrication method for colloidal BCT crystals, we

also wanted to reduce the fabrication time, for 7 to 12 days is rather impractical. Photo-induced

polymerization seemed to match our purposes perfectly, both because of the speed of the poly-

merization reaction and the ability to initiate polymerization at nearly any stage of the fabrica-

tion process. The idea is that colloids are dispersed in an organic monomer (TMPTA), which

is polymerized upon release of radicals by a photo-initiator. The initiator itself is excited by

illumination with UV-light. Colloidal crystals can be immobilized using pure monomer as a

solvent, as reported by Jiang et al. [80]. However, we were not able to grow BCT crystals of

1.1 μm diameter silica spheres in TMPTA with our electronic setup. Probably, the dielectric

constant of TMPTA at 1 MHz is very close to the dielectric constant of silica (ε ≈ 4.4 [237]).

If the spheres are nearly matched to the solvent at 1 MHz, the induced dipole moments will be

very small, causing CP crystals to be energetically more favorable than BCT crystals [138].

Because of the low dielectric constant of TMPTA at 1 MHz, we decided to switch to sol-

vent mixtures of dimethyl sulfoxide (DMSO) and TMPTA. DMSO is a good solvent for many

organic substances and it has a relatively high dielectric constant at 1 MHz (ε ∼ 45 [238]).

Therefore, DMSO is the perfect solvent for TMPTA in BCT crystal-growth experiments. An ad-

ditional advantage of using solvent mixtures of DMSO and TMPTA (approximately 90:10 vol-

%) is that the solvent becomes slightly less photo-sensitive, significantly reducing the chance

of polymerization by illumination with room light (fluorescent tubes). Preferably, the volume

fraction of DMSO is as high as possible, thus maximizing the dielectric contrast with the col-

loidal particles. We note, however, that if solvent mixtures with less than 10 vol-% of TMPTA

are used, they might not be able to immobilize the colloids.

6.4.1 Characterization by confocal microscopy
Although particles could be immobilized by illuminating the samples for only 2 minutes with

UV-light, which means the polymerization took place within 2 minutes instead of the 7 to 12

days for diffusion-polymerization, we were able to grow BCT crystals that looked, at first sight,

similar to those grown by means of the diffusion-polymerization procedure. As was explained

in the previous section (6.3), our colloidal BCT crystals consist of ABAB, bridge-site stacked,

hexagonal layers that are parallel to the sample substrate. The substrate itself is perpendicular

to gravity during crystal growth and subsequent polymerization of the solvent. As expected, the

confocal image of the bottom layer of such a crystal in Figure 6.7a has hexagonal symmetry,

which is even more obvious from the fast-Fourier transform (FFT) of the image (see Figure

6.7). Note that up to 4 orders are visible in all directions in the FFT, which is 1 order more

than in a typical FFT of a layer of a convective-assembly colloidal crystal, though these are

usually extracted from SEM instead of confocal microscopy images [77]. Keep in mind that the

decrease in intensity in higher orders is not only due to crystal imperfections, it is partly due to

the form factor of the (fluorescent) spheres as well.

One of the advantages of real-space imaging over scattering data is that microscopic infor-
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Figure 6.7: Average of 4 confocal xy-images (a) of the bottom layer of a colloidal BCT crystal, after

immobilization by means of photo-induced polymerization. The crystal had approximately 25 layers and

consisted of core-shell silica spheres with a diameter of 1.1 μm, but only the 400 nm diameter cores were

fluorescently labelled. The bottom layer displays hexagonal symmetry, which is also very clear from the

fast-Fourier transform (FFT, panel (b)) of the confocal xy-image of which panel (a) is just a part. The

white scale bar in panel (a) is 10 μm.

mation is obtained. For example, although Figure 6.7a clearly shows hexagonal ordering in our

colloidal BCT crystals, it also reveals the presence of vacancies and dumbbell particles, which

is very difficult to deduce from reciprocal-space data. The image also proves that dumbbells

do not necessarily disturb crystalline order in their direct neighborhood. This is contrary to our

experience with convective assembly, where dumbbells almost always lead to line defects. The

difference is probably due to the fact that BCT crystals are grown and immobilized in solution,

where the interparticle spacing is approximately 6% to 10% larger than the particle diameter.

In convective assembly, on the other hand, crystals grow upon solvent evaporation, leading to

structures in which the particles are truly touching. In that case, polydispersity and dumbbells

have a much larger effect on local crystal quality.

Colloidal BCT crystals grown via the diffusion-polymerization procedure have been shown

to consist of slightly deformed hexagonal layers (see Chapter 7) [100]. Small-angle X-ray

scattering (SAXS) and confocal microscopy measurements agreed that the hexagonal layers

are compressed along the direction of the external electric field. To further compare the two

fabrication methods, the compression of the bottom layer of a BCT crystal fabricated using

photo-induced polymerization, part of which is shown in Figure 6.7a, was determined by cal-

ibrated confocal microscopy measurements. From the raw measurements, a compression of

(1.3±0.2)% was extracted by counting more than 30 lattice spacings both parallel and perpen-

dicular to the field direction. From the tracked coordinates of the particles in a 3-D confocal

scan spanning 20 layers, a compression of 2.0% was determined [239]. Right after the confocal

measurements, the xy-plane of the confocal microscope was calibrated using crossed microm-

eter scales. According to these calibration measurements, the confocal microscope underesti-
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Figure 6.8: (a) Tracked coordinates of the particles in figure 6.7a. Panel (b) shows the radial distribution

function g(r) of the hexagonal bottom layer of this BCT crystal. It was calculated from tracked coor-

dinates of the particles (∼ 2682) in the confocal xy-image of which panel (a) is just a part. The radial

distance r is given in units of half the lattice spacing (R0). In this case, R0 was determined by setting the

position of the first peak in g(r) at 2R0. The experimental g(r) is compared with the theoretical g(r) for

an ideal hexagonal crystal layer. The first peak of the theoretical g(r) was normalized to the height of the

first peak of the experimental g(r), but it has been drawn slightly higher for clarity. The white scale bar

in panel (a) is 10 μm.

mated the compression by a factor of 1.015, resulting in a final compression along the direction

of the external electric field of, respectively, 2.8% and 3.2%.

The (nearly) hexagonal ordering in the bottom layer, part of which is shown in figures 6.7a

and 6.8b, can be quantified using order parameters, such as the radial distribution function g(r)
[101]. In principle, the radial distribution function only applies to systems that are isotropic

and homogeneous, such as colloidal fluids. Crystals are not truly isotropic and homogeneous

systems, but g(r) is still a sensible, physical quantity for crystals. After all, g(r) is a measure

of the probability to find a particle at a distance r from another particle. In an ideal crystal,

this probability is 0 for some values of r, whereas it is non-zero only for specific lattice spac-

ings. In other words, the g(r) of an ideal crystal consists of a number of delta peaks at very

specific distances, corresponding to lattice spacings. The height of the delta peaks decreases

upon increasing r, as the number of combinations of lattice vectors yielding a specific value of

r increases slower than the area for increasing values of r. For very large distances, the g(r) of a

physical crystal converges to 1, because the value of g(r) is normalized to the value in an ideal

gas.

Figure 6.8a shows part of a confocal xy-image of the bottom layer of a colloidal BCT crystal

- it is actually the same part of the image that is shown in Figure 6.7a. Using image-analysis

procedures, written in Interactive Data Language (IDL), the coordinates of all ∼ 2682 parti-

cles in the original image were tracked. Figure 6.7a was overlaid with the coordinates of the

tracked particles, each coordinate being represented by a circle, resulting in Figure 6.8a. From
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the coordinates of all ∼ 2682 particles, the radial distribution function g(r) in Figure 6.8b was

calculated. The agreement with the calculated g(r) for an ideal hexagonal crystal layer is ex-

cellent. First of all, the positions of the peaks match almost perfectly up to 20R0, which is 10×
the lattice parameter. Not only the positions, the relative heights of the peaks also match re-

ally well, although the decrease in peak height with increasing r seems to be somewhat steeper

for the physical crystal than it is for the ideal hexagonal layer. The most important feature

of the experimental g(r) curve is that it really drops to 0 in between lattice spacings, even if

the lattice spacings are quite close in distance (such as the second and third peak). The curve

drops to 0 for up to 6 lattice spacings, whereas the g(r) for convective-assembly crystals usu-

ally drops to 0 only between the first and second peak [240]. The main difference between

the experimental and the calculated curve is, of course, that the peaks of the experimental g(r)
are broader than the delta peaks of the calculated one. There are at least two reasons for this

peak broadening. First of all, Brownian motion of the colloidal particles gets frozen-in upon

polymerization, because of which they regularly deviated from their ideal lattice position dur-

ing confocal microscopy. Secondly, dispersions that were used for crystal growth were never

truly monodisperse. We think, however, that polydispersity does not contribute as much to peak

broadening as Brownian motion in our BCT crystals. After all, the latter consisted of fairly

monodisperse, electrostatically stabilized silica particles with an additional dipolar interaction.

In suspension, the colloids in a crystal typically had a lattice parameter that was approximately

6% to 10% larger than the diameter of the particles. For nearly monodisperse systems, it has

been shown that polydispersity does not destroy long-range order in colloidal crystals, but that

need not be true for polydisperse systems.

In Section 6.3, we explained how projections of hexagonal layers along the optical axis

of the confocal microscope (the z-axis) can be used in combination with vertical xz-slices to

determine the 3-D structure of colloidal crystals. Figure 6.9c is a projection of the bottom 7

layers of the same crystal that was presented in Figure 6.7, revealing bridge-site stacking of

the hexagonal layers. In combination with the ABAB stacking sequence that is observed in

the confocal xz-slice in Figure 6.9a, we conclude that the crystal indeed had a BCT structure.

However, it was not a perfect BCT crystal. A projection of layers 8 to 15 looks very similar to

Figure 6.9c, but the projection of all 15 layers clearly indicates that some parts of the two crystal

blocks were shifted with respect to one another. In specific directions, a grazing view of Figure

6.9a the reason for this shift becomes clear - there were wedge defects in the crystal. One of

them is located between layers 7 and 8 in Figure 6.9a. A wedge defect is formed when 2 layers

move slightly apart along z, allowing a third layer to shift in between them like a wedge. In

this sample, such defects caused the crystal layers parallel to the sample substrate to ‘wobble’,

which was even worse for layers 15 to 25. In total, the crystal had approximately 25 layers.

Apart from the wedge defects, the xz-scan also shows 3 vacancy defects.

The vertical xz-slice in Figure 6.9a not only reveals the stacking sequence of the crystal, it

also indicates that the particles were really stationary after polymerization of the surrounding

solvent mixture. The image is actually the average of a series of 10 xz-slices, taken in a time

span of approximately 13 s. If the particles had still displayed Brownian motion, with a typical

self-diffusion time on the order of 10 s, they would have moved significant distances in between

scans, appearing blurred in the average image. Except for a lower noise level, the averaged

image looks the same as a single xz-scan, proving that the particles were truly stationary. The

particles do look elongated along the z-direction, but this is due to the point-spread function of
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Figure 6.9: (a) Average of a confocal xzt-scan, spanning 10 frames, of an approximately 25-layer,

colloidal BCT crystal after photo-induced polymerization. The crystal consisted of core-shell silica

spheres with a diameter of 1.1 μm, but only the 0.4 μm diameter cores were fluorescently labelled.

The z-axis of the confocal microscope was not correctly calibrated during this particular measurements,

which resulted in distances along the z-axis being severely overestimated (∼ 3×). Even if the z-axis

would have been calibrated correctly, the fluorescent cores would have been elongated due to the point

spread function of the confocal microscope. Panels (b) and (c) show projections along the optical axis

of the confocal microscope, which is parallel to the BCT [110]conv direction, of a 3-D scan spanning (b)

the bottom 15 layers and (c) the bottom 7 layers. The lines of particles in the projections indicate (BCT)

bridge-site stacking, with an ABAB stacking sequence (a). The white scale bars in all panels are 10 μm.
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Figure 6.10: Confocal xy-images of a colloidal BCT crystal after solvent evaporation and refilling with a

refractive-index-matching liquid. The crystal was the same as presented in Figure 6.7: a 25-layer crystal

consisting of 1.1 μm diameter silica spheres. Panel (a) shows the bottom part of the crystal, closest to

the sample substrate, indicating that solvent evaporation seriously damages the bottom part of such BCT

crystals. Panel (b) shows a similar xy-scan, after moving the sample stage downwards over a distance

of approximately 2 particle diameters. Although, the crystal seems tilted with respect to the confocal

xy-plane, the layers are clearly hexagonal and they are still bridge-site stacked.

the confocal microscope. Whether or not the particles were stationary was checked by taking

a series of 300 xz-frames, at an interval of 1 s, spanning 5 minutes in total. It showed that

the particles were stationary over time intervals that were many times longer than the typical

self-diffusion time of a single colloid.

6.4.2 Inverting BCT crystals

In order to increase the refractive-index contrast within immobilized colloidal BCT crystals, the

samples needed to be dried, opened up and infiltrated with a high-index material such as sili-

con. As was shown in Section 6.3, BCT crystals grown by the fabrication procedure involving

diffusion-polymerization could be dried without (much) structural damage. Unfortunately, this

turned out not to be the case for BCT crystals that were fabricated by means of photo-induced

polymerization. As can be seen in Figure 6.10a, the bottom layer of the crystal was severely

damaged after drying and refilling of the sample. Amazingly enough, from the second or third

layer upwards, the structure appeared to be fine and still displayed BCT bridge-site stacking

(Figure 6.10b). We think the polymer network shrinks upon evaporation of the solvent. The

crystal will shrink accordingly, retaining its BCT structure, except at the bottom, where the par-

ticles of the bottom layer also stick to the glass substrate. We note here, without proof, that we

tried coating the glass substrates with stearyl alcohol, which should make the particles adhere

less strongly to the substrate. Unfortunately, this did not seem to work. Another solution might
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Figure 6.11: Transmission spectrum of an approximately 22-layer, colloidal BCT crystal of 1.1 μm

diameter silica spheres after solvent evaporation. There is a 10%T Bragg dip at 2475 nm, the second

order dip of which is at approximately 1238 nm. The sharp decrease in transmission around 2700 nm is

due to absorption by water in the air.

be to change the concentration of monomer in the solvent mixture, thus producing a less tenuous

polymer network, which may decrease shrinkage of the network upon solvent evaporation.

As demonstrated in the previous sections, we can check whether our silica crystals are BCT

or CP after solvent evaporation by infiltrating them with a refractive-index-matching liquid

mixture, thus enabling confocal microscopy measurements. However, infiltration with a liquid

might affect the 3-D structure of the crystals. Another way to distinguish between BCT and

CP crystals is by measuring the distance between consecutive hexagonal layers. A very sensi-

tive technique to measure such interplanar spacings in colloidal crystals is optical spectroscopy,

which does not require infiltration with an index-matching liquid. On the contrary, as spec-

troscopy measures differences in refractive index at visible and near-infrared wavelengths, it is

difficult to measure interplanar spacings in index-matched colloidal crystals. Fortunately, after

solvent evaporation, the refractive-index contrast in our crystals, which is the contrast between

the silica spheres and the tenuous polymer network, is large enough for Bragg diffraction to be

observable in transmission spectroscopy.
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Figure 6.11 shows a transmission spectrum of a colloidal crystal of 1.1 μm diameter silica

spheres in a porous polymer network. The crystal was fabricated by means of photo-induced

polymerization (Section 6.2.2). The volume fraction of polymer in the interstitial space was

approximately 7%. The spectrum has a first-order Bragg dip around (2476±3) nm that corre-

sponds to the interplanar spacing between consecutive hexagonal layers. Furthermore, second-

order Bragg diffraction is located around half that wavelength, around 1238 nm. Bragg’s law

can be used to extract the interplanar spacing from the wavelengths at which Bragg diffraction

occurs, but a value of the average refractive index of the colloidal crystal is required. That value

can be estimated or calculated if the sphere packing fraction of the crystal is known (see Section

2.6). However, BCT and CP structures have different average refractive indices at optimal pack-

ing. Moreover, parameters such as the interparticle distance may have changed upon solvent

evaporation, which affects the volume fraction of spheres in the crystal and thus complicates

the determination of the interlayer spacing.

To analyze the spectroscopic data, the following values for the refractive indices of the var-

ious composite materials were used: 1.46 for silica [146], 1.47 for the polymer [236] and 1.00

for air. Furthermore, we assumed additivity of volumes, refractive-index averaging by volume

and interstitial volume to be filled with a homogeneous mixture of air and polymer (∼ 7.5%

TMPTA). If, in addition, optimal BCT packing is assumed, the value of the interplanar spacing

extracted from the transmission spectrum in Figure 6.11 is 913 nm, while basic geometry yields

906 nm. These two numbers compare much better to one another than the equivalent values for

CP structures, 900 nm and 854 nm respectively. We also considered two alternative models: one

in which the interparticle spacing is larger than the diameter of the spheres and one in which the

hexagonal layers are touching, but the interparticle distance within hexagonal layers is larger

than the particle diameter. In both alternative models, there is no interparticle spacing for which

the spectroscopic and geometric results agree better for CP structures than for BCT structures,

indicating that the crystal was probably still BCT. Note that it would be hard to extract absolute

values for the interplanar spacing in confocal microcopy as well. Because of the mismatch in

refractive index between cover slide and dispersion, distances measured along the optical axis

of confocal-microscope objectives require calibration [147].

Neglecting the presence of the polymer increases the difference between the spectroscopic

and geometric values for the interplanar spacing, from (913 nm - 906 nm) = 7 nm to (936 nm -

906 nm) = 30 nm if optimal BCT packing is assumed. Thus, optical spectroscopy indicates that

the colloids in the BCT crystal were still suspended in a tenuous polymer matrix after solvent

evaporation. SEM images (Figure 6.12a) confirm the presence of a tenuous polymer network

surrounding the colloidal particles. Later on in the inversion procedure, it turned out that the

polymer network needs to be removed to allow infiltration with silicon. We attempted to burn

the polymer by slowly heating the sample up to 500 ◦C. As can be seen in Figure 6.12b, the

polymer had indeed been removed from the structure by the heat treatment and the crystal still

displayed an ABAB stacking sequence. Unfortunately, it is difficult to judge from such an

image at a 45◦ tilt whether the hexagonal layers were still bridge-site stacked.

As mentioned above, removing the polymer network before infiltration with silicon turned

out to be quite important. Figure 6.13 clearly shows that infiltrating BCT crystals that were

immobilized by photo-induced polymerization, but that had not undergone a heat treatment,

was not always successful. In the bulk of the crystal, some silicon was deposited, but most of

it was deposited within the top few layers. In the bulk, it is clear that part of the polymer was
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Figure 6.12: (a) SEM image of a piece that broke off a colloidal BCT crystal of 1.1 μm diameter

silica spheres after photo-induced polymerization and drying of the solvent. The fluffy polymer fills

up the interstitial space in between the colloidal particles in the crystal, providing a backbone for the

meta-stable BCT structure. Heating up the sample to 500 ◦C for 3 hours removes the polymer from the

interstitial space. After heating, the sample is still crystalline and displays ABAB-stacking, as shown in

the SEM side-view at a 45◦ tilt (b). The white scale bars in both panels are 5 μm.

a b

Figure 6.13: SEM images of a colloidal BCT crystal of 1.1 μm diameter silica spheres. After photo-

induced polymerization, the solvent was dried and the sample was infiltrated with silicon without a

preceding heat treatment. Panel (a) shows a top view of an area where a piece of the crystal broke off

after silicon infiltration. Panel (b) shows such a broken-off piece. The white scale bar in panel (a) is

5 μm, the one in panel (b) is 10 μm.
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Figure 6.14: SEM side-views, at a tilt angle of 45◦ of an approximately 22-layer, colloidal BCT crystal

after solvent evaporation, heat treatment and silicon infiltration. The crystal had approximately 22 layers,

consisted of 1.1 μm diameter silica spheres and was cleaved after silicon infiltration. The image in panel

(b) is a zoom of the image in panel (a). The black scale bar in panel (a) is 5 μm, the white scale bar in

panel (a) is 2 μm.

removed by the heating during chemical vapor deposition (CVD), but some of it survived long

enough for silicon ‘wires’ to be formed. At the top of the crystal, an entire silicon sheet was

formed (Figure 6.13)b, probably prohibiting further silicon growth in the bulk of the crystal.

After removal of the polymer by a heat treatment at approximately 500 ◦C for 3 hours (Figure

6.12b), infiltration by chemical vapor deposition (CVD) with a high-index material such as

silicon was no longer a problem (Figure 6.14). Characterization of silicon-infiltrated colloidal

crystals by small-angle X-ray scattering (SAXS) is described in Chapter 7.

6.5 Results and discussion – diffraction and switching

Apart from microscopy measurements, we performed light-scattering experiments on colloidal

BCT crystals, for reciprocal-space data can provide complementary, macroscopically-averaged

structural information. Figure 6.15a shows a normal-incidence, laser diffraction pattern of an

approximately 7-layer, colloidal BCT crystal. The number of layers in this crystal, in the middle

of the sample cell, was determined by confocal microscopy. Although laser diffraction requires

refractive-index matching, just like confocal microscopy, it yields information about the 3-D

structure of the sample over an area as large as the cross-section of the laser beam (∼ 1 mm

diameter). It is immediately clear from the diffraction pattern that the sample does not have a

CP structure. Instead of the hexagonal symmetry of CP samples, the pattern clearly contains

rectangular features, due to the tetragonal symmetry of BCT crystals.

Such laser diffraction patterns are slightly more difficult to interpret than X-ray diffraction

patterns, as the Ewald sphere is not flat in this case [3, 105] and the diffraction angles need

to be corrected for refraction at the sample-air interface. However, by explicitly summing the

contributions to the structure factor of the subsequent layers of the colloidal crystal, taking into

account the form factor of the colloidal spheres as well, relative intensities of the various re-



ELECTRIC-FIELD-INDUCED PHOTONIC COLLOIDAL CRYSTALS 133

a b

(01)

(12)

(11)

(11)

E

Figure 6.15: (a) Normal-incidence, laser diffraction pattern in transmission of an approximately 7-layer,

colloidal BCT crystal after immobilization by means of diffusion-polymerization. The crystal consisted

of 1.4 μm diameter silica spheres in a refractive-index-matching solvent mixture. During the diffusion-

polymerization process, the peak-to-peak voltage over the sample was switched many times between

0 Vpp and 375 Vpp (see supplementary information online, switching.avi). Because the value of the

third Miller-index varies from one family of Bragg reflections to another, the reflections have only been

labelled with the first two Miller indices (e.g. (10) corresponds to b1 and (01) to b2). Panel (b) is

a recording of one of the reflections of a BCT crystal of 1.1 μm diameter silica spheres in a solvent

mixture that nearly matches the refractive index of the silica. The speckles in this Bragg reflection are

clearly visible. The white scale bar in panel (a) is 5 cm.

flections can be evaluated. Calculations were performed in Mathematica 5.2 for a 6-layer BCT

crystal of 1.4 μm diameter silica spheres. The interparticle spacing was set to 1.5 μm, as par-

ticles in crystals of electrostatically stabilized colloidal spheres are usually not touching. Qual-

itatively, the calculations predicted the positions of the Bragg reflections in the experimental

diffraction pattern correctly (compare figures 6.15a and 6.16a). For example, in the calculated

diffraction pattern (Figure 6.16a), which does not take into account refraction at the sample-air

interface, the line connecting the
(
21̄

)
&

(
1̄2

)
reflections does not coincide with the line con-

necting the (10) & (01) reflections. This means that, in the experimental pattern, the lines are

not overlapping because of refraction and because of the curvature of the Ewald-sphere, which

is projected onto a flat screen. Compared to the calculated diffraction pattern, there are Bragg

reflections missing from the experimental pattern, but this is due to total internal reflection at

the sample-air interface.

In addition to the positions of the Bragg reflections, the calculations also yielded their rel-

ative intensities, showing that the I(1̄2), I(11̄), I(01) and I(11) reflections are prominent. For

the 6-layer BCT crystal that was described in the previous paragraph, it was predicted that

I(1̄2) > I(11̄) > I(01) > I(11), which is roughly what can be observed in Figure 6.15. However,

we note that calculated relative intensities were very sensitive to the number of layers and that

the order of some of the reflections in the list could be changed by assuming a different number

of layers. Moreover, it is unlikely that the number of layers in the sample was constant over

the entire cross-section of the incident laser beam, so a direct comparison between calculated

relative intensities and experimental diffraction patterns was not performed.

Looking at the graph of the structure factor S (�) in Figure 6.16b partly explains why the
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Figure 6.16: (a) Calculated diffraction pattern of a 6-layer BCT crystal of 1.4 μm diameter silica spheres

in a refractive-index-matching solvent. The interparticle distance was assumed to be 1.5 μm, which is

slightly larger than the particle diameter. The pattern of the transmitted beams, as recorded on a flat

screen, was calculated for a laser beam with a wavelength in vacuum of 543.5 nm at normal incidence.

Although reflections may have different intensities, they have all been represented by black dots. Because

the value of the third Miller-index varies from one family of Bragg reflections to another, the reflections

have only been labelled with the first two Miller indices (e.g. (10) corresponds to b1 and (01) to b2).

Panel (b) shows the structure factor S (�) of the
(
12̄�

)
reflection as a function of the third Miller index �.
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calculated
(
1̄2

)
reflections are so strong. The value of � corresponding to the

(
1̄2

)
family of

reflections is approximately -0.46, which means the
(
1̄2

)
reflection is very close to one of the

points in reciprocal space, namely (1̄2 1̄
2). Note that we used a non-primitive, reciprocal-space

unit cell with a hexagonal basis, which means some, or all, Miller-indices can take fractional

values. In our case, the third Miller-index � can take integer and half-integer values [189],

though h and k still have to be integers (see Section 4.2.2). It is also clear from Figure 6.16b that

points in reciprocal space are still quite elongated along � for a crystal of 6 layers. This explains

why Bragg reflections that are forbidden in infinite BCT crystals may still be observable in an

experimental diffraction pattern.

Not only can useful information be extracted from the positions and relative intensities of

Bragg reflections in laser diffraction, the internal structure of a single Bragg reflection can be

used to determine whether the polymerization was successful in immobilizing the colloidal

particles or not. Figure 6.15b is a recording of one of the reflections of the (01) family (see Fig-

ure 6.15a). In a perfect, stationary crystal, such reflections would have a smooth appearance.

The grainy appearance of this reflection revealed the non-ideality of the crystal itself. Due to

Brownian motion, or polydispersity, the particles in a colloidal crystal (regularly) deviate from

their ideal lattice sites, leading to speckle formation within Bragg reflections. As long as the

particles display Brownian motion, interference on a specific spot of the Bragg reflection can

change from destructive to constructive or the other way around, which means that the inten-

sity of speckles will fluctuate in time (see supplemental information online, fluc_speckles.avi).
Upon immobilization of the colloidal particles by means of photo-induced polymerization of

the surrounding solvent mixture, the particles are no longer able to perform Brownian motion.

As a significant part of the colloids are not at their ideal lattice positions during immobiliza-

tion, there are still speckle patterns within the Bragg reflections. However, as the colloids are

now stationary, the intensity of the speckles no longer fluctuates. The grainy appearance of the

Bragg reflections then only reveals ‘frozen-in’ Brownian motion (see supplemental information

online, stat_speckles.avi).
As a final example, we used Bragg diffraction to monitor structural changes in colloidal

crystals. Before polymerization, the particles in our experimental system are still free to move

about. At high field strengths, they form BCT crystals, while the structure is CP at low field

strengths. Switching between BCT and CP occurs on a time-scale on the order of seconds

(see supplemental information online, switching.avi). This is most obvious in scattering exper-

iments, where the structural change immediately causes a Bragg color change (figures 6.17a

and 6.17d) and a change in the diffraction pattern (figures 6.17b and 6.17c). Bear in mind that

switching between a CP and a BCT structure is a martensitic transition [137], which means

that entire crystal layers are shifted within seconds! It would not have been possible to monitor

this dramatic structural change in real time over such a large area of the sample using confocal

microscopy. This is because nearly all microscopy techniques suffer from the disadvantage that

they either have a large field of view or a high resolution, but seldom a combination of both in

a single measurement. In addition, most confocal microscopes rely on a scanning mechanism

for imaging. A single 3-D scan takes much too long to allow monitoring of the 3-D structure

of the sample in real time. Although it may be difficult to determine which parts of the sample

actually contribute to scattering, 2-D reciprocal data, such as diffraction patterns, essentially

contain information on the 3-D structure of the sample in a single image. Therefore, scattering

can be used to monitor 3-D structural changes over macroscopically large areas in real time.
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Figure 6.17: The difference between CP and BCT crystals can be observed using Bragg diffraction.

Images (a) and (d) show the same sample area under off-normal, white light illumination at peak-to-peak

voltages of (a) 125 Vpp and (d) 300 Vpp. The sample consists of approximately 20 hexagonal layers of

1.1 μm diameter silica spheres in a refractive-index-matching mixture of water and dimethyl-sulfoxide

(DMSO). The change in crystal structure is reflected in a color change, caused by the difference in

spacing between the equivalent of the BCT (100)conv planes in the CP and BCT structure. The change

in crystal structure is also obvious from Bertrand, diffraction images of similar samples for (b) 125 Vpp

and (c) 275 Vpp. Instead of the usual hexagonal symmetry, the Bertrand image for the CP structure (b)

displays triangular symmetry, which is probably due to a slight misalignment of the condenser. The

misalignment would also explain the slight deformation in the BCT Bertrand image. The white scale

bars in panels (a) and (d) are 1.1 mm to 1.2 mm.

6.6 Conclusions and outlook
In this chapter, we have demonstrated a fabrication method for generating large-area colloidal

crystals with a body-centered tetragonal (BCT) crystal structure. The samples are completely

crystalline and show orientational order on the scale of millimeters. A recipe was developed

to immobilize the colloidal particles by means of diffusion-polymerization. Subsequently, the

crystals can be dried in air without inflicting serious damage to the crystal structure, thus al-

lowing inversion of the index contrast using a UV-curable monomer. Even better, the colloidal-

crystal templates can be infiltrated with silicon by chemical vapor deposition (CVD). Unfor-

tunately, upon heating and/or infiltration with silicon, part of the crystal relaxes to hollow-site

stacking (CP) instead of bridge-site stacking (BCT).

The fabrication method involving diffusion-polymerization turned out to be less robust as

we thought at first. Probably due to complications in the electronic setup, the results presented

in the first part of this chapter could not be reproduced with smaller spheres (1.1 μm diameter

instead of 1.4 μm). For this reason, and to reduce the time that is required for the fabrication

of a sample, we developed a faster fabrication method for colloidal BCT crystals that is based

on photo-induced polymerization. Using this method, fabrication of a crystal sample only takes

approximately 4 hours instead of 7 to 12 days! Unfortunately, the bottom part of these immobi-

lized crystals, by which we mean the first couple of layers counting from the sample substrate,

is damaged upon solvent evaporation - the remainder of the crystal remains BCT. After solvent

evaporation and a heat treatment, the remaining colloidal-crystal templates can be infiltrated

with amorphous silicon by CVD. The heat treatment is necessary, for if the polymer is not burnt
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away before infiltration, the top layer of the crystal can clog, thus hindering the infiltration of

the crystal layers below.

Apart from allowing a different structure than the usual CP one, the electric field allows

switching between CP and BCT structures on a time-scale on the order a seconds. We have

shown that light scattering in general, and laser diffraction in particular, allow monitoring of

such structural changes over macroscopic areas in real time. This might be interesting for

macroscopic devices in which Bragg reflections need to be switched on and off within seconds.

Furthermore, speckles in single Bragg reflections observed in laser scattering experiments can

be used to quickly determine whether or not photo-induced polymerization has successfully

immobilized the colloidal particles in the crystal.

Although the switching might be interesting for specialized applications, and much infor-

mation about defects in colloidal crystals might be extracted from speckles in Bragg reflections,

the main challenge for the near future is the fast, electric-field-induced fabrication of large-area,

colloidal BCT crystals that can withstand drying, heat treatments and infiltration with silicon by

chemical vapor deposition (CVD) [68]. Chemical modification of the surface of the planar sub-

strate is the most probable route to success, though we note here without proof that preliminary

trials with stearyl alcohol did not yield favorable results. Another option would be to remove

the damaged crystal layers by etching (Chapter 5), polishing, or slicing.
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Characterization of photonic colloidal
crystals by microradian X-ray

diffraction

Three-dimensional (3-D) photonic crystals, or periodic materials that do not allow the propaga-

tion of photons with a wavelength in the band gap in all directions, can provide unprecedented

control over the emission and propagation of light. A promising route towards photonic crystals

(PCs) is colloidal self-assembly. However, the route from colloidal crystals to strongly photonic

crystals is a multi-step fabrication process that can significantly affect the final 3-D structure of

the PC. Therefore, it is important to structurally characterize such PCs at every stage of their

fabrication. Because of the relatively weak interaction of X-rays with matter, X-ray scattering is

an excellent tool to probe the internal 3-D structure of PCs, even if the refractive-index contrast

is large in the visible region. However, the dramatic difference between the X-ray wavelength

(ca. 0.1 nm) and the colloid diameter (ca. 1 μm) leads to tiny diffraction angles on the order of

10−4 rad. We demonstrated in Chapter 3 that the required angular resolution can be obtained

at a third-generation synchrotron. In this chapter, we show that this angular resolution allows

the characterization of the internal 3-D structure of photonic crystals, with lattice spacings on

the order of a micrometer, at various stages of their fabrication. Furthermore, for the first time,

we have performed a comparison of both real-space and reciprocal-space 3-D structural data of

equivalent colloidal crystals fabricated from one system of particles.
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7.1 Introduction

Photonic crystals (PCs) can provide unprecedented control over both the emission and the prop-

agation of light, allowing important applications in, for example, infrared telecommunications

[7, 8, 19]. However, fabrication and characterization of PCs is challenging owing to the large

refractive-index contrast that is needed to open up a photonic band gap [31]. Here we demon-

strate that microradian X-ray diffraction can be used to characterize various (inverse) PCs with

lattice spacings as large as 1.3 μm at different stages of their fabrication. We have even fabri-

cated non-close-packed (non-CP) PC structures by self-assembly of colloidal micro-spheres in

an external electric field. Inverse PCs have been obtained by infiltration of the colloidal-crystal

templates with amorphous silicon. The size of the colloidal particles allows us to characterize

the internal 3-D structure of these crystal templates in both real and reciprocal space.

PCs are structures in which the refractive index varies periodically in space on a length scale

comparable to the wavelength of light [7]. If the refractive-index contrast is large enough, PCs

can have a photonic band gap, which is the photonic analogue of the electronic band gap in

semiconductors [16–18]. A promising route towards relatively cheap PCs with many crystal

layers is colloidal self-assembly. Monodisperse colloids can self-assemble into 3-D periodic

arrangements, analogous to thermodynamic crystal phases [57]. These colloidal crystals are

then used as templates for infiltration with a high-index material, such as silicon, after which

the original template is removed by a wet chemical etch [67, 68].

The multi-step fabrication process can significantly affect the final 3-D structure of the PC.

Therefore, it is important to structurally characterize the PCs at every stage of their fabrica-

tion. The colloidal-crystal templates can be characterized in three dimensions using optical

techniques, such as confocal microscopy, after refractive-index matching using a suitable liquid

[78, 99]. However, index matching is not an option for (silicon) infiltrated PCs. Moreover, even

for dry crystals, which can be index matched at visible wavelengths, it would still be very useful

to have a 3-D characterization technique that does not involve index matching. The infiltration

of the crystal with a liquid and subsequent removal of this liquid might affect the 3-D structure.

Because of the relatively weak interaction of X-rays with matter, X-ray scattering is an excellent

tool to probe the internal structure of these PCs, as has been demonstrated for sub-micrometer

lattice spacings [150, 241]. The challenge for X-rays stems from the dramatic difference be-

tween the X-ray wavelength (ca. 0.1 nm) and the colloid diameter (ca. 1 μm), leading to tiny

diffraction angles on the order of 10−4 rad. However, it has recently been demonstrated that

the required microradian angular resolution is attainable [168, 180] (see also Chapter 3). In this

chapter, we demonstrate that microradian X-ray diffraction yields clear information on the order

in and 3-D structure of PCs, i.g. by analyzing the positions and heights of Bragg reflections.

7.2 Experimental methods

7.2.1 Sample preparation

All dispersions consisted of core-shell silica spheres [91, 190, 191] with a total diameter of 1.1

μm or 1.4 μm and a polydispersity of 3%, as determined by static light scattering (SLS). The

approximately 400 nm diameter silica cores of all the particles were labelled with fluorescein
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isothiocyanate (FITC). The body-centered tetragonal (BCT) crystals were fabricated from dis-

persions of such spheres in a mixture of water and dimethyl sulfoxide (87 vol-% DMSO) by

sedimentation onto a glass cover slide (Menzel-Gläser, #1 cover slip, ca. 150 μm thick) in an

AC electric field perpendicular to gravity [109, 175].∗ The electric field was generated by ap-

plying a sinusoidal voltage signal with a frequency of (1.000±0.005) MHz and a peak-to-peak

voltage of 200 Vpp to 400 Vpp to parallel electrodes with a diameter of 50 μm and a mutual

spacing of approximately 1.0 mm to 1.25 mm. As the sample cell volume was fixed, the num-

ber of layers in these samples was determined by the volume fraction of silica spheres in the

colloidal dispersion (e.g., 16.5 vol-% yields ca. 15 layers).

The particles were immobilized by a polymerization process, which is the result of the in-

teraction between the solvent and the glue that was used to seal the sample cells (Bison Epoxy

Rapide) [109]. This allows the electric field to be switched off without the crystal losing its then

metastable BCT structure. However, the sample used for Figure 7.4i was fabricated using a dif-

ferent polymerization process. In this case, the 1.1 μm diameter silica particles were dispersed

in a 10.1 vol-% solution of trimethylolpropane ethoxylate triacrylate (Aldrich, average molec-

ular weight = 428 g/mol) in DMSO (Aldrich, > 99.6%). Next, 10 μl of a 1.0 vol-% solution

of photo-initiator 2-hydroxy-2-methyl-propiophenone (Aldrich, 97%) in DMSO was added to

50 μl of the dispersion. The resulting dispersion was used for BCT crystal growth [109]. The

particles in the crystal were subsequently immobilized by illumination with UV-light (UVP,

UVGL-58, 365 nm, 6 W) for 2 minutes at a distance on the order of a centimeter. Close-packed

(CP) crystals of similar spheres were obtained by vertical controlled drying [67, 77].

Some samples were infiltrated with silicon by chemical vapor deposition (CVD) [234]. Dis-

ilane (Si2H6) was used as the precursor gas. In a typical CVD run, gas flows of 10 sccm for the

disilane gas and 100 sccm for the hydrogen gas were used. The temperature at the sample was

approximately 450 ◦C, the pressure was 0.020 mbar and the reaction duration was 300 min. At

these conditions, the CVD process results in the deposition of amorphous silicon, which has a

refractive index that is slightly larger than that of crystalline silicon (3.59 instead of 3.5 [235]).

Before infiltration, the BCT crystals were heated up to at least 425 ◦C, at an average rate of

100 ◦C/h at most. They were kept at the final temperature for at least 3 h in order to remove

the polymer network, which was found to inhibit infiltration of the crystal layers below the top

layer in some cases.

7.2.2 Sample characterization

The silica templates were characterized by confocal microscopy and scanning electron mi-

croscopy (SEM). Confocal microscopy measurements were performed using a Leica TCS SP2

and TCS NT confocal scan head mounted on a Leica DM IRB inverted microscope. The crys-

tal samples were index matched by infiltration with a mixture of water and DMSO (80 vol-%

DMSO) or a mixture of water and glycerol (Merck, 87 vol-% glycerol). A Leica PL APO 100×
(1.4 NA) oil-immersion objective was used, in combination with Cargille immersion oil (type

B). The FITC was excited using the 488 nm line of an Ar laser. Dry and infiltrated crystals were

(additionally) characterized using a Philips XL30FEG scanning electron microscope (SEM),

operating at an accelerating voltage of 2 keV to 5 keV and a working distance of approximately

∗For a more detailed description of the fabrication of colloidal BCT crystals, see Chapter 6.
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5 mm.

Diffraction experiments were performed at the beamlines BM26B “DUBBLE” and ID10A

“TROÏKA” of the European Synchrotron Radiation Facility (ESRF) in Grenoble, France. The

synchrotron X-ray radiation was produced by either a bending magnet source (“DUBBLE”) or

an undulator source (“TROÏKA”).† A typical photon energy of 11 keV (wavelength k = 0.11

nm) was selected using a Si-(111) monochromator. The setup was aligned such that an image

of the source was created at the detector screen, thus increasing the q-space resolution, which is

necessary to measure Bragg reflections at very small angles. Furthermore, in most experiments,

X-rays were allowed to propagate freely towards the sample, after which the transmitted and

diffracted beams were focused by a compound refractive lens positioned just after the sample

[168, 180].

At “DUBBLE”, the diffraction patterns were recorded using a 16-bit charge-coupled device

(CCD) camera (Photonic Science, Xios II) with a pixel size of 22.7 μm × 22.7 μm and an image

size of 1270 pixels × 1160 pixels. The q-space calibration of the Photonic Science camera

was performed at “DUBBLE” using dry rat-tail collagen, yielding an inherent uncertainty in

absolute q-space distances of 3%. At “TROÏKA”, a 12-bit CCD camera (Sensicam, PCO CCD

Imaging) was used, with a pixel size of 6.7 μm × 6.7 μm and an image size of 1280 pixels

× 1024 pixels. The Sensicam camera was calibrated using a CP reference crystal, which had

been measured at “DUBBLE” as well. Because of the limited dynamic range of CCD cameras,

diffraction patterns were recorded several times with exposure times ranging from 1 s up to 10

minutes. The variation in exposure time and sample absorption complicates the comparison

of the intensities of corresponding reflections in different diffraction patterns presented here.

All diffraction patterns have been corrected for background scattering. The peak profiles in

Figures 7.2 and 7.4 were obtained by averaging the intensity over a band of 5 detector pixels

to 7 detector pixels wide. Distances in reciprocal space were measured between the maxima of

allowed Bragg reflections, whose positions were determined by fitting Gaussian curves to their

line profiles.

7.3 Results and discussion

We analyzed the diffraction data in terms of a hexagonal lattice. The reason for this is that all

our crystals, as is often the case in colloidal self-assembly, consist of stackings of hexagonally

packed layers, which orient parallel to the substrate. In BCT crystals these layers are ABAB

bridge-site stacked, yielding lines of particles in a real-space z-projection (see Figure 7.1a). The

conventional BCT unit cell, the direction of the electric field E, the laboratory xyz-frame and

the real-space lattice vectors a1, a2, a3 are given in Figure 7.1b. The CP structures, on the other

hand, consist of hollow-site stacked layers with three possible lateral positions: A, B and C (see

Figure 7.1c). The 2-D reciprocal lattice of a single hexagonal plane is hexagonal and can be

generated by two basis vectors, b1 and b2 (Figure 7.1d). The 3-D reciprocal lattice depends on

the stacking of the layers. Any scattering vector can be decomposed into q = hb1 + kb2 + �b3,

where b3 is taken along the z-direction with a length b3 = (2π/d) determined by the interplanar

spacing d. This non-primitive, reciprocal-space unit cell facilitates easy comparison between

†For further details concerning the microradian X-ray diffraction setup, see Chapter 3.
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Figure 7.1: (a) Projection of the BCT structure along the z-axis, which is perpendicular to the hexagonal

planes (see panel (b)), revealing BCT ABAB bridge-site stacking. (b) Conventional unit cell for the BCT

real-space structure. The hexagonal plane (xy) is indicated by the dark-gray spheres. The real-space

basis vectors are labelled a1, a2 and a3. (c) Projection of an FCC (face-centered cubic) structure along

the z-axis, revealing ABCABC hollow-site stacking. In panels (a - c), the spheres have not been drawn

to scale for clarity. (d, e) Cross sections through the BCT reciprocal lattice along the hexagonal (xy)

plane (d) and the xz-plane (e). The black dots correspond to integer � and the white dots to half-integer

�. The reciprocal basis vectors are labelled b1, b2 and b3. Furthermore, the Ewald planes for an angle of

incidence of 0◦ (solid line) and 18.43◦ (dashed line) are shown in panel (e). (f) Hexagonal (xy) plane of

the reciprocal lattice of a CP crystal. At normal incidence (� = 0), only the stacking-independent lattice

points in reciprocal space (black dots) are probed.
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Figure 7.2: (a) Diffraction pattern at normal incidence of a 7-layer BCT crystal of 1.4 μm diameter

silica spheres. (b) Diffraction pattern of the same crystal at an angle of incidence of 18.44◦. The
(
1̄1̄0

)
reflection has not disappeared, as it is on the axis of rotation (y-axis, see Figure 7.1e). The white scale

bar in both images is 10 μm−1. The numbers below the intensity scale bar are detector pixel values. (c,

d) Line profiles through the
(
1̄1̄0

)
and

(
2̄10

)
or

(
2̄1 1

2

)
reflections, as indicated in panels (a) and (b) by

a red line. Both reflections are at the same distance from the direct beam, which means the value of the

form factor is equal for both reflections. In both graphs, the maximum intensity (I) of the highest peak

was scaled to 100.
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Figure 7.3: (a) Diffraction pattern at normal incidence of an approximately 6-layer CP crystal of 1.1 μm

diameter silica spheres in air. The stacking-independent reflections (see Figure 7.1f) are much stronger

than the other reflections. (b) Normal-incidence diffraction pattern of a CP crystal with approximately 20

layers after partial infiltration with amorphous silicon. The white scale bar in both images is 10 μm−1.

The numbers below the intensity scale bar are detector pixel values.
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the scattering by CP and BCT structures. Note that the third Miller index � can take fractional

values [189], whereas h and k still have to be integers [3, 105].

For any given crystal orientation, only lattice points in reciprocal space that are intersected

by the Ewald sphere are probed. As our colloidal particles are typically 104 times larger than

the X-ray wavelength, the Ewald sphere [3, 105] is nearly flat and oriented perpendicular to

the incoming X-ray beam. At normal incidence (� = 0), interference is constructive for BCT

structures if (h+ k) is even and destructive if (h+ k) is odd (see Figure 7.1d). For odd (h+ k),
the stacking-induced phase difference between the layers is compensated at half-integer values

of �, which can be reached by specific sample rotations (see Figure 7.1e). For a CP crystal

at normal incidence (� = 0), interference is always constructive for (h− k) divisible by 3 (see

Figure 7.1f and Section 4.2.2).

Figure 7.2a presents the normal-incidence (� = 0), X-ray diffraction pattern of a 7-layer

BCT crystal. As expected, reflections for which (h + k) is even are much stronger than those

for which (h + k) is odd (see Figure 7.2c). It is convenient to compare reflections at the same

distance from the direct beam. In that case, no form-factor correction is necessary to compare

peak intensities. Forbidden reflections are still slightly visible, since destructive interference

is not complete in BCT if the number of layers is odd. This becomes especially apparent if

the number of layers is small. Note that the microradian resolution of the setup allows us to

resolve even those Bragg reflections that are very close to the direct beam, such as the
(
1̄10

)
reflection at a diffraction angle of only 72 μrad. To further clarify its structure, the BCT crystal

was rotated to vary the angle of incidence of the X-ray beam. Single-scattering theory predicts

that the
(
2̄1�

)
reflection, which is forbidden for � = 0, should show up if the sample is rotated

over an angle of 18.43◦ around the vertical y-axis. Indeed, the
(
2̄1 1

2

)
reflection is observed and

seen to be nearly as strong as the
(
1̄1̄0

)
reflection (Figure 7.2d). The

(
1̄1̄0

)
reflection is still

visible in Figure 7.2b because it is on the axis of rotation (see Figure 7.1e).

One of the major advantages of X-rays is that the internal 3-D structure of samples with

a large index contrast in the visible region can still be probed. Figure 7.3a shows a normal-

incidence (� = 0) X-ray diffraction pattern of an approximately 6-layer CP crystal of silica

spheres in air. The reflections for which (h− k) is divisible by 3, like the six reflections of

the (110) family and the six reflections of the (220) family, are much stronger than the other

reflections, as expected (see Figure 7.1f). Note that (h− k) is also divisible by 3 for the six

reflections of the (300) family, but these appear close to the third minimum of the sphere form

factor (see Section 4.2.2), reducing their intensity significantly. The appearance of forbidden

reflections, like the six reflections of the (100) family, can be attributed to the finite number of

layers and/or possible stacking disorder [153]. The refractive-index contrast can be enhanced

even further by infiltration of the crystal with amorphous silicon. Figure 7.3b shows a similar

diffraction pattern of an approximately 20-layer CP crystal, which was partially infiltrated with

amorphous silicon (estimated layer thickness 21 nm). As in Figure 7.3a, the dominant features

are the six reflections of the (110) family and the six reflections of the (220) family (see Figure

7.1f), demonstrating that CP crystals can be silicon-infiltrated by chemical vapor deposition

(CVD) without causing any significant damage. The forbidden reflections are less pronounced

than in Figure 7.3a, which is due to the larger number of layers.

Finally, Figure 7.4 demonstrates that X-ray diffraction can be used to characterize even

non-CP PCs at various stages of their fabrication. Figure 7.4a shows a normal-incidence X-ray

diffraction pattern of an approximately 15-layer BCT crystal of 1.4 μm diameter silica spheres
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Figure 7.4: (a - c) Normal-incidence, X-ray diffraction patterns of a BCT crystal consisting of 1.4 μm

diameter silica spheres; (a) in a water-DMSO mixture, (b) after solvent evaporation and (c) after infil-

tration with amorphous silicon. The number of layers is approximately 15, 15 and 7, respectively. The

white scale bar in all images is 10 μm−1. The numbers below the intensity scale bar are detector pixel

values. The reflections in this figure appear to be much narrower than those in Figures 7.2 and 7.3.

This is because an undulator source instead of a bending-magnet source was used. (d - f) Line profiles

taken along the red lines in the diffraction images. (g, h) Projections along the z-axis of 3-D confocal

microscopy scans spanning 6 hexagonal layers of a BCT crystal of 1.4 μm diameter silica spheres, both

before (g) and after (h) solvent evaporation and refilling. (i) SEM image showing the yz-plane, at a tilt

angle of 45◦, of a silicon-infiltrated BCT crystal. The inset shows a top view (xy) of a similar crystal at

larger magnification. The scale bar in the inset is 2 μm.
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in a mixture of water and DMSO. We can check that the structure is BCT in real space by

looking at a z-projection of a confocal 3-D scan spanning 6 crystal layers, clearly revealing

BCT bridge-site stacking (see Figure 7.4g). After solvent evaporation and subsequent refilling

for index matching, confocal microscopy measurements did not indicate that the crystals suffer

any serious damage upon solvent evaporation (see Figure 7.4h). This was confirmed by X-ray

measurements (see Figure 7.4b), although the intensity of the forbidden reflection
(
1̄20

)
seems

slightly larger. The latter suggests that only a very small part of the crystal, if any at all, has

a CP structure (see figures 7.1f and 7.3). Owing to the large capillary forces applied during

solvent evaporation, slippage of a layer from the bridge sites to the hollow sites can cause part

of a crystal to relax from BCT to CP.

Once the crystals have been infiltrated with amorphous silicon, it becomes impossible to

characterize their 3-D structure quantitatively in real space. Figure 7.4i shows a scanning elec-

tron microscopy (SEM) image of an infiltrated BCT crystal that was cleaved after infiltration.

The space in between the spheres has been filled with silicon and the hexagonal layers are still

ABAB stacked. The crystal seems to have taken quite some damage, but this might have been

caused by the cleaving as well. One of the advantages of X-ray diffraction is that it can probe the

3-D structure in situ. Furthermore, it yields macroscopically-averaged structural data, whereas

SEM only provides information on a small part of the surface. Figure 7.4c shows the diffraction

pattern of a similar, 7-layer crystal. Although the BCT fingerprint is still visible in the diffrac-

tion pattern, the forbidden
(
2̄10

)
reflection is nearly as strong as the allowed

(
1̄1̄0

)
reflection,

which means large parts of the crystal are no longer bridge-site but hollow-site stacked. The

inset of Figure 7.4i indeed shows that the bottom 2 layers are hollow-site stacked, which is

probably due to adhesion of the particles of the bottom layer to the glass substrate.

From a projection such as Figure 7.4g, we can determine in real space the ratio α of the

distance between the lines of particles and the distance between the particles in a line. This

ratio α can also be determined in reciprocal space by comparing distances along the
(
1̄10

)
and

(110) directions. For a perfect BCT crystal with touching spheres, α would equal
√

3. From

the X-ray diffraction pattern shown in Figure 7.4a, a value for α of (1.023±0.002) ·√3 can be

extracted, whereas confocal microscopy on the same sample yields (1.017±0.005) ·√3. The

values for α agree quite well and they both indicate that the hexagonal planes are compressed

along the direction of the external electric field [109].

7.4 Conclusions

We have demonstrated that X-ray scattering is an excellent probe of the internal 3-D struc-

ture of CP and non-CP colloidal PCs with lattice spacings on the order of a micrometer. For

example, using this advanced scattering technique, we have found that the 3-D structure of

non-CP colloidal crystals can be significantly altered in going from dried to silicon-infiltrated

crystals. Furthermore, for the first time, we have performed a comparison of both real-space

and reciprocal-space 3-D structural data of equivalent colloidal crystals fabricated from one

system of particles. Up until now, we have only considered the position and the intensity of the

diffraction peaks. The microradian resolution of our X-ray diffraction setup also allows accu-

rate determination of the width of the Bragg reflections. Thus, important information on the

presence of defects and long-range order can be obtained as well, even for samples that scatter



CHARACTERIZATION OF PHOTONIC CRYSTALS BY X-RAY DIFFRACTION 149

strongly in the visible.
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Summary

In this thesis, we present (mostly) experimental work on the characterization of photonic col-

loidal crystals in real and reciprocal space. In Chapter 1, the main concepts of this research

subject are introduced in an intuitive manner. First, the notion and the possible applications of

photonic crystals are introduced in analogy with electronic semiconductors. Photonic crystals

are defined as structures in which the refractive index n varies periodically in space in one, two

or three dimensions. The periodicity is typically on the order of the wavelength of (visible)

light. One of the most important properties of photonic crystals is the possibility of their having

a photonic band gap - a frequency range, or ‘color’ range, for which no propagating electro-

magnetic modes exist within the crystal, regardless of propagation direction or polarization. In

a one-dimensional (1-D) model, the basic physics behind photonic band gaps is clarified using

(dielectric) mirrors as crystal planes.

After a short overview of some other possible fabrication methods, self-assembly of col-

loidal particles is introduced as a promising route towards three-dimensional (3-D) photonic

crystals having areas on the order of mm2 and a large number of layers (� 25). Colloids are

mesoscopic particles of which at least one dimension has a size between a few nanometers

(∼ 0.000001 mm) and a few micrometers (∼ 0.001 mm). They are approximately 1,000×
larger than the molecules of which the suspending medium consists, but they are still small

enough to perform Brownian motion on a length scale that is comparable to their size. Conse-

quently, colloidal particles dispersed in a solvent are excellent condensed-matter model systems,

for they display phase behavior that is analogous to that of atoms and molecules, but they are

more accessible in experiments.

In the last part of the Introduction, characterization of crystalline structures consisting of

submicrometer particles is discussed. Although far from trivial, real-space imaging is only

touched upon briefly, as the notion of real space is intuitively clear. A large part of this thesis,

however, is about characterization by scattering or diffraction. We demonstrate that diffrac-

tion is most easily described in reciprocal space and we ‘derive’ reciprocal-space basis vectors

intuitively from the general real-space structure of crystals.

As the fabrication of 3-D photonic band-gap materials remains a major challenge, calcu-

lations that predict their optical properties play an important role in guiding the fabrication

process. In Chapter 2, we start with a review of how to deal with photonic crystals within the

framework of classical electrodynamics. Next, it is shown that the optical properties of pho-

tonic band-gap materials can be described effectively by band diagrams, of which we show

some examples in subsequent sections. First of all, we calculated photonic band structures of

binary Laves phases, especially MgCu2. By removal of one of the two species of colloids from

the MgCu2 structure, either diamond or pyrochlore structures can be fabricated. Combined

with thermodynamic stability simulations by Antti-Pekka Hynninen, our results have led to a

proposed route towards photonic colloidal crystals with a band gap in the visible region. The



issue of convergence of (MPB) plane-wave calculations in such strongly photonic crystals is

also discussed. Next, we present photonic band diagrams of (inverse) body-centered tetragonal

(BCT) crystals. In contradiction to results in literature, we found that there is no photonic band

gap for inverse BCT crystals. Finally, we demonstrate that photonic band-structure calculations

can be used in the analysis of optical spectra of photonic colloidal crystals.

The fabrication of photonic crystals using self-assembled colloidal crystals as templates for

infiltration with high-refractive-index materials is a multistep fabrication procedure in which

each step can significantly affect the 3-D structure of the resulting photonic crystal. Because

of their relatively weak interaction with matter, X-rays are an excellent probe of the internal

structure of photonic crystals at the various stages of their fabrication. The major challenge for

X-rays stems from the dramatic difference between typical X-ray wavelengths of 0.1 nm and

typical colloid diameters of 1 μm, leading to tiny diffraction angles on the order of 10−4 rad. In

Chapter 3, we demonstrate that an angular resolution of about 2 ·10−6 rad is readily achievable

at a third-generation synchrotron source using compound refractive optics. The scheme allows

for fast acquisition of two-dimensional X-ray diffraction data and can be realized at sample-

detector separations of only a few meters. As a result, diffraction measurements in colloidal

crystals with interplanar spacings larger than a micrometer are made possible. Moreover, the

range of various order parameters can be determined, for even the width of Bragg peaks can be

probed.

As it is a popular method for growing photonic-crystal templates, colloidal crystals grown

from dispersions of silica spheres by controlled drying, also known as convective assembly,

are quantitatively characterized using microradian X-ray diffraction in Chapter 4. We present

X-ray diffraction patterns and electron microscopy images suggesting that the orientation of the

hexagonal layers is such that the lines of touching particles are perpendicular to the meniscus if

the crystal has approximately 5 layers or more. At the start of crystal growth, where the number

of layers is smaller, the lines were found to be parallel to the meniscus in most crystallites.

Furthermore, quantitative analysis of X-ray diffraction patterns showed that the layers parallel

to the sample substrate were not exactly hexagonal and that the stacking sequence was mainly

that of face-centered cubic (FCC) crystals, though stacking faults may have been present.

In Chapter 5, binary colloidal crystals of organic spheres (polystyrene, PMMA) and/or in-

organic spheres (silica) are introduced as promising templates for the fabrication of strongly

photonic crystals. Unfortunately, the refractive-index contrast in organic templates cannot be di-

rectly enhanced using standard infiltration techniques such as chemical vapor deposition (CVD).

For example, the reaction temperature of silicon CVD is approximately 350 ◦C, which is far

above the glass transition temperature of polystyrene (PS) and PMMA. Silica templates can be

infiltrated by CVD directly, but binary colloidal crystals of silica spheres often have a layer of

colloidal fluid on top. In test experiments, we used atomic layer deposition (ALD) of alumina

to infiltrate even organic templates. After burning of the original template, the refractive-index

contrast was further enhanced by infiltration with silicon using CVD. Preliminary etching exper-

iments demonstrated that it may be possible to use successive treatments with different plasmas

to etch polymer-embedded, colloidal-crystal templates of silica spheres. However, a first trial

with peeling off crystal layers using adhesive tape showed that this may be a much easier, faster

and cheaper technique for ‘etching’ such templates.

Apart from their experimental accessibility, an additional advantage of colloidal dispersions

as condensed-matter model systems is the ability to tune the interaction between colloids us-



ing chemical synthesis or external fields. In Chapter 6, we exploit the long-range term that is

added to the interparticle interaction potential of colloids because of the dipole moments that

are induced in colloidal particles by applying external, high-frequency electric fields. Sedimen-

tation of micrometer-sized, silica spheres in an electric field perpendicular to gravity yielded

large-area colloidal crystals. The growth procedure resulted in body-centered tetragonal (BCT)

crystals that had areas on the order of mm2, but did not have a layer of colloidal fluid on top. In

addition, the electric field was used as an external control to switch between close-packed (CP)

and BCT crystal structures within seconds. We demonstrate that light scattering can be used to

monitor such 3-D structural changes in colloidal crystals over macroscopic areas in real time.

Since the BCT crystal structure is not close-packed, and thus mechanically less stable than

CP structures, we also developed two procedures to invert it without loss of structure. Both

methods involve immobilization of the colloidal particles by means of polymerization of the

surrounding solvent mixture, either by diffusion-polymerization or by photo-induced polymer-

ization. We even infiltrated BCT crystals with silicon using CVD, though this lead to some

damage at the bottom of the crystals. Characterization of colloidal BCT and CP crystals of

micrometer-sized silica spheres by small-angle X-ray scattering (SAXS) is described in Chap-

ter 7. We demonstrate that microradian X-ray diffraction can be used to determine the internal

3-D structure of and long-range order in photonic colloidal crystals at the various stages of their

fabrication. Excellent agreement was found with real-space images that were obtained from

confocal and electron microscopy.





Samenvatting

In dit proefschrift presenteren we (hoofdzakelijk) experimenteel werk aan de karakterisering

van fotonische colloïdale kristallen in de reële en in de reciproke ruimte. De belangrijkste be-

grippen uit dit onderzoeksgebied worden op intuïtieve wijze uitgelegd. Eerst worden de idee en

de mogelijke toepassingen van fotonische kristallen uiteengezet in een vergelijking met elektro-

nische halfgeleiders. Fotonische kristallen worden gedefinieerd als structuren waarin de brek-

ingsindex n op een regelmatige wijze varieert in één, twee of drie dimensies. De lengteschaal

van die periodiciteit komt overeen met de golflengte van (zichtbaar) licht. Een van de belan-

grijkste eigenschappen van fotonische kristallen is de mogelijke aanwezigheid van een ban-

denscheiding in hun fotonische bandenstructuur - een verzameling frequenties, of ‘kleuren’,

waarmee licht zich niet kan voortplanten door het kristal, onafhankelijk van de voortplant-

ingsrichting of de polarisatie. De essentiële natuurkunde achter fotonische bandenscheidingen

wordt behandeld in een model waarin (diëlektrische) spiegels op een ééndimensionaal (1D)

kristalrooster gezet worden.

Na een kort overzicht van enkele andere fabricagemethoden wordt zelfassemblage van col-

loïdale deeltjes opgevoerd als een veelbelovende manier om driedimensionale (3D) fotonische

kristallen te maken met een oppervlak in de orde van mm2 en een relatief groot aantal lagen

(� 25). Colloïden zijn mesoscopische deeltjes waarvan tenminste één afmeting tussen een paar

nanometer (∼ 0.000001 mm) en een paar micrometer (∼ 0.001 mm) ligt. Ze zijn daarmee

ongeveer 1.000× groter dan de moleculen waaruit hun oplosmiddel bestaat, maar ze zijn nog

wel klein genoeg om Brownse bewegingen te ondergaan op de lengteschaal van hun eigen

omvang. Dientengevolge zijn colloïdale dispersies uitstekende modelsystemen voor gecon-

denseerde materie in het algemeen, want ze vertonen fasegedrag dat analoog is aan dat van

atomen en moleculen, maar ze zijn veel makkelijker te observeren in experimenten.

In het laatste gedeelte van hoofdstuk 1 wordt de karakterisering besproken van kristallijne

structuren die bestaan uit deeltjes met een afmeting in de orde van een micrometer. Ook al is

het ook geen sinecure, de karakterisering met behulp van microscopie wordt slechts aangestipt,

aangezien de kwalitatieve interpretatie van microscoopafbeeldingen intuïtief al duidelijk is. Een

groot gedeelte van dit proefschrift gaat echter over karakterisering met behulp van verstrooi-

ingstechnieken. We leggen uit dat verstrooiing het gemakkelijkst beschreven kan worden in

de reciproke ruimte en we leiden uitdrukkingen voor basisvectoren van de reciproke ruimte af

vanuit de structuur van kristallen zoals die in een microscoop waargenomen kan worden.

Aangezien de fabricage van fotonische materialen wetenschappers nog steeds voor gewel-

dige uitdagingen plaatst, spelen berekeningen waarmee de optische eigenschappen van fotonis-

che kristallen voorspeld kunnen worden een belangrijke rol in het sturen van dergelijke fab-

ricageprocessen. In hoofdstuk 2 beginnen we dan ook met een overzicht van de manier waarop

fotonische kristallen behandeld kunnen worden binnen het theoretisch kader van de klassieke

elektrodynamica. Vervolgens leggen we uit waarom de optische eigenschappen van fotonische



materialen doeltreffend samengevat kunnen worden in een fotonisch bandendiagram, waarvan

we er in de daaropvolgende paragrafen een aantal laten zien. Ten eerste hebben we de fotonis-

che bandenstructuur uitgerekend van binaire kristallen met een Laves-structuur, in het bijzonder

MgCu2. Door één van de twee soorten bollen uit MgCu2 te verwijderen kan een kristal gemaakt

worden met de structuur van diamant of van pyrochloor. In combinatie met simulaties aan de

thermodynamische stabiliteit van zulke binaire kristallen hebben onze berekeningen geleid tot

een plan waarmee wellicht fotonische kristallen met een bandenscheiding voor zichtbaar licht

gemaakt kunnen worden. Het computerprogramma waarmee wij fotonische bandendiagram-

men uitrekenen (MIT’s MPB) heeft moeite met enkele sterk fotonische structuren, waaronder

diamant en pyrochloor. De nauwkeurigheid van onze berekeningen voor diamant wordt uitge-

breid besproken, wat van belang is voor de gebruikers van dit wijdverspreide programma. Ten

tweede presenteren we fotonische bandendiagrammen voor (inverse) kristallen met de lichaams-

gecentreerd tetragonale structuur (Eng: body-centered tetragonal, BCT). In tegenstelling tot

resultaten in de vakliteratuur vonden wij dat er geen fotonische bandenscheiding is voor in-

verse BCT kristallen. Tenslotte bespreken we in hoofdstuk 2 de analyse van spectroscopische

metingen in het zichtbaar met behulp van berekende fotonische bandenstructuren.

De fabricage van fotonische kristallen door middel van het opvullen van de ruimtes tussen

de bollen in een zelfgeorganiseerd kristal van colloïden met materialen die een hoge brekingsin-

dex hebben, is een proces met vele stappen. In elk van die stappen kan de 3D structuur van het

uiteindelijke fotonische kristal sterk aangetast worden. Vanwege de zwakke interactie met ma-

terie is röntgenstraling bij uitstek geschikt voor de karakterisering van fotonische kristallen in

de verschillende stadia van hun fabricageproces. De grote uitdaging bij het gebruik van röntgen-

straling komt voort uit het enorme verschil tussen de golflengte van röntgenstralen (ongeveer

0.1 nm) en de diameter van de colloïden in het kristal (ongeveer 1 μm), wat leidt tot zeer kleine

verstrooiingshoeken in de orde van 10−4 rad. In hoofdstuk 3 laten we zien dat hoeken tot wel

2 ·10−6 rad gemeten kunnen worden in een verstrooiingsopstelling waarin een synchrotron van

de derde generatie als bron dient. De opstelling maakt het mogelijk om in korte tijd tweedimen-

sionale diffractiepatronen op te nemen, waarbij de afstand tussen het monster en de detector

slechts enkele meters bedraagt. Dientengevolge kunnen röntgendiffractiepatronen opgenomen

worden van kristallen met roosterafstanden in de orde van een micrometer. Aangezien zelfs de

breedte van de diffractiepieken nauwkeurig bepaald kan worden, is het mogelijk om te bepalen

of monsters geordend zijn over afstanden die groot zijn in vergelijking met de omvang van de

colloïden in het kristal.

Een populaire methode om colloïdale kristallen mee te groeien voor de fabricatie van fo-

tonische materialen is ‘beheerste verdamping’. In hoofdstuk 4 laten we zien dat röntgenver-

strooiing gebruikt kan worden om zulke kristallen kwantitatief te karakteriseren. Uit röntgen-

diffractiepatronen en elektronenmicroscopieplaatjes blijkt dat de oriëntatie van de hexagonale

lagen in deze kristallen zodanig is dat de rijen van elkaar rakende deeltjes loodrecht staan op de

oriëntatie van de meniscus, en dus niet parallel aan de meniscus, mits het aantal lagen groter is

dan ongeveer 5. Daar waar het kristal begonnen is met groeien, daar zien we dat de rijen van

elkaar rakende deeltjes zich juist wel parallel langs de meniscus richten. Nauwkeurige analyse

van de röntgendiffractiedata laat zien dat de lagen die parallel aan de monsterdrager liggen niet

precies hexagonaal zijn en dat de stapelvolgorde van die lagen dezelfde is als die van vlak-

gecentreerd kubische (Eng: face-centered cubic, FCC) kristallen, al kunnen er stapelfouten in

voorkomen.



In hoofdstuk 5 leggen we eerst uit dat binaire colloïdale kristallen bestaande uit organische

bollen (polystyreen, PMMA) en/of anorganische bollen (silica) gebruikt zouden kunnen wor-

den voor de fabricatie van sterk fotonische kristallen. Helaas kan het brekingsindexcontrast

in kristallen van organische bollen niet vergroot worden door zomaar de lege ruimtes op te

vullen met behulp van standaardtechnieken als CVD (Eng: chemical vapor deposition). CVD

is een proces waarbij een reactant in de gasfase aan een oppervlak reageert tot een vaste stof,

bijvoorbeeld silicium. De afzetting van silicium met behulp van CVD vindt plaats bij een tem-

peratuur van ongeveer 350 ◦C en dat is veel hoger dan de temperatuur waarbij materialen als

polystyreen (PS) en PMMA gaan vloeien. Binaire kristallen van silica bollen kunnen wel opge-

vuld worden met silicium met behulp van CVD, maar er ligt vaak een laag colloïdale vloeistof

bovenop zulke kristallen. In enkele proefexperimenten hebben we kristallen van organische

bollen (gedeeltelijk) opgevuld met anorganisch materiaal door gebruik te maken van een tech-

niek die in het Engels bekend staat onder de afkorting ALD (Eng: atomic layer deposition).

ALD is een afzettechniek waarbij het monster keer op keer blootgesteld wordt aan dezelfde se-

rie van gassen, waardoor er per serie één laagje atomen van een bepaald materiaal afgezet wordt,

bijvoorbeeld aluminiumoxide (Al2O3(s)). Na ALD hebben we het oorspronkelijke kristal van

PS of PMMA bollen verbrand, waarna we het brekingsindexcontrast in het overgebleven raam-

werk verhoogd hebben door de lege ruimtes met behulp van CVD (gedeeltelijk) op te vullen

met silicium. Experimenten in de voorbereidende fase tonen aan dat het mogelijk moet zijn om

colloïdale kristallen te etsen door ze bloot te stellen aan plasma’s. De kristallen moeten dan wel

vastgezet worden in een laag polymeer en er moet gebruik gemaakt worden van verschillende

plasma’s om afwisselend polymeer en silica te etsen. We hebben ook een keer geprobeerd om

kristallagen te verwijderen door ze met plakband van het kristal af te trekken, wat nog wel eens

een veel makellijkere, snellere en goedkopere manier van ‘etsen’ zou kunnen zijn.

Naast hun experimentele toegankelijkheid hebben colloïdale dispersies als modelsysteem

nog een voordeel boven moleculaire systemen. Bij colloïden kunnen de interacties tussen de

deeltjes namelijk naar wens afgestemd worden door hun chemische synthese aan te passen of

door ze te onderwerpen aan externe velden. In hoofdstuk 6 gebruiken we een extern, hoogfre-

quent elektrisch veld om een dipoolmoment in colloïden te induceren. Hierdoor wordt aan hun

interactiepotentiaal een term toegevoegd die een lange dracht heeft. Door silica bollen met

een diameter van ongeveer 1 μm te laten bezinken in een elektrisch veld dat loodrecht op de

zwaartekracht staat, zijn kristallen met een groot oppervlak gegroeid. Deze procedure leverde

colloïdale lichaams-gecentreerd tetragonale (BCT) kristallen op die een oppervlak in de orde

van mm2 hadden en er lag geen laag colloïdale vloeistof bovenop. Daarnaast is het elektrisch

veld gebruikt als een externe schakelaar waarmee binnen enkele secondes geschakeld kon wor-

den tussen BCT kristallen en dichtstgepakte (Eng: close-packed, CP) structuren. We tonen

aan dat lichtverstrooiing bij uitstek geschikt is om zulke veranderingen in de 3D structuur van

colloïdale kristallen met macroscopisch grote oppervlakken live te volgen.

Aangezien BCT kristallen niet dichtgepakt zijn, en daarom mechanisch minder stabiel zijn

dan CP kristallen, hebben we ook twee procedures ontwikkeld waarmee BCT structuren geïn-

verteerd kunnen worden zonder dat hun ordening verwoest wordt. In beide procedures worden

de colloïdale deeltjes vastgezet door het hen omringende oplosmiddel te polymeriseren. In het

ene geval wordt de polymerisatie gedreven door diffusie, in het andere geval door lichtgevoelige

stoffen in het oplosmiddel. Het is ons zelfs gelukt om de lege ruimtes tussen de bollen in een

BCT kristal op te vullen met silicium, al beschadigde de benodigde CVD wel de onderkant van



de kristallen. Hoofdstuk 7 beschrijft de karakterisatie van BCT en CP kristallen van silica bollen

met een diameter van ongeveer een micrometer met behulp van röntgenverstrooiing. We laten

zien dat het mogelijk is om met röntgendiffractie bij kleine hoeken (Eng: small-angle X-ray

scattering, SAXS) de 3D structuur van colloïdale kristallen te bepalen en de afstand waarover

die kristallen gemiddeld genomen geordend zijn. Het bleek zelfs mogelijk te zijn om dat voor

fotonische colloïdale kristallen te doen die zich in verschillende stadia van hun fabricage bevon-

den. De uitkomsten van deze röntgendiffractiemetingen bleken uitstekend overeen te komen

met plaatjes die reeds gemaakt waren met confocale microscopie en elektronenmicroscopie.
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