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Introduction

In this introductory chapter we present the reader with content needed in order to under-
stand and assess the research presented in this thesis. We define active matter and present
examples of active matter systems, with a focus on the colloidal and granular scale. We
then give a theoretical description of active matter and outline the simulation methods we
use throughout this thesis. Moreover, after discussing two important theoretical models
of active matter and their statistical properties, we briefly review the latest advancements
in the statistical description of active matter and explain the contribution of the present
thesis in this context.
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1.1 Active matter
In this thesis we study, using computer simulations, collective properties of many-body
systems whose individual components are self-propelled, i.e. the different units are able to
convert energy into motion. Apart from the self-propulsion, another crucial characteristic
common to the investigated systems is the presence of interactions between the different
components. As such, the model systems under study can be viewed as simplified versions
of synthetic systems with locomotive components or even of living systems.

There is typically a vast difference between living and inanimate matter when studying
the self-propulsion of individual units; a difference that stems from the distinctive origins
of movement for units that belong to the two different sets. Namely, a grain of sand moves
only when an external force is exerted on it while an animal and a bacterium are able to
choose a direction of motion via an internal process and subsequently relocate themselves
towards that direction, using energy that is stored in their bodies. Therefore, a detailed
description of the motion of a living organism requires a complete understanding of the
decision making process, which is, for the time being, out of reach for most living beings.

Despite these complications, the collective motion of large groups of living organisms
can often be reproduced by means of simple models [1–3]. These models involve elemen-
tary rules that can be seen as heuristics of the decision making process, and dictate the
movement of the individual units and the interactions between them. Moreover, actual
realizations of such simple models are becoming increasingly common in scientific labora-
tories, as we shall discuss shortly. These realizations involve systems of many inanimate
objects that are equipped with a propulsion mechanism, and often present complex col-
lective motion on a par with the collective motion of living systems. A question which
then naturally arises is whether large populations of living and self-propelled inanimate
objects share the same statistical properties.

One field that hopes to describe under one theoretical framework the statistical proper-
ties of objects which can move autonomously, both living and inanimate, is active matter
physics [4–10]. An active matter system (or an active system for short) comprises units
which can individually transform internal or external energy into directed motion or forces
exerted on their local environment. In all realizations of active matter, the source of the
consumed energy can be considered as external to the system itself, so an active matter
system is intrinsically out of thermal equilibrium as there is constant energy input into
it. Having given a generic definition, let us proceed to discuss different examples of active
systems.

Naturally, the most diverse and populous group involves living organisms that can
propel themselves. Animals such as birds or fish tend to assemble and move together
in flocks or schools, insects create swarms, and even crowds of humans often behave in
patterns [2, 11–13]. A commonality in all of the above is that the collective motion of
the system emerges despite the absence of central coordination. In contrast, collective
motion in active matter emerges simply as a result of the synergy between the autonomous
movement of the individual unit and its mechanical or biological interaction with the other
units. This synergy often produces exotic, in a statistical physics view, as well as beautiful,
in an aesthetics view, patterns, such as fish tornadoes (vortices) and turbulent motion of
bacteria colonies [14, 15].
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Another class of biological systems which are put under the umbrella of active matter
are active gels [16]. These are internally driven systems with a network structure. The
most important and studied active gel is the cytoskeleton of cells, which is a network of
cross-linked filaments and motor proteins [17, 18]. The cytoskeleton is the backbone of
a cell and determines the movement of the cell, its adhesion and division. Subsequently,
the mechanical properties of the cytoskeleton naturally affect the macroscopic behaviour
of tissues as well.

Even though the study of living active matter can probably be dated back to the dawn
of man, in the last few decades a new approach and formalism for its description has begun
to emerge. This approach consists of viewing these systems as out of thermal equilibrium
soft condensed matter systems, and therefore using statistical physics to describe and
make predictions for their macroscopic and statistical properties. This novel effort is
largely driven by experimental advances in the synthesis of artificial swimmers and walkers
on the colloidal (1−1000 nm) and granular (1 µm and larger) scale, which we will proceed
to review.

1.2 Synthetic swimmers
Besides the living systems described in the previous section, the term active matter also
includes systems of colloidal or granular particles that can self-propel, rotate or perform
some kind of autonomous motion.

Thomas Graham was the first to identify colloids in the early 1860s. The term “col-
loid” is derived from the Greek word “κόλλα” which translates to “glue”, as colloidal
particles would not go through a membrane that Graham used in his early experiments
[19]. Colloids are particles made out of several atoms or small molecules and are typically
immersed in another substance, which is in most cases a fluid phase. Everyday examples
of colloidal suspensions include milk, paint and ink.

Due to their immersion, colloidal particles incessantly collide with the surrounding
phase and their velocities are constantly changing. In a statistical physics language, the
colloids are said to be subject to thermal fluctuations. The resulting non-uniform motion
of colloids is called Brownian motion, after the botanist Robert Brown who was one
of the first to study and report the phenomenon. Brownian motion and the interactions
between colloids are the two essential ingredients for the rich phases of the colloidal world,
as colloids can among others be found in gas, liquid and solid states.

On the other hand, granular matter is made of larger particles which should not
undergo Brownian motion. Granular materials range in size from powder (∼1 µm) and
coffee beans up to icebergs and asteroids. The different states of a granular system can
be similar to a colloidal system, namely they are typically found in gas, liquid or solid
states, but the properties of the states of the two classes are different. For example, a gas
composed of granular matter typically contains many clusters of grains, as the collisions
between grains are dissipative, while colloids in a gaseous state will form only short-lived
clusters.

Colloidal systems and many granular matter systems belong to soft condensed matter,
a subfield of condensed matter where physics, chemistry and often biology meet. Soft
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matter includes all systems whose state behaviour is rich close to room temperature. This
property entails that soft matter systems typically involve length scales of the colloidal to
the lower end of the granular scale, are subject to temperature fluctuations and also tend
to assemble into structures at room temperature. Hence the classification also includes
gels, polymers and biological materials [20, 21]. Phenomena in soft matter can in most
cases be described by classical physics, in contrast to hard condensed matter, which studies
the statistical properties of systems where quantum effects play a major role.

Nowadays, chemists can produce an astounding number of different shapes of colloids
with different interactions, ranging from simple hard spheres to flexible chains and patchy
particles, where different kinds of interactions take place at different parts of the particle
(e.g. [22]). The same can also be argued for the world of granular materials, where, due
to the larger sizes involved, one can design a myriad of shapes and interactions between
particles, as nowadays even small robots can be programmed to behave according to a
certain set of instructions [23].

A recent development in the synthesis and construction of artificial colloidal and gran-
ular particles is the addition of propulsive mechanisms to individual units. When self-
propelled particles have sizes in the colloidal range, they are called microswimmers. Per-
haps the earliest example of synthetic microswimmers is the system of self-propelled rods
of Paxton and collaborators [24]. These rods consisted of a platinum and a gold segment
and, when immersed in an aqueous solution which contained hydrogen peroxide, would
move autonomously. This autonomous motion resulted from a catalytic reaction taking
place only on the platinum end of the rod. The same catalytic reaction was also employed
in order to create spherical active particles [25]. A different mechanism of self-propulsion
was introduced by Bricard and collaborators, who took advantage of Quincke rotation,
an electrohydrodynamic phenomenon, in order to rotate spherical particles on a surface.
The particles’ rotation resulted then in self-propulsive motion [26]. Another system in-
volved granular discs with a polar asymmetry such that, when vertically vibrated, a disc
would self-propel towards a given direction [27]. A similar strategy was adopted for a
system of self-propelled granular rods [28]. Other prominent examples can be found in
Refs. [29–40].

Artificial active systems have attracted a lot of scientific interest for several reasons.
First of all, systems of synthetic swimmers often present individually or collectively pat-
terns of motion which resemble living systems [6]. Hence, they can be used as models that
will help us deepen our understanding of living systems’ complex behaviour. Moreover,
they have been employed to useful applications such as targeted cargo delivery [41, 42] and
cleansing of polluted water [43] as well as building elements for novel types of materials
[40]. Therefore in the near future they may well play an important role in industry and
medicine. For these reasons, there is extreme interest in active matter and in particular
in a theoretical framework which can describe and predict the phase behaviour of these
out-of-equilibrium systems.

Computer simulations have proven to be an extremely valuable tool in the study of
soft matter, and this is the approach we will use throughout this thesis in order to study
active matter. By performing computer simulations, we investigate and shed light on
generic aspects of the collective behaviour of different systems as well as test and expand
on recent theoretical descriptions. Before initiating our investigation, we will proceed
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in the following section to describe how one can simulate active matter. We will focus
on artificial systems and, when appropriate, we will comment on possible extensions to
biological systems.

1.3 Methods: Simulating artificial active matter
As we have seen in the previous section, in experimental realizations there is a large
number of different propulsion mechanisms that may be used in combination with particles
which have different properties, and the whole active system may also be placed in very
different environments. So, to truly replicate such a complicated system in a computer
simulation one would need a theoretical description of all the above: a model for the
interaction between particles, a model for the environment (which can be for example
a surface that absorbs energy, a surrounding fluid, or both), a model for the propulsion
mechanism, as well as an estimation of the effect all the above have on one another. We
are currently far from such a detailed understanding of all these parameters, and especially
of the interplay between them [44].

As a consequence, when it comes to studying the collective behaviour of active colloidal
and granular systems, the most popular route that has been followed so far is to ignore
the exact propulsion mechanism. Instead, self-propulsion is approximated by either a
given slip velocity of the particle across its boundaries or a constant force that acts on
the particles’ center of mass. We will discuss both approaches in the following sections.

1.3.1 Active particles in a solvent
A microswimmer that swims in a fluid generates flow in order to move [4]. Consequently,
this flow field affects the translational and rotational movement of other microswimmers,
leading to an involved long-range hydrodynamic interaction between them. A brute force
approach to simulate active colloids in a solvent would thus be to solve iteratively the full
equations of motion (Newton’s 2nd law) for every swimmer and solvent molecule, by taking
into account all interactions between them. Such an approach is essentially impossible at
the moment, when one wishes to simulate a reasonable number of colloids. The reason
is that the typical difference in sizes between colloids and solvent molecules results in a
prohibitively large number of solvent molecules that need to be simulated.

Nevertheless, since in the study of active matter we are mostly interested in the self-
assembly and collective properties of the microswimmers rather than the surrounding
solvent, one way to circumvent the above difficulty is to coarse-grain the solvent. This
can be done by simulation techniques such as multi-particle collision dynamics (MPCD),
where a number of solvent molecules are explicitly considered and modified equations of
motion are solved for them [45, 46]. Another technique is the lattice Boltzmann (LB)
model, where the discrete Boltzmann equation is solved in order to acquire the flow of
the solvent [47, 48]. A different approach is to solve the Stokes equation with the colloids
acting as sources of fluid flow, by calculating the modes of the velocity and force fields
for each swimmer [49, 50]. Once the numerical mode numbers converge, one approaches
the full hydrodynamics of the system.
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For all of the above simulation techniques, in order to incorporate the effects of activity
on the movement of particles one has to assume either a given velocity profile of the fluid
on the boundary of the colloidal particles or constant momentum transfer from the solvent
to the swimmers. In any case, the linear and angular momentum of the system must be
conserved. However, as we will see in the next section, one may adopt a simpler approach
and model activity as an explicit force and torque that directly acts on the swimmer, such
that the linear and angular momentum of the system are not conserved. Ten Hagen and
collaborators argued that such a simplification can indeed be made for arbitrarily-shaped
particles, even in the presence of external fields, when the flow field that is generated
by particles does not significantly affect their dynamics [51]. Unfortunately, whether this
approximation can also be used when hydrodynamic effects are important remains an
unresolved question.

1.3.2 Implicit solvent and dry active matter: the Langevin equa-
tion

A different way to coarse-grain the solvent of colloidal suspensions is to completely ignore
the hydrodynamic interactions between swimmers and only assume an effective equation
of motion for the individual particles. Naturally, this equation of motion should reproduce
the Brownian motion of individual particles in the absence of interparticle interactions. In
1908, Paul Langevin introduced such a stochastic differential equation [52]. The equation
is named after him and is the equation of motion that we will be using throughout this
thesis. Therefore we will now proceed to describe it in detail.

Let us assume that a colloidal particle labeled i is suspended in a solvent that consists
of particles which are much smaller in size than the colloidal particle. The position of the
particle is given by the vector ri and time is denoted by t. The Langevin equation then
dictates

m
d2ri
dt2

= −ηdri
dt

+
√

2η
βs
ξtri , (1.1)

where m is the particle’s mass, η is the particle’s damping coefficient which quantifies
the viscosity of the solvent and βs is the inverse temperature of the solvent such that
βs = 1/kBTs with kB the Boltzmann constant and Ts the solvent’s temperature. Note
that Ts should not be identified with the temperature of the active system itself, a quantity
which we discuss in Section 1.5. The forces that appear on the right-hand side of Eq. 1.1
are, from left to right, the drag force and a stochastic force that is also referred to as a
noise term. These two forces account for the continuous collisions between the colloidal
particles and the molecules of the solvent. The vector ξtri is a unit-variance random vector,
with mean value and variation 〈

ξtri (t)
〉

= 0 (1.2)〈
ξtri (t)ξtrj (t′)

〉
= Id δij δ(t− t′), (1.3)

where Id is the unit matrix in d dimensions. The brackets denote here an average with
respect to a Gaussian probability distribution of the realizations of the stochastic compo-
nents of the vectors.
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If one follows the displacement of the particle with time, one finds that

〈ri(t)− ri(0)〉 = 0 (1.4)
〈(ri(t)− ri(0))2〉 = 2dt/βsη, (1.5)

where the brackets denote again an average over many different noise realizations. Equa-
tions 1.4 and 1.5 then describe a particle that undergoes Brownian motion with diffusion
coefficient Dtr = 1/βsη, which coincides to the famous Einstein-Smoluchowski relation
[53–55], and confirms the validity of the Langevin equation for our purposes.

Let us now include more particles in our system that will interact with particle i via
a pairwise potential U(r). Also, let us make our particles self-propelled. A simple way
to do this is by associating a d-dimensional unit vector ui to particle i. This unit vector
identifies the direction in which the self-propelling force propels the particle at any given
time. We also assume that the self-propelling force has a constant magnitude f0. The
modified Langevin equation is then given by

m
d2ri
dt2

= −
∑
j 6=i

∂U(rij)
∂ri

− ηdri
dt

+ f0ui +
√

2η
βs
ξtri , (1.6)

where rij = rj − ri and the sum runs over all distinct particle pairs. The forces that
appear on the right-hand side of Eq. 1.6 are, from left to right, the force due to particle
interactions, the drag force, the self-propelling force and a stochastic force. Note that
here the self-propelling force is implemented as an explicit force that directly acts on the
swimmer such that momentum conservation in the system can be violated, contrary to the
implementations we described in Section 1.3.1 where the presence of the solvent ensures
the conservation of linear and angular momentum.

In a typical colloidal system the ratio of inertial forces to viscous forces is very small
[8]. This ratio is referred to as the Reynolds number and is a crucial quantity in fluid
mechanics. A low Reynolds number means that one can neglect the inertial term in the
equation of motion, that is the term on the left hand side in the case of Eq. 1.6. Applying
this simplification to Eq. 1.6 we are left with the overdamped Langevin equation

dri
dt

= −1
η

∑
j 6=i

∂U(rij)
∂ri

+ υ0ui +
√

2Dtrξ
tr
i , (1.7)

where the self-propulsion speed υ0 = f0/η. The term overdamped refers to the fact that
the inertia is negligible when compared to the drag force. Accordingly, one can refer to
Eq. 1.6 as the underdamped Langevin equation.

Apart from the two Eqs. 1.6 and 1.7 that describe translational motion one should also
consider the rotational motion of the particles. We will only consider the overdamped case
here. For spherical particles that do not exert torques on one another, the overdamped
rotational Langevin equation can be written as

dui
dt

=
√

2Dr (ui × ξri ) , (1.8)

where Dr denotes the rotational diffusion coefficient and the random vector ξri satisfies
relations analogous to Eqs. 1.2 and 1.3. For spherical particles in the low-Reynolds



8 Chapter 1

number regime, the translational and rotational diffusion coefficients are linked via the
relation Dr = 3Dtr/σ

2 [56]. Nevertheless, the rotational diffusion coefficient is considered
as an independent parameter in many studies of active matter [57–59]. The reason for this
extra degree of freedom is that individual particles in experimental active systems, such
as bacterial colonies [60], are often also subject to athermal rotational diffusion which can
depend on the propulsion mechanism.

Even though we have introduced Eqs. 1.6, 1.7 and 1.8 for the case of colloidal particles
immersed in a solvent, these equations could be slightly modified in order to apply to dry
active matter as well. The term dry active matter refers to particles that are not immersed
in a solvent. Consequently, dry matter most commonly refers to granular particles or living
organisms such as birds or sheep [6]. Note that for these systems the translational noise
in Eqs. 1.6 and 1.7 is not caused by thermal fluctuations and is in many cases absent,
and the same holds for the term associated with friction. Nonetheless, particles whose
motion satisfies Eqs. 1.6 or 1.7 and 1.8 are referred to in literature as active Brownian
particles (ABPs) [5].

We conclude this section by commenting on the importance and applicability of the
ABP model to active matter. First of all, the model has the advantage that it is a
reasonable approximation for wet systems, where the propulsion and the bare interactions
between particles dominate any hydrodynamic effects, and can also be used as a model for
dry active matter under the right conditions. Thus, results that are obtained using this
model are potentially applicable to both worlds as the essential interplay between activity
and interactions is captured. Also, when one wishes to study collective phenomena of wet
systems such as clustering and phase separation without requiring a direct mapping to
experiments, neglecting the hydrodynamics can be a reasonable first approach. Moreover,
the computational cost of this model is much less than any of the current techniques to
model hydrodynamics. As an example, simulations of ABPs can include up to millions of
particles [61, 62], while simulations that include coarse-grained hydrodynamics typically
include a few hundred to mostly a few thousand particles [46, 50]. Nonetheless, one should
keep in mind that hydrodynamics can have important consequences even on the collective
behaviour of active systems, as has been explicitly shown in Refs. [47] and [50].

1.4 Prominent theoretical models of active matter

Of the various theoretical models of active matter that can be found in literature, there
are two that have emerged as its most prominent and as a result have been immensely
studied. These are the Vicsek model, which constitutes a cornerstone model for active
matter, and the model of self-propelled, purely repulsive discs, which is mostly relevant
to colloidal active matter. The importance of these two models lies in the novel types of
phase transitions that they undergo, despite their apparent simplicity. Below we briefly
discuss the models and their phase behaviour.
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1.4.1 The Vicsek model: flocking transition
The Vicsek model is arguably the most studied model of active matter and was introduced
by Tamás Vicsek et al. in 1995 [63]. The original Vicsek model assumes an off-lattice,
two-dimensional system of self-propelled, point-like particles. The time-discretized trans-
lational equation of motion of particle i is simply

ri(t+ ∆t) = ri(t) + υ0ui(t)∆t, (1.9)

where ri denotes the position of particle i, ∆t is the numerical integration time step, υ0
is the self-propulsion speed (which is the same for all particles) and ui = (cos(θi), sin(θi))
denotes the direction of self-propulsion for particle i, as θi is the azimuthal angle of self-
propulsion with a predefined axis. The direction of self-propulsion is updated according
to the equation

θi(t+ ∆t) = 〈θi(t)〉s + ∆θi, (1.10)

where 〈θi(t)〉s denotes the average direction of self-propulsion of all particles that are
within a distance s from particle i, including particle i. As a result, this term tends to
align the direction of self-propulsion, or speed, of neighboring particles. The term ∆θi
introduces noise into the model and is chosen from the interval [−ξ/2, ξ/2] with a uniform
probability.

The free parameters of the model that determine its state behaviour are the density
of particles, the speed of self-propulsion υ0, the distance s and the magnitude of the noise
ξ. Snapshots of the system in different characteristic states are shown in Fig. 1.1.

The novelty of the model lies in the contrast between Figs. 1.1(a) and (d), which
suggest that the system transitions from a homogeneous state, where the positions and
velocities of the particles are not correlated, to an ordered state, where all particles move
coherently in the same direction, as the density and υ0/ξ ratio are increased. The mech-
anism that drives the transition is well understood: the alignment interaction initially
creates small groups that move coherently. Since the resulting groups will have very dif-
ferent directions of movement, they will frequently collide with one another. Thus, the
transport of information from one part of the system to another happens faster than dif-
fusive transport. This increased speed of exchanging information, due to the large spatial
fluctuations of the velocity field, is what ultimately suppresses the fluctuations themselves
and drives the system to an ordered state [64].

The transition is referred to as the flocking transition and has been studied in depth
using different simulation models as well as mean-field and hydrodynamics theories [64–
71]. The flocking transition has also a universal character as it is found in many different
active systems such as groups of birds and active rods [72, 73]. The Vicsek model has
played a pivotal role for active matter since it incorporates the essential ingredients of
many biological and artificial systems that exhibit the universal flocking transition, despite
its apparent simplicity.

As a final remark, note that the equations of motion for the Vicsek model are simi-
lar to the overdamped Langevin Eqs. 1.7 and 1.8 of the ABP model: the translational
equation of motion Eq. 1.9 is the integration of Eq. 1.7 using the Euler method while
omitting particle interactions and translational noise, while Eq. 1.10 is different from an
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(a) (b)

(c) (d)

Figure 1.1: Snapshots of different states of the Vicsek model. The systems contains 400
particles and periodic boundary conditions are applied. The center of the particles is denoted
by a sphere while the arrows attached to the spheres indicate the instantaneous direction of
the self-propulsion speed. (a) The system is in a homogeneous state for low density and small
ratio υ0/ξ. The particles’ positions and velocities are randomly distributed. (b) The particles
assemble in small groups that move coherently for low density of the system and large ratio
υ0/ξ. (c) For high density and small ratio υ0/ξ the system is in a homogeneous state and the
velocities of the particles are correlated only locally. (d) All particles move coherently in the
same direction for high density and large ratio υ0/ξ.
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Euler integration of Eq. 1.8 as it includes an aligning interaction between particles and
also the noise results from a uniform distribution instead of a Gaussian one. Variations of
the original Vicsek model that include a steric repulsion between particles and Gaussian
translational and rotational noise reproduce the same phenomenology, as the only nec-
essary ingredients for the flocking transition are self-propulsion and aligning interactions
between particles [66].

1.4.2 Self-propelled repulsive discs: motility-induced phase sep-
aration

As hard spheres and discs are the cornerstone models of soft matter physics, it comes as
no surprise that hard or purely repulsive self-propelled discs and spheres are among the
most studied models of active matter. Nonetheless, it took almost twenty years after the
first publication of the flocking transition of the Vicsek model for the report of a similarly
novel phase transition for self-propelled discs.

In 2012 Yaouen Fily and Cristina Marchetti were the first ones to report that a system
of purely repulsive discs would separate into a dense and a dilute phase for high enough
density and speed of self-propulsion, a phenomenon that is referred to as motility-induced
phase separation [74]. The two-dimensional ABP model that they studied was composed
of particles of radius σ that follow the equations of motion Eqs. 1.7 and 1.8. A simple
harmonic potential was used as the interparticle repulsive potential such that U(r) =
κ
2 (2σ−|r|)2, where κ tunes the strength of the interaction and r denotes the interparticle
distance vector.

For fixed translational and rotational diffusion parameters as well as interaction strength
κ, the remaining free parameters of this model are the density of particles and the self-
propulsion speed υ0. A series of characteristic snapshots that summarize the phase be-
haviour of the system can be found in Fig. 1.2.

The striking contrast between the panels of the bottom row suggests that a high density
system of purely repulsive discs undergoes a phase transition from a homogeneous state to
a phase separated state as the speed of self-propulsion is increased. Or equivalently, the
right column of the figure suggests that a system of self-propelled discs with a sufficiently
high speed of self-propulsion undergoes a phase transition as its density is increased.
The phase separated state consists of a low-density fluid and a high density phase that
shows local crystalline order. The mechanism driving the phase transition is the following
[61, 74]: particles that collide with one another slow down significantly and create small
clusters. Shortly after, and before they are able to escape their cluster, more particles
from the dilute phase bump into them and slow down themselves. If the propulsion speed
of the particles and the density are high enough, this leads to a positive feedback loop
which grows the cluster until there is an equilibrium between the number of particles that
join the cluster from the dilute phase and the number of particles that escape it.

Note that the transition described by this process is very different from the order-
disorder transition of passive (υ0 = 0) hard or purely repulsive discs which is driven by
entropy, and is instead caused by the combination of the motility of particles and the steric
repulsions. The phenomenon is thus justifiably called motility-induced phase separation
(MIPS), and also takes place in the three-dimensional analogue of the system [62]. It has
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(a) (b)

(c) (d)

Figure 1.2: Snapshots of different states of a system of self-propelled and purely repulsive
discs. The system contains approximately 4000 particles and periodic boundary conditions are
applied. (a) The system is in a homogeneous state for low density and low propulsion speed.
(b) The system shows pronounced clustering for low density and high propulsion speed. (c) For
high density and low propulsion speed the system is in a homogeneous state. (d) The system
phase separates into a dense and a dilute region for high density and high propulsion speed.
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been shown by simulations that MIPS takes place for a wide range of different particle
shapes and that the specific potential details do not matter as long as particles posses
a repulsive core [75–78]. However, particle geometry seems to affect the stability as well
as other collective properties of MIPS, as studies of active anisotropic particles revealed
[76–78]. We also study the effect of particle geometry on MIPS for a specific system in
Chapter 6.

Surprisingly, even though MIPS is a genuinely non-equilibrium phase transition, the
phase diagram of MIPS for spherical active particles can be mapped onto a fairly equilibrium-
like phase diagram [61]. This unexpected mapping hinted on the possible description of
active matter in an extended thermodynamics and statistical mechanics framework and is
also the motivation for much of the work presented in this thesis, specifically in Chapters
5, 6 and 7.

Due to the generality and the purely out-of-equilibrium nature of MIPS, a full under-
standing of the physics behind it would be extremely valuable for the development of a
statistical theory for soft active matter. As such, it has been studied in a great number of
theoretical studies that involve computer simulations, continuum models, and field theo-
ries [61, 62, 74, 79–81]. Even though MIPS has not explicitly been found experimentally,
many experiments have reported on the enhanced clustering due to the same mechanism
that drives MIPS [34–36]. For a more general review on MIPS see Ref. [82].

1.5 Thermodynamics and statistical mechanics of ac-
tive matter

The statistical properties of a soft system in thermal equilibrium can be understood using
classical thermodynamics and statistical mechanics. These two theoretical frameworks
were formulated by the early 20th century and were brought together by the work of
Willard Gibbs [83, 84]. Thermodynamics is based on four empirical laws and describes a
system that contains a very large number of units using macroscopic observables that can
be measured in the laboratory, such as temperature and pressure. Statistical mechanics
uses mathematical constructions such as the partition function and the free energy to
demonstrate how the thermodynamics emerges as a consequence of many-particle statis-
tics. Thus, it links the microscopic properties of a system to its macroscopic behaviour.
Among others, it also assesses the stability of a system and links phase transitions to the
concepts of energy minimization or entropy maximization.

As we have described earlier, active matter is intrinsically out of equilibrium. As a
result, equilibrium statistical mechanics is naturally not directly applicable to it. However,
the applicability of equilibrium notions such as entropy, pressure, temperature and surface
tension to active matter and its associated phase transitions has been an area of intense
study in recent years [62, 80, 85–98]. Note that a large fraction of the studies on the
statistical physics of active matter has so far focused on isotropic active particles, i.e.
particles that do not experience any torques due to interactions. In fact, a large part of
the present thesis also focuses on such systems (see Chapters 2-5). Apart from the obvious
simpler nature of isotropic particles, an important reason for this focus is that the addition
of anisotropic interactions between particles due to, e.g. the anisotropic shape of particles,
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alters significantly the physics of active matter. We discuss the complications that arise
from particle geometry below, when appropriate. Below we give a short review of the
rapidly growing field of thermodynamics and statistical mechanics of active matter.

First of all, the notion of an effective temperature of active matter is still a topic
of discussion among scientists. Experimental and theoretical results suggest that many
properties of an active system can be directly mapped onto an equilibrium system of a
higher effective temperature, for dilute as well as very dense (glassy) systems (see e.g.
Refs. [99, 100]). Moreover, one can also map the complete equation of state of chemically
powered colloids onto an equilibrium equation of state using an effective temperature
[101]. However, entirely non-equilibrium phenomena such as MIPS obviously cannot be
captured by such a description. Consequently, the extent as to where this mapping is
valid is not clear yet.

Apart from temperature, the mechanical pressure of active matter has attracted a lot of
attention as well. It is now understood that the pressure of dry active matter is a function
of its state, in the complete absence of torques, but surprisingly the same cannot be said
for particles with an anisotropic shape and particles that experience torques in general
[90]. Furthermore, Julian Bialké and his collaborators showed that, even for isotropic
particles, the accepted definition for the mechanical pressure of active matter leads to a
negative surface tension between coexisting phases in the case of MIPS [91]. Even though
the definition of active pressure is already being used in more general theories that aspire
to predict phase coexistences [86, 102], it is evident that its interpretation will remain a
topic of intense study in the near future. In this thesis, we test and use the definition of
pressure for active matter in Chapters 3, 4, 5 and 7.

The last of the intensive variables of a traditional thermodynamical system, the chem-
ical potential, has also been defined and even measured for particle simulations in a series
of papers [62, 86, 103]. However, another work dismisses the idea of a chemical potential
for active systems, as it proposes that active systems are, contrary to passive systems, not
extensive [97]. Given that if all the intensive variables of a system can be measured one
can predict the phase coexistence of different phases, or even define a free energy of the
system, the quest for a definition of a chemical potential will surely attract much more
attention. In Chapters 5 and 7 we study chemical equilibrium between phases of active
matter as well as attempt an implicit definition of a chemical potential.

Other efforts have focused on creating an approximate method to describe active mat-
ter with the help of an effective equilibrium theory. For example, Farage and collaborators
[88] constructed a framework that maps a system of self-propelled particles with short re-
orientation times to an equilibrium system with effective interactions. Moreover, Maggi
and his collaborators [87] treated active particles which are subject to coloured Gaussian
noise with a multidimensional version of the Unified Coloured Noise Approximation, and
Preisler and Dijkstra argued that the distribution of configurations of a system of purely
repulsive self-propelled discs can be mapped onto an equilibrium system with a modified
Boltzmann distribution and an effective temperature [97]. Additionally, Solon and collab-
orators constructed a generalized free energy that quantitatively accounts for the phase
diagram of MIPS [102].

From the above brief review it is evident that there is a plethora of different approaches
to the physics of active matter as well as a variety of results that may currently even
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appear contradicting to one another. Even though at present we cannot know whether a
thermodynamics and statistical physics for active matter can be built, there will certainly
be intense theoretical research towards that goal in the coming years which will be based
and expand on these first promising attempts.

1.6 Scope of this thesis

As we have discussed so far in this introductory chapter, particularly in Sections 1.4
and 1.5, the synergy between interparticle interactions and self-propulsion determines
the collective properties and the phase behaviour of active matter systems. With this
important observation in mind, in this thesis we set to perform two separate tasks. On
the one hand, using computer simulations we chart the phase behaviour of active matter
systems and attempt to understand how the interplay between the self-propulsion and
the interactions gives rise to the observed collective behaviour. On the other hand, we
investigate whether there exist universal tools that can be used to describe and predict
phenomena of active matter systems, such as phase transitions, without being restricted
to a specific type of interaction. These tools would naturally be part of a statistical physics
description of active matter. Below we discuss briefly the contribution of the following
chapters to each task.

The first three research chapters of this thesis are devoted to the study of the same
system, namely a system of attractive self-propelled spherical particles. In Chapter 2
we focus on the self-assembly of the system and present its phase diagram along with
a description of the structural and dynamical properties of the different phases that we
identify. In Chapters 3 and 4 we apply statistical physics and critical phenomena language
to study, in the former chapter, the vapour-liquid transition of the system and, in the
latter chapter, the vapour-liquid interface. In both chapters we make use of equilibrium
statistical physics notions such as the mechanical pressure and the surface tension and
determine the extent of their possible application to the system.

Chapter 5 can be grouped together with the three previous Chapters 2-4 since it
concerns systems with purely isotropic interactions among its constituent particles. In
this chapter we study two binary mixtures, one of attractive and one of purely repulsive
self-propelled particles that undergo vapour-liquid and motility-induced phase separation
respectively. The purpose of this chapter is to demonstrate the existence of two quantities,
equivalent to the mechanical pressure and the chemical potential of equilibrium systems,
and their application to the construction of phase diagrams for active matter systems.

In Chapters 6 and 7 we study systems with anisotropic interactions between parti-
cles. Chapter 6 contains a description of the phase behaviour and the dynamics of a
system of self-propelled squares, where the anisotropic interactions result solely from the
anisotropic shape of the particles. We find that certain properties of the phase diagram
are in accordance with equilibrium scaling laws, even though we have departed from
isotropic interactions. Motivated by this finding, in Chapter 7 we test the machinery
of Chapter 5 for a system of purely repulsive self-propelled particles with explicit anti-
aligning interactions that can undergo motility-induced phase separation. In this way we
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examine whether our method to predict phase diagrams of systems with purely isotropic
interactions can be extended to active systems in general.
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Self-assembly of active attractive
spheres

In this chapter we study the self-assembly of a system of self-propelled, Lennard-Jones
particles. We examine the state diagrams of the system for different rotational diffusion
coefficients of the self-propelled motion of the particles. For fast rotational diffusion,
the state diagram strongly resembles the phase diagram of the equilibrium Lennard-Jones
fluid. As we decrease the rotational diffusion coefficient, the state diagram is slowly trans-
formed. Specifically, the liquid-gas coexistence region is gradually replaced by a highly
dynamic percolating network state. We find significant local alignment of the particles
in the percolating network state despite the absence of explicit aligning interactions, and
propose a simple mechanism to justify the formation of this novel state.
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2.1 Introduction
As we have described in Chapter 1 of this thesis, one of the most intriguing and important
theoretical results of active matter is the phase separation of self-propelled particles with
purely repulsive interactions, which is driven by the motility of the particles and is appro-
priately called motility-induced phase separation [61, 62, 74, 79, 81]. At the same time,
motility-induced phase separation has not been observed in experimental realizations of
active matter, even though the phenomenon can be partially linked to the clustering of
particles reported in many experiments [34–36]. One of the reasons for this are of course
the interactions between particles, which are more complex than simple steric interactions.

A simple step towards complexity is the addition of attractive interactions between the
particles, which was shown to also lead to clustering of self-propelled particles. Specifically,
Palacci et al. showed in a numerical study that phoretic attraction between self-propelled
hard discs gives qualitative agreement between the clustering properties of their model
and their experiments [35]. A more elaborate numerical study on the interplay between
attraction and self-propulsion was done by Redner et al. [75]. The authors studied a
two-dimensional ensemble of self-propelled particles that interact via Lennard-Jones in-
teractions. By varying the strength of the attraction and the swimming velocity of the
particles, they showed that the self-propulsion can have two opposing effects for a given
strength of attraction: for slow swimmers it can break aggregations caused by the attrac-
tive force, while it can induce aggregation for fast enough swimmers. For intermediate
swimming velocities, the steady state of the system was identified as a homogeneous fluid
phase. A first study of a similar model in three dimensions was done by Mognetti et al.
[104]. The focus of this paper was mainly on the clustering properties of the system - as
the strength of attraction is increased, the system passes from a homogeneous state to a
clustered state caused by the attractive interactions. A state of rotating clusters has also
been reported in Ref. [32] for active attractive dumbbells.

However, the transition from homogeneity to clustering in active and attractive sys-
tems has not yet been clearly linked with the known phase behaviour of the corresponding
equilibrium systems. Moreover, structural properties of the clustered state have not been
examined and compared to the well-studied gas-liquid phase separation.

In the present chapter we study a three-dimensional model of self-propelled Brownian
particles that interact via a Lennard-Jones potential. This model was chosen since the
phase behaviour of the equilibrium system is well characterized and can be readily veri-
fied by computer simulations [105, 106]. Moreover, the Lennard-Jones potential roughly
accounts for the steric repulsion and the short range attraction that is present in many
colloidal systems. By tuning the rotational diffusion rate of the particles, we are able to
continuously move the system from the regime of fast rotational diffusion, where strong
similarities with the equilibrium behavior are expected [58], to small values of the diffu-
sion rate where non-equilibrium features arise. Thus, we are able to construct a series of
state diagrams that evolve from a diagram similar to the well-established Lennard-Jones
phase diagram to diagrams with novel properties.

Moreover, we find that the interplay between attraction and self-propulsive motion in
three dimensions gives rise to a highly dynamic, percolating network. As we will show in
this chapter, this percolating network has many similarities to living clusters, observed in
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Ref. [104]. It is, however, a system spanning structure. This new state is accompanied
by an unexpected result - the emergence of local alignment of the axes of self-propulsion
of the particles despite the absence of an aligning mechanism.

In Section 2.2 we describe the model, the dynamics implemented for our simulations
and the analysis methods used in the subsequent parts of the chapter. In Section 2.3.1
we present the state diagrams of the system, and in Section 2.3.2 we focus on properties
of the percolating network state. Lastly, we compare our work with the results of Ref.
[104] in Section 2.3.3 and give a short discussion of our results in Section 2.4.

2.2 Methods

2.2.1 Model
In this chapter we examine the behaviour of self-propelled, attractive particles immersed
in a solvent. We consider a three-dimensional system consisting of N spherical particles
(colloids) in a periodic cubic box of length L. The position of the center of mass of
the i-th particle at time t is given by the vector ri(t). To each particle i, we associate a
three-dimensional unit vector ui(t) that identifies the direction in which the self-propelling
force propels the particle at a given time t. The particles interact with each other via a
Lennard-Jones potential

βsU(rij) = 4βsε
( σ

rij

)12

−
(
σ

rij

)6
 , (2.1)

truncated and shifted at 2.5σ where σ is the particle length scale, rij = |rj − ri|, ε is the
strength of the interaction and βs = 1

kBTs
is the inverse temperature of the surrounding

solvent, with kB the Boltzmann constant and Ts the solvent temperature.

2.2.2 Dynamics
We do not model the solvent explicitly, but rather only include it implicitly. We use two
distinct expressions to describe the translational motion of the individual colloidal par-
ticles inside the solvent, namely the underdamped and overdamped Langevin equations.
The underdamped Langevin equation is given by

m
d2ri
dt2

= −
∑
j 6=i

∂U(rij)
∂ri

− ηdri
dt

+ f0ui +
√

2η
βs
ξtri , (2.2)

where m is the particle’s mass, η is the particle’s damping coefficient and f0 denotes the
magnitude of the self-propelling force. Note that ξtri is a unit-variance random vector,
with mean value and variation 〈

ξtri (t)
〉

= 0 (2.3)〈
ξtri (t)ξtrj (t′)

〉
= I3 δij δ(t− t′), (2.4)



20 Chapter 2

where I3 is the unit matrix in three dimensions. The forces that appear on the right-hand
side of Eq. 2.2 are, from left to right, the force due to particle interactions, the drag force,
the self-propelling force and a stochastic force. The drag and stochastic forces account for
the constant collisions between the colloidal particles and the molecules of the solvent.

In the regime of low Reynolds numbers (typical of a colloidal system) one can neglect
the inertial term, and thus the translational motion of each particle follows from the
overdamped Langevin equation

dri
dt

= −1
η

∑
j 6=i

∂U(rij)
∂ri

+ υ0ui +
√

2Dtrξ
tr
i , (2.5)

where the translational diffusion coefficient is given by the Einstein-Smoluchowski relation
Dtr = 1/(βsη) and the self-propulsion speed by υ0 = f0/η. We define the unit of time
τ = σ2D−1

tr .
The axis of self-propulsion is subject to rotational diffusion and for the simulations

presented in this chapter its motion always obeys the overdamped rotational Langevin
equation

dui
dt

=
√

2Dr (ui × ξri ) , (2.6)

where Dr denotes the rotational diffusion coefficient and the random vector ξri satisfies
relations analogous to Eqs. 2.3 and 2.4. Note that after each iteration of Eq. 2.6 we
normalize the unit vectors u in order to prevent their drift. For spherical particles in
the low-Reynolds number regime, the translational and rotational diffusion coefficients
are linked via the Stokes-Einstein relation Dr = 3Dtr/σ

2. Nevertheless, the rotational
diffusion coefficient is considered as an independent parameter in our study, similar to
previous theoretical work [57–59]. The reason for this extra degree of freedom is that
individual particles in experimental active systems, e.g. bacteria [60], are often subject
to athermal rotational diffusion.

In order to implement the aforementioned equations of motion, Eqs. 2.5 and 2.6,
we used the Euler-Maruyama integration scheme [107]. To implement the underdamped
Langevin Eq. 2.2, we employed the integration scheme proposed by Grønbech-Jensen
and Farago [108]. We have verified that simulations in the overdamped regime give
indistinguishable results with ones in the highly viscous underdamped regime. A time
step of dt = 3× 10−5τ was used for the numeric integration of the equations of motion in
both the underdamped and the overdamped regime and the simulations ran for at least
106τ , so that we get sufficient statistics for the system.

The behavior of the system was probed as the following dimensionless parameters
were systematically varied: the magnitude of the propulsion force βsf0σ or speed υ0τ/σ,
the rotational diffusion coefficient Drτ , the density of the system ρσ3 = Nσ3

L3 and the
strength of the Lennard-Jones potential βsε. In order to facilitate direct comparison
to the equilibrium Lennard-Jones system, we define T = 1/βsε as the dimensionless
temperature of our system. In the case of the underdamped system, we also varied the
(dimensionless) damping coefficient η̃ = βsησ

2/τ . Following Ref. [104], we quantified
the ratio between the strength of attraction and the magnitude of self-propulsion by the
aggregation propensity

Pagg = βsε

βsf0σ
= ε

f0σ
= ε

ηυ0σ
. (2.7)
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The number of particles for all simulations in the underdamped regime was 1728, in order
to compare directly our results with Ref. [104], while for the overdamped regime was
4917, unless stated otherwise. The effects of the finite size of the system on our results
are discussed, when considered relevant, in the respective sections.

2.2.3 Steady state and initial configurations
Due to the self-propelling force there is constant energy input in the system. Nevertheless,
by following the evolution of the total potential energy of the system with time, we
observed that after a short transient period there was no energy drift in our simulations.
After this period the potential energy of the system fluctuated around a mean value. We
identified this regime of quasi-constant energy with the steady state of the system. For
our measurements we considered configurations from the steady state only. Furthermore,
for each point in the parameter space, a minimum of two simulations were performed,
starting from two different initial configurations: one where the particles were on a cubic
lattice that spanned the entire system, and one where all the particles were part of a dense
liquid slab. These two initial conditions were chosen in order to study any possible effect
the starting configuration could have on the steady state of the system. We found that
after the transient period, the average potential energy in both simulations converged to
the same value, which indicates that the system indeed relaxed at the same state and we
can safely identify the regime of quasi-constant potential energy with the steady state.
For a limited number of simulations we also looked at the time evolution of the degree of
clustering and the local density histograms, both of which are described in detail later in
this chapter, and we found that in the regime of quasi-constant energy these structural
functions were also only subject to fluctuations and there were no major changes. Once
again the results obtained for different initial configurations coincided. All the above
ensure that the potential energy is a reasonable indicator of when the system reaches the
steady state.

For sets of parameters where the system is close to crystallization, the system was
additionally initialized from a gaseous state that contains a large (face-centered-cubic)
crystalline cluster. The cluster contained approximately 25% of the system’s particles. We
observed high crystallization and melting barriers in many cases, which caused difficulties
in identifying the true steady state of the system, as the simulations would have to run
for a very long time. We found that these difficulties were enhanced by finite size effects.
Nevertheless, the results for the parameter space points presented in this chapter have
been thoroughly verified.

2.2.4 Analysis methods
We used a Voronoi construction to construct local density histograms of the system [109].
By calculating the volume of the Voronoi cells we were able to estimate the local density
of particles. Furthermore, the identification of surface particles was performed by means
of the cone algorithm [110].

In order to distinguish the percolating network state from bulk gas-liquid coexistence
we use the following criterion. First, we considered two particles as clustered when their
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center of mass distance was less than 1.2σ. Note that in our system, the first minimum
in the radial distribution function is typically between 1.3σ and 1.6σ. We chose 1.2σ as
the cutoff distance in order to both be consistent with that used in Ref. [104] and ensure
that we did not overestimate the amount of connectedness in our system.

Second, we calculated the probability of having a cluster percolating simultaneously
in all three dimensions in the system. To determine whether a cluster percolates in
a given direction we duplicated the system in that direction, doubling the number of
particles. If the number of particles in the cluster doubled as well, then the cluster
percolated. When the probability of percolation was found higher than a certain threshold
that was density-dependent, we identified the system as being in the percolating cluster
state. This threshold was used for the necessary distinction between strong fluctuations of
the liquid phase that can temporarily percolate in three dimensions and the percolating
network structure. The probability threshold was set at 35%, 90% and 95% for total
densities ρσ3 = 0.191, 0.382 and 0.445 accordingly. However, for a total density higher
than ρσ3 = 0.5 this criterion failed as the liquid cluster always percolated in all three
dimensions.

2.3 Results

2.3.1 State diagrams
Passive Lennard-Jones particles have been extensively studied and their phase behaviour
is well-characterized (see e.g. Ref. [105]). At high temperatures, Lennard-Jones systems
exhibit a single first-order phase transition from a fluid to a face-centered-cubic crystal
as the density of the system is increased. Upon lowering the temperature, a critical
temperature is reached where a second phase transition appears separating the fluid phase
into gas and liquid phases. At even lower temperatures a triple point appears below which
the liquid phase disappears and only the gas and crystal remain.

When the passive particles are replaced by active particles by introducing self-propulsion,
deviations from the equilibrium behaviour are expected. To explore these deviations, we
study the behaviour of the system as a function of the rotational diffusion coefficient Drτ
while keeping the self-propulsion force (speed) f0 (υ0) and temperature T fixed. Note that
in the limit of fast rotational diffusion, Drτ →∞, the persistence length of the particles
goes to zero and the active force acts effectively as translational diffusion [58]. As a result,
we expect the behaviour in this limit to coincide with the behaviour in the equilibrium
(passive) system, but with a modified interaction strength. However, as Drτ is decreased,
the non-equilibrium effects should become more evident.

In this section we use overdamped Brownian dynamics simulations to explore the
behaviour of systems with Drτ between 0.3 and 30 and densities ρσ3 between 0.191 and
0.764. In all cases, the magnitude of the self-propelling speed is fixed at υ0τ/σ = 50.

For all values of Drτ we consider, we find that the system is in a fluid state for a
sufficiently high value of temprature T = 1/βsε (see Fig. 2.1(a)). As the temperature
decreases and the strength of the attraction is increased, the particles tend to aggregate.
The structure of the aggregate depends strongly on the rotational diffusion coefficient.
For high rotational diffusion coefficient, the aggregated phase appears as the liquid in a
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Figure 2.1: Snapshots of different states of the system. In (a) the system is in a homogeneous
fluid state, in (b) there is liquid-gas coexistence, in (c) a percolating network state is found,
and in (d) a crystal coexists with a gas. Particles that belong to different clusters have different
colours. The values of the parameters are ρσ3 = 0.191, υ0τ/σ = 50, T = 0.2 for (a) and 12.5 for
(b)-(d) and Drτ = 30, 4.2, 0.01, 30 for (a)-(d) respectively.
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classical liquid-gas phase separation, namely, the liquid phase is organized such that the
surface of the cluster is minimal (Fig 2.1(b)). However, for slower rotational diffusion,
the aggregated phase is much less compact as shown in Fig. 2.1(c), and frequently spans
the entire system or forms “living” clusters as described in Ref. [104].

In order to better quantify the aggregation of particles, we obtained density histograms
for the systems we examined. We found that in most cases the density histograms transi-
tioned from a unimodal to a bimodal curve as the temperature is decreased, a transition
that typically indicates passing from a homogeneous state into coexistence. Examples of
such histograms are presented in Fig. 2.2. We subsequently used the local maxima of the
density histograms, which we identify as the local densities of the coexisting phases ρl,
to construct the state diagram of the system for different rotational diffusion coefficients,
see Fig. 2.3. Note that in Fig. 2.2 some of the peaks in the gas phase are very low com-
pared to the peaks of the liquid phase, indicating that only a small fraction of our system
consisted of gas particles. We identified as fluid the regime where only a single peak is
visible in the local density histogram. States which exhibited two peaks but showed no
signs of global phase separation were identified as percolating network states, and states
which exhibited a clear phase separation were marked as either gas-liquid or gas-crystal,
depending on whether the high density phase is crystalline. Note that we have not probed
the exact positions of the critical or triple points in any of the diagrams presented in Fig.
2.3. Additionally, the boundaries presented in black dashed lines are simply approximate
state boundaries.

As shown in Fig. 2.3(a), for a rotational diffusion coefficientDrτ = 30 (ten times larger
than the value dictated by the Stokes-Einstein relation), the behaviour of the system is
very similar to the phase diagram seen for passive systems. The system transitions with
decreasing temperature T from a homogeneous fluid state to a gas-liquid coexistence and
eventually to a gas-crystal coexistence. Moreover, the binodal envelope is similar to that
of the equilibrium system, in the sense that the value of temperature alone dictates the
densities of the two coexisting phases. The low-density curves do not fall exactly on top
of each other for low values of temperature due to surface effects that are discussed at the
end of this section.

Decreasing the rotational diffusion to Drτ = 9 (Fig. 2.3(b)) results in the emergence
of a new state, which we refer to as a percolating network. This new state consists of a
dynamic network of clustered particles coexisting with a gas phase and in static images
resembles an equilibrium system which has undergone spinodal decomposition. However,
in contrast to such a state, the percolating network we observe is clearly not kinetically
trapped. From Fig. 2.3(b) we see that the system now transitions with decreasing tem-
perature from a homogeneous fluid state to a percolating network and then to gas-liquid
coexistence.

Setting the rotational diffusion coefficient to the value dictated by the Stokes-Einstein
relation, namely Drτ = 3, results in the state diagram shown in Fig. 2.3(c). Here,
we find that the region where the percolating network state occurs, is increased at the
expense of the gas-liquid coexistence region. Additionally, in the percolating network
region, attraction does not solely dictate the densities of the coexisting states anymore.
In contrast, the peaks in the local density histograms also depend on the total density
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Figure 2.2: Local density histograms for a system with total density ρσ3 = 0.381 and magni-
tude of self-propulsion υ0τ/σ = 50. P (ρσ3) denotes the probability to find a particle with local
density ρσ3. The subfigures (a)-(d) correspond to different rotational diffusion coefficients as
indicated.
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Figure 2.3: (a)-(d) State diagrams of the active Lennard-Jones system with rotational diffusion
coefficients Drτ = 30, 9, 3, and 0.3 respectively. On the y-axes T denotes the temperature of the
system. Data points correspond to local maxima of density histograms, which we identify as
the local densities ρl of the coexisting phases. Different symbols correspond to different overall
densities of the system. The black dashed lines indicate approximate state boundaries. Labels
are as follows: F indicates the fluid, G-L gas-liquid coexistence, G-X gas-crystal coexistence and
PN the percolating network state.
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of the system. We note that this non-collapse was validated for various system sizes as
described below.

For very low rotational diffusion (Drτ = 0.3) the state diagram continues to evolve
(Fig. 2.3(d)). The percolating network has now completely replaced the gas-liquid region -
according to our simulations, the system transitions directly from the percolating network
state to a gas-crystal coexistence state.

We conclude this section by commenting on finite size effects. In order to ensure
that the behaviour we observed in Fig. 2.3 was robust with respect to system size, we
simulated a few state points for larger and smaller systems, consisting of N = 21952
and 2197 particles respectively. First of all, we found that the identification of the states
does not change, e.g. we observe fluid, liquid-gas, crystal and the percolating network
independent of system size. Additionally, the density of the dense phase (percolating
network of liquid clusters, liquid or crystal) was only slightly affected by the system
size. Substantial deviations occurred only for the low-density phase. These deviations
are expected, since the first peak of the local density histogram is complicated by the
presence of surface particles in addition to the gas particles. Nevertheless, this effect does
not affect the conclusions drawn above.

2.3.2 Percolating cluster state
One of the most striking differences between a gas-liquid coexistence and the novel perco-
lating network state is the compactness of the dense clusters. In a gas-liquid coexistence,
the system evolves in order to minimize the surface area of the dense cluster, resulting in
compact spherical or cylindrical geometries. In the percolating network, the active system
appears to almost attempt to maximize the surface area, resulting in a highly branched
network. One way to characterize this difference is by looking at the ratio of surface to
volume of these large aggregates. In Fig. 2.4 we plot the average ratio NS/NV of surface
particles over the total number of particles for the largest cluster, as a function of the
rotational diffusion coefficient. In all cases, the density ρσ3 = 0.191, self-propelling force
υ0τ/σ = 50 and interaction strength T = 0.08 are chosen such that nearly all particles are
part of one large cluster (> 90%). We have found that for the parameters used in Fig. 2.4
the fluctuations of the number of particles in the biggest cluster NV as well as the ratio
NS/NV are small. Thus, the size of the largest cluster does not fluctuate significantly,
and the dynamic changes in the shape of the percolating network do not seem to affect
the presented results.

In the fast rotational diffusion regime, the liquid cluster is indeed compact, resulting
in a small surface-to-volume ratio, which decreases further with increasing system size, as
expected. On the other hand, for low rotational diffusion, i.e. in the percolating network
state, we observe a much larger fraction of surface particles, which is independent of the
system size. For the system parameters studied in Fig. 2.4 we find that the transition
between the network state and the gas-liquid separation occurs at a rotational diffusion
of around Drτ ∼ 2.

To gain further insight into the properties of the percolating network state, we study
the pairwise correlations between particles. In Fig. 2.5(a), we plot the radial distribution
function g(r) for four different values of Drτ , at the same density and interaction strength
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Figure 2.4: Average ratio of the number of surface particles NS over the number of particles
NV in the biggest cluster of the system, as a function of the rotational diffusion coefficient Drτ .
For all points, υ0τ/σ = 50, T = 0.08, and ρσ3 = 0.191. The insets show snapshots of the system
for the corresponding values of Drτ . Particles that belong to different clusters have different
colours.

as was used for Fig. 2.4. For the highest value of Drτ , the system exhibits a gas-crystal
phase separation, and the radial distribution function shows sharp peaks characteristic
of the crystalline order. For Drτ = 9 and 3, the system exhibits a gas-liquid separation,
resulting in much weaker peaks in g(r). Finally, for Drτ = 0.3, we observe the percolating
network state, for which the radial distribution function looks essentially the same as that
of the gas-liquid separation.

Additionally, we calculate the normalized orientation correlation function C1(r), de-
fined as

C1(r) =

〈∑N

i=1

∑′N

j=1 δ (r − rij)ui · uj
〉

〈∑N

i=1

∑′N

j=1 δ (r − rij)
〉 , (2.8)

where the prime on the summation sign indicates that terms for which i = j are not
included. The angular brackets indicate a configurational average. This function is equal
to unity if all the axes of self-propulsion of particles are aligned and zero if all particle
orientations are uncorrelated. We plot C1(r) in Fig. 2.5(b). In all cases, we see that for
r < σ, there is a negative correlation between the orientations of the particles. This is
expected, as the only way for particles to be significantly closer than r = σ is for them
to be pushing towards each other. Moreover, as expected, the crystalline state shows
significant statistical noise, due to small values of the denominator in Eq. 2.8. The most
important result in Fig. 2.5 is the strong local alignment of particles in the percolating
state in comparison to the other states. As there is no explicit aligning torque in the
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Figure 2.5: (a) Radial distribution function g(r), and (b) normalized orientation correlation
function C1(r) for different values of the rotational diffusion coefficient. All curves correspond to
values of the parameters ρσ3 = 0.191, υ0τ/σ = 50 and T = 0.08. For Drτ = 30 crystal and gas
coexist, for Drτ = 9, 3 liquid and gas coexist and for Drτ = 0.3 the system is in the percolating
network state. Note that in subfigure (a) the radial distribution functions are offset for clarity.
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model, this is surprising, and indicates that particles with similar orientations tend to
stay in closer proximity in the percolating network.

In light of the above conclusions, we propose here a possible mechanism that accounts
for the formation of the percolating network state. Consider a dilute system of self-
propelled particles with an attraction strength at least strong enough to cause gas-liquid
phase separation in the absence of self-propulsion. Now assume that the magnitude of self-
propulsion is stronger than the attractions βsf0σ > βsε, and that the axis of self-propulsion
associated with each particle is pointing in a fixed, random direction (Drτ = 0). When
two particles collide there are two possible scenarios - if their axes of self-propulsion are
pointing in a similar direction, then the attraction will cause them to aggregate and
travel together. In contrast, if the axes of self-propulsion are pointing in sufficiently
different directions, the particles will overcome the attraction and move away from each
other. After a large number of collisions, this process will ultimately create a collection of
clusters, with each cluster containing particles with similar orientations. By performing
a small number of simulations (not shown in the present chapter) in very low densities
ρσ3 = 0.001−0.01 and for βsf0σ > βsε > 1, we have indeed verified that the above process
creates a collection of small clusters in which particle orientations are highly correlated.

Now, if we increase the density and instead of a fixed direction of self-propulsion we
allow the particles to slowly rotate (corresponding to a low rotational diffusion coefficient),
then this argument should continue to hold, e.g. particles that have similar orientations
aggregate more easily than particles pointing in opposite directions. This results in highly
dynamic aggregates with groups of particles frequently attaching and detaching, and
neighboring particles displaying high degrees of orientational correlation as seen in Fig
2.5. For sufficiently high density (as those studied in this chapter), these aggregates
become completely system spanning, and the majority of particles are connected to a
single network, as seen in our simulations. This picture agrees well with movies from our
simulations and accounts for both the local alignment of particles (Fig. 2.5) and the lack
of system size dependence of the structural properties of the percolating network (Fig.
2.4).

As Drτ increases, the persistence length of the self-propelled motion of the particles
decreases. In this case, the attractive force is able to aggregate particles with larger
differences in the orientation of the axes of self-propulsion. This process ultimately leads
to a transition to the (bulk) gas-liquid phase coexistence region (Fig. 2.4). A similar
transition from the percolating network state to gas-liquid coexistence can take place by
fixing the persistence length of the particles and increasing the attraction (Fig. 2.3(b)
and (c)).

2.3.3 Clustering properties
In a recent publication, Mognetti et al. [104] showed that the aggregation, i.e. clustering,
in a system of self-propelled attractive particles depended only on the ratio Pagg = ε/f0σ.
To examine whether this collapse also occurs in our system, we calculated the degree of
clustering Θ, introduced in Ref. [104], as

Θ = 1− 〈Nclusters〉
N

, (2.9)
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where 〈Nclusters〉 is the average number of clusters in the system. We considered particles
clustered when their center of mass distance is less than 1.2σ [104]. Thus, Θ → 0 when
the system is in the dilute gas phase where 〈Nclusters〉 ' N , while Θ = 1 − 1

N
' 1 when

all particles belong to the same cluster. The results are plotted in Fig. 2.6.
In Fig. 2.6(a) we plot the degree of clustering Θ as a function of the rotational diffusion

coefficient Drτ at constant Pagg near the percolating network to gas-liquid transition. We
do not see a collapse in the degree of clustering here. Similarly, in Fig. 2.6(b) we do not
see a collapse when plotting Θ as a function of Pagg at fixed rotational diffusion Drτ for a
wider range of state points. Finally, we checked to see if the collapse would occur if we use
underdamped dynamics in place of overdamped dynamics for the translational degrees of
freedom. As shown in Fig. 2.6(c), we also do not find a value of the damping parameter
η̃ for which a collapse occurred. We conclude that the data collapse found by Mognetti et
al. [104] does not occur in our system. We attribute this discrepancy to the difference in
the applied dynamics, and more specifically to the different mechanisms that rotate the
particles in the two different systems.

2.4 Conclusions
In the present chapter, we employed computer simulations to study the self-assembly of
a system of self-propelled, Brownian particles, that interact via the truncated and shifted
Lennard-Jones potential.

We determined state diagrams of the overdamped system for various rates of rotational
diffusion of the self-propelled motion of the particles. We found that for fast rotational
diffusion, the properties of the state diagram bore strong similarities to the phase dia-
gram of the equilibrium Lennard-Jones system. However, as the rotational diffusion was
decreased, new features arose due to the interplay between self-propulsion and attraction.
That is, a new state was observed between the fluid phase and gas-liquid coexistence,
which we identified as a highly dynamic, percolating network state. That state consisted
of interconnected but motile clusters that created a system-spanning network. Finally,
for slow rotational diffusion the (bulk) gas-liquid coexistence disappeared and the system
transitioned from the percolating network state directly to gas-crystal coexistence.

We subsequently discussed the unique properties of the percolating state, and pre-
sented evidence of a transition from gas-liquid coexistence to percolating network with
decreasing rotational diffusion. By examining the correlations between the orientations
of the axes of self-propulsion of the particles, we found significant local alignment in the
percolating state. A possible mechanism was proposed in order to explain the formation
of the percolating network.

Finally, we noted that the ratio of the strength of the attraction over the magnitude
of self-propulsion does not solely characterize our system. This is in contrast to what was
found in Ref. [104], and may be due to differences in the applied dynamics.

We would like to comment here on the significance of the percolating network state.
First, we note once more that this state is caused by the synergy between attraction and
self-propulsion, so we expect it to be present in three-dimensional systems for a wide
variety of attractive potentials and propulsion mechanisms. Moreover, our simulations
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suggest that this novel state is present for low density systems and experimentally relevant
rotational diffusion, so a search for this state in real colloidal systems is feasible. As earlier
work has shown, hydrodynamic interactions may also cause local alignment of particles,
an effect that may enhance the formation of the percolating network state in experimental
systems [47].

Last but not least, as demonstrated in Section 2.3.3, the exact dynamics of a theoretical
model are of importance not only for the quantitative but also for the qualitative results
it generates. Detailed comparisons between different theoretical models, as well as actual
experimental systems, such as Ref. [111], are thus extremely valuable and needed, in
order to deepen our understanding of active matter systems.

Acknowledgments
The work presented in this chapter was performed in collaboration with Harmen Sielcken,
an undergraduate student. Harmen performed simulations and analysis of results that
are part of Figs. 2.4 and 2.6(a). We also thank Zdeněk Preisler for useful discussions.





3

Vapour-liquid coexistence of an
active Lennard-Jones fluid

In this chapter we study the vapour-liquid transition of a three-dimensional system of self-
propelled Lennard-Jones particles. Using recent theoretical results for active matter, we
calculate the pressure and report equations of state for the system. Additionally, we chart
the vapour-liquid coexistence and show that the coexistence densities can be well described
using simple power laws. Lastly, we demonstrate that our out-of-equilibrium system shows
deviations from both the law of rectilinear diameters and the law of corresponding states.
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3.1 Introduction

One of the most interesting yet still not fully developed aspect of active matter physics is
the applicability of equilibrium statistical physics concepts, such as free energy, pressure
and chemical potential, to describe the phase behaviour of active matter systems and the
associated phase transitions [62, 80, 85–88, 90–95]. One of the few systems where a phase
transition has been thoroughly explored, even in the context of critical phenomena, is
the Vicsek model together with its modifications [63, 67, 68, 73, 112]. In this chapter, we
study a different, yet also highly relevant model system for active matter, namely a system
of attractive, self-propelled, and spherical Brownian particles [5, 113]. We investigate
theoretically a vapour-liquid phase transition and present an extensive study of the out-
of-equilibrium phase transition.

One of the most well-studied equilibrium model systems which undergo such a vapour-
liquid phase transition is the Lennard-Jones (LJ) fluid [105, 106]. In this chapter, we
modify this model by introducing a self-propulsion force to each particle, and treat the
motion using Brownian dynamics. This model was chosen since the phase behaviour
of the equilibrium system is well characterized and can be readily verified by computer
simulations. In particular, since the LJ particles interact via a short-range attractive
potential, the second-order vapour-liquid phase transition of the system belongs to the
Ising universality class [114–116]. Moreover, the LJ fluid obeys both the law of rectilinear
diameters when in phase coexistence, which is obeyed by a myriad of real substances as
well as active matter systems [116–118] (see also Chapter 6), and the Noro-Frenkel law of
corresponding states, which maps the thermodynamic properties of different spherically
symmetric attractive potentials onto each other [119, 120].

In the case of the active LJ fluid preliminary studies of the vapour-liquid phase
transition have hinted on the deviation of the transition properties from equilibrium
[75, 104, 121] (see also Chapter 2). Most interestingly, as we have shown in Chapter
2, when the direction of the self-propulsion of the particles diffuses in a sufficiently slow
rate, a dynamic percolating state is found between the fluid and the vapour-liquid coex-
istence. Herein we expand on these results by measuring the equation of state for the
system and by studying the behaviour of the pressure in the vapour-liquid coexistence
regime. Additionally, we map out the phase diagram for different combinations of the
propulsion speed and rotational diffusion rate. We compare the behaviour of the binodals
of the active system with that of the equilibrium system by exploring whether the laws of
rectilinear diameters and corresponding states hold. Moreover, we examine whether the
binodals can be fitted via simple power laws.

In Section 3.2 we introduce the model and the dynamics and also present the method
that we used to calculate the equation of state. Equations of state are presented in
Section 3.3.1, followed by a close study of the phase coexistence in Section 3.3.2. This
study includes the power law and exponential scaling of the order parameter and the
critical temperature respectively in Section 3.3.3, a test of the law of rectilinear diameters
and the scaling of the critical density in Section 3.3.4 and ultimately a test of the law of
corresponding states in Section 3.3.5. Our conclusions are summarized in Section 3.4.



Vapour-liquid coexistence of an active Lennard-Jones fluid 37

3.2 Methods

3.2.1 Model and dynamics

We consider a three-dimensional system consisting of self-propelled spherical particles
(colloids) immersed in a molecular solvent, in a periodic box with dimensions Lx, Ly and
Lz. The position of the center of mass of the i-th particle at time t is given by the vector
ri(t). With particle i, we associate a three-dimensional unit vector ui(t) that indicates
the direction of the self-propelling force. The particles interact with each other via a
Lennard-Jones potential

U(rij) = 4ε
( σ

rij

)12

−
(
σ

rij

)6
 , (3.1)

truncated and shifted at 2.5σ, where σ is the particle length scale, rij = |rj − ri| and the
parameter ε controls the strength of the interaction.

To describe the translational and rotational motion of the individual colloidal particles
inside the solvent we use the overdamped Langevin equations

dri
dt

= −1
η

∑
j 6=i

∂U(rij)
∂ri

+ υ0ui +
√

2Dtrξ
tr
i , (3.2)

dui
dt

=
√

2Dr (ui × ξri ) . (3.3)

Note that after each iteration of Eq. 3.3 we normalize the unit vectors u in order to prevent
their drift. The translational diffusion coefficient is given by the Einstein-Smoluchowski
relation Dtr = 1/(βsη), with η the damping coefficient and βs the inverse temperature
of the surrounding solvent. Dr denotes the rotational diffusion coefficient and υ0 the
propulsion speed. The vectors ξtri and ξri are unit-variance random vectors, with mean
value and variation

〈ξtr,ri (t)〉 = 0, (3.4)
〈ξtr,ri (t)ξtr,rj (t′)〉 = I3 δij δ(t− t′), (3.5)

where I3 is the unit matrix in three dimensions.
We implemented the aforementioned equations of motion (Eqs. 3.2 and 3.3) using an

Euler-Maruyama integration scheme [107]. A maximum time step of dt = 2× 10−5σ2/Dtr

was used for the numeric integration of the equations of motion. The number of particles
in our simulations was approximately N = 2500. We have verified that the measurements
presented in this chapter are robust by repeating a limited number of measurements on
a system of 5000 particles.

Lengths are given in units of σ, time in units of τ = σ2/Dtr, and energy in units of
1/βs. We also denote T = 1/βsε as the dimensionless temperature of our system. This
notation is adopted as it facilitates direct comparison to a passive LJ system.
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3.2.2 Pressure
In order to measure the pressure of our active system we use the results of Winkler et al.
[122] (see also Appendix A). Specifically, the pressure P of a system of self-propelled and
spherical particles in a periodic box is calculated using

P = Pid + Pvir + Pswim. (3.6)

In this expression, the ideal gas pressure Pid is given by

Pid = ρ/βs, (3.7)

with ρ the number density. Additionally, Pvir is the standard virial pressure given by

Pvir = − 1
3V

〈
N−1∑
i=1

N∑
j=i+1

∂U(rij)
∂ri

· (ri − rj)
〉
, (3.8)

where V is the volume of the system. Finally, Pswim is the “swim pressure”, i.e. the direct
contribution of the self-propulsive forces to the pressure, and is given by

Pswim =ρηυ
2
0

6Dr

− ηυ0

6V Dr

〈
N−1∑
i=1

N∑
j=i+1

∂U(rij)
∂ri

· (ui − uj)
〉
. (3.9)

Note that the brackets in Eqs. 3.8 and 3.9 denote a time average over the steady state.
The steady state of the system was identified following Ref. [121] (see also Chapter 2).

3.3 Results

3.3.1 Equations of state
Recent theoretical work has established the existence of an equation of state for self-
propelled particles with purely isotropic interactions, such as our model [90, 92, 122, 123].
In this section we calculate equations of state for an active LJ system in a periodic cubic
box. Our goal is to examine the behaviour of the equation of state as the active system
transitions from a homogeneous state to vapour-liquid phase coexistence, and compare it
with the behaviour of a passive LJ system.

In Fig. 3.1(a) we show characteristic equations of state for the system. As in the
passive system, lowering the temperature causes the equation of state to become non-
monotonic, a behaviour associated with phase separation into a gas and a liquid. From
these equations of state, we observe no qualitative differences from the passive LJ system.

In order to examine the equations of state in more detail, we study the different
contributions to the pressure. In Fig. 3.1(b) we plot the swim pressure as a function
of the density for different temperatures. We find that for high temperatures, where no
coexistence takes place, the swim pressure has a roughly parabolic shape. However, once
phase separation occurs in the system, the swim pressure grows linearly with the density
in the phase coexistence regime. This linear growth in the coexistence region is present for
all other parameter space points that we have examined. We find that the swim pressure
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Figure 3.1: Equations of state for a system with propulsion speed υ0τ/σ = 20 and rotational
diffusion coefficient Drτ = 20. (a) shows the total pressure of the system as a function of the
density, (b) shows the swim pressure contribution (Eq. 3.9) and (c) shows the sum of the ideal
and the virial contribution (Eqs. 3.7 and 3.8 respectively). Full symbols correspond to state
points where the system is in a homogeneous state while open symbols denote vapour-liquid
phase coexistence. Full lines are simply guides to the eye.
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of both the gas and the liquid phase stays fixed throughout the coexistence region, hence
this linear growth of the total swim pressure arises due to the lever rule. Note that in
our system the swim pressure of the dense phase is higher than that of the dilute phase
in the coexistence region, while the opposite is true in the case of motility-induced phase
separation [91].

Subsequently, in Fig. 3.1(c) we show the contribution coming from the ideal and the
virial part of the pressure. Note that these two contributions alone cannot account for the
observed phase behaviour, as the high temperature curve (colored blue) is non-monotonic
even though the system is in a fluid state for all densities shown.

3.3.2 Vapour-liquid coexistence
In this section we map out the phase diagram for the LJ fluid. To this end, we conducted
simulations in a long simulation box with dimensions Lz = 6Lx = 6Ly, containing a liquid
slab coexisting with vapour, as shown in Fig. 3.2(a). The overall number density of the
system was fixed at ρσ3 = 0.1333. We then measured the density profile along the long
axis by dividing the box into slabs of width ' 0.3σ along the z direction and taking the
time average of the number of particles in a given slab. Subsequently, we calculated the
local number densities of the vapour phase ρv and the liquid phase ρl by fitting the density
profile ρ(z) around each interface to the function

ρ(z) = 1
2(ρl + ρv)−

1
2(ρl − ρv) tanh

[
2(z − z0)

w

]
, (3.10)

where z0 and w are the location and width of the vapour-liquid interface, and are also
determined from the fit. Fig. 3.2(b) shows an example of a measured density profile as
well as the fitted Eq. 3.10. We find that the hyperbolic tangent provides an excellent fit
to the interface and that we can accurately determine the local densities of the vapour
and the liquid phase.

We systematically obtained the coexisting densities for a wide range of parameters
following two different paths that drive the system out of equilibrium. First, we varied
the rotational diffusion coefficient while keeping the self-propulsion fixed at a non-zero
value. Second, we varied the propulsion speed while keeping the rotational diffusion rate
of the particles fixed. The measured coexisting densities are summarized in Fig. 3.3.
Clearly, both routes produce a series of phase diagrams that are highly consistent with
a simple passive attractive fluid, such as a LJ fluid. Note that these two paths are not
equivalent as the Dr → ∞ limit does not coincide with the υ0 → 0 limit: the first one
corresponds to a passive system with a higher effective temperature than the second one,
which corresponds to the equilibrium LJ system with temperature T = 1/βsε. Also, we
set a rather high rotational diffusion coefficient when we varied the self-propulsion speed.
This choice was made in order to minimize the area of the percolating state regime in the
state diagram [121] (see also Chapter 2).

In the following subsections, we compare the obtained phase diagrams more closely
to the equilibrium case by exploring the temperature dependence of ∆ρ = ρl − ρv, and
examining whether the law of rectilinear diameters and law of corresponding states still
hold.
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Figure 3.2: (a) Snapshot of a long box simulation. (b) Average number density ρσ3 as a
function of position. Data points are the time averages obtained from simulations while the red
curve is a fit of Eq. 3.10.
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Figure 3.3: Binodal lines of the system for a system of (a) constant propulsion speed υ0τ/σ =
8 and varying rotational diffusion coefficient and (b) constant rotational diffusion coefficient
Drτ = 20 and varying propulsion speed. Simulation results are denoted by points. Full lines
are fits, obtained by using the exponential fits for the parameters Tc, β, A, ρc, α and B (Tables
3.1 and 3.2) on Eqs. 3.11 and 3.14. Stars denote the calculated critical points.
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3.3.3 Temperature dependence of ∆ρ
The order parameter that governs the vapour-liquid phase transition in equilibrium is the
difference between the two coexisting densities ∆ρ = ρl − ρv. In equilibrium, ∆ρ follows
a power law given by

σ3∆ρ = A (Tc − T )β , (3.11)

where Tc is the critical temperature, β is the (critical) exponent and A is a proportionality
constant. Here we examine whether the scaling of ∆ρ with temperature follows the same
behaviour for our active system, and treat Tc, A, and β as free fitting parameters.

In Figs. 3.4(a) and 3.5(a) we show the order parameter ∆ρ, as a function of the scaled
temperature (Eq. 3.11) for different values of rotational diffusion rate and self-propulsion
speed, respectively. Interestingly, the simulation data fall on straight lines, indicating
that Eq. 3.11 accurately describes the active system in the examined parameter space.

Next, we examine the scaling of the fitted critical temperature Tc, the exponent β
and the constant A as the system is driven away from equilibrium. The results are
plotted in Figs. 3.4(b-c) and 3.5(b-c). Error bars are the standard errors from fitting
and in the majority of cases they are smaller than the plotted markers. As expected, the
critical temperature decreases with decreasing rotational diffusion coefficient/increasing
propulsion speed, as stronger attraction is needed to bring together swimmers with larger
persistence lengths. This is in accordance with the predictions of Farage et al. for the
same model [88]. We also find that the exponent β decreases as our particles become more
active. The parameter A stays quasi-constant as a function of the rotational diffusion (Fig.
3.4(c) inset), but clearly increases with increasing propulsion speed (Fig. 3.5(c) inset).

For the systems where the rotational diffusion coefficient is varied, the scaling of Tc
and β is well captured by simple exponential functions, for instance

Tc(Dr) = a1 + a2e
−a3Drτ , (3.12)

is an excellent fit for the critical temperature, where the values of the dimensionless
parameters a1, a2 and a3 can be found in Table 3.1. We also fit the parameter A with
an exponential function, even though its variation is minimal and the fit is clearly not
optimal.

For the systems where the propulsion speed is varied, we similarly find that the scaling

Tc(υ0) = b1 + b2e
−b3σ/(υ0τ), (3.13)

describes our data fairly well. The same holds for the exponent β and the constant A.
The numerical coefficients can be found in Table 3.2. Note that the difference between
Eqs. 3.13 and 3.12 is simply the replacement of Drτ with σ/(υ0τ). As the Péclet number
is simply the ratio of these two, it might be tempting to ask whether the phase behaviour
can be completely described by the Péclet number Pe = Drσ/υ0. However, this turns out
not to be the case as these two separate paths out of equilibrium cannot be collapsed via
the Péclet number.



44 Chapter 3

�
�

�

�
�

�
�

�

�

�

�
�

�
�

�
�

�

�

�
�

�
�

�
��

�

�
�

�
�
�

�
��

�
�

�
�
��

�
�
�

�
�
��

��
���
���
���

�
��
���
�����
���

Dr�

� 20

� 15

� 12

� 9

� 6

� 3

� 1

0.6 0.7 0.8 0.9 1.0 1.1

0.65

0.70

0.75

0.80

0.85

0.90

0.95

(Tc-T ) 	



3
�
�

(a)

0 5 10 15 20

0.4

0.5

0.6

0.7

0.8

Dr�

T
c

(b)

0 5 10 15 20

0.05

0.10

0.15

0.20

Dr�

	

(c)

0 5 10 15 20

1.09

1.10

1.11

1.12

1.13

Dr�

A

Figure 3.4: (a) ∆ρ as a function of the scaled temperature for systems of different rotational
diffusion rates and constant propulsion speed υ0τ/σ = 8. Data points correspond to simulation
results while the lines denote the fits (Eq. 3.11). Results for different rotational diffusion rates
are offset for clarity. (b) Critical temperature Tc as a function of the rotational diffusion rate.
The continuous line shows the fit from Table 3.1 . (c) Critical exponent β and constant A (inset)
as a function of the rotational diffusion rate. The continuous line shows the fit from Table 3.1.

Table 3.1: Fitting parameters of the function a1+a2e
−a3Drτ to the parameters of Eqs. 3.11 and

3.14 for systems of different rotational diffusion rates and constant propulsion speed υ0τ/σ = 8.

Tc β A ρcσ
3 α B

a1 0.818 0.237 1.118 0.339 1.04 0.252
a2 -0.47 -0.194 -0.081 0.126 1.122 1.336
a3 0.156 0.18 1.004 0.114 0.229 0.79
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Figure 3.5: (a) ∆ρ as a function of the scaled temperature for systems of different propulsion
speeds and constant rotational diffusion Drτ = 20. Data points correspond to simulation results
while the lines denote the fits (Eq. 3.11). Results for different propulsion speeds are offset for
clarity. (b) Critical temperature Tc as a function of the self-propulsion speed. The continuous
line shows the fit from Table 3.2. (c) Critical exponent β and constant A (inset) as a function
of the self-propulsion speed. The continuous line shows the fit from Table 3.2.

Table 3.2: Fitting parameters of the function b1 + b2e
−b3σ/(υ0τ) to the parameters of Eqs. 3.11

and 3.14 for systems of different propulsion speeds and constant rotational diffusion Drτ = 20.

Tc β A ρcσ
3 α B

b1 1.066 0.291 1.038 0.312 0.971 0.234
b2 -0.184 -0.241 0.297 0.201 2.132 8.082
b3 12.33 12.382 11.384 13.795 33.406 69.521
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3.3.4 Law of rectilinear diameters
Next, we investigate whether the law of rectilinear diameters holds for our system. Specif-
ically, we study the properties of the sum of the coexisting densities which in equilibrium
typically scales as [106, 124]

1
2 (ρv + ρl)σ3 = B (Tc − T )α + ρcσ

3. (3.14)

with B a proportionality constant, α an exponent and ρc the density at the critical point.
According to the law of rectilinear diameters, the exponent α = 1. Note that in Eq. 3.14
we have omitted corrections that are needed in order to capture the behaviour near the
critical point, as we are unable to study this regime in the present chapter. Using Tc
as calculated in the previous section, we determine the proportionality constant B, the
exponent α and the critical density ρc by fitting the coexisting densities to this expression.
In Figs. 3.6(a) and 3.7(a) we show that Eq. 3.14 can indeed accurately reproduce the
behaviour of our out-of-equilibrium system as we vary the rotational diffusion rate and
self-propulsion speed respectively.

Next, in Figs. 3.6(b-c) and 3.7(b-c) we plot the fitted parameters critical density ρc,
exponent α and constant B. In Figs. 3.6(b) and 3.7(b) one can see that the critical den-
sity increases with decreasing rotational diffusion coefficient/increasing propulsion speed,
indicating that higher densities are necessary in order to have coexistence when particles
swim faster. Interestingly, we also find that the exponent α deviates substantially from
unity as we drive the system away from equilibrium. Thus, sufficiently far from equilib-
rium the law of rectilinear diameters is clearly violated. Lastly, the parameter B also
increases with decreasing rotational diffusion coefficient/increasing propulsion speed.

In addition, the three parameters ρc, α and B can be fitted again with a simple
exponential of the form of Eq. 3.12 or 3.13, depending on whether the rotational diffusion
or the propulsion speed is varied. The measured fits can be found in Tables 3.1 and 3.2.
The fact that all fitting parameters Tc, β, A, ρc, α and B scale in a similar fashion in the
active system is remarkable, and may suggest that a simple, comprehensive description
of the phase transition is indeed possible for our model.

It is tempting to identify the aforementioned fitting parameters with the true critical
point and the critical exponents of the system. However, currently we do not have enough
evidence to establish the existence of a critical point for the active system, as we are unable
to access the region close to the fitted critical point due to the small system sizes considered
here. Also, we cannot be certain that the calculated power laws still hold in this region,
and that the values of the critical temperature, the critical density and the exponents
remain unchanged as one approaches the transition region. Hence, we cannot safely link
the measured fitting parameters to the critical properties of the transition. Nonetheless,
it is interesting to compare the equilibrium limit of the fits presented in Tables 3.1 and 3.2
(the equilibrium limit corresponds to the limits Drτ → ∞ and υ0τ/σ → 0 respectively),
with their equilibrium counterpart. We find that our estimations for the critical point
and exponents are rough, yet reasonable. Specifically, we estimate the equilibrium critical
point at Tc = 1.066 and ρcσ

3 = 0.312, while recent finite size scaling studies report
Tc = 1.187 and ρcσ

3 = 0.32 [125, 126]. Moreover, we find for the exponent β = 0.291,
while literature reads β = 0.3285 [116]. Also, even though the extrapolated equilibrium
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Figure 3.6: Distance of the average of the coexisting densities from the critical density 1
2(ρv +

ρl) − ρc as a function of the scaled temperature for different rates of rotational diffusion and
constant self-propulsion speed υ0τ/σ = 8. Data points correspond to simulation results while
the lines denote the fits of Eq. 3.14. Results for different rotational diffusion rates are offset
for clarity. (b) Critical density ρc as a function of the rotational diffusion coefficient Dr. The
continuous line shows the fit from Table 3.1. (c) Critical exponent α and constant B (inset) as a
function of the rotational diffusion coefficient Dr. The continuous line shows the fit from Table
3.1.
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Figure 3.7: Distance of the average of the coexisting densities from the critical density 1
2(ρv +

ρl) − ρc as a function of the scaled temperature for different propulsion speeds and constant
rotational diffusion coefficient Drτ = 20. Data points correspond to simulation results while the
lines denote the fits of Eq. 3.14. Results for different propulsion speeds are offset for clarity. (b)
Critical density ρc as a function of the self-propulsion speed. The continuous line shows the fit
from Table 3.2.(c) Critical exponent α and constant B (inset) as a function of the self-propulsion
speed. The continuous line shows the fit from Table 3.2.
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exponents α of Tables 3.1 and 3.2 are in reasonable agreement (α = 1.04 and 0.971
respectively), there is a discrepancy between the values of the exponent β (β = 0.237 and
0.291).

3.3.5 Binodal lines and law of corresponding states

Finally, one can now combine Eqs. 3.11 and 3.14 in order to express the coexisting
densities ρv and ρl as a function of the parameters Tc, β, A, ρc, α and B. In Fig. 3.3
we compare the binodals of the system from the directly measured coexisting densities
to the fits for the aforementioned parameters (Tables 3.1 and 3.2). We find that the
agreement between measurements and fits is excellent. We note that in Ref. [121] a
percolating network state separated the fluid from the vapour-liquid coexistence region
when the system was sufficiently far from equilibrium (see also Chapter 2). Consequently,
this extra state may well result in a metastable critical point for our system. However,
we have performed simulations at all the predicted critical temperatures and observed no
signatures of a percolating state within the predicted coexistence regions.

Last but not least, we checked whether our system obeys a simple law of corresponding
states. That is, whether the binodal lines fall on top of each other if one scales the
temperature and the density with the corresponding quantities at the critical point. Such
a collapse of the binodals can be made, for example, for various real substances [124], or for
different cutoff radii of the equilibrium LJ fluid [120]. However, as shown in Fig. 3.8, the
active LJ fluid obeys no such law of corresponding states for different values of rotational
diffusion and self-propulsion. Naturally, the fact that the active LJ fluid does not obey
this simplified law of corresponding states does not prove that it does not obey a more
general Noro-Frenkel law of corresponding states, which compares the thermodynamic
properties at the same reduced density and second virial coefficient. However, a more
general test is out of the scope of the present work.

3.4 Conclusions

We studied a system of self-propelled spheres that interact via the Lennard-Jones potential
using Brownian Dynamics simulations. We calculated equations of state for different
temperatures and verified that, as the system transitions from a homogeneous to a phase
separated state with decreasing temperature, the pressure curve as a function of density
shows the expected transition from monotonic to non-monotonic. Moreover, we observed
a linear growth of the swim pressure in the coexistence region.

Subsequently, we studied the phase coexistence regime using long box simulations.
We showed that the scaling of the coexisting densities with temperature follows classic
power laws. As mentioned in Section 3.3.4, the limitations of the present work do not
allow for an identification of the fitting parameters of these power laws with the critical
point and critical exponents of the system. Specifically, we have neither demonstrated
explicitly that a critical point exists for the active system, nor that the calculated power
laws coincide with the binodal lines close to the transition region. Nonetheless, the power
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Figure 3.8: Reduced binodal lines of the active LJ system (a) for systems of different rota-
tional diffusion rates and constant propulsion speed υ0τ/σ = 8 and (b) for systems of different
propulsion speeds and constant rotational diffusion coefficient Drτ = 20. Points correspond to
directly observed coexisting densities, scaled by the fitted critical temperatures and densities.
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laws we present describe extremely well the binodal envelope far away from the transition
region and should provide guidance for future studies of the system.

Noticeably, we also showed that all the various parameters of the power laws vary
with the propulsion speed or the rotational diffusion rate in a similar fashion, namely
their scaling is well captured by simple exponential functions. These parameters include
the critical temperature and density as well as the exponents of the power laws. Thus, a
unified description of the binodal lines for both the passive and the active Lennard-Jones
system may be within reach.
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4

Vapour-liquid interfaces and
surface tension of an active

Lennard-Jones fluid

In this chapter we study a three-dimensional system of self-propelled Brownian parti-
cles interacting via the Lennard-Jones potential. Using Brownian Dynamics simulations
in an elongated simulation box, we investigate gas-liquid phase coexistences of active
Lennard-Jones particles with planar interfaces. We measure the normal and tangential
component of the pressure tensor along the direction perpendicular to the interface and
verify mechanical equilibrium of the two coexisting phases. In addition, we determine the
non-equilibrium interfacial tension by integrating the difference of the normal and tan-
gential component of the pressure tensor, and show that the surface tension as a function
of activity is well-fitted by simple power laws. Finally, we measure the interfacial stiffness
and find a simple linear relation between the surface tension and interfacial stiffness with
a proportionality constant given by an effective temperature.
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4.1 Introduction

In the last two chapters we have explored the self-assembly of attractive, self-propelled
particles. Specifically, in Chapter 2 we presented state diagrams for systems of self-
propelled and attractive particles and studied properties of the different states we found
the system in, while in Chapter 3 we focused solely on the vapour-liquid transition of the
system and studied the validity of various equilibrium scalings and laws for the out-of-
equilibrium system. In the present chapter we perform a study of the same system and we
focus again on the vapour-liquid regime of the phase diagram. However, here we examine
the properties of the interface and demonstrate mechanical equilibrium of a system that
has undergone phase separation between a dense liquid and a dilute gas. The present
chapter can then naturally be seen as a continuation of Chapters 2 and 3. Also, in this
chapter we will use for the first time the notion of a local pressure of active systems, a
concept which we will use thoroughly in the rest of this thesis.

A working definition of pressure for systems of self-propelled particles has been a major
topic of current research and many different approaches have been adopted in order to
arrive at it. A popular approach assumes as a starting point the Fokker-Planck equation of
a probability density and obtains the microscopic stress tensor through a continuum theory
or by calculating the force exerted on a surrounding wall [89, 127]. Other approaches have
utilized a virial route in order to define and calculate an expression for the bulk pressure
[92, 122, 123], an expression which has been studied immensely for a variety of systems
in recent literature [90, 91, 128–130]. Moreover, it has been shown that in order to write
down an expression for the mechanical equilibrium of different parts of an active system,
one needs to include extra contributions with respect to equilibrium systems due to the
swim force [91, 130]. Solon and co-workers have shown that in the case of a contained
system, surprisingly, pressure depends upon the exact interactions of the contents of the
system with its confining walls, which naturally implies that pressure is generally not a
state function in active systems [127].

Many of the studies in the literature of active systems, especially those that examine
the notion of active pressure, consider soft repulsive or excluded volume interactions
among the self-propelled particles [59, 90, 91, 122, 123, 127]. The reason for this specific
choice of the model is that when such a system is in the far out-of-equilibrium regime
of very fast self-propulsion speeds, a so-called motility-induced phase separation (MIPS)
takes place, which is an intrinsically out-of-equilibrium and athermal phenomenon [61, 62,
74]. If the local pressure is calculated for a system that has undergone MIPS, mechanical
equilibrium between the coexisting phases can be shown. However, a negative surface
tension is present at the interface if the mechanical definition for the surface tension is
considered [91]. A negative surface tension is of course impossible for equilibrium systems
in phase coexistence as it directly implies that the system can minimize its free energy by
maximizing the area of the interface, thus rendering the interface unstable [94]. The failure
of standard equilibrium interpretations to explain this surprising result is a consequence of
the out-of-equilibrium character of the transition and the so far incomplete understanding
of the thermodynamics of active systems [93].

In this chapter we study a different active system that undergoes phase separation
and test whether properties of the interface such as the surface tension and the stiffness
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can still be defined or whether such definitions lead to unintuitive results, as in the
case of MIPS. To this end, we use the model studied in the previous Chapters 2 and
3, that is a system comprised of self-propelled and Brownian particles that interact via
the Lennard-Jones (LJ) potential. Many reasons justify the choice of the system. First
of all, the passive counterpart of the model is well studied and properties of its phase
transitions as well as values of associated thermodynamic quantities can be found in a
large number of scientific articles [105, 106, 116, 119, 120]. Secondly, the computational
efficiency of the model makes it very convenient and attractive for computer simulations.
Furthermore, and perhaps more importantly, the system undergoes a vapour-liquid phase
transition due to particle attractions for very low but also even high persistence lengths of
the active motion of the particles, which correspond to both quasi-equilibrium and fairly
out-of-equilibrium regimes, and forms stable interfaces between the coexisting phases (see
Chapters 2 and 3). It is thus an ideal system to study the effect of self-propulsion on the
properties of the phase transition and of the interface as one can slowly switch on the
activity of the system, contrary to the case of MIPS.

The structure of this chapter is as follows. In Section 4.2.1 we describe the dynamics
and model used in our numerical study along with the simulation setup. In Section 4.2.2
we present the expression we use in order to calculate the local pressure of the system.
We then discuss the density and pressure profiles in Sections 4.3.1 and 4.3.2 respectively.
We obtain the surface tension in Section 4.3.3 and perform fits to its scaling. Section
4.3.4 contains the calculation for the stiffness coefficient and a discussion on its relation
to the surface tension measured in Section 4.3.3. Conclusions are given in Section 4.4.

4.2 Methods

4.2.1 Model and dynamics

The model used in this chapter is identical to the one used in Chapters 2 and 3. We will
also present it here for completeness.

We consider a three-dimensional system consisting of self-propelled spherical particles
(colloids) immersed in a molecular solvent, in a periodic box with dimensions Lx, Ly and
Lz. The position of the center of mass of the i-th particle at time t is given by the vector
ri(t). With particle i, we associate a three-dimensional unit vector ui(t) that indicates
the direction of the self-propelling force. The particles interact with each other via a
Lennard-Jones potential

U(rij) = 4ε
( σ

rij

)12

−
(
σ

rij

)6
 , (4.1)

truncated and shifted at 2.5σ, where σ is the particle length scale, rij = |rj − ri| and the
parameter ε controls the strength of the interaction.
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To describe the translational and rotational motion of the individual colloidal particles
inside the solvent we use the overdamped Langevin equations

dri
dt

= −1
η

∑
j 6=i

∂U(rij)
∂ri

+ υ0ui +
√

2Dtrξ
tr
i , (4.2)

dui
dt

=
√

2Dr (ui × ξri ) . (4.3)

Note that after each iteration of Eq. 4.3 we normalize the unit vectors u in order to prevent
their drift. The translational diffusion coefficient is given by the Einstein-Smoluchowski
relation Dtr = 1/(βsη), with η the damping coefficient and βs = 1/kBTs the inverse
temperature of the surrounding solvent with kB the Boltzmann coefficient and Ts the
temperature of the surrounding solvent. Dr denotes the rotational diffusion coefficient
and υ0 the propulsion speed. The vectors ξtri and ξri are unit-variance random vectors,
with mean value and variation

〈ξtr,ri (t)〉 = 0, (4.4)
〈ξtr,ri (t)ξtr,rj (t′)〉 = I3 δij δ(t− t′), (4.5)

where I3 is the unit matrix in three dimensions. Lengths are given in units of σ, time
in units of τ = σ2/Dtr, and energy in units of 1/βs. We also denote T = 1/βsε as the
dimensionless temperature of our system. This notation is adopted as it facilitates direct
comparison to a passive LJ system. Throughout this chapter we choose the simulation
parameters such that the system is always in the region of the phase diagram where a gas
coexists with a liquid. The density of the system has been kept fixed for all simulations
at ρσ3 = 0.1333.

We implemented the aforementioned equations of motion (Eqs. 4.2 and 4.3) using
an Euler-Maruyama integration scheme [107]. A maximum time step of dt = 2 × 10−5τ
was used for the numeric integration of the equations of motion. For our simulations we
used the steady state particle configurations obtained in Chapter 3. Thus, the number
of particles in our simulations was approximately N = 2500 and the dimensions of the
simulation box are L × L × 6L in all simulations except the ones presented in Section
4.3.4. Periodic boundary conditions in all three dimensions are always applied. For each
set of simulation parameters, we let the simulations run and collect data for 300τ . We
also fix the center of mass of the system at the origin of the z-axis in order to prevent the
drift of the liquid slab that coexists with the gas by regularly shifting the coordinates of
the particles at fixed time intervals.

4.2.2 Local pressure
We use the definition of the local pressure of the system derived in Ref. [127] (see also
the discussion in Appendix A).

For the purpose of our simulations, we always assume a slab geometry with the long
axis of the simulation box being along the z dimension, such that the ẑ axis is normal
to all interfaces and the system is isotropic in the xy plane. In order to write down an
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expression for the diagonal components of the local pressure, first we define the moments

ρ(r) =
N∑
k=1

δ(r − rk), (4.6)

mi(r) =
N∑
k=1
uk,iδ(r − rk), (4.7)

sij(r) =
N∑
k=1
uk,iuk,jδ(r − rk), (4.8)

where i, j denote the spatial components of the corresponding vectors and tensors. ρ(r)
is the local density of particles while m(r) is the corresponding local polarization. The
diagonal ii-th component of the local pressure tensor Pii(z) can then be calculated using
the equation

Pii(z) = Pideal,ii(z) + Pvirial,ii(z) + Pswim,ii(z), (4.9)

where

Pideal,ii(z) = 〈ρ(z)〉 kBTs = kBTs
LxLy

∫
dx
∫
dy 〈ρ(r)〉 , (4.10)

is the ideal component of the pressure, where we have spatially integrated over the dimen-
sions that are perpendicular to the ẑ dimension and divided by the surface LxLy that we
integrated over, and brackets denote an average at the steady state over noise realizations,

Pvirial,ii(z) = 1
LxLy

∫
dx
∫
dy
∫
r′′i <ri

dr′′i

∫
dr′ 〈ρ(r′′)ρ(r′)〉 ∂r′′i U(|r′ − r′′|), (4.11)

is the standard local virial term, where the vector r′′ has the same components as the
vector r except for the i-th component, and

Pswim,ii(z) = ηυ0

(d− 1)Dr

1
LxLy

∫
dx
∫
dy

[
− 1
η

∫
dr′∂riU(|r′ − r|) 〈mi(r)ρ(r′)〉

+ υ0 〈sii(r)〉 −Dtr∂i 〈mi(r)〉
]

(4.12)

is the local swim pressure.
In our particle simulations, we divide the simulation box into slabs and measure the

different local quantities Eqs. 4.6-4.12 for each slab. The contributions to each slab of
the ideal and swim components of the pressure can be calculated straightforwardly, while
for the virial component we use Ref. [131].

Herein we refer to the diagonal elements of the pressure tensor with respect to the
dimension spanned by the vapour-liquid interface. In this light, we denote PN(z) = Pzz(z)
the normal component along the direction perpendicular to the vapor-liquid interface (z-
direction) and PT (z) = (Pxx(z) + Pyy(z))/2 the tangential component as the average of
the x and y components due to the symmetry of the system in the xy plane. The non-
diagonal components in the pressure tensor vanish due to hydrostatic equilibrium, which
we have also verified by directly measuring them in our simulations.
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4.3 Results

4.3.1 Density and orientation profiles

As a starting point of our study of the phase separated system, we measure the local
density ρ(z) across the simulation box. A similar investigation was presented in Chapter
3, but we will repeat it here for the sake of completeness. A typical snapshot of a phase
separated system is shown in Fig. 4.1(a), and the measured density profile is shown in
Fig. 4.1(b). We find that the density profiles are similar to equilibrium profiles and can
be well fitted to a hyperbolic tangent function:

ρ(z) = 1
2 (ρl + ρv)−

1
2 (ρl − ρv) tanh

[
2(z − z0)

D

]
, (4.13)

where ρl and ρv are the corresponding bulk liquid and vapor densities, z0 is the location
of the plane satisfying an equal area construction and D represents the thickness of the
interface. We fit the above equation to the right and left half of the box (z > 0 and z < 0)
separately using z0 and D as fitting parameters and obtain the bulk densities ρl and ρv
from the mean of the two fits.

In Fig. 4.1(c) we plot the local average orientation of particles u(z) = 〈m(z)〉 / 〈ρ(z)〉.
It is evident that the particles tend to orient themselves along the normal direction at the
interfaces, and the peak of the orientation profile does not coincide with the estimated
position of the interface z0 (dotted lines). On average, the particles tend to orient them-
selves with the direction of self-propulsion towards the less-dense (vapor) phase. This
asymmetry in the average orientation is easily explained by assuming a zero net velocity
at the interface: particles at the interface that point towards the dense phase have a
larger average velocity than particles that point towards the dilute phase due to the net
attractive force towards the liquid. Thus, more particles need to point outwards in order
to balance the asymmetry in velocities. It is also important to note that this preferential
ordering is only along the normal (z) direction. There is no net orientation along the
tangential plane (xy) as the system is isotropic in this plane. We note that in the case of
MIPS, where the activity drives the phase separation, the orientations tend to be exactly
reverse, with the preferred orientation of particles at the interfaces being towards the
denser phase.

We also find that at fixed activity, which for our system translates to fixed self-
propulsion speed and rotational diffusion coefficient, the shape of the orientation profile
along the interface as well as the interfacial width D becomes broader upon increasing
T , or equivalently upon decreasing the strength of attraction between particles. The
broadening of the interface as the system moves towards its “critical point” is completely
analogous to what is observed in the passive LJ system [106]. Also, at fixed tempera-
ture T , the interfacial region becomes broader as the activity increases. This observation
is compatible with the results of Chapters 2 and 3, which show that higher attraction
strength is needed to induce phase separation upon increasing activity, which can be seen
for example in the shifting of the binodal lines shown in Chapter 3 and also in other
studies [32, 88, 104].
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Figure 4.1: (a) A snapshot of a yz projection of the simulation box showing a system in its
steady state, where a liquid and a gas coexist. The dense liquid slab is in the middle of the
box and two planar interfaces separate it from the vapour phase on each side. (b) Local density
profile. Data points correspond to simulation measurements and the continuous line is the fit
of Eq. 4.13. Dotted lines indicate the location z0 of the interface according to Eq. 4.13 and the
shaded area shows the interfacial region (z0 −D/2, z0 +D/2). (c) Profile of the components of
the orientation vector u(z) = 〈m(z)〉 / 〈ρ(z)〉 (uN = uz and uT = (ux + uy)/2). The simulation
parameters for the system shown in this figure are υ0τσ

−1 = 28, T = 0.2, Drτ = 20.
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4.3.2 Pressure profiles
We now calculate the normal and tangential components of the terms that contribute to
the local pressure, Eqs. 4.10-4.12, for our phase separated systems. Figure 4.2 shows
typical profiles of the different components. Below we discuss the various contributions
as well as the total pressure profile separately.

In passive systems, mechanical equilibrium requires a constant normal component of
the total pressure, which simply consists of the ideal and virial contributions. However,
a net imbalance of the interaction forces along the tangential plane causes the tangential
component of the pressure to be smaller on average than the normal component along
the interfacial region. This inequality of the pressure components at the interface leads to
the surface tension [132, 133]. In the case of our active system, Fig. 4.2(a) shows that the
normal component of the sum of the ideal and the virial pressure is not constant across
the system and that the liquid has a smaller bulk pressure than the gas. Thus, mechanical
equilibrium is not established simply by considering the virial and the ideal components
of the pressure. Moreover, the tangential component is also not equal at the bulk of the
two coexisting phases, though it is reassuringly equal to the normal component in the
bulk. It is also smaller on average than the normal component of the pressure along the
interface, similar to the passive case. Note that the behaviour of the sum of the ideal and
the virial components of the pressure is inversed with respect to their respective profiles
in the case of MIPS [91]; in that case the ideal and virial component are higher in the
dense phase than in the dilute one.

The swim pressure, as we see in Fig. 4.2(b), is also not equal in the two phases for
both the normal and tangential components. Its magnitude is larger in the liquid phase
than the gas phase where it is essentially zero. Also, both components show peaks along
the interfaces. Again, the pressure profile is inversed with respect to the case of MIPS;
the swim pressure in that case is higher in the dilute phase than in the dense one [91].

In Fig. 4.2(c) we show the total pressure, that is the sum of the ideal, the virial and the
swim pressure. Reassuringly, the normal component now becomes constant throughout
the system, as it is required for mechanical equilibrium. We would like to emphasize
here that the gradient term of the form ∂imi in the swim pressure, Eq. 4.12, needs to be
included in the total pressure to obtain a perfectly flat normal component at the interface.
This term is obviously zero in the bulk of the system but its magnitude along the interface
is increased as the activity of the system is increased. The tangential component of the
total pressure is also equal in the two bulks but has negative peaks at the interfaces. This
is again similar to the case of equilibrium systems and leads to a positive surface tension,
as we discuss in Section 4.3.3. In the case of MIPS the total pressure profiles are again
reversed in the y-axis with respect to the ones shown in Fig. 4.2(c) [91]. The tangential
component in that case has positive peaks which translate into a negative surface tension
of the interface.

4.3.3 Surface tension
In the case of equilibrium fluids, the surface tension γ of an interface that separates two
coexisting bulk phases can be defined in various ways [134]. The surface tension can be
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Figure 4.2: Normal and tangential components of (a) the ideal (Eq. 4.10) plus the virial
pressure (Eq. 4.11), (b) the swim pressure (Eq. 4.12), and (c) the total pressure (Eq. 4.9).
The normal component is constant throughout the system, indicating mechanical equilibrium.
The tangential component has negative peaks at the two interfaces due to the surface tension.
Similarly to Fig. 4.1 dotted lines indicate the location z0 of the interface according to Eq. 4.13
and the shaded area shows the interfacial region (z0−D/2, z0+D/2). The simulation parameters
are the same as in Fig. 4.1.
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defined thermodynamically as the difference in grand potential between a phase-separated
system with an interface and a homogeneous bulk system, which are both at the same
coexisting bulk chemical potential divided by the surface area of the interface. Using this
definition, the gas-liquid interfacial tension can be determined in simulations by measur-
ing the grand canonical probability distribution function of observing N particles in a
volume V at fixed chemical potential µ and temperature T . This probability distribution
function can be measured very accurately using successive umbrella sampling in grand
canonical Monte Carlo simulations [135]. Using the histogram reweighing technique, one
can then determine the chemical potential corresponding to bulk coexistence using the
equal area rule for the gas and liquid peak [134, 135]. The interfacial tension can be
determined from the difference in the maximum of the peaks and the minimum [136–
138]. Alternatively, one can also determine the surface tension by measuring the width of
the interface, which is determined by an intrinsic width and a broadening due to capil-
lary wave fluctuations. Using the equipartition theorem, one can relate the mean-square
fluctuations due to capillary waves to the interfacial tension, and hence the interfacial
tension can be determined by measuring the capillary wave broadening [134, 139–142] .
It is important to note that the method of determining the interfacial tension from the
probability distribution is based on grand canonical Monte Carlo simulations, and relies
on knowledge of the statistical weight corresponding to the grand canonical ensemble.
The second method employs the equipartition theorem, which is derived by assuming a
Boltzmann distribution. Finally, the interfacial tension can be defined as the mechanical
work required to enlarge the interface. Using the condition of hydrostatic equilibrium, the
surface tension can be defined as the integral of the difference of the two pressure tensor
components

γ = 1
2

∫ Lz/2

−Lz/2
[PN(z)− PT (z)] dz, (4.14)

where we assume that the system is only inhomogeneous in the z-direction with the
two planar interfaces parallel to the xy-plane. The factor 1

2 comes from the presence of
two interfaces in a simulation with periodic boundary conditions. For equilibrium fluids,
all these definitions for the interfacial tension coincide. In the case of non-equilibrium
systems such as the active LJ system, the statistical weights of the different ensembles
are unknown, which precludes the use of Monte Carlo simulations for determining the
interfacial tension from a probability distribution function. We therefore resort to the
mechanical definition of the surface tension by employing Eq. 4.14. In addition, in
Section 4.3.4 we measure the interfacial width in Brownian dynamics simulations, and
naively assume the equipartition theorem to hold even though it is based on a statistical
ensemble average.

Following Ref. [91], in this section we determine the surface tension using the me-
chanical route (Eq. 4.14), where we also include the contribution from the swim pressure
in the total pressure in order to satisfy the hydrostatic equilibrium condition. Note that
the gradient term of the form ∂αmα in the swim pressure (Eq. 4.12), which is essential in
order to obtain a flat profile of the normal pressure component across the interface, does
not contribute to the surface tension. Using Eq. 4.14 and the total pressure profiles as
shown in Fig. 4.2(c) we determine the surface tension γ for a wide range of parameters
of the active system following two paths that drive the system out of equilibrium. To
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this end, we either increased the self-propulsion speed at fixed rate of rotational diffusion
(Drτ = 20) or we decreased the rotational diffusion coefficient at fixed self-propulsion
speed (υ0τσ

−1 = 8). For the first path, the high value of the rotational diffusion coeffi-
cient was chosen as such in order to minimize the area of the percolating state regime in
the state diagram (see Chapter 2). Note that the equilibrium limits of these two paths
are not equivalent as the Dr → ∞ limit does not coincide with the υ0 → 0 limit. The
second limit corresponds to the equilibrium LJ system with temperature T = 1/βsε while
the first limit corresponds to a passive system with a higher effective temperature. The
systems we examine have a Péclet number in the range 0 − 8, where the Péclet number
is defined as Pe = υ0/Drσ, so that we probe the equilibrium limit as well as systems
where self-propulsion plays a much more important role in the dynamics than transla-
tional diffusion. However, in all cases we are well below the onset of MIPS (Pe ∼ 50
[62]).

The results of the measurements of the surface tension are shown in Figs. 4.3(a) and
4.4(a) for constant rotational diffusion coefficient and constant speed of self-propulsion
respectively. Note that we always measure a positive surface tension, contrary to the
case of MIPS [91] and the magnitude of the surface tension is in the same range as in
the equilibrium system (∼ 1) [106]. Also, as the temperature is increased, that is as
the attraction between particles is weakened, the surface tension assumes smaller values,
similarly to the equilibrium scenario.

Next, we examine the scaling of the surface tension γ with the temperature T as the
system departs from the equilibrium regime and the activity is increased. It is known
that in the equilibrium system γ scales with temperature as:

γ = A(1− T/Tc)c, (4.15)

where A is a constant and Tc is the critical temperature of the system. The exponent
c is related to the critical exponent of the correlation length of the system ν, where for
equilibrium systems ν = 0.63 [116], such that c = 2ν. Here, we examine whether the
surface tension for our active system follows a scaling with temperature similar to Eq.
4.15 and treat A, Tc and the exponent c as fit parameters.

In Figs. 4.3(a) and 4.4(a) we plot the resulting fits and find that they fit well to the
measured data in the examined parameter space. We thus find that the scaling of the
surface tension with temperature can be captured via Eq. 4.15 even for the active system.
Note that these fits also give us an estimate for the critical temperature of the system in
the limit γ = 0 for different degrees of activity.

Similar to Chapter 3, we now examine the scaling of the fit parameters A, Tc and
c with the strength of activity. The results are plotted in Figs. 4.3(b), 4.3(c), 4.4(b)
and 4.4(c). We find that for constant rotational diffusion coefficient, as the propulsion
speed is increased and the system departs from equilibrium, the value of the exponent c
as well as the critical temperature of the system Tc decrease as well, while the parameter
A increases. The exponent c moves away from its equilibrium value (c = 1.21 − 1.26
[106, 143]) to values less than unity. The scaling of the critical temperature with the
propulsion force is in accordance to the findings of Chapter 3. Furthermore, in Fig. 4.3(c)
we also plot the critical temperature as found from the scaling of the order parameter
∆ρ = ρl − ρv (see Chapter 3). We find that the two values of the critical temperature as
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Figure 4.3: (a) Surface tension as a function of the temperature for systems of different self-
propulsion speeds and constant rotational diffusion coefficientDrτ = 20. Data points correspond
to simulation results while the lines denote the fits (Eq. 4.15). Note that data points and fits are
offset for clarity. (b) Exponent c and constant A (inset) as a function of the propulsion speed.
The continuous lines show the fits from Table 4.1. (c) Critical temperature Tc as a function of
the propulsion speed obtained from the scaling of the surface tension Eq. 4.15 (blue circles •)
and from the scaling of the order parameter (red triangles N, see Chapter 3). The continuous
line shows the fit from Table 4.1. Error bars in (b) and (c) are the standard errors from fitting.
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Figure 4.4: (a) Surface tension as a function of the temperature for systems of different
rotational diffusion rates and constant propulsion speed υ0τσ

−1 = 8. Data points correspond
to simulation results while the lines denote the fits (Eq. 4.15). Note that data points and fits
are offset for clarity. (b) Exponent c and constant A (inset) as a function of the rotational
diffusion coefficient. The continuous lines show the fits from Table 4.2. (c) Critical temperature
Tc as a function of the rotational diffusion coefficient obtained from the scaling of the surface
tension Eq. 4.15 (blue circles •) and from the scaling of the order parameter (red triangles N,
see Chapter 3). The continuous line shows the fit from Table 4.2. Error bars in (b) and (c) are
the standard errors from fitting.
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evaluated from the two different routes (via the scaling of the order parameter and the
scaling of the surface tension with temperature) are very close to each other. Moreover,
for constant propulsion force and varying rotational diffusion coefficient, we find scalings
for the three parameters A, Tc and c in accordance to the case of varying propulsion
force. That is, as the rotational diffusion coefficient is decreased and the system moves
further out of equilibrium, c and Tc decrease, while A increases. However, the exponent
c appears to increase again for very low values of the rotational diffusion coefficient (Fig.
4.4(b)). Unfortunately, large error bars in the fits for this regime prevent us from making
definite conclusions on the dependence of the exponent c on the activity of the system for
high Péclet numbers. Lastly, note that the agreement between the values of the critical
temperature as obtained from the scaling of the order parameter and the scaling of the
surface tension is not as good as in the case of constant propulsion speed (Fig. 4.4(c)).
Nonetheless, the two values are still close to one another and follow a similar scaling.

Similar to our previous work in Chapter 3, in Fig. 4.3(b)-(c) and Fig. 4.4(b)-(c) we
show empirical fits for the dependence of the parameters A, c and Tc on the propulsion
speed υ0 and the rotational diffusion coefficient Dr respectively. All three parameters are
fitted via simple exponential scalings, namely

A(υ0), c(υ0), Tc(υ0) = a1e
−a2σ/v0τ + a3 (4.16)

A(Dr), c(Dr), Tc(Dr) = b1e
−b2Drτ + b3, (4.17)

where a1, a2, a3 and b1, b2, b3 are again fit parameters. These fits capture the scaling of the
critical temperature Tc and the parameter A (Figs. 4.3(b)-(c) and 4.4(b)-(c)) for varying
propulsion speed υ0 (Eq. 4.16) and rotational diffusion coefficient Dr (Eq. 4.17) as well
as the scaling of the exponent c for the case of varying propulsion speed (Fig. 4.3(b)).
The fit for c obviously fails for varying rotational diffusion coefficient (Fig. 4.4(b)), but
we still present it for consistency. The fit parameters are given in Table 4.1 and 4.2 for
varying self-propulsion speeds and rotational diffusion coefficient respectively. Similar
to the findings in Chapter 3, the two separate paths cannot be collapsed via the Péclet
number.

Before closing this section, let us comment on the applicability of the language of
critical phenomena to the results that we presented in this section. Note that so far we
have not demonstrated the existence of a critical point and we also have not probed the
region close to a possible critical point, due to the small system sizes that we consider
here. See also the relevant discussion in Chapter 3. Consequently, we cannot be certain
that the power law Eq. 4.15 still holds as the system approaches its possible critical point.
It also follows that the values of the fitted critical temperature Tc and exponent c should
not necessarily remain unchanged in the critical region. Nonetheless, it is instructive to
compare the equilibrium limit of our measurements to their known equilibrium values,
with the equilibrium limit corresponding to the limits υ0τ/σ → 0 and Drτ → ∞ for the
results presented in Tables 4.1 and 4.2 respectively. We find that, similarly to Chapter
3, our estimations for the critical temperature and exponent are rough, yet reasonable;
we estimate the equilibrium Tc = 1.041, while recent finite size scaling studies report
Tc = 1.187 [125]. Furthermore, we find the exponent c = 1.181 and 1.1062, while literature
reads c = 1.21− 1.26 [106, 143].
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Table 4.1: Fitting parameters a1, a2, a3 of Eq. 4.16 to the parameters A, c, Tc of Eqs. 4.15
for systems of different propulsion speeds and constant rotational diffusion rate Drτ = 20. The
column T 1

c shows the corresponding values for the critical temperature obtained in Chapter 3.

A c Tc T 1
c

a1 1.159 -0.410 -1.113 -0.184
a2 70.01 5.257 11.810 12.33
a3 2.035 1.181 1.041 1.066

Table 4.2: Fitting parameters b1, b2, b3 of Eq. 4.17 to the parameters A, c, Tc of Eqs. 4.15 for
systems of different rotational diffusion rates and constant propulsion speed υ0τσ

−1 = 8.0. The
column T 1

c shows the corresponding values for the critical temperature obtained in Chapter 3.

A c Tc T 1
c

b1 2.840 109.99 -0.478 -0.470
b2 0.993 7.095 0.178 0.156
b3 2.128 1.062 0.834 0.818

4.3.4 Interfacial fluctuations and stiffness
In this section we study the scaling of the interfacial width as a function of the area of
the interface, which will allow us to measure the stiffness of the interface. Subsequently
we attempt to connect the estimated value for the stiffness to the values of the surface
tension obtained in Section 4.3.3.

For equilibrium systems capillary wave theory provides a connection between the fluc-
tuations of an interface, its stiffness coefficient, and subsequently its surface tension [139–
142]. Capillary wave theory [144] describes the broadening of an intrinsic interface of
width w0 due to thermal fluctuations. The capillary wave broadening depends primarily
on the interfacial tension and the area of the interface, and can be calculated by using
equipartition theorem and summing over the mean-square fluctuations of all allowed ex-
citation modes of the interface. We refer the reader to Refs. [139, 140] for more details,
and present here only the result. According to capillary wave theory [139, 140] the total
interfacial width w can be written as the sum of an intrinsic part w0 and a contribution
due to capillary wave fluctuations

w2 = w2
0 + 1

κ
ln
(
L

B0

)
, (4.18)

where w0 and B0 are constants and κ is the stiffness coefficient, which parametrizes the
energy penalty for deformations of the interface with dimensions L × L. Equation 4.18
implies that the width of an interface is determined by an intrinsic contribution w0 that
depends only on intensive variables and a term that explicitly depends on the area of the
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interface. For equilibrium systems, the stiffness coefficient of an interface that separates
two fluids is related to the surface tension via the simple relation γ = kBTsκ.

First, we test the applicability of Eq. 4.18 to our out-of-equilibrium system. To
this end, we performed simulations with phase-separated systems of different sizes such
that the area of the planar interface is set at L2, 2L2, 4L2, 9L2 and 16L2, with L ranging
from 14.7σ to 58.8σ. The smaller area corresponds to the system of 2500 particles that we
studied in Sections 4.3.1-4.3.3, while the bigger system has approximately 40000 particles.
As we increase the system size we find that the value of the surface tension reassuringly
does not change, indicating that the results presented in the previous Section 4.3.3 are
free from large finite size effects. In order to measure the width of the interface we first
measure the density profile of the various systems. We find that, as the system size
is increased, Eq. 4.13 does not describe our simulation data as accurately as the error
function fit

ρ(z) = 1
2 (ρl + ρv)−

1
2 (ρl − ρv) erf

[√
π(z − z0)
w

]
, (4.19)

where the various parameters have the same interpretation as in Eq. 4.13. This observa-
tion has been made for the passive LJ system as well [145]. Thus, in this section we use
Eq. 4.19 in order to fit the density profiles ρ(z) and estimate the width of the interface
w for different systems.

We performed simulations for systems of different sizes for various combinations of the
self-propulsion speed υ0, the rotational diffusion coefficient Dr and temperature T . Inter-
estingly, we find that the width of the interface indeed scales linearly with the logarithm
of the interfacial area, as Eq. 4.18 prescribes. In Fig. 4.5(a) we plot typical results for
two sets of simulation parameters as well as the fitted Eq. 4.18. These fits allow us to
extract the stiffness coefficient. Note that an equilibrium-like scaling of the width of the
interface as a function of the interfacial area has previously been observed in the case of
MIPS in a two-dimensional system [91].

Next, we compare the value of the stiffness coefficient to the values of the surface
tension for the same system. The values of the two quantities have been acquired via
independent measurements, namely the stiffness coefficient is extracted from the scaling
of the width of the interface with the area of the interface, while the surface tension
values are obtained by integrating the pressure profiles along the system (Eq. 4.14).
Remarkably, we find that the two values can be related for all the systems studied via the
simple relation

γ =
(
kBTs + υ2

0
6Dr

)
κ

= kBTeffκ, (4.20)

where we have defined an effective temperature Teff = Ts+ υ2
0

6kBDr . Note that this quantity
has already been discussed in literature as a means to connect active systems to their
equilibrium counterparts [94, 128, 146]; ideal passive particles with temperature Teff
would share on average the same translational diffusion rates as ideal active Brownian
particles with self-propulsion force υ0 and rotational diffusion Dr immersed in a solvent
of temperature temperature Ts. In Fig. 4.5(b) we show the comparison between the
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scaled stiffness coefficient and the surface tension for different system parameters. The
figure confirms the applicability of Eq. 4.20 to our system, which we have further verified
for various other system parameters (not shown here) and whose effective temperature
Teff/Ts ranges from ∼ 1 up to ∼ 100. As a final remark, note that Bialké et al. argue that
a similar relation to Eq. 4.20 holds also in the case of MIPS [91], where γ = −κυ2

0/Dr in
two dimensions. However, an extra minus sign has to be included in this relation since
the stiffness coefficient is positive while the surface tension is negative.

4.4 Conclusions
In this chapter we performed Brownian dynamics simulations of a three-dimensional sys-
tem of self-propelled particles interacting with Lennard-Jones interactions at state points
that are well-inside the vapour-liquid phase coexistence region. We examine systems with
a Péclet number 0 ≤ Pe = v0/Drσ ≤ 8, so that we probe the equilibrium limit as well as
systems that are out-of-equilibrium. However, in all cases the phase separation is driven
by the cohesive energy of the particles.

We studied the phase coexistence of a vapour and a liquid phase in an elongated simu-
lation box and investigated the properties of the system and the interface. By employing
a local expression of the pressure tensor for active systems, we measured the normal and
tangential components of the pressure tensor in the direction perpendicular to the inter-
face. We verified mechanical equilibrium of the two coexisting phases by measuring a
constant normal component of the pressure tensor in the direction perpendicular to the
interface. The tangential component showed negative peaks at the interface, behaviour
reminiscent of equilibrium systems and indicative of a positive non-equilibrium interfa-
cial tension of the interface as measured by integrating the difference of the normal and
tangential component of the pressure tensor.

We calculated the non-equilibrium surface tension for different combinations of self-
propulsion speed and rotational diffusion rate, and demonstrated that the trends of the
surface tension can be fitted by simple power laws similar to equilibrium systems. These
scaling laws enabled us to obtain an estimate for the critical temperature of the system
as well. Interestingly, the resulting critical temperature of the active system was in close
agreement with the values of the critical temperature obtained from the scaling of the
order parameter (see Chapter 3). This agreement suggests on the one hand that the
definitions of pressure and surface tension that were used constitute useful tools for the
study of the physics of the phase transition and on the other hand hints to a deeper but
not yet understood connection between the physics of the passive and the active system.

Furthermore, we calculated the stiffness coefficient of the interface and found a simple
equation that relates it to the surface tension. This relation had the same form as in
equilibrium systems, assuming an effective temperature of the interfacial fluctuations.
Our results show many similarities between bulk and interfacial properties of active and
passive Lennard-Jones systems for state points in the vapour-liquid coexistence region.
We hope that, by bringing these similarities into light, we inspire and assist theoretical
work in the direction of building a statistical physics of active matter and its associated
phase transitions.
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5

Mechanical and chemical
equilibrium in mixtures of active

spherical particles

In this chapter we study the phase coexistence in mixtures of active particles using Brow-
nian dynamics simulations. We measure the pressures and the compositions of liquid-gas
coexistences and show that they collapse in the pressure-composition plane onto a sin-
gle binodal in the phase diagram. This confirms that the two phases are in mechanical
equilibrium. Additionally, we demonstrate that the coexisting phases are in chemical equi-
librium by bringing each phase into contact with particle reservoirs, and showing that for
each species these reservoirs are characterized by the same density in both phases. Hence,
we show explicitly that the phase separation is governed by bulk properties. Lastly, we
show that phase coexistences can be predicted quantitatively for torque-free active systems
simply by measuring these bulk properties - the same as in equilibrium.
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5.1 Introduction
While active systems often exhibit behaviour fully prohibited in equilibrium systems,
such as motility-induced phase separation in purely repulsive systems (see e.g. [61, 147])
and symmetry-breaking motion [148, 149], the steady-state behaviour of active systems
can often be summarized by phase diagrams similar to their passive counterparts, i.e.
consisting of single-phase regions and coexistence regions where the lever rule holds. For
instance, fairly classic phase diagrams have recently been observed in the attraction-
induced liquid-gas phase coexistence of active Lennard-Jones particles (see Chapters 2 and
3) [121, 150], the motility-induced phase separation observed in repulsive, self-propelled
spheres [61], and even squares (see Chapter 6) [118], as well as binary mixtures [151].

In equilibrium, phase boundaries and coexistences are inherently tied to bulk ther-
modynamic properties. Since coexisting phases have equal pressures and equal chemical
potentials, the bulk properties of the individual phases provide a direct route to predict-
ing phase coexistences - a strategy commonly used to draw phase diagrams. However, for
active particles no such rules exist and it remains an open question whether their phase
behavior can be predicted from bulk (thermodynamic) quantities. In other words, is it
possible to determine whether two phases of active particles coexist purely by measuring
their bulk properties?

Perhaps the most studied bulk property in active systems is the pressure [90–93, 122,
123, 127]. Recently, Solon and coworkers have shown that there is a well-defined equation
of state for torque-free, self-propelled particles [90, 127]. Specifically, for this class of
active particles the pressure is purely a function of the bulk density and does not depend
e.g. on the interaction with a surrounding wall. In this chapter, we take this as a starting
point and explore the phase behaviour of two systems that are part of this class: an out-
of-equilibrium mixture of passive and active attractive particles that undergoes a liquid-
gas transition, and an active-active mixture of purely repulsive particles that undergoes
motility-induced phase separation. Using computer simulations, we show that, similar to
equilibrium, the phase behaviour of these binary mixtures collapses onto a single binodal.
We also demonstrate mechanical equilibrium by directly measuring the local pressure and
showing that it holds the same value for coexisting phases, as shown previously in Ref.
[91] and Chapter 4.

Moreover, for the first system, we demonstrate that the coexisting phases are in chem-
ical equilibrium by bringing each phase into contact with particle reservoirs, and showing
that for each species these reservoirs are characterized by the same density in both phases.
Hence, we show explicitly that the phase coexistence is governed by bulk properties, which
are the pressure and a chemical potential-like bulk variable for each individual species,
as represented by the reservoir density. Note that this has been assumed in several ap-
proximate theoretical treatments (see e.g. [79, 80, 89, 128, 152]). However, to date, no
simulations have directly addressed this question, nor verified the existence of a chemical
potential-like variable. Furthermore, using the requirement of three sets of equal thermo-
dynamic potentials we predict the phase diagram for the latter active system simply by
measuring bulk properties.

The chapter is organized as follows. We start by presenting our methods in Section 5.2.
In more detail, first we describe the models studied and the dynamics of the simulations
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in Section 5.2.1, we present the formulation of the local pressure for a binary system in
Section 5.2.2 and finally we discuss the setup for the simulations that involve particle
reservoirs in Section 5.2.3. In Section 5.3.1 we present our results for the passive-active
mixture of attractive particles, followed by the results for the active-active mixture of
repulsive particles in Section 5.3.2. We conclude in Section 5.4.

5.2 Methods

5.2.1 Models and dynamics
In this chapter we study two different binary mixtures. The first one is a three-dimensional
system of N spherical particles that interact via the Lennard-Jones potential:

βU(r) = 4βεLJ
((

σ

r

)12
−
(
σ

r

)6
)

(5.1)

truncated and shifted at rc = 2.5σ with σ the particle diameter, βεLJ = 1.2 the energy
scale, and β = 1/kBT , where kB is the Boltzmann constant and T is the temperature. Out
of the N particles, we “activate” a subset of Na particles by introducing a constant self-
propulsion force fa along the axis ûi. This axis indicates the direction of self-propulsion
for each particle. We denote the fraction of active particles by x = Na/N .

The second binary mixture that we consider is a two-dimensional system of N purely
repulsive particles that interact via the Weeks-Chandler-Andersen potential, that is given
again by Eq. 5.1 but with the interaction cutoff radius rc = 21/6σ and the energy
scale βεWCA = 40. For this system, we consider an active-active mixture with the self-
propulsions of fast and slow species being ff and fs, respectively.

The same equations of motion were used for both systems, adapted to their correspond-
ing dimension. The translational and rotational motion of the position ri and orientation
ûi of particle i follows from the overdamped Langevin equations

ṙi(t) = βD0 [−∇iU(t) + fiûi(t)] +
√

2D0ξi(t) (5.2)
˙̂ui(t) =

√
2Drûi(t)× ηi(t), (5.3)

where ξi(t) and ηi(t) are stochastic noise terms with zero mean and unit variance. The
translational diffusion coefficient D0 and the rotational diffusion constant Dr are linked
via the Stokes-Einstein relation Dr = 3D0/σ

2. Naturally, for a passive particle fi = 0.
We measure time in units of the short-time diffusion τ = σ2/D0. Equations 5.2 and 5.3
were numerically integrated using an Euler-Maruyama integration scheme [107]. A time
step of dt = 10−5τ was used for the numeric integration of the equations of motion.

5.2.2 Pressure
For the purpose of our simulations, we always assume a slab geometry with the long axis
of the simulation box being along the z dimension, such that the ẑ axis is normal to all
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interfaces. In order to write down an expression for the z (normal component) of the local
pressure, first we define the moments

ρα(r) =
Nα∑
k=1

δ(r − rk), (5.4)

mα,i(r) =
Nα∑
k=1

ûk,iδ(r − rk), (5.5)

sα,ij(r) =
Nα∑
k=1

ûk,iûk,jδ(r − rk), (5.6)

where i, j denote the spatial components of the corresponding vectors and tensors. ρα(r)
is the local density of species α whilemα(r) is the corresponding local polarization. The
z (normal) component of the local pressure of the system PN(z) can then be calculated
using the equation

PN(z) = Pid,zz(z) + Pvir,zz(z) +
∑
α

P
(α)
swim,zz(z), (5.7)

where

Pid,zz(z) = 〈ρ(z)〉 kBT = 1
Ld−1

∫
drd−1 〈ρ(r)〉 kBT, (5.8)

is the ideal component of the pressure, where we have spatially integrated over the di-
mensions that are perpendicular to the ẑ dimension and divided by the surface Ld−1 that
we integrated over, ρ(r) = ∑

α ρ
(α)(r) is the total density at point r, and brackets denote

an average at the steady state over noise realizations,

Pvir,zz(z) = 1
Ld−1

∫
z′′<z

dr′′
∫
z′>z

dr′ 〈ρ(r′′)ρ(r′)〉 ∂z′′U(|r′ − r′′|), (5.9)

is the standard local virial term, and

P
(α)
swim,zz(z) = D0f

(α)

(d− 1)Dr

[
−β∂zU(z)

〈
m(α)

z (z)
〉

+ βf (α)
〈
s(α)
zz (z)

〉
− ∂z

〈
m(α)

z (z)
〉]

(5.10)

is the local swim pressure of species α. In Eq. 5.10 U(z),m(α)
z (z) and s(α)

zz (z) have been
averaged similar to Eq. 5.8. For a derivation of Eq. 5.7 we refer the reader to Appendix
A.

In our particle simulations, we divide the simulation box into slabs, and measure the
normal component of the pressure for each slab. The contributions to each slab of the
ideal and swim components of the pressure can be calculated straightforwardly, while for
the virial component we follow Ref. [131].

5.2.3 Reservoir simulations
The standard method for showing chemical equilibrium in passive systems is to directly
measure the chemical potential of the coexisting phases. For a passive system, this can be
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done in a number of different ways depending on the exact circumstance - ranging from
e.g. grand canonical simulations to thermodynamic integration [153]. However, for active
systems the situation is much more complex and currently there is no well-established
method to measure the chemical potential. To avoid this issue, we go back to more basic
definitions of the chemical potential. In a textbook derivation of the chemical potential,
one typically attaches the system in question to a large particle reservoir, and allows the
particles of a given species to travel between the subsystem in question, and the particle
reservoir. The subsystem is then in a grand-canonical (µV T ) ensemble, with µ set by
the chemical potential of the reservoir. Hence, if two systems have the same chemical
potential, one must be able to connect them to the same particle reservoir, i.e. one with
the same particle density. Here, we follow a similar procedure with our simulations.

Specifically, we connect a binary phase consisting of two different species of particles to
particle reservoirs that only contain a single species. To this end, we divide our simulation
box into two sections, one which contains the “bulk” binary phase, with the other part
of the box acting as a particle reservoir of one species only, which we call species R. We
place a semi-permeable membrane at the division, which only allows particles of species
R to pass through at no energy cost. For the other species, the wall is impenetrable with
the wall-particle interaction given by a purely repulsive Weeks-Chandler-Andersen-like
wall potential:

βU(z) = 4βεWCA

((
σ

z

)12
−
(
σ

z

)6
+ 1

4

)
, (5.11)

where z is the distance of a particle in the bulk to the nearest semi-permeable wall,
βεWCA = 40, and the interaction is cut off at a distance z = 21/6σ. For snapshots of such
simulations see Fig. 5.3(a-d).

At the beginning of the simulation, the binary phase consists of the desired partial
densities for the two species. The reservoir contains a gas of the appropriate species R
with a randomly chosen initial density. During the simulation, particles of species R travel
from the bulk to the reservoir and vice-versa, thus altering the density of the species in the
bulk (i.e. away from the semi-permeable membrane) as well as the density of the reservoir.
Also, a small fraction of the bulk phase builds up on the semi-permeable membrane, and
sometimes depletes the bulk region of the confined species.

During the course of the simulation, we measure in regular intervals the partial density
of each species in the center of the bulk phase. To correct for the deviations from the
desired partial densities we tune the number of particles of both species during equilibra-
tion. This tuning is done by either deleting or adding particles randomly inside the part
of the box that contains the binary phase. Eventually, the partial densities of both species
in the bulk region reach the desired constants and the density of the reservoir assumes
a constant value. After a steady state is obtained we stopped tuning, i.e. removing and
adding particles, and checked that the reservoir density remained constant. This way we
have ensured that the reservoir and the bulk phase were in chemical equilibrium. Thus,
even though we cannot directly measure the chemical potential, this method allows us
to measure the density of the reservoir, a quantity that uniquely characterizes the single
phase reservoir.



78 Chapter 5

5.3 Results

5.3.1 Lennard-Jones active-passive binary mixture

To start our investigation, we construct a liquid-gas coexistence in an active-passive mix-
ture of Lennard-Jones particles, in the regime where the system phase separates due
to attractions [121]. To this end, we set the energy scale of the attraction strength to
βεLJ = 1.2, which for a purely passive system (composition of active particles x = 0)
results in a well-characterized liquid-gas coexistence at intermediate densities [105]. We
fix the self-propulsion force fa = 10kBT/σ for all active particles, such that the Péclet
number of the active particles is Pe = 3βD0f/σDr = 10.

We studied the phase diagram of the binary mixture by performing direct coexistence
simulations. We simulated approximately 8000 particles in a three-dimensional elongated
box with dimensions Lẑ = 12Lŷ = 12Lx̂. This choice for the dimensions of the box
ensures that two flat interfaces form that span the shorter dimension [91]. For the highest
density (smallest simulation box) we consider, the dimensions of the box are approximately
12σ×12σ×144σ. Thus, the short axis of the box is much larger than the persistence length
of the active particles, which is βD0f/2Dr ≈ 1.67σ. We performed direct coexistence
simulations for compositions of active particles x = 0 − 0.4, and total densities ρσ3 =
N/Lx̂LŷLẑ = 0.20, 0.30 and 0.40. These simulations were initiated from a configuration
where all particles are located within a dense slab and ran for approximately 3500τ . We
collected data only for the last 500τ .

In Fig. 5.1(a), we show a typical snapshot of an active-passive mixture exhibiting a
liquid-gas coexistence. Here, the active and passive particles are coloured red and blue,
respectively. In Fig. 5.1(b), we plot the corresponding density ρ(z), active particle fraction
x(z), and the normal pressure PN(z) along the long axis of the box. Note that in the bulk
regime of either phase, this normal pressure PN will be equal to the bulk pressure P of the
phase in question. Fig. 5.1(b) shows that, in this case, the system exhibits a gas-liquid
coexistence with the gas characterized by density ρG and composition xG, and the liquid
characterized by density ρL and composition xL. Note that in all of our simulations, the
pressure is the same in both coexisting phases indicating that the system is in mechanical
equilibrium.

Using composition and pressure profiles, similar to those shown in Fig. 5.1(b), we
map out the coexisting compositions and pressures of our active-passive mixtures, for a
wide range of overall system densities ρ and compositions x. The results are plotted in
Fig. 5.2(a). Similar to passive systems, we find that the phase behaviour collapses in this
representation, i.e. the lever rule holds within the coexistence region.

The validity of the lever rule is also evident when plotting the phase diagram in the
active density - passive density (ρa-ρp) representation, as shown Fig. 5.2(b). This is
consistent with the recent simulation results of Ref. [151] where they summarized the
phase behaviour of a different active-passive mixture in the ρa-ρp representation. We also
investigate the pressure dependence of the partial densities of each species in the coexisting
liquid and gas phases. In Fig. 5.2(c) we plot these partial densities ργi vs. pressure P
with i denoting the species (active or passive) and γ denoting the phase (liquid (L) or gas
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Figure 5.1: (a) Liquid-gas coexistence of an active-passive mixture with an overall active
fraction x = 0.22 at an overall density ρσ3 = 0.20. For the active particles the self-propulsion
force equals fa = 10kBT/σ. Active particles are coloured red and passive particles are coloured
blue. (b) The corresponding density, composition, and pressure profile along the long direction
z of the box. The system contains N = 8192 particles.
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Figure 5.2: (a) Phase diagram of the Lennard-Jones active-passive mixture in the P -x repre-
sentation. (b) The same phase diagram in the ρa-ρp representation. (c) Coexistence lines in the
P -ρa and P -ρp representations.

(G)). Interestingly, we find that in the gas phase, the partial densities of the active and
passive species are approximately the same along the entire coexistence curve.

Our results so far clearly demonstrate that the pressure is a key variable in controlling
phase coexistences in our active-passive mixture: all phase coexistences are characterized
by equal bulk pressures in the two phases. However, phase coexistence in an equilibrium
binary system requires not only equal pressures between the two phases, but also equal
chemical potentials for both species. This raises the question whether we can identify bulk
properties analogous to the chemical potential in active-passive mixtures which similarly
control the phase coexistence.

To this end, we study single binary phases in contact with a particle reservoir as
described in Section 5.2.3. Specifically, by referring to the phase diagram Fig. 5.2(b)
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we select a binary gas and liquid that coexist, and connect them individually to particle
reservoirs that only contain a single species of particles. Note that in total we will need
four simulations per coexistence point, namely: the gas in contact with a passive particle
reservoir, the gas in contact with an active particle reservoir, the liquid in contact with a
passive particle reservoir, and the liquid in contact with an active particle reservoir (see
Fig. 5.3(a-d)). The goal will be to determine whether the active (and passive) reservoirs
associated with the coexisting phases are the same. If they are, then we can infer that
there exists a chemical potential-like variable that governs the coexistence.

For the reservoir simulations we simulated approximately 4000 particles in the bulk
binary phase in contact with a reservoir that contains a gas of a random initial density. As
described in Section 5.2.3, during equilibration a small fraction of the bulk phase builds up
on the semi-permeable membrane (see in Fig. 5.3 (e,f)). This adsorption is counteracted
by tuning the number of particles of both species during equilibration. Eventually, the
average partial densities of both species in the bulk region reach the targeted constants,
and also the density of the reservoir reaches a constant value.

In Fig. 5.4(a), we show the time evolution of the densities in the active particle
reservoirs for the coexisting liquid and gas phases at βPσ3 = 0.34. Note that although
we chose a high initial density of the reservoirs in both cases, both reservoir densities
quickly converged to the same density. In Fig. 5.4(b), we plot the densities of both the
active and passive reservoirs as a function of the coexistence pressure βPσ3. Clearly,
for all coexisting liquid-gas pairs we find the same reservoir densities: ρres,L

p = ρres,G
p and

ρres,L
a = ρres,G

a . Hence, while we still cannot directly measure the chemical potential of our
active system, this demonstrates the existence of a bulk variable that is conjugate to the
number of particles, therefore providing clear simulation evidence of an active chemical
potential.

5.3.2 Weeks-Chandler-Andersen binary mixture
So far, we have shown that gas-liquid coexistence for an active-passive mixture of Lennard-
Jones particles is entirely controlled by properties which can be measured purely from the
individual coexisting phases, namely the bulk pressure and reservoir densities per species.
This of course raises the interesting question whether or not such phase coexistence rules
can also be found for systems undergoing a purely out-of-equilibrium phase transition,
namely motility-induced phase separation (MIPS), and whether or not they can be used
to predict the phase diagram.

To this end, we use the Weeks-Chandler-Andersen potential to model the interaction
between particles, with constant interaction strength βεWCA = 40. We consider a two-
dimensional active-active mixture with the self-propulsions of fast and slow species being
ff = 160kBT/σ and fs = 120kBT/σ, respectively. The Péclet numbers of the fast and
slow active particles are Pef,s = 3βD0ff,s/σDr = 160 and 120. We chose such a set
of forces for two reasons. First of all, such a choice ensures that even the slow species
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Figure 5.3: (a) The gas in contact with a passive particle reservoir. (b) The gas in contact
with an active particle reservoir. (c) The liquid in contact with a passive particle reservoir. (d)
The liquid in contact with an active particle reservoir. (e,f) Density and composition profiles of
the liquid (e) and gas (f) in contact with a passive reservoir. The partial densities of the binary
phases were chosen to correspond to the coexistence at pressure βPσ3 = 0.34. Note that some
active particles adsorb at the wall. We thus exclude these interfacial regions (shaded areas) in
the determination of the bulk density and composition, as well as in the determination of the
reservoir density.
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Figure 5.4: (a) The density in the active particle reservoir over time for both the liquid and the
gas that coexist at pressure βPσ3 = 0.34. Both phases converge to the same reservoir density
of active particles. (b) The reservoir densities as a function of the coexistence pressure βPσ3.
The liquid and gas phase are in contact with the same reservoirs, showing that there is chemical
equilibrium between the phases, for each species.

undergoes MIPS into a fluid and a crystal phase (see e.g. the state diagram of MIPS in
Ref. [61]). As a result, we can probe the full spectrum of compositions of the binary
mixture. Secondly and more importantly, such high self-propulsions result in relatively
fast dynamics for the system, so that our reservoir simulations can access a large number
of configurations within reasonable computational time.

We start our study for this binary mixture by constructing the phase diagram. To
this end, we performed direct coexistence simulations between the fluid and the crystal
phases by simulating approximately 30000 particles in a two-dimensional elongated box
with dimensions Lẑ = 5Lŷ. This choice for the dimensions of the box was done such that
two flat interfaces are created that span the box perpendicular to its long axis. Note
that we also observe the formation of gas bubbles in the crystal phase, which have been
reported in Ref. [91]. The direct coexistence simulations were performed for compositions
of fast particles x = 0− 1 with an interval of 0.1, and total densities ρσ2 = 0.45, 0.6 and
0.75. For the highest density we consider, the dimensions of the box are approximately
90σ × 450σ. Thus, the short axis of the box is larger than the persistence lengths of the
active particles, which are βD0ff/Dr ≈ 53.3σ and βD0fs/Dr = 40σ, for the fast and
slow species respectively. The simulations were initiated from a configuration where all
particles are part of a hexagonal crystal and ran for approximately 1500τ . We collected
data only for the last 500τ . The long running times are necessary for the relaxation of
the compositions of the coexisting phases.

We then measured the local densities of the two species and the normal component of
the pressure by dividing the box into slabs of length σ across the long z-axis and measuring
the corresponding quantities for each slab. Typical results for such measurements, as well
as a snapshot of the system in direct coexistence, are shown in Fig. 5.5. From the results
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Figure 5.5: (a) Motility-induced phase separation of an active-active binary mixture with
overall fraction x = 0.5 and overall density ρσ2 = 0.75. Red particles are “fast" swimmers
with self-propulsion force ff = 160kBT/σ and blue particles are “slow" swimmers with self-
propulsion force ff = 120kBT/σ. The system contains approximately 30000 particles. (b)
The corresponding density (ρ) and composition profile (x) along the long direction z. (c) The
corresponding normal pressure profile along the long direction z.

of these direct coexistence simulations we constructed the phase diagram, as shown in Fig.
5.6(a). As in the case of the active-passive binary mixture of Lennard-Jones particles, for
this active-active mixture we observe a clear collapse of the direct coexistence data onto
a single binodal.

As a next step we predict the phase boundaries by calculating the pressure P and
reservoir densities ρres

f and ρres
s for a wide range of binary crystal and gas phases (shaded

area in Fig. 5.6(a)). Accordingly, we performed simulations of a binary phase in contact
with a particle reservoir. As described in Section 5.2.3, the two parts of the system were
separated by a semipermeable wall that repels the species that is absent in the reservoir.
In addition to the repulsion, we also apply a torque to the particles of this species that
reorients these particles away from the wall. This torque was applied in order to minimize
the accumulation of particles on the wall. Reassuringly, we find that the applied torque
does not affect the bulk part of the binary phase, since the orientation of the particles
relaxes rapidly as we move away from the wall.

First, we ran simulations of a binary gas phase in contact with a reservoir in order
to acquire the bulk pressure and the reservoir densities for fast and slow swimmers. The
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gas phases we considered had compositions in the regime x ∈ (0.1 − 0.9) and densities
ρσ2 = 0.05 − 0.5 (see shaded area in Fig. 5.6(a)). The interval between the points we
considered was 0.1 for the composition and 0.02 − 0.05 for the density. We find that for
total density ρσ2 > 0.4 the system spontaneously phase separates so we cannot probe
this high-density regime. For each gas phase, which corresponds to a point in the (x, ρ)
grid, we ran two simulations, one in contact with a reservoir of fast swimmers and one in
contact with a reservoir of slow swimmers. Each simulation provided us with a value for
the density of the corresponding reservoir and also a value for the normal pressure in the
bulk. The two measured values for the pressures were reassuringly in close agreement,
since we simulated the same binary bulk phase in both simulations. Thus a pair of
such simulations provided us with a hypersurface (ρres

f , ρres
s , P ), which is a function of the

variables x and ρ. The value of the pressure P was the average from the two simulations.
This surface was then fitted by a second degree polynomial. The red surface shown in
Fig. 5.6(b) is the fitted polynomial.

For the crystal phase we followed a similar approach. We simulated the binary bulk
crystal in contact with a reservoirs of slow and fast particles separately. The points we
simulated were in the interval of compositions x ∈ (0.1−0.9) and densities ρσ2 = 1−1.30,
with intervals 0.1 for the composition and 0.02 for the density (see shaded area in Fig.
5.6(a)). Again, the results of the simulations produced a hypersurface (ρres

f , ρres
s , P ) which

we again fitted with a second degree polynomial. This polynomial is the blue surface
shown in Fig. 5.6(b).
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Figure 5.6: (a) Direct coexistence results for the phase diagram of the active-active mixture
of WCA particles (markers), and the predicted phase diagram (line). Note that X denotes the
crystal phase while G denotes the gas phase. (b) Surface plots of the gas (red) and crystal (blue)
reservoir densities vs pressure. From the intersection between the two surfaces we obtain the
predicted binodals in (a).
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Figure 5.7: Predicted binodal lines of the active-active mixture of WCA particles before (full
lines) and after (dashed lines) applying a correction to the pressure of the reservoir simulations.
Markers denote the results from direct coexistence simulations. (a) covers the low-density region
of the phase diagram and (b) the high-density region.

The intersection of the two surfaces is the line where the reservoir densities of both
species and pressures of the binary crystal and gas phases are equal. Thus, it should cor-
respond to the binodals of the phase diagram. The lines on each of the two (ρresf , ρress , P )
surfaces can be converted back into lines in the (x, ρ) and subsequently the (ρf , ρs) repre-
sentation of the phase diagram. The resulting phase boundaries are drawn in Fig. 5.6(a)
in order to compare them with the results from the direct coexistence simulations. A
more detailed view can be seen in Fig. 5.7.

We find that the predicted high-density binodal (full black line in Fig. 5.7(b)) is in
excellent agreement with the points from the direct coexistence simulations. We have thus
in this section quantitatively predicted for the first time the binodal lines for a system
that undergoes motility-induced phase separation from bulk properties only. Note that the
low-density binodal (full black line in Fig 5.7(a)) slightly deviates to higher densities. We
attribute this discrepancy to finite-size effects in our simulations. We find that on average,
the reservoir simulations measure a higher pressure of the binary crystal than the direct
coexistence simulation despite having equal densities and compositions. This difference
is caused by the different tangential dimensions of the box between the reservoir and the
direct coexistence simulations. A typical direct coexistence simulation has a box length in
the tangential dimension three times larger than the reservoir simulations. Note that the
pressure difference is minute: on average we measure a pressure difference ∆Pβσ2 ∼ 4,
while the pressure of the system in coexistence is in the range βPσ2 ∼ 400 − 700. In
order to estimate the magnitude of this finite size effect on the binodals, we make a crude
correction by vertically shifting the crystal (blue) surface of Fig. 5(b) of the main text by
a constant which is equal to the average pressure difference. This correction subsequently
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alters the intersection of the two surfaces, and shifts the initially predicted binodals to
the full lines shown in Fig. 5.7. This indeed appears to reduce the discrepancy between
the predicted and measured coexistence lines. It should be noted that this correction is
not included in the coexistence lines reported in Fig. 5.6(a).

5.4 Conclusions
In conclusion, in this chapter we studied phase coexistences of two different active sys-
tems using Brownian dynamics simulations, and focused on the mechanical and chemical
equilibrium of the coexisting phases. The first system was a binary mixture of attrac-
tive active and passive spherical particles that undergoes a liquid-gas, attraction-induced
phase transition. Using direct coexistence simulations, we calculated the phase diagram
of this system for different compositions and directly showed mechanical equilibrium by
measuring the bulk pressure of the coexisting phases. Subsequently, by bringing each
of two coexisting binary phases into chemical equilibrium with a reservoir of particles
of a given species, we showed that the connected reservoirs of each particle species are
identical for the two phases. We thus numerically demonstrated chemical equilibrium be-
tween coexisting phases for this system by measuring a quantity analogous to the chemical
potential of passive systems: the density of the reservoir.

The latter system we studied was a binary mixture of purely repulsive active spherical
particles of two different self-propulsion speeds, that undergoes a motility-induced phase
separation into a fluid and a crystalline region. First, we calculated the phase diagram of
the system using direct coexistence simulations. Next, we performed a series of simulations
where a pure binary phase, either a fluid or a crystal, was brought into contact with a
reservoir of particles of each species, and measured the densities of the two reservoirs
as well as the pressure of the bulk binary phase. Assuming mechanical and chemical
equilibrium between the gas and the crystalline phases, we were then able to predict the
phase diagram that we previously obtained using direct coexistence simulations.

We have therefore highlighted two important features of active systems that do not
experience torques: first, we demonstrated the existence of a quantity conjugate to the
number of particles, which we identified here as the density of the connected reservoir,
and second, we established that phase diagrams can be quantitatively predicted by simply
measuring properties of the individual phases, that is the bulk pressure and reservoir den-
sities per species. Note that other theoretical methods have so far failed to quantitatively
predict phase diagrams from bulk properties alone [86, 90, 103]. Though our work does
not demonstrate an analytical way to such a prediction, it does provide numerical evi-
dence that such a task is achievable. We thus believe that have have taken an important
step towards the thermodynamics of active matter.
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State behaviour and dynamics of
self-propelled Brownian squares

In this chapter we study the state behaviour of self-propelled Brownian squares as a
function of the speed of self-propulsion and density. We find that the system undergoes
a transition from a fluid state to phase coexistence with increased self-propulsion and
density. Close to the transition we find oscillations of the system between a fluid state
and phase coexistence that are caused by the accumulation of forces in the dense phase.
Finally, we study the coarsening regime of the system and find super-diffusive behaviour.
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6.1 Introduction

In Chapters 2-5 we studied systems of spherical particles that interact with one another
via isotropic interactions. This class of active matter systems is special since an equation
of state exists and mechanical pressure is well defined for such systems [90]. Associated
to these theoretical results is the observation that phase diagrams of systems of isotropic
and self-propelled particles share many similarities with phase diagrams of equilibrium,
non-active systems, as we have clearly demonstrated in Chapters 2, 3 and 5. However,
in order to arrive at a general description of active matter one needs to study active
matter systems with more complex interactions between particles than the simple case of
isotropic interactions. As a small step towards this direction, in the present chapter we
thus shift our attention to a system of square self-propelled particles.

Determining how the shape of a particle can affect collective behaviour is an important
challenge in understanding the physics of active matter [113]. To date, only a few shapes
have been explored in combination with active motion. Some notable examples include
the self-propelled L-shaped particle that has been created and studied by Kümmel and
collaborators [37], self-propelled dumbbells [32, 76, 154] and self-propelled rods [77, 155–
157]. In all of these studies significant results have been reported; the L-shaped swimmer
performs gravitactic motion and can swim against the direction of gravity [39], active
dumbbells assemble in rotating clusters [76], and rods can form swarms and lanes due
to the emergent aligning interaction between the particles [155, 158]. The plethora of
dynamic phenomena shows that the shape of an active particle can dramatically change
the single particle and many particle dynamics.

Here we explore the behaviour of a very simple particle, namely a repulsive square that
self-propels in the direction perpendicular to one of its edges. It is already known that
repulsive, active spheres and discs can phase separate due do their activity, a phenomenon
known as motility-induced phase separation (MIPS) [61, 62, 74] (see also Chapters 1 and
5). However, how such behaviour might manifest in the case of anisotropic particles with
four-fold symmetry is not a priori evident. Here, we explore the state diagram of self-
propelled squares for a wide range of densities and speeds of self-propulsion, in order to
fully map out the behaviour of such a geometry. We explicitly compare our results with
existing literature on self-propelled discs and rods with respect to the state behaviour,
the phase coexistence and the coarsening properties of the different systems.

This chapter is organized as follows. We start by introducing the model and the
parameters of our simulations in Section 6.2.1, and in Section 6.3.1 we present the state
diagram and give a general overview of the different states of the system. In Section 6.3.2
we quantify certain properties of the phase coexistence regime, while in Section 6.3.3 we
focus on what we identify as state oscillations of the system. Finally, we look into the
coarsening process in Section 6.3.4. Conclusions are given in Section 6.4.
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Figure 6.1: A schematic overview of the model. Particles i and j are coloured blue, and the
gray area around particle i stands for the area in which particle j must enter in order for the
two particles to interact. The distance |rmin

ij | is the minimum distance between the surfaces of
the two particles.

6.2 Methods

6.2.1 Model
We consider a two-dimensional system, consisting of squares of length σ in a periodic
square box of length L. The position of the center of mass of the i-th particle at time
t is given by the vector ri(t) while its orientation is given by the unit vector ui(t) =
(cos θi(t), sin θi(t)), where θi(t) ∈ [0, 2π) is the angle between a fixed axis in the lab frame
and a fixed axis on the particle. The axis on the particle is chosen such that the vector
ui is perpendicular to one of the edges of the square. A schematic overview of the model
can be found in Fig. 6.1.

The interaction between two particles is modeled as a soft repulsion between their
points of closest approach. To this end, we first find the minimum distance vector between
the surfaces of the two squares i and j, which we denote here as rmin

ij . The force that acts
between the two particles is then given by

Fij = −
∂U(|rmin

ij |)
∂rmin

ij

, (6.1)

where U(r) is a soft, yet steep, repulsive potential, specifically a slight modification of the
Weeks-Chandler-Andersen potential:

βU(r) =
4βε

((
1

r/σ+0.8

)12
−
(

1
r/σ+0.8

)6
+ 1

4

)
r/σ + 0.8 ≤ 21/6,

0 r/σ + 0.8 > 21/6.
(6.2)

Here ε parametrizes the strength of repulsion and β = 1/kBTs is the inverse temperature
of the system, with kB the Boltzmann constant and Ts the temperature of the system. In
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this chapter, for all our simulations we set βε = 40. Note that in Eq. 6.2, the shortest
surface-to-surface distance |rmin

ij | is increased by 0.8σ so that particles will repel each
other only if their surface-to-surface distance is smaller than (21/6− 0.8)σ ' 0.322σ. This
reduces the effective roundness of our particles, so that the effects of the non-isotropic
shape become more prominent. The corner rounding to length ratio (see Ref. [159]) for
our soft squares is approximately 0.14.

We then apply the force Fij on the surface point of particle i that is closest to the
surface of particle j, which we denote here as rji . This creates a torque

Tij = (rji − ri)× Fij, (6.3)

that acts on particle i, causing it to rotate around the axis z, that is perpendicular to
the plane of movement. This torque tends to align the particles such that they become
parallel when they are pushed towards one another.

6.2.2 Dynamics

To make the particles active, we include a self-propelling speed of constant magnitude
υ0 that acts along u. Thus, the particles are self-propelled along one of their edges.
Additionally, we consider our particles immersed in a solvent whose damping coefficient
is given by η. Since we are interested in the regime that applies to the colloidal world,
we use overdamped Langevin dynamics for the equations of motion, which include the
solvent-particle interactions implicitly and neglect the inertia of the particles. Thus, the
translational and rotational equations of motion are

dri(t)
dt

= βDtr

∑
j 6=i
Fij(t) + υ0ui(t) +

√
2D1/2

tr ξ
tr
i (t), (6.4)

dθi(t)
dt

= βDr

∑
j 6=i
Tij(t) · z +

√
2Drξ

r
i (t). (6.5)

Here, the translational diffusion matrix Dtr = Dtr(uiui + ui,⊥ui,⊥) is a diagonal matrix
in the particle frame of reference with Dtr = 1.08/(8πηδβ), where δ is the radius of a disk
with area σ2 [160]. Similarly, Dr = 1.32/(8πηδ3β) is the rotational diffusion coefficient
of a single square [161]. The unit vector ui,⊥ is perpendicular to ui. Thermal noise is
modeled via two white noise Gaussian terms denoted by ξtri and ξri , which both have zero
mean and unit variance. We define the unit of time τ as the time it takes a free particle
to diffuse over its length, i.e. τ = σ2D−1

tr . Finally, D
1/2
tr = D

1/2
tr (uiui + ui,⊥ui,⊥).

Equations 6.4 and 6.5 are integrated using an Euler-Maruyama integration scheme
[107], with a time step of dt = 10−5τ . In the initial configuration of our simulations,
particles are placed on a square lattice spanning the entire simulation box, with their
orientations randomly distributed.
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Figure 6.2: State diagram of soft active squares, as a function of system density ρσ2 and
propulsion speed υ0σ/τ . Blue circles ( ) denote points where the system is found in a homoge-
neous fluid state, brown squares (�) denote phase coexistence, and red triangles (K) points where
the system oscillates between the two aforementioned states. The dotted lines are approximate
boundaries between the different regimes.
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6.3 Results

6.3.1 State behavior

To investigate the state behavior of our system we performed Brownian Dynamics simula-
tions of N = 4900 particles for a range of reduced densities ρσ2 = Nσ2/L2 and propulsion
speeds υ0σ/τ . The results of our simulations are summarized in the state diagram in Fig.
6.2.

We identify three distinct regions: a homogeneous fluid regime, a regime where there is
coexistence between a dense and a dilute phase, and a region where the system oscillates
between a homogeneous fluid state and a phase coexistence. In the regime where the
density and the speed of self-propulsion are relatively small, the system is found in a
homogeneous fluid state. Note that in this fluid, small and short-lived clusters can form
due to collisions between the particles. In contrast, at sufficiently high densities and
speeds of self-propulsion a kinetic trapping mechanism takes place, similar to that seen
in self-propelled discs [61, 74]. Particles slow down significantly in dense regions due to
frequent collisions with one another, which leads to a further increase in the local density.
Ultimately, this leads to phase coexistence between a high-density crystalline region and
a low density fluid, a phenomenon known as motility-induced phase separation (see Fig.
6.3(a)). We also found that at low densities, the high density cluster sometimes breaks
up into smaller clusters (see Fig. 6.3(b)) and then reforms. Note that this breakup is
not typically observed in coexistences of passive systems once the system has thermally
equilibrated.

Interestingly, between the homogeneous phase and the coexistence regime, we find an
additional region where we observe “oscillation” between a homogeneous fluid state and a
phase coexistence (an oscillation whose frequency we will attempt to determine in Section
6.3.3). Specifically, in this region if we start with a homogeneous fluid state, the system
appears to undergo nucleation and growth, resulting in a single large cluster. However,
as we explore in more detail in Section 6.3.3, at some point the cluster disintegrates
completely and the system returns to a homogeneous fluid state. This process repeats
itself continuously. In the following, we refer to this region as the oscillatory regime of
our state diagram.

In order to further clarify the differences between the three regimes in our state dia-
gram, we plot in Fig. 6.4 the time evolution of two quantities: i) the fraction of particles
associated with the largest cluster in the system flc = Nlc/N , with Nlc the number of
particles in the largest cluster and N the total number of particles, and ii) the degree of
clustering Θ = 1 − Nc/N [104], where Nc is the average number of clusters. Θ goes to
zero for a system composed of single-particle clusters while it approaches unity when the
mean cluster size becomes comparable to the total number of particles. We assign two
particles to the same cluster if they exert non-zero forces on one another. Also, we assign
a parameter space point to the phase coexistence regime if, for the whole course of the
performed simulation, the largest cluster fraction stays higher than 10%.

As expected, the homogeneous state shows minimal clustering (Θ ' 0.3, flc ' 0),
while in the case of phase coexistence the system is highly clustered (Θ ' 0.9, flc ' 0.9).
Following the time evolution of the curve that corresponds to the phase coexistence regime
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Figure 6.3: (a)-(b): Snapshots of the system for ρσ2 = 0.18 and υ0σ/τ = 60 at different times.
On the left bottom side of (a) we have zoomed in on the center of the cluster.

(coloured green), we find that the sudden drops in flc (Fig. 6.4(a)) are not simultaneously
accompanied by a significant drop in Θ (Fig. 6.4(b)), and correspond to temporary break-
ing of the largest cluster into smaller pieces (for example see Fig. 6.3(b)). In contrast,
from the curves that represent the oscillatory regime (coloured yellow), a correlation be-
tween the two quantities is clearly visible. This correlation suggests that the clustering of
the whole system is dictated by the behaviour of the largest cluster in the system. The
peaks observed in both quantities indicate nucleation, growth and breaking of a single
cluster.

Moreover, in the phase coexistence regime all functions tend to their steady-state
value immediately after the simulation begins, thus no nucleation time is required. This
feature is shared for all points that we identify as phase coexistence states. This hints
that these points may lie inside the spinodal lines of the system, if such a correspondence
with equilibrium physics can be made. However, in the yellow curve of Fig. 6.4(a), which
corresponds to the oscillatory regime, one can see distinct plateaus where the largest
cluster in the system is very small (flc ∼ 0), accompanied by growth and destruction of
the cluster. These features are shared by all the simulations that we identify to be in
the oscillatory regime. Thus, we infer that what we identify as an oscillatory regime may
coincide with the region between the binodal and the spinodal lines of the system. What
remains unclear is whether the system would ever fully nucleate. Specifically, whether for
a sufficiently large system and sufficiently long time, the oscillations would stop. We note
that we have seen no sign of such stopping in our systems for any of the state points we
have examined.

Comparison between our state diagram (Fig. 6.2) and the diagram of self-propelled
discs (see for example Fig 2(a) in Ref. [61]), shows that phase coexistence in our system
requires much smaller propulsion speeds. We attribute this to the augmented average
duration of a collision event between squares compared to discs, which arises due to the
different shape of the particles: squares cannot slip past each other when they collide as
their flat surfaces tend to align the particles. This hinders their movement, especially
when particles with anti-parallel self-propulsion axes collide. Moreover, the oscillatory
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Figure 6.4: Time evolution of (a) the largest cluster fraction flc and (b) the degree of clustering
Θ, for three systems with constant self-propulsive speed υ0σ/τ = 100 and densities ρσ2 =
0.05, 0.14 and 0.3, corresponding to systems in the homogeneous (H), oscillatory (O) and phase-
coexistence (PC) regimes of the phase diagram respectively.
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regime is absent in the case of the isotropic discs. We will discuss how the anisotropic
shape of the squares gives rise to this regime in Section 6.3.3.

We also note that we have observed no formation of lanes or swarms in our simulations.
These dynamic states are seen in models where interparticle interactions tend to align
the axes of self-propulsion of the colliding particles [77, 162]. For example, when two
self-propelled rods collide, their axes of self-propulsion will tend to become parallel or
anti-parallel. In the case of two squares colliding, even though the particles do become
parallel after the collision, their axes of self-propulsion can also be perpendicular to one
another. We conclude that the four-fold symmetry of squares, instead of the two-fold
symmetry of rods, is enough to lead to the absence of lanes or swarms. A more detailed
comparison between active squares and rods will be given in Section 6.3.3.

6.3.2 Phase separation regime
By inspection of the dense cluster that forms when phase separation takes place, we find
that the cluster is composed of regions that resemble a square crystal phase. These regions
are separated from one another by linear defects. See Fig. 6.5(a) for a closeup of such
a cluster. Here, individual particles are coloured according to the absolute value of the
bond orientational parameter

q4(k) = 1
Nk

Nk∑
l=1

ei4θkl , (6.6)

where Nk is the total number of neighbors of particle k, and θkl is the angle between the
vector rk−rl and an arbitrary lab axis. Neighboring particles are defined such that their
center-to-center distance is smaller than 1.5 σ. This bond order parameter detects local
four-fold symmetry in the neighborhood of each particle.

In Fig 6.5(b) we plot the bond orientational order averaged over all particles and many
independent configurations

Q4 = 1
N

N∑
i=1
〈q4(i)〉, (6.7)

as well as the global orientational order parameter

Φ4 = 1
N

N∑
i=1
〈ei4θimod(2π/4)〉, (6.8)

that detects global orientational order in the system. The modulus function takes into
account the four-fold symmetry of the squares. We find that Q4 takes non-zero values
even in the homogeneous regime, as a result of the small clusters that form, and higher
values in the phase coexistence regime. On the other hand, Φ4 stays close to zero in the
homogeneous regime and sharply assumes non-zero values once phase separation occurs
and a system size cluster forms.

We now study the local densities of the coexisting phases in the phase coexistence
regime. We determine the densities of the two phases by identifying the peaks of the local
density histogram of the system (not shown here), similar to previous studies of active
matter systems [61, 121] (see also Chapter 2). The local densities for the fluid (ρg) and the
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Figure 6.5: (a) Snapshot of the system for ρσ2 = 0.18 and υ0σ/τ = 60. Particles are coloured
according to their |q4| value. (b) Average local order parameter Q4 (open symbols) and global
orientational parameter Φ4 (full symbols) as a function of υ0σ/τ for various system densities.
Lines are simply guides to the eye.
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Figure 6.6: Local densities ρlσ2 of the coexisting phases in the phase separation regime for
different speeds of self-propulsion υ0σ/τ . Data points correspond to maxima of the local density
histograms and different symbols refer to different total densities. Black open circles denote
the mean of the two coexisting densities (ρx + ρg)/2 and the black dotted line is a linear fit.
Coloured dotted lines are guides to the eye. Note that the vertical axis of this plot is inversed
with respect to Fig 6.2.

crystalline region (ρx) are plotted in Fig. 6.6. This figure suggests that the speed of self-
propulsion alone determines the time averaged local densities of the dense and the dilute
phase, irrespective of the total system density. This property also holds for the motility-
induced phase separation of active self-propelled discs and the liquid-gas coexistence of
attractive self-propelled spheres [61, 121] (see also Chapter 2). However, self-propelled
squares pack better than self-propelled discs as the squares assemble in a square crystal
rather than a hexagonal crystal. We would like to note that the seemingly lower values of
the densities of the crystalline phase compared to the values reported for passive squares
(Ref. [159]) do not necessarily imply a less efficient packing of self-propelled squares. The
lower values are in fact caused by the range of our soft repulsive potential.

Moreover, in Fig. 6.6 we plot (ρx + ρg)/2 averaged over the different system densities.
We find that, away from the critical point, this quantity follows linear scaling as a function
of the self-propulsion speed υ0σ/τ . This linear scaling is also found in equilibrium systems,
where it is known as the law of rectilinear diameters [117]. Close to the critical point, we
cannot safely determine the local densities of the coexisting phases, as the peaks of the
local density histograms flatten due to fluctuations in the density.

We have checked that the qualitative properties of the system reported in this section
still hold for other system sizes. In particular, we have simulated a small number of the
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parameter space points for systems of 2500 and 8000 particles and found that the resulting
state diagrams and coexisting densities remain essentially unchanged.

Moreover, we have also performed simulations for dense systems (ρσ2 = 0.55 and
0.6) for a limited number of self-propulsion speeds υ0σ/τ . We have validated that the
local density of the dense phase for these simulations remains in close proximity with the
values found in the simulations of more dilute systems. Hence, the high densities part
of the envelope shown in Fig. 6.6, which would correspond to a binodal envelope in an
equilibrium system, is indeed collapsing onto one curve. Since the interaction between
particles is anisotropic and thus pressure is not an equation of state for the system [90],
this collapse constitutes a surprising result.

6.3.3 Oscillatory regime
In Fig. 6.7 we show a time series of snapshots of a system in the oscillatory regime. On
each snapshot we superimpose the displacement field, unnormalized by the density. To
calculate this field, we divided the simulation box into a square lattice of cell length 7σ,
and summed the displacement of the particles in each cell, see Eq. 6.4. Note that we have
ignored the contribution from translational diffusion.

This figure shows two instances where the system transitions from a homogeneous
fluid to a phase coexistence and back to the fluid. The two snapshots that show phase
coexistence (t/τ = 610, 1089) are taken slightly before the largest cluster breaks apart.
In these two subfigures the displacement field clearly shows collective rotation of the
cluster and formation of vortices. Inspection of the majority of breaking events in the
simulations, using the displacement field as a guide for the collective dynamics, reveals
that rotation of the cluster is a general feature that precedes cluster destruction. Note
that the packing of squares in the crystalline clusters of the oscillatory regime is similar
to the phase separated regime as described in Section 6.3.2. That is, all clusters are
composed from square crystalline domains. Also, the local densities of the clusters in the
oscillatory regime have similar values to the local densities in Fig. 6.6, which correspond
to the phase separated regime.

In an effort to quantify and understand the destruction of a large cluster, we plot three
different quantities in Fig. 6.8: the fraction of particles which belong to the largest cluster
flc, the angular momentum Llc of the largest cluster and the total potential energy of the
system Utot. The angular momentum Llc(t) is given by

Llc(t) =
Nlc∑
i=1

[dri(t)× (ri(t)− rlc(t))] · z, (6.9)

where Nlc denotes the total number of particles in the largest cluster of the system, rlc
is the center of the cluster and the displacement dri is calculated from Eq. 6.4 while
omitting the term that accounts for translational diffusion. The potential energy of the
system is calculated using Eqs. 6.1 and 6.2.

In Fig. 6.8 we see that the growth of a cluster (growth of flc) is accompanied by an
oscillation of its angular momentum. When the cluster obtains its maximum size, the
angular momentum also has a maximum in its absolute value. The growth of the cluster
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(a) t/τ=159 (d) t/τ=1089

(b) t/τ=610 (e) t/τ=1104

(c) t/τ=832 (f) t/τ=1376

Figure 6.7: Snapshots of the system at different times. The arrows indicate the direction and
relative magnitude of the displacement field. The parameters for this system are ρσ2 = 0.14
and υ0σ/τ = 100.
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Figure 6.8: Time evolution of the degree of clustering flc, the total potential energy of the
system Utot and the angular momentum of the system’s largest cluster Llc during nucleation,
growth and destruction of a cluster (for this system ρσ2 = 0.14 and υ0σ/τ = 100).

also causes a sharp increase in the potential energy of the system. This increase indicates
that strong forces are present in the interior of the formed cluster. Afterwards, the cluster
swiftly disintegrates (flc ' 0) and the potential energy of the system returns to low values.
We stress that the features shown in the plot and described above hold in general for all
the nucleation and breaking events we studied.

The above results lead us to the following picture for the clustering of active squares
in the oscillatory and phase coexistence regime: once a small cluster appears, it keeps
growing by absorbing the incoming particles from the gas. Naturally, the particles that
attach to the cluster will have on average their axes of self-propulsion pointing at the
center of the cluster. However, since the square particles that belong to the cluster cannot
change their orientation, an anisotropy of forces will eventually create one (Fig.6.7(b)) or
more (Fig. 6.7(d)) vortices that rotate the cluster as a whole.

Once a vortex appears, particles relocate and are free to collectively escape the cluster
in large groups. In the oscillatory regime, the remaining pieces of the cluster may disin-
tegrate completely so that the system returns to a homogeneous state, while in the phase
coexistence regime at least one cluster survives due to the fast absorption of gas particles.

The behaviour of the squares can be contrasted with the behaviour of active discs,
where no oscillations have been reported. In the case of discs, the particles that accumulate
at the surface of a cluster also point towards the center of the cluster, but can leave
the cluster once their axis of self-propulsion points outwards due to rotational diffusion.
The cluster is then stabilized by an influx and outflux of particles at its surface [61].
Moreover, particles in the inner layers can relax their orientation and hence no large
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torques accumulate. On the other hand, squares in the cluster are unable to rotate freely
due to interactions with neighboring particles. This leads to accumulating internal forces
and torques, that rotate and eventually destabilize the cluster.

Oscillations between states have also been found in other active systems. Self-propelled
dumbbells show very similar behaviour, and close to the binodal lines this system con-
tinuously moves from a clustered state to a uniform state [76]. Furthermore, a system
of self-propelled rods can also oscillate between an orientationally ordered state (phase
coexistence between a band-like structure with nematic order and a uniform, low density
fluid) and an aggregated state (phase coexistence between a dense cluster with no global
orientational order and a fluid) [77]. Also, when the aggregated state is stable, large
polar clusters continuously escape the cluster. What is common in the aforementioned
systems and the system of self-propelled squares is that, once an orientationally disor-
dered aggregate forms, large stresses develop due to the inability of the clustered particles
to relax their orientation. These large stresses will induce either the destruction of the
aggregate, or the constant ejection of large groups of particles. As mentioned in Ref. [77],
the presence of large stresses and oscillations is not consistent with the phase separation
of self-propelled discs, which is well captured by a classical description.

An open question, with regard to the state oscillations in all the aforementioned sys-
tems, is whether there is a characteristic frequency related to these oscillations. To fully
answer such a question, one would have to study the time evolution of a system in the
oscillatory regime (see for example Fig. 6.4) for a long period, which is currently outside
of our computational capabilities. However, it should be noted that our system did not
oscillate between two clearly distinctive states, but rather the crystalline cluster disinte-
grates at disparate stages of the growth process. This is evident in Fig. 4(a), as the height
of the different peaks, which corresponds to different cluster sizes, differs significantly for
different disintegration points. Our results suggest that there is a broad distribution of
phase separated states that lead to cluster disintegration and that, in all likelihood, the
oscillations are not associated with a characteristic frequency.

6.3.4 Coarsening

As we have already seen in Section 6.3.2, in the phase coexistence region we find static
statistical properties similar to the properties of self-propelled discs and equilibrium sys-
tems. On the other hand, in Section 6.3.3, the study of the cluster dynamics demonstrated
striking differences between self-propelled squares and discs. The differences in cluster
dynamics motivate us to study the coarsening dynamics. Our main tools for this study
are the structure factor S(k) and the averaged cluster size 〈Ncs〉. S(k) is the orientational
average of the full structure factor

S (k) = 1
N

N∑
i,j=1

e−ik·(ri−rj), (6.10)

and 〈Ncs〉 = ∑N
A=1ApA, where pA is the normalized probability of finding a cluster of size

A in the system.
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Figure 6.9: Scaled structure factor S(k)/L2
d as a function of kLd for different time instances.

The black dashed line follows the scaling k−3. For this system ρσ2 = 0.2 and υ0σ/τ = 80.

To achieve better statistics and longer coarsening times, we used a system of 250000
particles. Then, we computed the characteristic domain length Ld(t) [62] using

Ld(t) = 2π
∑kcut

2π/L kS(k, t)dk∑kcut
2π/L S(k, t)dk

−1

, (6.11)

where kcut is taken as the first minimum of S(k, t) and L is the length of the simulation
box.

Using the structure factor and the characteristic domain length we test the dynamical
scaling hypothesis for our system [163, 164]. According to this hypothesis, in two dimen-
sions, the time behavior of the structure factor in the coarsening regime follows from the
relation

S(k, t) = [Ld(t)]2 f(kLd), (6.12)

where f is a time independent function. In Fig. 6.9 we plot S(k)/L2
d for different (late)

times, and we find that it indeed shows dynamical scaling behaviour, as the different curves
fall onto each other for small wavelengths. Thus, we find that the domain structure in our
system is actually time independent in the late time coarsening regime. On top of this,
we see that the tail of the structure factor scales as L−1

d k−3, in accordance with Porod’s
law in two dimensions [164].

We also study the coarsening dynamics by following the average cluster size 〈Ncs〉
with time, shown in Fig. 6.10. This figure shows that cluster coarsening scales slightly
faster than t, up to the latest times we could simulate, and surpasses the t1/2 scaling that
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Figure 6.10: Evolution of the average cluster size 〈Ncs〉 with time. The red dashed line scales
as t. For this system ρσ2 = 0.2 and υ0σ/τ = 80.

active discs [61] and polar systems [112] show. We have verified that the same super-
diffusive coarsening scaling holds for other parameter space points. We speculate that the
rapid coarsening might be caused by the peculiar dynamics of the individual clusters, as
inspection of our simulations shows that the clusters, apart from continuously breaking
apart and reassembling, also move in space. This movement boosts the frequency of
cluster collisions. The two aforementioned effects may cause a ballistic growth of the
average cluster size for all the time scales examined.

However, we would like to note that our results may be limited due to the finite size
of our system, and in the infinite system size limit one may recover the scaling t1/2 for
late times that should hold for diffusive systems with no hydrodynamic interactions, for
example, a system of passive Brownian particles or self-propelled particles with no aligning
interactions [165]. Thus, further study needs to be done in this aspect.

6.4 Conclusions

We have studied the state behaviour of self-propelled Brownian squares using computer
simulations. We find that for low densities and slow swimming speeds the system is in a
uniform fluid phase, while for high densities and fast swimmers the system phase separates
into a high density and a low density phase. In between these two regimes, there is a third
regime where the system oscillates continuously between the two aforementioned states.
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By studying the phase coexistence regime, we found that the dense phase is made of
square crystalline domains and that the time averaged local densities of the coexisting
crystal and fluid are independent of the overall system density. Next, we demonstrated
that the rupture of a crystalline cluster in the oscillatory regime is accompanied by a
rotational motion of the cluster. This rotation originates from the large stresses that are
developed in the interior of the cluster. Furthermore, we find that the system coarsens at
a much faster rate than a purely diffusive system, which may be caused by the intriguing
dynamics of individual clusters.

Comparing our results with existing literature for self-propelled discs, we discover
that the two systems share many similarities, as they both undergo phase separation
due to a kinetic trapping mechanism and the coexisting local densities are a function
of the swimming speed alone. However, there are also striking differences, including the
oscillatory regime and the fast, super-diffusive coarsening rates, which are possibly caused
by the large stresses developed in a crystalline cluster of self-propelled squares. It is also
important to note that the collapse of the binodal lines for different total densities of
the system is a direct consequence of the existence of an equation of state in the case of
discs but is a surprising result in the case of squares, where mechanical pressure is not a
function of the state of the system. We will discuss in more detail this interesting point
in the next chapter.

On the other hand, the peculiar dynamics of clusters formed by self-propelled squares
resembles the dynamics found in systems of self-propelled dumbbells and rods, where
system spanning clusters can also continuously form and disintegrate, and large groups of
particles can frequently escape large clusters. Future work should look into the stability of
the oscillatory behaviour in the infinite system size limit, as well as measuring a possible
periodicity of such clustering and disintegration events. Lastly, a more detailed compar-
ison between the dynamic behaviour of different self-propelled and anisotropic particles
may shed light to universal features of the coarsening dynamics and the state behaviour
near the phase separation regime.
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Phase coexistence of spherical
self-propelled particles with
anisotropic interactions

We study phase coexistence in a system of purely repulsive and anti-aligning self-propelled
Brownian particles that undergoes motility-induced phase separation. We quantify the
force balance and show that the mechanical equilibrium of the coexisting phases cannot
be captured via a local pressure definition, even when the swim pressure is considered.
However, we show that chemical equilibrium of the coexisting phases can be shown by
bringing the system in contact with a particle reservoir and showing that the reservoirs
that correspond to coexisting phases are identical.
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7.1 Introduction

During the first four research chapters of this thesis, Chapters 2-5, we studied active mat-
ter systems whose components interact with one another via purely isotropic (radially
symmetric) interactions. We found that many properties that govern phase coexistences
for this subgroup of active matter systems bore similarities to the corresponding prop-
erties of equilibrium systems. Arguably, the most important and surprising result we
reported was a numerical method to construct the phase diagram of an active system by
quantifying conditions for the mechanical and chemical equilibrium of coexisting phases
(see Chapter 5). In the subsequent Chapter 6 we studied the self-assembly of particles
with an anisotropic (square) shape and again found a fairly equilibrium-like phase dia-
gram for the system. Motivated by these two results, in the present chapter we study a
system comprised of spherical particles, but with explicit anisotropic interactions between
them. Our ultimate goal is to investigate whether one can predict the phase diagram of
the system utilizing numerical methods such as the one presented in Chapter 5.

One of the great successes of equilibrium statistical physics is its ability to predict
phase diagrams for the self-assembly of particles of any given shape and interaction po-
tential [22]. Phase diagrams are constructed by demanding the same set of intensive
variables for coexisting phases. The intensive variables of an equilibrium bulk system
uniquely characterize it and for a traditional thermodynamics system these are the tem-
perature, the pressure and the chemical potential and are conjugate to the entropy, the
volume and the number of particles of the system respectively.

Currently, these three intensive variables have not yet uniquely been defined for active
matter systems. Temperature in active systems is in many cases defined only as an
effective quantity that maps the properties of the out-of-equilibrium system, for example
its equation of state, to a corresponding equilibrium system [99–101]. However, for the
purpose of constructing phase diagrams, the temperature can be considered as a function
of only the propulsion speed and the translational and rotational diffusion of particles,
so that is by definition equal in coexisting phases of the same species (see for example
Refs. [86, 102] and Chapter 5). Moreover, the definition of a mechanical pressure for
active matter systems has been addressed in various approaches [86, 89, 91, 93, 94]. Most
relevant to our discussion,while it has been shown that pressure can be well defined for
systems that involve only isotropic interactions, interparticle and particle-wall anisotropic
interactions lead to the absence of an equation of state [90, 127]. Lastly, a definition of
the chemical potential has been also proposed following different paths, for example either
following a generalized free-energy theory or a dynamic density functional theory approach
[62, 86, 103]. In Chapter 5 we used a numerical method in order to measure a variable
conjugate to the number of particles, namely the density of a reservoir in contact to a
single phase. We showed that this variable is enough, together with the known definition
of a pressure in the absence of anisotropic interactions, to successfully predict the phase
diagram. This result hinted to the existence of a chemical potential for active systems.

On the other hand, given the lack of an equation of state for the case of active systems
with anisotropic interactions, it may appear that predicting phase diagrams is impossible
in this case. However, note that even though the pressure as defined in Ref. [127] may
not be a state function, that is it will depend on the potential of a surrounding wall, it is
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unclear whether it assumes the same value in coexisting phases of a spontaneously phase
separated system. Furthermore, given the complications that arise for the pressure in
the presence of torques, it is uncertain whether our numerical method to show chemical
equilibrium of coexisting phases for systems with purely isotropic interactions, shown in
Chapter 5, could be used to demonstrate chemical equilibrium for systems with anisotropic
interactions as well. If such a numerical method could indeed be used, it would suggest
that a chemical potential exists for a larger class of active matter systems than the results
of Chapter 5 solely imply.

In the present chapter we address these two important questions by studying a system
that undergoes motility-induced phase separation (MIPS) and whose particles explicitly
exert torques onto one another. Applying a numerical method similar to the one presented
in Chapter 5, we show that coexisting phases share the same value for the reservoir density.
Our study thus suggests that chemical equilibrium can be directly shown for coexisting
phases. However, we find that two coexisting phases do not share the same values for
the bulk pressure, when using the current formalism for the pressure of active systems.
Whether this inequality is due to the formalism itself or it is a general property of active
systems with anisotropic interactions is still unclear to us.

The structure of the chapter is as follows: in Section 7.2.1 we describe the model
and the dynamics implemented for our simulations and in Section 7.2.2 we describe two
different formulations for the pressure of an active system and give an equation for the
force balance. We present the method of quantifying a variable conjugate to the number
of particles in Section 7.2.3. In Section 7.3.1 we study phase coexistences using direct
coexistence simulations, discuss the various components of the force balance of the phase
separated system and present state diagrams. We test whether our numerical method can
capture chemical equilibrium in Section 7.3.2 and we conclude in Section 7.4.

7.2 Methods

7.2.1 Model and dynamics
We consider a two-dimensional system, consisting of disc-like particles of diameter σ. The
position of the center of mass of the i-th particle at time t is given by the vector ri(t) while
its orientation is given by the unit vector ui(t) = (cos θi(t), sin θi(t)), where θi(t) ∈ [0, 2π)
is the azimuthal angle between a fixed axis in the lab frame and the vector ui.

Particles interact via the radially symmetric Weeks-Chandler-Andersen potential:

U(rij) = 4ε
( σ

rij

)12

−
(
σ

rij

)6

+ 1
4

 (7.1)

truncated and shifted at rc = 21/6σ, where rij = |ri − rj| and ε controls the strength of
the interaction. On top of the radially symmetric potential, particles also apply torques
to one another, such that the torque applied to particle i is

Γi = − κ

Ni

Ni∑
j=1

sin (θi − θj) , (7.2)
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where κ controls the strength of the interaction and Ni is the number of particles within a
distance 21/6σ from particle i. This torque reorients particle i away from the orientations
of particles that are in close proximity to it and tends to make them anti-parallel. Note
that Eq. 7.2 is of the form of the Vicsek interaction, but with an extra minus sign [63].
We find that such an anti-aligning interaction between particles leads to relatively stable
interfaces when motility-induced phase separation takes place in the system. Thus, our
motivation for the use of the specific anisotropic interaction is merely practical, as the
two requirements for a suitable model for our investigation are that the particles should
interact via anisotropic interactions and that the system can undergo motility-induced
phase separation. As a point of interest, these two requirements were also satisfied by the
model we studied in Chapter 6. However, we did not select the model of self-propelled
squares for our investigation since it turns out that is not possible to construct a motility-
induced phase separated system in a slab geometry with this model. Specifically, when the
dense crystalline phase spans completely one dimension of the box, we find that it is not
able to rotate, thus the particles that are part of this phase cannot relax their orientation.
As a consequence, eventually all particles become part of the dense crystalline phase.
This problem arises due to the finite size of the system combined with periodic boundary
conditions. Hence, to avoid this issue we chose a model of spherical particles with explicit
torques.

To make the particles active, we include a self-propelling speed of constant magnitude
υ0 that acts along u. Following Ref. [62], we impose a constant ratio between the self-
propulsion speed and the strength of the interparticle interactions υ0/βε = 24 in order to
set a constant “effective” diameter between particles that collide at a 90o angle. Addition-
ally, we consider our particles immersed in a solvent whose damping coefficient is given
by ηtr for the translational and ηr for the rotational motion of the particles. Since we are
interested in the regime that applies to the colloidal world, we use overdamped Langevin
(Brownian) dynamics for the equations of motion, which includes the solvent-particle in-
teractions implicitly and neglects the inertia of the particles. Thus, the translational and
rotational equations of motion are

dri
dt

= − 1
ηtr

∑
j 6=i
∇riU(rij) + υ0ui +

√
2Dtrξ

tr
i , (7.3)

dθi
dt

= 1
ηr

Γi +
√

2Drξ
r
i , (7.4)

where Dtr = 1/(βηtr) is the translational diffusion coefficient and β = 1/kBT , where kB
is the Boltzmann constant and T is the temperature of the surrounding solvent. Dr =
1/(βηr) denotes the rotational diffusion coefficient and is related to the translational
diffusion coefficient via the Stokes-Einstein relation Dr = 3Dtr/σ

2. The stochastic terms
ξtri and ξri are respectively a two-dimensional vector and scalar with zero mean and unit
variance.

We measure time in units of the short-time diffusion τ = σ2/Dtr. Equations 7.3 and
7.4 were numerically integrated using an Euler-Maruyama integration scheme [107]. A
time step of dt = 10−5τ was used for the numeric integration of the equations of motion.
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7.2.2 Force balance and pressure

Below we define the local and the virial pressure for systems of self-propelled particles and
give an equation for the local force balance. In this section we restrict ourselves in a brief
presentation of the expressions and refer the reader to Appendix A for their derivation
and an extensive discussion of the force balance equation.

Perhaps the first attempt to define a pressure for active systems appeared in the
work of Takatori et al., where the direct contribution of self-propulsion to the mechanical
pressure of a system containing self-propelled particles was given by the expression [123]

P vir
swim = ηtrυ0

dV

〈∑
i

ri · ui
〉
, (7.5)

where the sum is over all particles and the brackets can be seen as a configurational
average or an average over time, d is the number of dimensions and V is the total volume
of the system. Note that Eq. 7.5 only prescribes the direct contribution of self-propulsion
to the pressure of the system, and the total pressure of the system also includes the ideal
P vir

id and interaction P vir
inter components of the pressure which are given by

P vir
id = ρ/β (7.6)

P vir
inter = − 1

2dV

〈∑
i

∑
j 6=i
rij · ∇riU(rij)

〉
, (7.7)

where ρ is the total density of the system and rij = rj−ri. Equation 7.5 was confirmed by
other theoretical treatments of active matter as the direct contribution of self-propulsion to
the pressure [92, 122], and has been used in order to demonstrate mechanical equilibrium
between coexisting phases of self-propelled particles [91]. We will refer to the quantity
that is described by the sum of Eqs. 7.5-7.7 as the virial pressure of the system P vir.
A theoretical derivation of this expression can be found in Appendix A. Note that for
systems with periodic boundary conditions the absolute positions of the particles must be
used in Eq. 7.5, so that the swim virial pressure will depend on the history of the system.
Also, note that the expression for the virial pressure holds for any homogeneous system of
self-propelled particles with periodic boundary conditions irrespective of the interparticle
interactions.

A different approach to the problem, which has culminated in the work of Solon and
coworkers [127], starts by constructing the Fokker-Planck equation of the system and
studying the force balance locally. We present a complete overview of this approach in
Appendix A but summarize the results in the following.

Let us assume a slab geometry with the long axis of the two-dimensional simulation
box along the x̂ dimension, such that the x-axis is normal to all interfaces, which will
span the ŷ dimension of the box. In order to write down an expression for the x (normal
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component) of the local pressure, first we define the moments

ρ(r) =
∑
k

δ(r − rk), (7.8)

mi(r) =
∑
k

uk,iδ(r − rk), (7.9)

sij(r) =
∑
k

uk,iuk,jδ(r − rk), (7.10)

where i, j denote the spatial components of the corresponding vectors and tensors and
the sum is over all particles. ρ(r) is the local density of particles while m(r) is the
corresponding local polarization. The x (normal) component of the local pressure of the
system P local(x) for particles that do not experience any torques can then be calculated
using the equation

P local(x) = P local
id (x) + P local

inter (x) + P local
swim(x), (7.11)

where

P local
id (x) = 〈ρ(x)〉 kBT = 1

Ly

∫
dy 〈ρ(r)〉 kBT, (7.12)

is the ideal component of the pressure, where we have spatially integrated over the ŷ
dimension and divided by the length of the box Ly that we integrated over and brackets
denote an average at the steady state over noise realizations. Additionally,

P local
inter (x) = 1

Ly

∫
dy
∫
x′′<x

dx′′
∫
x′>x

dr′∂x′′U(|r′ − r′′|) 〈ρ(r′′)ρ(r′)〉 , (7.13)

is the standard local virial term and r′′ = (x′′, y), and finally

P local
swim(x) = 1

Ly

∫
dy

ηtrυ0

(d− 1)Dr

[
υ0 〈sxx(r)〉+Dtr∂x 〈mx(r)〉

− 1
ηtr

∫
dr′∂xU(|r′ − r|) 〈mx(r)ρ(r′)〉

]
(7.14)

is the local swim pressure.
In our particle simulations we divide the simulation box into slabs, and measure the

normal component of the pressure for each slab. The contributions to each slab of the
ideal and swim components of the pressure can be calculated straightforwardly, while
for the virial component we follow Ref. [131]. Note that in the case of purely isotropic
interactions between particles, the local bulk pressure will be equal to the virial pressure
of bulk phases [122] (see also Chapters 3 and 5).

In the general case where particles also exert torques onto one another, the force
balance along the x-axis can be written as (periodic boundary conditions are applied, see
Appendix A)

∂xP
local(x)− F ani(x) = 0, (7.15)
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where the local anisotropic force F ani(x) is defined by

F ani(x) = 1
Ly

∫
dy

υ0

(d− 1)Dtr

∫
dΩ∂Ωux(Ω)

∫
dr′

∫
dΩ′Γ(r, r′,Ω,Ω′) 〈Ψ(r′,Ω′)Ψ(r,Ω)〉 ,

(7.16)

with

Ψ(r, θ) =
N∑
i=1

δ(r − ri)δ(θ − θi) (7.17)

the probability of finding a particle at position r with orientation θ. Note that Eq. 7.16
cannot be written as a spatial derivative, thus it cannot be incorporated in the pressure
term. Integrating Eq. 7.15 over a region with boundaries x1 and x2 gives

P local(x2)− P local(x1) =
∫ x2

x1
dxF ani(x) = P ani(x2, x1), (7.18)

where, for later convenience, we have defined the local pressure difference between points
x1 and x2 due to the presence of the anisotropic force as P ani(x2, x1).Thus, the local
pressure difference is equal to the integral over the anisotropic local force. As we show
in Appendix A, for a bulk phase we have F ani(x) = 0, or equivalently the local pressure
remains constant. However, from the form of Eqs. 7.15 and 7.16 it is not a priori evident
whether there is a non-zero contribution of the anisotropic force in the case of an interface
between bulk phases. We will set out to investigate this in this chapter. Also, we will use
the virial pressure P vir (Eqs. 7.5-7.7) for the sole purpose of verifying the values of the
local pressure P local (Eqs. 7.11-7.14) when appropriate.

7.2.3 Chemical equilibrium and reservoir simulations
In this chapter we extend the method of connecting a bulk phase to a reservoir, which
we presented in Chapter 5 for binary systems, to systems of a single species. Below we
describe the modified method in detail.

To quantify the properties of a bulk phase associated with chemical equilibrium, we
connect a bulk phase of a single species of particles to a reservoir that contains the same
species of particles. However, in order to employ the same method we used in Chapter 5,
we artificially divide the particles of the bulk phase into two species by simply colouring
them with two different colours, creating in this way a binary mixture. Note that the
particles of the two species are actually identical when it comes to their interparticle
interactions and dynamics. Moreover, we divide our simulation box into two sections,
one which contains the “bulk” binary phase, and the other part of the box acting as a
particle reservoir of one species only, which we call species R. We place a semi-permeable
membrane at the division, which only allows particles of species R to pass through at
no energy cost. For the other species, the wall is impenetrable with the wall-particle
interaction given by a purely repulsive Weeks-Chandler-Andersen-like wall potential:

βUwall(x) = 4βεwall

((
σ

x

)12
−
(
σ

x

)6
+ 1

4

)
, (7.19)
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(a)

(b)

Figure 7.1: (a) The crystal in contact with a reservoir. (b) The gas in contact with a reservoir.
The location of the semipermeable membrane is denoted by the dotted lines. The colouring of
the particles in red and blue is artificial, which means that there is no difference in the dynamics
or the interactions of the two species. The only difference is that the red particles can travel
through the membrane at no energy cost while the blue particles are confined in the bulk part
of the simulation box. This enables us to freely choose the composition of the binary mixture.
We fix the composition at 0.5 for all the points in the parameter space such that a given density
of the bulk binary phase corresponds to a unique density of the reservoir. Also, note that in
this figure we show small systems of a few hundred particles while for the results presented in
Section ?? each simulation involves approximately 15000 particles.
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where x is the distance of a particle to the nearest semi-permeable wall, βεwall = 40, and
the interaction is cut off at a distance x = 21/6σ. Thus, effectively the only difference
between the two species is that one of them can pass through the wall while the other
species cannot. In addition to the wall repulsion, we also apply a torque to the particles
of the confined species that reorients these particles away from the wall. This torque was
applied in order to minimize the accumulation of particles at the wall. Reassuringly, we
find that the applied torque does not affect the bulk part of the simulation, since the
orientation of the particles relaxes rapidly as we move away from the wall. For snapshots
of such simulations see Fig. 7.1.

At the beginning of the simulation, the bulk phase consists of the desired total density
of particles and half of the particles are assigned to species R while the other half are
assigned to the confined species. Note that in principle any value for the composition
of the binary phase can be chosen since the colouring of particles in the bulk and their
division into two species is arbitrary. We chose a composition of 0.5 since it leads to a
binary phase that is less susceptible to fluctuations of the number of particles of both
species. The reservoir contains a gas of species R with a randomly chosen initial density.

During the course of the simulation, particles of species R travel from the “bulk” part
of the simulation box to the reservoir and vice-versa, while the confined particles move
only between the walls. We measure the density of each species in the central area of the
bulk phase in regular intervals and to correct for the deviations from the targeted total
density and the desired composition 0.5 of species R, we tune the number of particles of
both species during equilibration by randomly adding or removing particles, as described
in Chapter 5. Eventually, the partial densities of both species in the bulk region reach
the desired constants and the density of the reservoir assumes a constant value.

7.3 Results

7.3.1 Direct coexistence simulations
To start our investigation, we perform a series of simulations for different values of the
torque coefficient κ in the regime where the system undergoes motility-induced phase
separation. To this end, we simulated 15000 particles in a two-dimensional elongated box
with dimensions Lx = 5Ly. This choice for the dimensions of the box ensures the forma-
tion of two flat interfaces that span the box perpendicular to its long axis when phase
separation takes place. The direct coexistence simulations were performed for torque
coefficients βκ = 0, 5, 10 and 15, total densities ρσ2 = 0.5, 0.65 and 0.8 and different
propulsion speeds υ0. The simulations were initiated from a configuration where all par-
ticles are part of a hexagonal crystal and ran for approximately 750τ . We collected data
only for the last 250τ . During the data collection period of our simulation we divide the
box into slabs of length σ across the long x-axis and measure the density of particles in
each slab as well as the different contributions to the local force balance Eq. 7.15. Note
that during the course of our simulation we kept the center of mass of the system fixed
at position x = 0, such that the dense phase was always located at the center of our box.

In Fig. 7.2 we show typical results for the measurements as well as a snapshot of
the phase separated system. A dense phase, located at the middle of the simulation
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Figure 7.2: (a) Snapshot of a system with 15000 particles that has undergone MIPS. The
simulation parameters of the system are ρσ2 = 0.65, υ0 = 210, κ = 10. (b) Local density ρ(x),
(c) anisotropic force (Eq. 7.16) and (d) normal component of the local pressure (Eq. 7.11)
profiles for systems with ρσ2 = 0.65, υ0 = 210 and various torque coefficients.
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box and coexisting with a gas is shown in Fig. 7.2(a). Figure 7.2(b) shows the local
density profiles of four different phase-separated systems that share the same values for
total density and propulsion speed of particles and differ only in the value of the torque
coefficient κ. Clearly, an increase of the torque coefficient κ is accompanied by a decrease
in the density difference of the coexisting phases. Furthermore, in Fig. 7.2(c) we show
typical measurements for the anisotropic force F ani. We find that F ani assumes a non-
zero value at interfaces in systems with anisotropic interactions, while it is zero in the
bulk phases and away from the interfaces, as we argue in Appendix A. Moreover, profiles
for the normal component of the local pressure are shown in Fig. 7.2(d). This figure
clearly demonstrates that the local pressure as defined by Eq. 7.11 does not assume
the same values when measured at the bulk of two coexisting phases when anisotropic
interactions are present. On the other hand, the pressure profile in the case of purely
isotropic interactions (κ = 0) remains constant throughout the simulation box. The non-
equality of the local pressures in the coexisting phases is a direct consequence of the
non-zero anisotropic force along the interface, as it is dictated by Eq. 7.18.

Before moving on to study the phase diagram of the system, it is instructive to inves-
tigate further the validity of the values for the local pressure that we present in Fig. 7.2.
To this end we have performed simulations of single phases, either gaseous or crystalline.
The densities for these single-phase, bulk simulations were chosen to be the local densi-
ties of the coexisting phases, which can be read for example from Fig. 7.2(b). We then
measure the pressure of the whole system by using the virial pressure which is the sum of
Eqs. 7.5-7.7. We find that the values of the local pressure that we measure in the direct
coexistence simulations coincide with the values that we obtain from using Eqs. 7.5-7.7
on bulk systems where no phase separation takes place.

Next, we construct the phase diagram of the system for different torque coefficients κ
using the results from the direct coexistence simulations. The densities of the coexisting
phases are obtained by fitting the density profiles (as shown for example in Fig. 7.2(b)) to
hyperbolic tangent functions, similar to Chapters 3 and 5. The resulting phase diagrams
are shown in Fig. 7.3(a). The effect of the strength of the anisotropic interaction on
the phase behaviour of our system, already reported in the discussion of Fig. 7.2, now
becomes even more transparent: an increasing torque coefficient decreases the density
difference between the coexisting phases for the same propulsion speed and thus shifts
the onset of motility-induced phase separation to higher propulsion speeds. Also, note
that the binodal lines for different total densities of the system fall on top of each other,
which indicates that no large finite size effects have affected our measurements. It also
shows that even when anisotropic interactions take place, the phase diagram of our system
collapses onto a fairly equilibrium-like phase diagram, in the sense that the lever rule is
obeyed in the coexistence region. We have already demonstrated this in Chapter 6 for a
very different model that undergoes motility-induced phase separation.

In Fig. 7.3(b) we plot the local pressures of the coexisting phases, which can be directly
extracted from the local pressure profiles (see for example Fig. 7.2(d)). As we already
reported in the discussion of Fig. 7.2, the dilute gaseous phases have systematically higher
values of local pressure than the dense crystalline ones when anisotropic interactions are
present. Of course, in the absence of anisotropic interactions (κ = 0) the measured
local pressures coincide. Once again, we find that results for different total densities
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Figure 7.3: (a) Phase diagram of the system for different torque coefficients and total sys-
tem densities. Markers denote simulation results while continuous lines are simply guides
to the eye. (b) Local pressure (Eq. 7.11) of the coexisting phases presented in phase di-
agram (a) as a function of the propulsion speed. Open symbols correspond to the dense
crystalline phase and full symbols denote the dilute gaseous phase. Note that for the case
of purely isotropic interactions (κ = 0) open and full symbols coincide. Continuous lines
are simply guides to the eye. (c) Difference of the local pressures of the coexisting phases
∆P local

GX = P local(xG) − P local(xX) (full symbols) and spatial integral of the anisotropic force
across the interface P ani(xG, xX) =

∫ xG
xX

dxF ani(x) (open symbols) as a function of the propul-
sion speed, where xXand xG denote arbitrary positions located in the bulk of the dense crystalline
and dilute gaseous phase accordingly. Note that open and full symbols are practically indistin-
guishable as they fall perfectly on top of each other. Continuous lines are simply guides to the
eye. This figure can be seen as a direct validation of Eq. 7.18.
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are indistinguishable, which suggests only minor finite size errors in our measurements.
Moreover, in Fig. 7.3(c) we plot the difference in the local pressures of the coexisting
phases (that is the gap between the local pressures of the dilute and the dense phase,
Fig. 7.3(b)) and the integral of the measured anisotropic force over the interfacial region,
Eq. 7.18. Reassuringly, we find perfect agreement between these two quantities, which
confirms the validity of Eq. 7.18.

7.3.2 Chemical equilibrium of coexisting phases
In the previous section we demonstrated that, in the case of particles exerting torques
onto one another, the local pressure as defined in Eq. 7.11 does not assume the same value
when measured in the bulk of coexisting phases and thus the mechanical equilibrium of
the coexisting phases cannot directly be shown. One then naturally asks whether such a
breakdown also takes place for the chemical equilibrium, as demonstrated by the methods
of Chapter 5.

To this end, we bring single phases in chemical equilibrium with particle reservoirs
as described in Section 7.2.3 (see Fig. 7.1). After the whole system, which comprises
of the bulk phase and the reservoir, reaches a steady state, we measure the density of
the reservoir. The simulated bulk phases corresponded to the points measured on the
binodal lines of the phase diagram that were acquired by direct coexistence simulations
(Fig. 7.3(a)). We then compare the densities of the reservoirs for the two single phases
(dilute and dense) that were found to coexist in direct coexistence simulations.

In Fig. 7.4 we show the results of this comparison. We find that the corresponding
reservoirs are identical for coexisting phases, that is we find the same densities for the
reservoirs connected independently to two coexisting phases, within the accuracy of our
measurements. Also, there are no significant differences between the four curves that
correspond to different values of the torque coefficient κ and, more importantly, there are
no signs of a trend as the coefficient κ is increased. We can thus infer from this figure
that the chemical equilibrium of coexisting phases can be demonstrated using particle
reservoirs even for systems with non-isotropic interactions. Naturally, slight deviations
from the expected behaviour are present, even for the case of purely isotropic interactions
(κ = 0). We attribute these deviations to systematic errors due to the finite size of the
simulated systems (see also the relevant discussion in Chapter 5).

7.4 Conclusions
In this chapter we studied a system of spherical, self-propelled particles that interact
with one another via radially repulsive and anisotropic, anti-aligning interactions using
Brownian dynamics simulations. We performed simulations in an elongated box, in the
regime of high propulsion speeds where the system undergoes motility-induced phase
separation for various strengths of the anisotropic interaction, and studied properties of
the coexisting phases.

Initially, we studied the components of the force balance, derived from the Fokker-
Plank equation, in the phase separated system. We found that the quantity we associated
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Figure 7.4: Comparison between the resulting reservoir densities for coexisting crystalline ρXres
and gaseous phases ρGres. Each data point corresponds to the results of two simulations where a
bulk phase was brought into chemical equilibrium with a particle reservoir. For each simulation
with a reservoir we performed four runs with different initial densities of the reservoir. The
error bars are the standard deviation of these independent runs. Note that the error bars for
the gaseous phases are typically smaller than the plotted symbols. The black dotted line follows
the scaling ρGres = ρXres and coloured continuous lines are simply guides to the eye.
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with the local pressure, which does not incorporate explicitly the torques, assumes a
constant profile along the interface only in the absence of anisotropic interactions. When
the particles exert torques onto one another the local pressures in the two coexisting bulk
phases are not equal due to a term that explicitly depends on the anisotropic interactions
and is non-zero at the interfaces. Note that this term cannot be written as a spatial
derivative, thus it does not stem from a pressure-like term. Also, we have further verified
the pressure difference of the coexisting phases by performing single phase simulations
and measuring the virial pressure of the homogeneous system. Thus, we are left to infer
that either a new formulation is needed for the case of active systems with anisotropic
interactions, where a quantity conjugate to volume would assume the same value in the
bulk of coexisting phases, or perhaps such a quantity does not exist for this general class
of active matter systems, an absence that would manifest the out-of-equilibrium nature
of the system.

Moreover, we investigated whether chemical equilibrium between coexisting phases
can be shown by means of connecting the individual phases to particle reservoirs. The
system was connected to particle reservoirs using a modified version of the numerical
method presented in Chapter 5. Interestingly, we found that coexisting phases are in
chemical equilibrium with the same particle reservoir, irrespectively of the presence or
absence of anisotropic interactions. This conclusion indicates the existence of a bulk
quantity analogous to the chemical potential of equilibrium systems for a wide range of
active systems.
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A

Force balance and pressure in
active systems

In this appendix we present an equation for the force balance of active Brownian systems
utilizing the Fokker-Planck equation and derive an expression for the mechanical pressure
of active systems under specific conditions. Moreover, we perform a separate calculation
for the mechanical pressure of active systems using the virial route and then compare the
two resulting expressions. Note that the calculations presented follow closely Refs. [90],
[127] and [122] and are given here in full detail only so that the reader has a comprehensive
view of recent literature. Results presented in this appendix are used in Chapters 3, 4, 5
and 7.
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A.1 Model and dynamics
The model we consider for our theoretical calculation is a d-dimensional system that con-
tains N self-propelled Brownian particles immersed in a molecular solvent whose viscosity
is parametrized by the damping coefficient η. The particles interact with one another via
pairwise interactions that be decomposed in center-of-mass to center-of-mass forces and
explicit torques. We also assume that the system is confined by a wall in the ẑ dimension.
The position of particle i is given by the vector ri and its direction of self-propulsion by
the vector ui. We also define the (solid) angle between the axis of self-propulsion and a
fixed coordinate system as Ωi. The equations of motion for particle i are then

dri
dt

= −1
η

∑
j 6=i
∇riU(rij)−

1
η
∇riUw(ri) + υ0ui +

√
2Dtrξ

tr
i , (A.1)

dui
dt

= 1
ηr

(ui × Γi) +
√

2Dr (ui × ξri ) , (A.2)

where U(r) is a pairwise potential, rij = |ri − rj|, Uw is the potential of the wall, υ0 is
the constant self-propulsion speed of particles, Dtr = 1/(βη) is the translational diffusion
coefficient and β = 1/kBT , where kB is the Boltzmann constant and T is the temperature
of the surrounding solvent. Γi = ∑

i 6=j Γ(ri, rj,Ωi,Ωj) is the sum of torques exerted on
particle i by all other particles, ηr is the damping coefficient associated with rotational
motion and Dr = 1/βηr denotes the rotational diffusion coefficient. The stochastic terms
ξtri and ξri are d-dimensional vectors with zero mean and unit variance.

A.2 The Fokker-Planck equation
For the calculation presented in this section we follow closely Refs. [90] and [127].

Let us define the microscopic density, which we denote as Ψ(r,Ω), such that

Ψ(r,Ω) =
N∑
i=1

δ(r − ri)δ(Ω− Ωi). (A.3)

Starting from the equations of motion (Eqs. A.1 and A.2) and following standard
procedures [166, 167], we find that the time evolution of the microscopic density follows
from the equations

∂tΨ(r,Ω) = −∇ ·
[(
− 1
η

∫ ∫
∇U(|r′ − r|)Ψ(r′,Ω′)dr′dΩ′ − 1

η
∇Uw(r)

+ υ0u(Ω)
)

Ψ(r,Ω)−Dtr∇Ψ(r,Ω)
]

−∂Ω

[
1
ηr

∫ ∫
Γ(r, r′,Ω,Ω′)Ψ(r′,Ω′)Ψ(r,Ω)dr′dΩ′ −Dr∂ΩΨ(r,Ω)

]
. (A.4)
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For later convenience, we now define the moments

ρ(r) =
∫
dΩΨ(r,Ω), (A.5)

m(r) =
∫
dΩu(Ω)Ψ(r,Ω), (A.6)

sij(r) =
∫
dΩui(Ω)uj(Ω)Ψ(r,Ω), (A.7)

where i, j denote the spatial components of the corresponding vectors and tensors. ρ(r)
is the local density of particles while m(r) is the local polarization.

Assuming that our system is in a steady state, such that time derivatives vanish, we
obtain an equation for the flow of particles by integrating Eq. A.4 over the angle Ω and
performing an average over noise:

0 = −∇ ·
[
− 1
η

∫
∇U(|r′ − r|) 〈ρ(r′)ρ(r)〉 dr′ − 1

η
∇Uw(r) 〈ρ(r)〉

+ υ0 〈m(r)〉 −Dtr∇〈ρ(r)〉
]
, (A.8)

where the brackets denote the average over noise. The above equation can be rewritten
in the form ∇ · J(r) = 0, where J(r) is the particle current. We now consider a system
that is isotropic in the dimensions perpendicular to ẑ, such that no swirls are present and
Eq. A.8 can be written in the form

∂riJi(r) = 0⇒

∂ri

[
−1
η

∫
∂riU(|r′ − r|) 〈ρ(r′)ρ(r)〉 dr′ − 1

η
∂riUw(r) 〈ρ(r)〉

+υ0 〈mi(r)〉 −Dtr∂ri 〈ρ(r)〉
]

= 0, (A.9)

where the derivative ∂ri denotes spatial differentiation of the i-th component of the vector
r. We will now proceed to rewrite various terms of Eq. A.9 for later convenience.

The first term in the left hand side of Eq. A.9 is associated to the virial term of
equilibrium systems that results from the interactions between particles. This term can
be written in the form [90] ∫

∂riU(|r′ − r|) 〈ρ(r′)ρ(r)〉 dr′ =

∂ri

∫
r′′i <ri

dr′′i

∫
dr′∂r′′i U(|r′ − r′′|) 〈ρ(r′′)ρ(r′)〉 = ∂riP

int
ii (r), (A.10)

where the vector r′′ has the same components as the vector r except for the i-th component
and we have defined the virial pressure due to interactions as P int(r). For the case of
pairwise interactions between particles such as the ones considered in this thesis, the
contribution of the virial pressure in a local volume V is [131]

P int
ii = 1

V

∑
k

∑
l<k

∫
Ckl∈V

∂rk,iU(rkl)dλi, (A.11)
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where the index i denotes the spatial component of the corresponding tensors and vectors
while the indices k and l denote particle identities. λ is a position on the integration
contour Ckl from rk to rl. The constraint Ckl ∈ V means that the force between particles
k and l contributes to the virial pressure only with the part of Ckl that lies inside V .

Next, we relate the last term in the left hand side of Eq. A.9 to the ideal gas contri-
bution to the pressure tensor

P id
ii (r) = 〈ρ(r)〉 /β. (A.12)

Last but not least, by multiplying Eq. A.4 with the vector ui(Ω) and integrating over
the angle Ω, we obtain an equation for the polarization in a noise-averaged steady state
that is isotropic in the directions perpendicular to ẑ [90, 127]:

〈mi(r)〉 =− 1
ηυ0

∂riP
swim
ii (r) + 1

(d− 1)Drη
∂ri (∂riUw(r) 〈mi(r)〉) + 1

ηυ0
F ani
i (r), (A.13)

where we have defined the swim pressure as

P swim
ii (r) = ηυ0

(d− 1)Dr

[
υ0 〈sii(r)〉+Dtr∂ri 〈mi(r)〉 − 1

η

∫
dr′∂riU(|r′ − r|) 〈mi(r)ρ(r′)〉

]
,

(A.14)

and the force contribution from the anisotropic interactions as

F ani
i (r) = υ0

(d− 1)Dtr

∫
dΩ∂Ωui(Ω)

∫
dr′

∫
dΩ′Γ(r, r′,Ω,Ω′) 〈Ψ(r′,Ω′)Ψ(r,Ω)〉 . (A.15)

Thus, we can now rewrite Eq. A.9 in the form

∂riJi(r) = 0⇒

∂2
ri

[
−P id

ii (r)− P int
ii (r)− P swim

ii (r) + υ0

(d− 1)Dr

∂riUw(r) 〈mi(r)〉
]

+∂ri (∂riUw(r) 〈ρ(r)〉) + ∂riF
ani
i (r) = 0. (A.16)

Note that for any confined system the above equation can be simplified to Ji(r) = 0.
Also, in the case of periodic boundary conditions and the absence of a wall, if there
exists a spatial region where the system is in a bulk, isotropic state (that is ∂riP id

ii (r) =
∂riP

int
ii (r) = 0 and 〈m(r)〉 = 0) then Eq. A.9 dictates Ji(r) = 0 as well. For the systems

that we study in this thesis either one of these two conditions will always be satisfied,
such that we arrive at an equation that describes the force balance at any point of the
system:

Ji(r) = 0⇒

∂ri

[
−P id

ii (r)− P int
ii (r)− P swim

ii (r) + υ0

(d− 1)Dr

∂riUw(r) 〈mi(r)〉
]

+∂riUw(r) 〈ρ(r)〉+ F ani
i (r) = 0. (A.17)

This equation will be the starting point for all the special cases we consider in the following.
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A.2.1 Local pressure in the absence of anisotropic interactions
In the absence of torques, Eq. A.17 in the ẑ dimension is simplified to

∂z

[
−P id

zz(r)− P int
zz (r)− P swim

zz (r) + υ0

(d− 1)Dr

∂zUw(r) 〈mz(r)〉
]

+ ∂zUw(r) 〈ρ(r)〉 = 0.

(A.18)

Let us assume that a wall is located at z = 0 that confines the particles in the z > 0 region
of the box, and that the particles feel the potential of the wall only for a limited range,
such that we can define a bulk of the system for some z = z0 � 0 where Uw(z0) = 0.
Then the pressure exerted on the wall by the active particles is simply

Pwall = 1
V d−1

∫ z0

0−
dz
∫
dd−1r∂zUw(r) 〈ρ(r)〉 , (A.19)

where V d−1 denotes here the surface of the box in the dimensions perpendicular to ẑ.
Substituting Eq. A.18 into the above equation yields

Pwall = P id
zz(z0) + P int

zz (z0) + P swim
zz (z0), (A.20)

where we have defined P id
zz(z0) = 1

V d−1

∫
dd−1r0P

id
zz(r0), with

∫
dd−1r0 the integral over

the plane z = z0, and similarly for the interaction and swim pressure. Thus, isotropic
particles exert a pressure on the wall that can be directly measured in the bulk of the
system. This calculation has already been given in literature [90, 127].

Note that in the absence of any walls, i.e. when periodic boundary conditions are
applied, one can still write a force balance in the form of Eq. A.18, such that

∂ri
[
P id
ii (r) + P int

ii (r) + P swim
ii (r)

]
= 0⇒

P id
ii (r) + P int

ii (r) + P swim
ii (r) = constant, (A.21)

throughout the whole system. We have verified such a force balance in Chapters 4, 5 and
7.

In systems of self-propelled particles with only isotropic interactions one can thus
define the diagonal components of the local pressure tensor at point r as

P local
ii (r) = P id

ii (r) + P int
ii (r) + P swim

ii (r), (A.22)

or in the case where the system is isotropic in the dimensions perpendicular to ẑ we can
rewrite the above Eq. A.22 as

P local
ii (z) = P id

ii (z) + P int
ii (z) + P swim

ii (z). (A.23)

This local pressure, when measured in the bulk of a system, coincides with the exerted
mechanical pressure on the wall that contains the system. If periodic boundary conditions
are applied, the local pressure remains constant throughout the whole system and its
integration over the whole system reproduces the known expressions of the pressure that
have been derived via alternative routes [92, 122]. Thus, Eqs. A.22 and A.23 can again
be used as a definition of the local pressure if periodic boundary conditions are applied.
We make use of this formalism in Chapters 4, 5 and 7.
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A.2.2 Local pressure in the absence of anisotropic interactions
for binary mixtures

The calculation for the local pressure of mixtures of active particles in the absence of
torques is very similar to the calculation for a system that contains only a single species,
presented in Sections A.2 and A.2.1. Thus, here we will only sketch the calculation.

Consider a binary system in d dimensions withN1 particles of species 1 andN2 particles
of species 2, without explicit torques between the particles, whose equations of motion
are given the equations by

dri
dt

= −1
η

∑
j 6=i
∇riU(rij)−

1
η
∇riUw(ri) + υiui +

√
2Dtrξ

tr
i , (A.24)

dui
dt

=
√

2Dr (ui × ξri ) , (A.25)

where the various parameters of the equations have already been defined for Eqs. A.1
and A.2. The only difference between the two species is the value of the self-propulsion
force, such that υi = υ(1) for i ∈ N1 and υj = υ(2) for j ∈ N2, with υ(1) 6= υ(2).

The microscopic densities for the two species, which we denote as Ψ(1)(r,Ω) and
Ψ(2)(r,Ω), are

Ψ(1)(r,Ω) =
N1∑
i=1

δ(r − ri)δ(Ω− Ωi) (A.26)

Ψ(2)(r,Ω) =
N2∑
i=1

δ(r − ri)δ(Ω− Ωi). (A.27)

Following standard procedures [166, 167], we find that their time evolution follows
from the equations

∂tΨ(α)(r,Ω) = −∇ ·
(
− 1
η

∫ ∫
∇U(|r′ − r|)

∑
γ=1,2

Ψ(γ)(r′,Ω′)dr′dΩ′

− 1
η
∇Uw(r) + υ(α)u(Ω)

)
Ψ(α)(r,Ω) (A.28)

+Dtr∇2Ψ(α)(r,Ω) +Dr∂
2
ΩΨ(α)(r,Ω). (A.29)

where α = 1, 2. We now define the moments

ρ(α)(r) =
∫
dΩΨ(α)(r,Ω), (A.30)

m(α)(r) =
∫
dΩu(Ω)Ψ(α)(r,Ω), (A.31)

s
(α)
ij (r) =

∫
dΩui(Ω)uj(Ω)Ψ(α)(r,Ω), (A.32)

where i, j denote the spatial components of the corresponding vectors and tensors. ρ(α)(r)
is the local density of species α while m(α)(r) is the corresponding local polarization.
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Repeating the steps shown in Sections A.2 and A.2.1 one can then derive the local
pressure as

P local
ii (r) = P id

ii (r) + P int
ii (r) +

∑
α

P
swim,(α)
ii (r), (A.33)

where

P id
ii (r) = 〈ρ(r)〉 /β (A.34)

is the ideal component of the pressure, where ρ(r) = ∑
α ρ

(α)(r) is the total density at
point r and brackets denote an average at the steady state over noise realizations,

P int
ii (r) =

∫
r′′i <ri

dr′′i

∫
dr′∂r′′i U(|r′ − r′′|) 〈ρ(r′′)ρ(r′)〉 (A.35)

is the standard local virial term, where the vector r′′ has the same components as the
vector r except for the i-th component, and

P
swim,(α)
ii (r) = ηυ(α)

(d− 1)Dr

[
υ(α)

〈
s

(α)
ii (r)

〉
+Dtr∂ri

〈
m

(α)
i (r)

〉
− 1
η

∫
dr′∂riU(|r′ − r|)

〈
m

(α)
i (r)ρ(r′)

〉 ]
, (A.36)

is the local swim pressure of species α. Eqs. A.33-A.36 are used in Chapter 5.

A.2.3 Force balance in the presence of anisotropic interactions
When particles exert torques on one another, one must take into account all the terms in
Eq. A.17. Using the definition for the local pressure, Eq. A.22, one can rewrite Eq. A.17
in the ẑ direction as

Jz(r) = 0⇒

∂zUw(r) 〈ρ(r)〉 = ∂z

[
P local
zz (r)− υ0

(d− 1)Dr

∂zUw(r) 〈mz(r)〉
]
− F ani

z (r). (A.37)

We assume again a wall located at z = 0 that confines the particles in the volume z > 0.
Also, the wall-particle interaction has a limited range such that for some z0 � 0 there
exists a bulk of the system where the particles do not feel the wall. Following the steps
shown in Section A.2.1 one then finds that the pressure exerted on the wall is given by

Pwall = P local
zz (z0)−

∫ z0

0−
dzF ani

z (z). (A.38)

Thus, the mechanical pressure felt by the wall is a function of the bulk pressure and
also depends on the integral of the force contribution from the anisotropic interactions,
which itself depends on the details of the wall potential. Thus, as previous work has
demonstrated (and an identical calculation has shown), in the presence of torques pressure
is not an equation of state for self-propelled particles [127].

However, note that far away from any walls and at a bulk isotropic phase, wherem = 0
Eq. A.13 demands F ani(z) = 0. Thus, the local pressure stays constant throughout the
bulk isotropic phase. In Chapter 7 we examine how the components of the force balance
Eq. A.37 are affected in the presence of an interface between bulk phases.



130 Appendix A

A.3 The virial route
This section follows closely the calculation performed in Ref. [122].

For an alternative derivation of the pressure, one can now multiply the equation of
motion Eq. A.1 by the vector ri (note that now ri denotes the position of particle i), sum
over all particles and take the average over the noise. The resulting equation reads

1
2

N∑
i=1

d 〈r2
i 〉

dt
=− 1

η

N∑
i=1

∑
j 6=i
〈∇riU(rij) · ri〉 −

1
η

N∑
i=1
〈∇riUw(ri) · ri〉

+ υ0

N∑
i=1
〈ui · ri〉+

√
2Dtr

N∑
i=1

〈
ξtri · ri

〉
(A.39)

Now, let us assume that our system is confined by a wall, such that the mean square
displacement is limited and d 〈r2

i 〉 /dt = 0. Moreover, for simple geometries of the box,
such as the ones we consider in the present thesis, it is straightforward to show that the
mechanical pressure exerted on the wall by the particles Pwall is [122]

Pwall =
N∑
i=1

1
dV
〈∇riUw(ri) · ri〉 , (A.40)

where V is the volume of the confined system. Also, the last term in Eq. A.39 can be
written as〈

ξtri (t) · ri(t)
〉

=
∫ t

−∞

〈
ξtri (t) · ṙi(t′)

〉
dt′ =

√
2Dtr

∫ t

−∞

〈
ξtri (t) · ξtri (t′)

〉
dt′ = d

√
Dtr

2 ,

(A.41)

where we have used that 〈ξtri (t) · ri(−∞)〉 = 0, 〈ξtri (t) · ξtri (t′)〉 = dδ(t− t′) and
∫ t
−∞ δ(t−

t′)dt′ = 1
2 .

Plugging Eqs. A.40 and A.41 in Eq. A.39 we get

Pwall = ρkBT −
1

2dV

N∑
i=1

∑
j 6=i
〈∇riU(rij) · (ri − rj)〉+ ηυ0

dV

N∑
i=1
〈ui · ri〉 . (A.42)

The first term in Eq. A.42 is the ideal gas contribution, the second term is the virial
contribution stems from the particle interactions and the last term is the swim pressure
that is a direct contribution of the self-propulsive forces to the pressure. Note that for this
equation we have not assumed any particular dynamics for the orientation of the particles,
so it is valid even for systems with anisotropic interactions. Eq. A.42 depends on the
absolute position of particles, such that it is a global quantity that cannot be measured
locally in the system.

However, in the case of only isotropic interactions between particles, it can be further
simplified to [122]

Pwall =ρkBT −
1

2dV

N∑
i=1

∑
j 6=i
〈∇riU(rij) · (ri − rj)〉

+ ηυ0

d(d− 1)Dr

ρυ0 + 1
ηV

N∑
i=1

〈−∇riUw(ri)−
∑
j 6=i
∇riU(rij)

 · ui
〉 , (A.43)
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which is a quantity that does not depend on absolute positions. Thus, one can also define
the virial pressure of a volume V as

P virial =ρkBT −
1

2dV

N∑
i=1

∑
j 6=i
〈∇riU(rij) · (ri − rj)〉

+ ηυ0

d(d− 1)Dr

ρυ0 + 1
ηV

N∑
i=1

〈−∇riUw(ri)−
∑
j 6=i
∇riU(rij)

 · ui
〉 , (A.44)

where ρ = N/V and all particles i, j ∈ V .

A.4 Comparison between the two routes
In the absence of torques, a comparison between the equation for the local pressure coming
from the Fokker-Plank equation Eq. A.23 (together with Eqs. A.12, A.10 and A.14) and
A.44 which follows from the virial route shows that the two approaches give almost the
same result (note however that one has to integrate Eq. A.23 over the volume V ). The
difference stems from a term that is present in the swim pressure contribution of the
former equation and is proportional to the spatial derivative of the polarization ∇m.
This term gives a zero contribution for all isotropic phases where by definition m = 0
and is only important at an interface between bulk phases or in the presence of a wall
(see also Chapter 4), that is where the system is inhomogeneous. This discrepancy is not
surprising, as Eq. A.44 is derived for a closed system or a system with periodic boundary
conditions where the spatial integral of ∇m over the volume will be zero.

Note that one can also define a local pressure using Eq. A.42, as done for example in
Ref. [91]. This expression has the disadvantage of not being directly applicable to inhomo-
geneous systems since, once particles cross an interface, the correlation between positions
and velocities is lost in the dimension normal to the interface, as discussed already in
Ref. [91]. It has the advantage though that it can be used even in the case of homoge-
neous systems with anisotropic interactions. In Chapter 7 we make a further comparison
between the two routes in the case of bulk systems with anisotropic interactions.
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Summary

In this thesis we study emergent statistical properties of many-particle systems of self-
propelled particles using computer simulations. Ensembles of self-propelled particles be-
long to the class of physical systems labeled active matter, a term that refers to systems
whose individual components are able to convert internal energy or energy from their
environment into motion. Examples of such systems include populations of living organ-
isms, such as birds and bacteria, but also synthetic swimmers, typically on the colloidal
and granular scale. Active matter systems are intrinsically out-of-equilibrium systems due
to the constant input of energy. Thanks to their out-of-equilibrium nature they can often
show complex patterns of collective motion, such as turbulent flows of bacterial colonies,
as well as exhibit phenomena fully prohibited to equilibrium systems, for example the
motility-induced phase-separation of self-propelled purely-repulsive discs. Surprisingly,
paradigms of equilibrium thermodynamics and statistical physics can be applied to active
matter in many cases, suggesting that perhaps an extended thermodynamical description
of such systems is possible. This possibility, along with recent advances in the fabrication
of artificial swimmers and their possible applications, for example targeted cargo delivery,
has led to an intensive theoretical research of active matter systems in the last decade.

The model systems that we consider here are toy models that can be associated with
the world of active colloids. Colloids are small particles in the nanometer to micrometer
scale, typically immersed in a molecular solvent. The constant collisions between colloids
and solvent molecules render the inertia of the particles irrelevant for the particles’ motion
and also result in random displacement of particles which is known as Brownian motion.
Active colloids are equipped with a propulsion mechanism that enables them to swim
and are thus also referred to as microswimmers. Our models take into account only
three essential components that dictate the movement of particles: the self-propulsion of
individual particles, the interactions between them and the random forces that displace
them. In brief, we employ computer simulations in order to simulate the motion of self-
propelled, Brownian particles that interact with one another via various types of potentials
and we investigate the collective behaviour of many-particle systems, as well as test the
applicability of thermodynamics and statistical physics tools and notions to the active
matter systems under study.

In Chapter 2 we study the self-assembly of a three-dimensional system of attractive self-
propelled particles that interact via the Lennard-Jones potential. The term self-assembly
refers to the spontaneous organization of many-particle systems in stable configurations
or structures. By varying the strength of the attraction between particles as well as the
rotational diffusion rate of the axes of self-propulsion, we construct various state diagrams
for the system at intermediate densities. For fast rotational diffusion the self-propulsion
essentially acts as a random displacement force and the state diagram of the system
bears strong similarities to an equilibrium system of Brownian, Lennard-Jones particles;
as the attraction between particles is increased, the system transitions from a fluid state
first to a coexistence between vapour and liquid and ultimately a coexistence between
vapour and crystal phases. Moreover, the lever rule, which dictates that the values of
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coexisting densities should not depend on the total density of the system, is obeyed
throughout the coexistence region. However, for slower rotational diffusion rates the
state diagram significantly departs from the equilibrium one. In particular, the interplay
between self-propulsion and attractive interactions gives rise to a new state between the
fluid and the vapour-liquid coexistence region of the state diagram. This state consists of
interconnected yet motile clusters of particles that assemble in a system-spanning network.
By investigating the local correlations between the axes of self-propulsion in this novel
state we discover significant local alignment of the axes of neighboring particles despite
the absence of aligning interactions.

The same system is studied in the subsequent Chapter 3, where we concentrate on
the vapour-liquid phase transition that the system undergoes with increasing strength of
attraction between the particles. The mechanical pressure of the system is calculated and
it is shown that, when the transition takes place, the equations of state for the system
exhibit features completely analogous to the respective equations of state of the equilib-
rium Lennard-Jones system, provided that a direct contribution of the self-propulsion to
the pressure - called swim pressure - is taken into account. Subsequently, we measure the
coexisting densities of the vapour and the liquid phase for our out-of equilibrium system
and find that the scaling of these densities with the strength of the attraction follows sim-
ple power laws, similar to the equilibrium system. In equilibrium, the various parameters
of these laws are directly linked to the critical point of the transition and its universality
class. However, we can not assert whether the active Lennard-Jones system undergoes a
true second order phase-transition and thus whether a critical point exists. Nonetheless,
we find that the scaling of all the aforementioned parameters with increasing activity of
the system, that is either increasing self-propulsion speed or decreasing rotational diffu-
sion rates of the particles, is captured by simple exponential functions of the same form.
Last but not least, we check the validity of the law of corresponding states and the law of
rectilinear diameters and find that both of them are unmistakably violated in this active
matter system.

In Chapter 4 we take the next step in the study of the active Lennard-Jones system
that is done in Chapters 2-3 by now solely focusing on the vapour-liquid interface and
its statistical properties. We employ a local definition of the mechanical pressure and
demonstrate mechanical equilibrium of the system across the interface by measuring a
constant profile along the simulation box of the component of the pressure that is per-
pendicular to the interface. Subsequently, we measure the tangential component of the
pressure, which enables us to calculate the tension of the interface as the mechanical work
required to enlarge the interface. Our calculations result in a positive interfacial tension
of the vapour-liquid interface for all the parameter space points that we consider, that
is systems with different self-propulsion speeds, rotational diffusion rates and strengths
of attraction. Next, we study the scaling of the interfacial tension as a function of the
attraction strength by fitting it to simple power laws, similar to the treatment presented
for the coexisting densities in Chapter 3. We show that the scaling of the interfacial
tension can be captured via equilibrium-like power laws. Surprisingly, we find that the
fitted values of the “critical” temperature of the system that can be obtained via the
scaling of the tension are in close agreement with the values that are obtained in Chapter
3 using the scaling of the independently measured coexisting densities. Last but not least,
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by simulating systems of different sizes we measure the scaling of the interfacial width
with the interfacial area. We then naively apply results from capillary wave theory in
order to associate this scaling with the stiffness of the interface. We find that the cal-
culated interfacial stiffness is then directly proportional to the interfacial tension, same
as in the equilibrium system, but with the proportionality constant given by an effective
temperature of the system.

Subsequently, in Chapter 5 we simulate two different binary mixtures of active par-
ticles and demonstrate the mechanical and chemical equilibrium of their corresponding
coexisting phases. First, we study a three-dimensional binary system of active and passive
attractive particles that undergoes a vapour-liquid phase transition due to the attractions
between particles. This system is similar to the system studied in Chapters 2-4, but in
this mixture the passive particles are not self-propelled but simply undergo Brownian mo-
tion. Initially we demonstrate mechanical equilibrium of the coexisting vapour and liquid
phases by directly measuring the normal component of the pressure, as done previously
in Chapter 4. Then, by bringing independently each of the two coexisting binary phases
into chemical equilibrium with a reservoir of particles of a given species, we show that
the connected reservoirs of each particle species are identical for the two phases. We thus
measure the density of the reservoir as a quantity analogous to the chemical potential of
equilibrium systems and argue that the numerical method of attaching a binary phase
to a particle reservoir can be used in order to demonstrate chemical equilibrium between
coexisting phases. We then move on to study a two-dimensional binary mixture of self-
propelled, purely repulsive discs. The two different species in this mixture differ only in
their values of self-propulsion speed, which are chosen such that the system undergoes
motility-induced phase-separation for all compositions. We then proceed to calculate the
bulk properties of single binary phases by bringing them in chemical equilibrium with
particle reservoirs and measuring the bulk pressure of the binary phase as well as the den-
sity of the connected reservoir. By demanding that coexisting phases have equal pressures
and equal particle reservoir densities for each species we are then able to quantitatively
predict the phase diagram of the system without having to resort to any approximations.

In Chapter 6 we depart from purely isotropic interactions between particles and we
investigate the state behaviour and the dynamics of a two-dimensional system of self-
propelled, purely-repulsive, square-shaped particles. By examining systems with different
simulation parameters we construct the state diagram; for low densities and slow speeds
of self-propulsion we find the system in a fluid phase, while for the regime of high densities
and fast speeds we observe phase coexistence between a crystalline cluster and a gas due to
the motility of the particles. Interestingly, between the two regimes we find a region where
the system incessantly oscillates between a homogeneous fluid and a phase separated state.
We show that in the coexistence regime the lever rule and the law of rectilinear diameters
are obeyed by the system. Moreover, we monitor the nucleation, growth, and eventual
rupture of crystalline clusters in the oscillatory regime and present a possible scenario
that explains the system’s oscillations by providing a direct link between the rupture of
the clusters and the accumulation of stresses in the interior of the cluster. Lastly, we
measure the coarsening rates of the system and find that it coarsens much faster than
equilibrium systems, an increase that may be due to the peculiar dynamics of individual
clusters.
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Finally, in Chapter 7 we consider a two-dimensional system of disc-like self-propelled
particles that explicitly exert torques on one another and render the axes of self-propulsion
of neighboring particles anti-parallel. For fast speeds of self-propulsion and high densities
this system undergoes motility-induced phase separation. We find that the state diagram
of the system is subject to the lever rule and subsequently apply the methods employed
in Chapter 5 in order to study the mechanical and chemical equilibrium of coexisting
phases. We write down the force balance equation and we aim to investigate whether
the mechanical equilibrium of coexisting phases can be shown by studying the various
components of the equation in phase-separated systems. We find that the quantity asso-
ciated with the local pressure of isotropic particles assumes a constant profile along the
interface only in the absence of anisotropic interactions and a pressure difference is mea-
sured when particles exert torques onto one another. One possible interpretation of this
result is that the out-of-equilibrium nature of the system manifests itself as an external
force that acts at the interface and creates the measured pressure difference between the
two coexisting phases. Moreover, the chemical equilibrium between coexisting phases is
shown by connecting single phases to particle reservoirs, in a slight modification of the
method introduced in Chapter 5.

In conclusion, we demonstrate that active matter systems on one hand have state di-
agrams with similar properties to equilibrium systems and that these state diagrams can
even be predicted by studying single phases when utilizing methods similar to celebrated
techniques of equilibrium statistical physics. Also, many properties related to phase tran-
sitions and interfaces separating coexisting phases can be described by laws that are
generalizations of equilibrium laws. On the other hand we find that the self-propulsion
of particles can lead to unexpected results with no equilibrium counterpart, such us the
emergence of the state of interconnected motile clusters of attractive self-propelled par-
ticles and the oscillating state of self-propelled squares. Hopefully these results will act
as a stepping stone in the effort to construct a thermodynamics of active matter but also
help to set the limit up to where this thermodynamics description is valid.





Samenvatting

In dit proefschrift bestuderen we opkomende statistische eigenschappen van veel-deeltjes-
systemen van zelfvoortstuwende deeltjes met behulp van computersimulaties. Systemen
van zelfvoortstuwende deeltjes behoren tot de klasse van fysieke systemen met de naam
actieve materie, een term die betrekking heeft op systemen waarvan de individuele com-
ponenten interne energie of energie uit hun omgeving in beweging kunnen omzetten.
Voorbeelden van dergelijke systemen zijn populaties van levende organismen, zoals vogels
en bacteriën, maar ook synthetische zwemmers, doorgaans op de colloïdale en granu-
laire schaal. Actieve materiesystemen zijn intrinsiek buiten-evenwichtssystemen door de
constante invoer van energie. Door hun buiten-evenwichtige natuur kunnen ze vaak com-
plexe patronen van collectieve beweging tonen, zoals turbulente stromen van bacteriële
kolonies, en kunnen ze fenomenen vertonen die voor evenwichtssystemen volledig verbo-
den zijn, bijv. de motiliteitsgeïnduceerde fase-scheiding uit de zelfgedreven zuiver afsto-
tende schijven. Verrassend genoeg kunnen paradigma’s van evenwichtsthermodynamica
en statistische fysica in veel gevallen op actieve materie worden toegepast, wat suggereert
dat een uitgebreide thermodynamische beschrijving van dergelijke systemen wellicht mo-
gelijk is. Samen met de recente vooruitgang in de fabricage van kunstmatige zwemmers
en hun mogelijke toepassingen, zoals ladingstransport naar specifieke plaatsen, heeft dit
vooruitzicht geleid tot een intensief theoretisch onderzoek van actieve materiesystemen in
het afgelopen decennium.

De modelsystemen die we hier beschouwen zijn speelgoedmodellen die verbonden kun-
nen worden met de wereld van actieve colloiden. Colloïden zijn kleine deeltjes op de
nanometer tot micrometer schaal, meestal ondergedompeld in een moleculair oplosmiddel.
De constante botsingen tussen colloïden en oplosmiddelmoleculen zorgen ervoor dat de in-
ertie van de deeltjes los staat van de deeltjesbeweging en resulteren ook in de willekeurige
verplaatsing van deeltjes die bekend staat als Brownse beweging. Actieve colloïden zijn
uitgerust met een voortstuwingsmechanisme waarmee ze kunnen zwemmen en worden ook
wel microswimmers genoemd. Onze modellen houden rekening met slechts drie essentiële
componenten die de beweging van deeltjes dicteren: de zelfvoortstuwing van individu-
ele deeltjes, hun interacties en de willekeurige krachten die ze ondervinden. Kortom,
we gebruiken computersimulaties om de beweging van zelfvoortstuwende, Brownse deel-
tjes te simuleren die via verschillende soorten potentialen met elkaar interacteren. We
onderzoeken vervolgens het collectieve gedrag deze veel-deeltjessystemen, en toetsen de
toepasselijkheid en concepten uit de thermodynamica en statistische fysica op actieve
systemen.

In Hoofdstuk 2 bestuderen we de zelforganisatie van een driedimensionaal systeem van
aantrekkende zelfvoortstuwende deeltjes die interacteren via de Lennard-Jones-potentiaal.
De term zelforganisatie verwijst naar de spontane organisatie van veel-deeltjes systemen
die liedt tot een stabiele configuratie of structuur. Door de sterkte van de aantrekkings-
kracht tussen de deeltjes en de snelheid waarmee de voortstuwingsas roteert te variëren,
bouwen we verschillende fasediagrammen op voor het systeem. Voor snelle rotatiedif-
fusie fungeert de zelfbeweging in wezen als een willekeurige verplaatsingskracht en ver-
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toont het fasediagram van het systeem sterke overeenkomsten met een evenwichtssysteem
van Brownse Lennard-Jones deeltjes: bij toenemende aantrekkingskracht tussen de deel-
tjes, gaat het systeem eerst van een vloeistoffase over naar een coëxistentie tussen damp
en vloeistof en uiteindelijk naar een coëxistentie tussen damp- en kristalfasen. Boven-
dien wordt de hefboomregel, die dicteert dat de waarden van coëxistente dichtheden niet
afhankelijk zijn van de totale dichtheid van het systeem, in de coëxistentie-regio gehand-
haafd. Voor langzamere rotatiediffusiesnelheden wijkt het fasediagram echter aanzienlijk
af van dat in evenwicht. In het bijzonder veroorzaakt de wisselwerking tussen zelfvoort-
stuwing en aantrekkende interacties een nieuwe toestand tussen het vloeistof- en het coëx-
istentiegebied van damp-vloeistof in het fasediagram. Deze toestand bestaat uit onderling
verbonden, maar toch motiele clusters van deeltjes die zich in een systeemwijd netwerk or-
ganiseren. Door de lokale correlaties tussen de assen van zelfvoortstuwing in deze nieuwe
toestand te onderzoeken, ontdekken we dat de assen van naburige deeltjes preferentied
dezelfde richting hebben, ondanks de afwezigheid van interacties die hier expliciet voor
zorgen.

Hetzelfde systeem wordt bestudeerd in Hoofdstuk 3, waarbij we ons concentreren op de
damp-vloeistof faseovergang die het systeem ondergaat met een toenemende aantrekkings-
kracht tussen de deeltjes. De mechanische druk van het systeem wordt berekend en het
wordt aangetoond dat wanneer de overgang plaatsvindt, de staatsvergelijkingen voor het
systeem kenmerken hebben die volledig analoog zijn aan de respectievelijke staatsvergeli-
jkingen van het evenwichts-Lennard-Jones systeem, mits een directe bijdrage van de
zelfvoortstuwingssnelheid aan de druk - een zogenaamde zwemdruk - in acht wordt geno-
men. Vervolgens meten we de coëxistentiedichtheden van de damp en de vloeibare fase
voor ons buiten-evenwichtssysteem en vinden we dat deze dichtheden schalen met de
kracht van de aantrekking, beschreven door eenvoudige machtsfuncties, vergelijkbaar met
het evenwichtssysteem. In evenwicht zijn de verschillende parameters van deze functies
rechtstreeks gekoppeld aan het kritische punt van de overgang en de universaliteitsklasse.
We kunnen echter niet zeggen of het actieve (buiten-evenwicht) Lennard-Jones-systeem
ook een ware tweede-orde-faseovergang ondergaat en dus of er überhaupt een kritisch punt
bestaat. Desalniettemin vinden wij dat de schaling van alle bovengenoemde parameters
met toenemende activiteit van het systeem, d.w.z. een toenemende zelfvoortstuwingssnel-
heid of afnemende rotatiediffusiesnelheid van de deeltjes, goed wordt beschreven door een-
voudige exponentiële functies van dezelfde vorm. Ten slotte controleren we de geldigheid
van de law of corresponding states en de law of rectilinear parameters en vinden dat ze
in dit actieve materiesysteem beide onmiskenbaar worden geschonden.

In Hoofdstuk 4 nemen we de volgende stap in de studie van het actieve Lennard-
Jones systeem dat in Hoofdstukken 2-3 wordt gedaan, en nu uitsluitend gericht op het
damp-vloeistof grensvlak en diens statistische eigenschappen. Wij gebruiken een lokale
definitie van de mechanische druk en tonen aan dat er mechanisch evenwicht is op het
grensvlak door te laten zien dat het drukelement dat loodrecht op het grensvlak staat
in de hele simulatiebox constant is. Vervolgens meten we de tangentiële component
van de druk, waardoor we de oppervlaktespanning van het grensvlak kunnen bereke-
nen, gelijk aan de mechanische arbeid die nodig is om het grensvlak te vergroten. Onze
berekeningen resulteren in een positieve grensvlakspanning tussen de damp en vloeistof
voor alle parameterruimtepunten die we overwegen, dat wil zeggen systemen met verschil-
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lende zelfvoortstuwingssnelheden, rotatieverspreidingssnelheden en aantrekkingskrachten.
Vervolgens bestuderen we de schaling van de oppervlaktespanning als functie van de
aantrekkingskracht door deze te beschrijven met eenvoudige machtsfuncties, net als voor
de coëxistentiedichtheden in Hoofdstuk 3 wordt voorgesteld. We laten zien dat de schal-
ing van de grensvlakspanning kan worden beschreven door machtsfuncties die sterk lijken
op die in evenwicht. Verrassend genoeg vinden we dat de gevonden waarden van de “kri-
tische” temperatuur van het systeem, dat via de schaling van de spanning verkregen kan
worden, in nauwe overeenkomst zijn met de waarden die in Hoofdstuk 3 worden verkregen,
met behulp van de schaling van de onafhankelijk gemeten coëxistentie dichtheden. Ten
slotte meten we, door systemen van verschillende afmetingen te simuleren, de schaling van
de breedte en oppervlakte van het grensvlak. We passen de resultaten van capillaire golf
theorie toe om deze schaling te relateren met de stijfheid van het grensvlak. We vinden
dat de berekende stijfheid van het grensvlak direct evenredig is aan de grensvlakspan-
ning, net als in het evenwichtssysteem, maar met een evenredigheidsconstante die wordt
gegeven door een effectieve temperatuur van het systeem.

Vervolgens simuleren we in Hoofdstuk 5 twee verschillende binaire mengsels van ac-
tieve deeltjes en tonen aan dat coëxistente fasen van deze mengsels in mechanisch en
chemisch evenwicht zijn. In de eerste plaats bestuderen we een driedimensionaal binair
systeem van actieve en passieve aantrekkende deeltjes die door de attracties tussen deeltjes
een damp-vloeistoffaseovergang ondergaan. Dit systeem is vergelijkbaar met het systeem
dat in de Hoofdstukken 2-4 wordt bestudeerd, maar in dit mengsel zitten ook passieve
(niet zelfvoortstuwende) deeltjes, die alleen zijn onderworpen aan Brownse beweging. Ten
eerste tonen we mechanisch evenwicht van de coëxistente damp- en vloeibare fasen aan
door de normaalcomponent van de druk direct te meten, zoals eerder in Hoofdstuk 4 is
gedaan. Vervolgens brengen we elk van de twee naast elkaar aanwezige binaire fasen in
chemisch evenwicht met een reservoir van deeltjes van een bepaalde soort, en laten we
zien dat de aangesloten reservoirs van elke deeltjessoort identiek zijn voor de twee fasen.
We meten dus de dichtheid van het reservoir als een hoeveelheid die analoog is aan de
chemische potential van evenwichtssystemen en concluderen dat de numerieke methode
waarin een binaire fase aan een deeltjesreservoir wordt bevestigd kan worden gebruikt
om chemisch evenwicht aan te tonen tussen coëxistente fasen. Vervolgens gaan we verder
met een tweedimensionaal binair mengsel van zelfvoortstuwende, zuiver afstotende schi-
jven. De twee verschillende soorten in dit mengsel verschillen alleen in hun waarden van
zelfvoortstuwingssnelheid, die zodanig gekozen worden dat het systeem bewegingsgeïn-
duceerde fasescheiding ondergaat voor alle samenstellingen. Vervolgens berekenen we de
bulkeigenschappen van enkele binaire fasen door ze in chemisch evenwicht te brengen met
deeltjesreservoirs en de bulkdruk van de binaire fase te meten, evenals de dichtheid van
het aangesloten reservoir. Door te stellen dat coëxistente fasen gelijke druk en gelijke
deeltjesreservoirdichtheden hebben voor elke soort kunnen we vervolgens het fasediagram
van het systeem kwantitatief voorspellen zonder gebruik te maken van benaderingen.

In Hoofdstuk 6 laten we puur isotrope interacties tussen deeltjes achter ons en on-
derzoeken we het staatsgedrag en de dynamiek van een tweedimensionaal systeem van
zelfvoortstuwende, zuiver afstotende, vierkante deeltjes. Door systemen met verschillende
simulatieparameters te onderzoeken, bouwen wij het fasediagram; voor lage dichtheden
en langzame snelheden van zelfvoortstuwing vormt het systeem een vloeibare fase, terwijl
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we voor het regime van hoge dichtheden en hoge snelheden een coëxistentie vinden van
een gasfase met een kristallijne cluster, geïnduceerd door de actieve beweging van de deel-
tjes. Interessant genoeg vinden we tussen deze twee regimes een gebied waar het systeem
onophoudelijk oscilleert tussen een homogene vloeistof en een fasegescheiden staat. Wij
tonen aan dat in het coëxistentieregime de hefboomregel en de law of rectilinear diam-
eters worden gehandhaafd. Bovendien bekijken we de nucleatie, groei en uiteindelijke
uiteenvalling van kristallijne clusters in het oscillatorische regime en presenteren we een
mogelijk scenario dat de oscillaties van het systeem verklaart door een direct verband te
leggen tussen de breuk van de clusters en de accumulatie van spanningen in de interne re-
gio van de cluster. Ten slotte meten we de verandering van de gemiddelde clustergrootte
als gevolg van samensmelting van individuele clusters en vinden dat deze veel sneller
toeneemt dan in evenwichtssystemen, een toename die kan worden veroorzaakt door de
eigenaardige dynamiek van individuele clusters.

Uiteindelijk beschouwen we in Hoofdstuk 7 een tweedimensionaal systeem van schi-
jfachtige zelfvoortstuwende deeltjes die een krachtsmoment op elkaar uitoefenen en de
assen van zelfbeweging van naburige deeltjes anti-parallel maken. Voor hoge snelheden
van zelfvoortstuwing en hoge dichtheden ondergaat dit systeem bewegingsgeïnduceerde
fasescheiding. We vinden dat het fasediagram van het systeem onderhevig is aan de hef-
boomregel en vervolgens passen we de in Hoofdstuk 5 beschreven methoden toe om het
mechanische en chemisch evenwicht van coëxistente fasen te bestuderen. We schrijven de
krachtbalansvergelijking op en onderzoeken of het mechanisch evenwicht van coëxistente
fasen kan worden aangetoond door het bestuderen van de verschillende componenten van
de vergelijking in fasegescheiden systemen. We vinden dat de grootheid geassocieerd met
de lokale druk van isotrope deeltjes alleen een constant profiel over het grensvlak heeft
in de afwezigheid van anisotrope interacties en dat er een drukverschil wordt gemeten
wanneer deeltjes een moment op elkaar uitoefenen. Een mogelijke interpretatie van dit
resultaat is dat de buiten-evenwichtige aard van het systeem zich manifesteert als een
externe kracht die op het grensvlak werkt en het gemeten drukverschil tussen de twee
coëxistente fasen veroorzaakt. Bovendien wordt het chemisch evenwicht tussen coëxis-
tente fasen aangetoond door enkele fasen aan deeltjesreservoirs te verbinden, in een lichte
wijziging van de in Hoofdstuk 5 geïntroduceerde methode.

In het kort, tonen we in dit proefschrift aan dat actieve materiesystemen fasediagram-
men hebben met vergelijkbare eigenschappen als die van evenwichtssystemen en dat deze
fasediagrammen zelfs voorspeld kunnen worden door die individuele fases te bestuderen en
daarbij gebruik te maken van methoden die vergelijkbaar zijn met gevestigde technieken
uit de statistische fysica van evenwichtssystemen. Ook kunnen veel eigenschappen die
betrekking hebben op faseovergangen en grensvlakken tussen coëxisterende fasen, worden
beschreven door wetten die generalisaties zijn van evenwichtswetten. Anderzijds vinden
wij dat de zelfvoortstuwing van deeltjes tot onverwachte resultaten kan leiden zonder
evenwichtstegenhanger, zoals de verschijning van de toestand van onderling verbonden
motiele clusters van aantrekkende zelfvoortstuwende deeltjes en de oscillerende toestand
van zelfvoortstuwende vierkanten. Hopelijk zullen deze resultaten zowel fungeren als een
stap in de opbouw van een thermodynamica van actieve materie, als helpen bij het vast-
leggen van de grenzen van deze thermodynamische beschrijving.
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