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Introduction

1.1 Colloids

Colloidal systems consist of small particles (colloids) of one substance suspended in an-
other and are ubiquitous in everyday life. Many foods are examples of colloidal systems,
including e.g. salad dressing, butter, and mayonnaise. Paints, toothpaste, and creams
are other examples of colloidal systems. These systems can be composed of small solid
particles suspended in a liquid or gas, for instance the fat droplets and protein clusters
suspended in a water-like liquid which we call milk, or the solid particles suspended in air
which we call smoke. A colloidal system can also consist of liquid droplets suspended in
another liquid, such as oil droplets suspended in water or foams composed of a gas phase
suspended in a liquid or solid. This leads to the question: what do these systems have in
common? One answer to this question can be found by looking at the length scales: the
small particles in a colloidal system typically have at least one dimension in the range of
1 nm to 1 µm. However, the underlying connection between colloidal systems is not so
much related to the size of suspended particles, but rather to the dynamics of the colloids
themselves: colloidal particles exhibit Brownian motion.

The observation of Brownian motion dates back to 1827 when Robert Brown noticed
that pollen grains suspended in water appeared to move in random directions. Subse-
quently, in the early 20th century Albert Einstein and William Sutherland explained this
behaviour as an interaction between the fluid molecules and the pollen grains [1, 2]. Fluid
molecules themselves are in a constant state of motion due to thermal fluctuations. When
a colloid is suspended in a fluid, it experiences collisions from the fluid molecules which
results (at every instant in time) in a net force on the particle. The direction of this net
force is random, and as a result, if the particle is sufficiently small it performs a random
walk through the fluid, i.e. Brownian motion.

When a number of colloids are suspended in a fluid, in addition to interacting with
the fluid, the colloids can also interact with each other. As a result, a colloidal system
exhibits phase behaviour very similar to that of atomic systems. Specifically, the random
motion of the colloidal particles, allows them to explore phase space and to self-assemble,
leading to e.g. gas, liquid, solid, and glassy phases. This exploration of phase space and
self-assembly is effectively a colloidal analogue to the phase behaviour seen in atomic and
molecular systems.



2 Introduction

The importance of this self-assembly is twofold. First, the self-assembly of colloidal
particles opens up the possibility of designing advanced materials for various applications
such as electro-optical devices [3–5]. These devices often make use of the fact that the
lattice spacing in colloidal systems can be such that visible light is diffracted. (A natural
example of this are the beautiful colours of gem opals which consist of a regular array of
silica particles on a colloidal scale [6, 7].) Second, colloidal systems are ideal systems for
modelling the behaviour in atomic and molecular systems. In contrast to their atomic and
molecular counterparts, colloidal particles are typically large enough, and slow enough,
to be observed via conventional optical techniques, such as light microscopy. Hence,
dynamical processes such as nucleation which are very difficult to study in atomic and
molecular systems can be addressed in colloidal systems.

1.2 Interactions

Recent advances in particle synthesis has yielded a huge variety of colloidal and nanoparti-
cle building blocks [8]. In addition to spherical and rod-like particles, anisotropic particles
which resemble cubes, pyramids, branched structures, and molecules have been synthe-
sized. Additionally, new systems can be constructed by patterning the surface of such
particles resulting in anisotropy of the particle-particle interactions. Furthermore, the
self-assembly of the particles can be modified by changing the properties of the solvent;
for instance, the addition of salt can screen charges on the colloids [9]. External fields
such as electric fields can also be used to drive the system.

However, in this thesis we mainly restrict ourselves to colloidal systems which can be
modelled simply by hard spheres. While this may seem like a huge simplification, there
are a number of systems which are well modelled by hard spheres. In particular, a typical
colloidal system consists of spherical silica or PMMA particles coated with a polymer
brush. The effective interactions between the colloids in this system consist of a hard-core
repulsion, a steric interaction associated with the polymer chains, Van der Waals forces,
and electrostatic forces due to charges in the solvent or on the particles. To minimize
the attractive Van der Waals forces which would drive the system to aggregate, in most
experimental systems the colloids are suspended in a medium with a similar refractive
index which minimizes the Van der Waals interactions. Additionally, the steric stabilizer
(repulsion) on the surface helps to prevent the particles from getting close enough to each
other for the Van der Waals forces to play an important role. The electrostatic forces can
also be screened so that the resulting colloid-colloid electrostatic interaction is minimal.
Hence, the resulting interaction between the particles can frequently be approximated as
a hard-core interaction between the spherical cores of the particles.

1.3 Hard spheres

Most of this thesis examines properties of hard-sphere systems. In particular, we study
the equilibrium phase behaviour and nucleation processes in such systems. Here we give
an overview of the phase behaviour seen in monodisperse hard spheres and binary hard-
sphere mixtures.
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1.3.1 Monodisperse hard spheres

Monodisperse hard spheres are one of the simplest colloidal model systems. One of the
theoretical advantages of studying the phase behaviour in systems which interact solely via
a hard-core interaction is that temperature does not play a role and as a result the phase
behaviour depends simply on the volume fraction of the system. Specifically, in a hard-
core system the Boltzmann weight exp(−βU) is zero for all non-overlapping configurations
and 1 otherwise, making T irrelevant.

It was more than 50 years ago that Wood and Jacobson [10], and Alder and Wainwright
[11] demonstrated for the first time the fluid-to-crystal freezing transition in hard spheres.
The freezing in this simple system is an example of an entropy driven phase transition. The
freezing and melting packing fractions of this system were determined in 1968 by Hoover
and Ree [12] to be ηF = 0.494 and ηM = 0.545. The stable solid phase turns out to be
based on one of the close-packed structures for hard spheres, namely the face-centered-
cubic lattice. The phase behaviour of this system was also examined experimentally.
Pusey and Van Megen showed that suspensions of poly(methylmethacrylate) coated by
thin brushes of a flexible polymer could act like hard spheres. Specifically, as a function
of packing fraction, they found a fluid phase, a coexistence region between the fluid and
solid, a solid region, and a glass region.

The nucleation rate for hard sphere has also been examined both via simulations,
using umbrella sampling Monte Carlo techniques, and experimentally by light scattering.
However, for low supersaturations, i.e. low volume fractions, the rates disagree. In this
thesis we revisit this problem in Chapter 6.

1.3.2 Binary hard-sphere mixtures

Binary hard-sphere mixtures consist of mixtures of large and small hard spheres with
diameters σL and σS respectively. Close-packed arrangements in such systems have long
been studied as a model for atomic crystallization. In the 1960’s, Parthé explained many
atomic crystal structures using packing arguments [13]. On the colloidal side, Murray and
Sanders observed binary crystal structures in naturally occurring gem opals and explained
their results based on the close-packed structures [6, 7].

In this thesis we predict close-packed crystal structures for binary hard-sphere mix-
tures. See Chapters 2 and 4. Additionally, in Chapters 3 and 5 we examine the stable
phase behaviour for binary hard-sphere mixtures for a variety of size ratios.

In Table 1.1 we give an overview of all the binary crystal structures which are predicted
to be stable in the phase diagrams of binary hard-sphere mixtures obtained from full free-
energy calculations for various size ratios q = σS/σL [14–19]. We have highlighted in bold
size ratios which are examined in this thesis.

1.4 Techniques

In this section we briefly discuss a number of different simulation techniques used through-
out this thesis. In particular, we examine Monte Carlo simulations in the NV T and NPT
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Size Ratio (q) Stable Crystal Structures Reference
0.033 FCC with disordered small [14]
0.05 FCC with disordered small [14]
0.1 FCC with disordered small [14]
0.2 FCC with disordered small [14]
0.3 interstitial solid solution and AB6 Chapter 5
0.4 interstitial solid solution Chapter 5
0.414 NaCl [15]
0.42 interstitial solid solution Chapter 5
0.45 NaCl and AlB2 [15]
0.50 AlB2 [16]
0.54 AlB2 and ico-AB13 [16]
0.58 AlB2 and ico-AB13 [16, 17]
0.59 AlB2 and ico-AB13 [16]
0.60 AlB2 and ico-AB13 [16]
0.61 AlB2 and ico-AB13 [16]
0.625 ico-AB13 [16]
0.74 only FCCL and FCCS Chapter 3
0.76 Laves Phases (MgZn2, MgCu2, MgNi2) Chapter 3
0.80 Laves Phases (MgZn2, MgCu2, MgNi2) Chapter 3
0.82 Laves Phases (MgZn2, MgCu2, MgNi2) Chapter 3
0.84 Laves Phases (MgZn2, MgCu2, MgNi2) Chapter 3
0.85 eutectic solid solution [19]
0.875 eutectic solid solution [19]
0.90 azeotropic [19]
0.92 azeotropic [19]
0.9425 azeotropic [19]
0.95 FCC solid solution (spindle) [19]

Table 1.1: A list of all the structures which have been shown to be stable in hard-sphere
systems as a function of the size ratio q.

ensembles. We also describe a method to determine free energies, specifically, thermody-
namic integration. Finally, we describe how to calculate the phase coexistences in binary
mixtures.

1.5 Monte Carlo simulations

Monte Carlo simulations are used to sample phase space according to a Boltzmann weight,
and hence are typically used to measure equilibrium properties of a system. In this chapter
we restrict ourselves to applications of Monte Carlo simulations to colloidal systems.

In the NV T ensemble, the number of particles N , temperature T , and volume V are
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kept fixed. The partition function for this system is given by

Q = C
∫

dpNdrN exp (−βH(rN ,pN)) (1.1)

where rN (pN) denotes the coordinates (momenta) of the N particles, H(rN ,pN) is the
Hamiltonian, β = kBT with kB Boltzmann’s constant, and C is a normalization constant.
The average value of a measurable A can then be determined by

〈A〉 =
C
∫

dpNdrNA(rN ,pN) exp (−βH(rN ,pN))

Q
. (1.2)

If the measurable A depends only on the particle coordinates, this expression simplifies
as the integrals over the momenta cancel. One is left with the expression

〈A〉 =

∫

drNA(rN) exp (−βU(rN))
∫

drN exp (−βU(rN))
(1.3)

where U(rN) is the potential energy. It turns out that direct evaluation of the integrals
appearing in this expression is often impossible due to the huge number of configurations
which would need to be evaluated. However, it is possible to determine 〈A〉 in an indirect
manner, typically referred to as the Metropolis Method.

The Metropolis Method takes advantage of the fact that Eq. 1.3 is equivalent to a
weighted average of A(rN) according to a Boltzmann distribution. In particular, if we
can generate random configurations according to the Boltzmann distribution, then

〈A〉 =
1

M

M
∑

k

A(rNk ) (1.4)

where M is the number of random configurations and rNk denotes the particle coordinates
associated with configuration k. Hence, the Metropolis method simply presents a way in
which states can be selected according to their Boltzmann weight.

In practice, for a simple colloidal system this can be accomplished as follows. A
simulation is started where N particles are placed in a box of volume V at temperature
T . A random particle is chosen and a new (trial) position for this particle is found
by adding a random vector ∆r to the particle’s current position. The potential energy
difference between the old configuration and the new configuration is given by ∆U =
U(ri + ∆r, {rj 6=i}) − U({ri}). This new particle position is accepted using the following
acceptance rule: if ∆U < 0 then the new position is accepted, and if ∆U > 0 then
the new position is accepted with the probability exp(−β∆U). The set of configurations
generated in this manner are consistent with the Boltzmann distribution.

Similarly, we can use the Metropolis algorithm to determine average measurables in
the NPT ensemble. In this case, in addition to trial particle displacements, trial changes
of the volume are also necessary. The trial particle moves obey the same acceptance rule
as in the NV T ensemble. The trial volume moves from a volume Vold to Vnew are accepted
according to the following rule: if we set ζ = (−β∆U + βP (Vnew− Vold)−N ln Vnew/Vold)
then when ζ < 0 the new volume is accepted, and when ζ > 0 then the new volume is
accepted with the probability exp ζ.
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NV T and NPT are two of the most frequently used ensembles for studying colloidal
systems, however algorithms also exist for the grand canonical ensemble, the Gibbs ensem-
ble, and many others. For a full description of the Monte Carlo method, details regarding
the application of the technique in a variety of systems, and tricks for implementing the
algorithms, see Ref. [20].

1.6 Free-energy calculations

In many chapters in this thesis, free-energy calculations are used in combination with
common tangent constructions to determine phase diagrams. In this section we give an
overview of some of the more common methods associated with these calculations.

1.6.1 Thermodynamic integration

The Helmholtz free energy of a system of N particles in a volume V is given by

F = U − TS (1.5)

where F is the Helmholtz free energy, U is the potential energy, T is the temperature and
S is the entropy.

One method of calculating the exact free energy for a general system, such as hard-
sphere mixtures, is thermodynamic integration. In this case, it is assumed that there
exists a reference system for which we can calculate the free energy analytically. For
example, for liquids often the ideal gas is used and for crystals, the Einstein crystal [21]
can serve as the reference system. If the potential energy of the reference system is given
by UR and the potential energy of our true system of interest is denoted UT then it is
possible to define a new (fictitious) potential energy

U(λ) = (1− λ)UT + λUR, (1.6)

which is now a function of a coupling parameter λ, which varies between 0 and 1. Note
that this function has the property that when λ = 0 it reduces to our system of interest,
and when λ = 1 it reduces to the reference system. The free-energy difference between
the reference and the system of interest can be determined exactly, see Ref. [20], and is
given by

F (λ = 1)− F (λ = 0) =
∫ λ=1

λ=0
dλ

〈

∂U(λ)

∂λ

〉

λ

. (1.7)

Thus, to calculate the free energy exactly we simply need to determine 〈∂U(λ)/∂λ〉λ as a
function of λ. Such an average can be determined using a Monte Carlo simulation. After
the Helmholtz free energy is known, all other relevant thermodynamic quantities (such as
the Gibbs free energy) can then be obtained.

Moreover, once the free energy is known for one state point, using Maxwell’s relation
we have

(

∂F/N

∂ρ

)

=
P (ρ)

ρ2
(1.8)
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and we can show that

βF

N
(ρ) =

βF (ρ0)

N
+ β

∫ ρ

ρ′=ρ0
dρ′
P (ρ′)

ρ2
. (1.9)

An additional Monte Carlo simulation (NPT) can be used to determine the equation of
state P (ρ), and then the free energy is known for all ρ.

1.6.2 Common tangent constructions in a binary mixture

The coexistence regions in binary mixtures are typically calculated using so called “com-
mon tangent” constructions. In the following we quickly demonstrate the theoretical basis
for this method. This derivation follows closely the derivation presented in Ref. [22]

Assume that we have a two component mixture (such as a binary mixture of colloids or
nanoparticles) and that we have N1(2) particles of type 1(2), which can be in two phases,
α and β. The conditions for thermodynamic equilibrium for the two phases requires that
the temperature, pressure and the chemical potentials for the two species must be equal
in both phases. Specifically,

p(ρα1 , ρ
α
2 , T ) = p(ρβ1 , ρ

β
2 , T ), (1.10)

µ1(ρ
α
1 , ρ
α
2 , T ) = µ1(ρ

β
1 , ρ
β
2 , T ), (1.11)

µ2(ρ
α
1 , ρ
α
2 , T ) = µ2(ρ

β
1 , ρ
β
2 , T ), (1.12)

where ρ1(2) is the density of species 1(2), p is the pressure, T is the temperature and µ1(2)

is the chemical potential of species 1(2).
The Gibbs free energy is an extensive variable and so it scales with the total number

of particles in the system (N) as

G(N1, N2, p, T ) = Ng(x, p, T ) (1.13)

where g(x, p, T ) is the Gibbs free energy per particle, and x = N1/N . Since the chemical
potentials are related to the Gibbs free energy by

µ1(2)(x) =

(

∂G

∂N1(2)

)

N2(1),P,T

(1.14)

they can be written

µ1(x) = g(x) + (1− x)g′(x) (1.15)

µ2(x) = g(x)− xg′(x). (1.16)

Applying the chemical equilibrium relations expressed in Eqns 1.11 and 1.12, we obtain

g′(xα) = g′(xβ) (1.17)

g′(xα) =
g(xα)− g(xβ)
xα − xβ . (1.18)
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Figure 1.1: A cartoon of a common tangent construction between two phases α and β. The
label xα and xβ denote the boundaries of the coexistence region. For x < xα the α phase is
stable, for xα < x < xβ there is a coexistence between the α and β phases, and for x > xβ the
β phase is stable.

Summarizing, phase coexistence happens when, for some xα and xβ the slopes of the
Gibbs free energy per particle for both phases (at constant temperature and pressure) are
equal, and the lines tangential to the free energy through both these points have the same
“y” intercept.

Another way to think about the common tangent construction is that the system as
a whole always tries to minimize the total free energy. Thus, for a given composition x,
the system will choose a linear combination of phases α and β such that the total Gibbs
free energy is minimized. Graphically, such a minimum corresponds to a common tangent
construction. A cartoon of a common tangent construction is shown in Figure 1.1.

1.7 Thesis outline

The work in this thesis can be roughly grouped into three sections. In Chapters 2 and 4
we examine the prediction of candidate crystal structures for use in predicting the phase
behaviour. In Chapters 3 and 5 we examine the phase behaviour of a range of binary
hard-sphere mixtures. Finally, in Chapters 6 and 8 we examine the crystal nucleation of
hard and almost hard systems.
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Prediction of binary hard-sphere

crystal structures

We present a method based on a combination of a genetic algorithm (GA) and MC
simulations to predict close-packed crystal structures in hard-core systems. We employ
this method to predict the binary crystal structures in a mixture of large and small
hard spheres with various stoichiometries and diameter ratios between 0.4 and 0.84. In
addition to known binary hard-sphere crystal structures similar to NaCl and AlB2, we
predict additional crystal structures with the symmetry of CrB, γCuTi, αIrV, HgBr2,
AuTe2, Ag2Se and various structures for which an atomic analogue was not found. In
order to determine the crystal structures at infinite pressures, we calculate the maximum
packing density as a function of size ratio for the crystal structures predicted by our GA
using a simulated annealing approach.
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2.1 Introduction

Close packed arrangements of hard spheres have been of interest for centuries both as
theoretical challenges as well as models for various physical systems. However, the ques-
tion of which structures pack best relies heavily on physical intuition and experimental
results. In the case of identical hard spheres, Kepler’s 17th century conjecture that the
densest arrangement was achieved by stacking close-packed hexagonal planes remained
one of the major mathematical challenges until 1998 when Hales presented what appears
to be almost a complete proof [23]. However, the prediction of close packed structures of
mixtures of various sized hard spheres is even more challenging due to the enormous size
and complexity of the phase space that must be searched to locate the best packed ar-
rangements. In this chapter we use a combination of a genetic algorithm (GA) and Monte
Carlo (MC) simulations to search for such crystal structures, attempting to remove much
of the (ad hoc) guess work associated with predicting the crystal structures realized by
such systems. By finding the close-packed arrangements, our algorithm predicts crystal
structures that are stable at infinite pressures and additionally produces candidate crystal
structures for the phase behavior at lower pressures. While most of the structures found
for RS/RL < 0.6 (where RS (RL) is the radius of the small (large) hard spheres), such
as NaCl and AlB2, have already been discussed in the literature, many of the structures
for larger size ratios are novel in the context of the phase behavior of binary hard-sphere
mixtures.

The close-packed structures of binary hard-sphere mixtures have been studied inten-
sively as a model for atomic and colloidal systems. In the 1960’s Parthé [13] used the
concept of packing to explain binary atomic crystal structures found in nature and in 1980
Murray and Sanders argued that binary mixtures of hard spheres order into the struc-
ture with the largest possible packing fraction under sedimentation and compaction to
explain the long-range crystal structures observed in gem opals. [6] More recently, pack-
ing arguments have also been used to explain the experimental observations of intriguing
and complicated superlattice structures in binary mixtures of nanoparticles [24, 25], of
colloidal particles [26–30], and of block copolymer micelles [31]. The underlying idea of
these packing arguments is that structures that have a higher close-packed density, will
have a larger free volume per particle at lower densities, resulting in a higher contribution
to the entropy and hence a lower free energy. In studies of self-assembled nanoparticles
where non-close-packed crystalline structures are observed it is often asserted that other
interactions must play a role [25].

Genetic algorithms, developed first by Holland [32] in the 1970s, provide a framework
for finding the optimal solution of a specific problem by mimicking Darwin’s principle of
“survival of the fittest” by means of natural selection. GAs enable us to sample efficiently
large search spaces in an unbiased and unrestricted way. A basic quantity in a GA [32] is an
individual that represents a trial solution to the problem which can be ranked according
to a fitness function (e.g. the potential energy). From a random initial population of
individuals, the system evolves from generation to generation by using cross-over and
mutation operators until the population converges to a solution. Originally GAs were
designed to search a finite phase space and used a discrete genetic representation of the
individuals [32]. Since the 1980s “hybrid” GAs have been widely used to search continuous
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phase spaces. Such algorithms exploit the advantages of both GAs and local minimizers:
a fast local minimization technique is used to relax an individual to its local minimum
and mutations and crossovers are employed in the GA to hop between local minima. In
this manner continuous parameters, such as the primitive and basis vectors that describe
a crystal structure, can be varied to minimize the respective fitness function.

Genetic algorithms were introduced to atomic and molecular systems in the 1990’s
in an attempt to determine the lowest energy structure of an atomic cluster [33–35].
Although the first such algorithms involved traditional discrete GA’s [33, 34], the most
commonly used ones are based on a hybrid GA introduced by Deaven and Ho [35]. In their
GA the genetic code consists of the atomic positions, and crossovers are performed by cut-
ting clusters with a plane in real space; the complementary partial spaces are recombined
from parent clusters and the resulting structures relaxed to their local minimum with a
conjugate gradient algorithm. Variations of this technique have since been used to study
many clusters, however, the use of GAs to study periodic systems such as colloidal and
atomic systems is much more recent and employ either a lattice and basis representation
of the crystal structure [36, 37], a discrete binary representation of these vectors [38], or
a so-called “hydra” representation based on displacement vectors [39]. A cartoon of the
hydra representation is depicted in Figure 2.1 . This last implementation has been applied
to a system with approximately hard interactions. The inclusion of hard interactions in a
GA complicates the problem severely as most cross-over and mutation operations cause
overlaps between the particles. Many forbidden regions are present in the search space
that should be circumvented. In this chapter, we use a modification of the GA based
on the hydra representation to search for close-packed structures in binary hard-sphere
systems.

This chapter is organized in the following manner. In section 2.2 we describe the
method we used to determine the binary crystal structures, including a description of the
GA. In section 2.3 we present a table with the structures we have found along with space
filling curves for the best packed structures with AB and AB2 stoichiometry. Finally, in
section 2.4 we discuss the results and our conclusions.

2.2 Method

In this chapter we employ a combination of a GA and Monte Carlo simulations to max-
imize the packing fraction of a binary crystal structure for a given stoichiometry and
particle radius ratio q = RS/RL. The GA we use is based on the algorithm introduced by
Stucke and Crespi [39] to examine ternary hard-sphere systems. As the packing fraction
depends only on the volume of the unit cell and not on the basis vectors, the algorithm
will encounter severe convergence problems if the packing fraction is used as the fitness
function. Hence, the packing fraction is not a suitable fitness function for a hybrid GA.
The method proposed by Stucke and Crespi attempts to avoid this problem by minimizing
a fictitious potential. We follow a similar route here but extend the approach as follows:
we first use a GA to locate the potential minima of a fictitious potential, and subsequently
we replace the fictitious potential with a true hard-sphere interaction, expand the unit cell
until any resulting overlaps are removed, and then use a Monte Carlo pressure annealing
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Figure 2.1: A typical 2D “hydra” for a binary system with 7 particles in the unit cell: 3 of
type A (darker spheres) and 4 of type B (lighter spheres). (Colour Online)

simulation to crush the resulting structure to the best packing. The structure is then
identified either by visual inspection, or with the FINDSYM program [40].

2.2.1 Genetic algorithm

An “individual” in our GA is a system representation for a crystal structure. As mentioned
in the introduction, we have chosen to represent crystal structures using a displacement
vector representation, called the “hydra” representation [39]. A cartoon illustrating the
“hydra” representation is shown in Figure 2.1. In our version of the “hydra” representation
the genetic code consists of two sequences, one for the basis particles and one for the
periodic lattice. In d dimensions with N distinguishable particles per unit cell, the first
sequence consists of the displacement vectors between particles and is given by the hydra
B = B1,B2, · · · ,BN−1. The vector Bi connects particle i to i+1 in this representation. In
the hydra representation the particles connected by the displacement vectors are generally
not in the same unit cell, however, there is exactly one image of each particle in the hydra.
The second sequence contains the lattice vectors of the hydra L = L1, · · · ,Ld, which
denote the projections to periodic images of the hydra. We note that Li can interconnect
a particle with its image, but it can also interconnect distinct particles in the hydra. The
particles that are interconnected by the lattice vectors Li are selected at the beginning
of the GA. To initialize a hydra, the displacement vectors Bi are chosen according to a
Gaussian distribution peaked at 1.2 (Ri + Ri+1), where Ri denotes the radius of particle
i. The angular orientation is then chosen at random. The lattice vectors Li are chosen in
the same manner. We start our GA with a random initial population of hydras.

In theory, we would like to use the packing fraction as a fitness function, but in that
case the GA experiences convergence problems as the packing fraction is independent of
the particle positions in the cell. Instead, we replace the hard-sphere interaction by the
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following pair potential:

V (rij) = ǫij

(

σij
rij

)m

−
(

σij
rij

)n

(2.1)

where rij is the interparticle distance between particles i and j. The fitness function is
then the sum of these pairwise interactions. As this is now a continuous function of all
lattice parameters, the local minima can easily be determined using a conjugant gradient
method. In our implementation of the algorithm, we have typically chosen m = 42 and
n = 24 in the pair-wise potential, however, we have checked for various stoichiometries
and size ratios that other values of n result in the same crystal structures implying that
our results are robust with respect to the fictitious attractive tail.

The genetic algorithm starts with a population of M members. To search space
more efficiently, each hydra is relaxed to its local minimum using the Broyden-Fletcher-
Goldfarb-Shanno (BFGS) algorithm [41]. In the hydra representation, the potential en-
ergy calculation can be computationally expensive as it is possible that several images
must be summed over before all the interactions within the cutoff radius of a single hydra
are included. For instance, it is possible that some of the nearest neighbours of a particle
in a given hydra are several lattice vectors away. In a Bravais representation, however, it
is possible to determine in advance the number of cells along each lattice vector that are
needed to calculate the potential energy of a crystal structure. It is thus advantageous to
map the hydra to a Bravais representation before relaxing the structure. For this purpose
the Bravais lattice vectors are constructed from the L vectors and a lattice reduction al-
gorithm is used to produce a more cubic unit cell. In 2D we use the well known Gaussian
reduction algorithm while in 3D we use the lattice reduction method described in Ref.
[38]. The 3D method attempts to minimize the surface area of the unit cell. Denoting
the lattice vectors r1, r2 and r3 and the surface area of the box spanned by the vectors A,
the 12 linear combinations

rnew
i = ri ± rl, (2.2)

with i 6= l ∈ {1, 2, 3}, are determined and the surface areas Anew
i,l of the new boxes

spanned by rnew
i , rj and rk are compared to A. If any of the Anew

i,l is smaller than A then
the corresponding ri is set to rnew

i , otherwise the algorithm terminates. A single hydra
is then mapped to the resulting unit cell and relaxed to its local minima. The hydra
representation is then reconstructed in the following manner: the Bi’s are found by taking
the shortest vector between any image of particle i and i+ 1 and the Li’s are constructed
similarly. The mapping between the hydra and Bravais representations is one of the main
differences between our algorithm and the one in Ref. [39] where the potential energy is
calculated by summing all the interactions between W d hydras with d the dimensionality.
Our mapping between the hydra and Bravais representations serves two purposes. First,
for the energy calculation the number of cells which need to be summed over is less than
or equal to the W d boxes summed in Ref. [39], and hence significantly faster. Secondly,
neighbours in the hydra representation remain close in real space. This increases the speed
of the local minimization and prevents displacement vectors from becoming exceedingly
long. Additionally, according to the building block hypothesis for GAs, having the most
related parameters close in the system representation improves the GA convergence [42].

A new generation consists of S offspring produced by mutations and cross-overs. To
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produce an offspring, two parents are selected at random (denoted p1 and p2) from the
current generation. Each displacement vector in the corresponding B’s undergo a random
mutation in its length with a probability of 10%. The first step in the cross-over is to
randomly choose a k1 between 0 and d. The first k1 vectors of the sequence L are then
taken from p1 and the remaining from p2. The new lattice vectors are tested to make
sure that they are not co-linear. If they are then a new k1 is chosen. Next, a random
cross-over point k2 is chosen between 1 and N − 2. The first k2 elements of the sequence
B are then taken from p1 and the rest from p2. The two partial hydra are then rotated
in real space around the connection point until a minimum in the potential energy is
found. The structure is then relaxed to its local minimum as previously described. For the
candidate structure to become a member of the offsping it must still meet three additional
requirements: that (i) the bond lengths are less than some maximum value rmax, that (ii)
its fitness is better that the worst of the previous generation and that (iii) its normalized
dot product with the members of the current generation and any other current offspring
is less than 0.8. The latter requirement is needed to prevent the offspring from being
located in the same local minima as the other members, and allows us to work with a
rather small population. However, if the normalized dot product between the potential
offspring and a single member is greater than 0.80 and if the fitness is better it replaces
the other. The bond length restriction is used to select out a specific set of solutions.
For instance, for large RS/RL ratios, the best packed solution is always phase separated
hexagonal close-packed structures of small and large hard spheres. However, by restricting
the bond lengths, we are able to exclude this possibility and force the simulation to find
the next best solution. Since we are interested in binary hard-sphere crystal structures,
this is an essential component of the algorithm. It should be noted, however, that this
restriction is only important for larger unit cells (with ≈8 or more colloids per unit cell).
When S children are produced in this way, the next generation is produced by a form of
elitism where the best M members of the parents and offspring are taken. The algorithm
terminates when all the members of the population have the same energy (within δE) for
10-20 generations. In the majority of our simulations we used M = 20 and S = 10. If
either M or S are much larger, then the normalized dot product restriction is rarely met
and many candidate structures are thrown out. In summary, our modifications to the
GA, which improved significantly the speed and convergence of the algorithm, allowed us
to systematically predict candidate crystal structures for a large range of size ratios and
stoichiometries and to locate binary crystal structures even when monodisperse (rHCP)
crystal structures pack better.

2.2.2 Monte Carlo pressure annealing

The GA in the previous section minimizes a fictitious potential. Replacing the fictitious
pair potential from the previous algorithm with a hard-sphere potential often results in
either slight overlaps of the particles or holes in the structure. Thus, in order to find
the true, hard-sphere packing fraction of the resulting structure, an additional method is
needed. To solve this problem we employ a form of MC pressure annealing. The “hydra”
representation is first mapped to it’s corresponding Bravais lattice. The resulting lattice
vectors are used as the simulation box. In this MC simulation, a typical metropolis
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Figure 2.2: 2D crystal structures predicted using the GA. The naming convention for the
crystal structures is consistent with Ref. [43]. A) crystal structure S1: AB stoichiometry with
q = 0.4, B) H2: AB, q = 0.63, C) H1: AB2, q = 0.54, D) S2: AB4, q = 0.2, E) T2: AB6,
q = 0.34, F) H3: A2B7, q = 0.38. (Colour online)

algorithm is used to move particles in a unit cell, while volume moves allow both the
size and the shape of the simulation box to vary. An initial pressure is chosen such that
the crystal structure cannot melt and the pressure is slowly increased until the particles
can no longer move (to single precision accuracy). This pressure is higher for particles
with small RS/RL values as they melt at lower pressures. The resulting structure is then
identified either by inspection, or with the FINDSYM program [40].

2.3 Method verification and results

To test the algorithm we have examined various systems of hard disks and hard spheres.
In 2D monodisperse systems we found hexagonal lattices and in 3D the GA converges
to crystal structures consisting of stacked hexagonal planes in face-centered-cubic (FCC),
hexagonal-close-packed (HCP) and rHCP arrangements as conjectured by Kepler. In all
cases the GA converged to several different hydra representations of the same crystal
structures suggesting that the potential minimum was indeed found. We also examined
2D binary systems with AB, AB2, AB4, AB6, and A2B7 stoichiometries for various size
ratios, a system examined previously by Likos and Henley [43]. Our results are shown in
Figure 2.2 and agree with their predictions. It should be noted that we did not do an
extensive search of the phase space, but rather used this as a check of the algorithm. The
stoichiometries we checked were chosen to be representative of their results. However, it is
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q 0.4 0.5 0.6 0.7
AB NaCl/NiAs CrB CrB CrB

0.788 0.749 0.745 0.722
AB2 - AuTe2 AlB2 S 74h/e

0.756 0.757 0.718
AB3 S 5b/ac S 19b/1f S 12 c/ib S 8a/aaa

0.722 0.744 0.721 0.672
AB4 S 1a/aaaa S 160a/ab S 123d/fg S 38b/de

0.738 0.725 0.737 0.666
AB5 - S 8a/abb S 8a/bba S 183a/bc

0.690 0.713 0.690
AB6 S 10d/gj S 83c/gk S 38a/dee S 69b/ĳ

0.756 0.710 0.729 0.680

q 0.72 0.74 0.76 0.78
AB CsCl CsCl CrB CrB

0.719 0.726 0.719 0.718
AB2 SG 74h/e SG 74h/e SG 74h/e AuTe2/HgBr2

0.719 0.715 0.704 0.714
AB3 S 12d/ai S 12d/ai S 12c/ib S 6b/aab

0.672 0.670 0.669 0.684
AB4 S 65b/ĳ S 65d/ĳ S 65d/gh S 65c/gh

0.664 0.655 0.647 0.640
AB5 S 183a/bc S 183a/bc S 160a/aab S 189a/cg

0.688 0.686 0.674 0.684

q 0.8 0.82 0.84
AB γCuTi αIrV αIrV

0.721 0.722 0.729
AB2 AuTe2 Ag2Se* AuTe2

0.714 0.7204 0.707
AB3 S 123b/ah S 12d/ai S 47b/al

0.694 0.672 0.700
AB4 - S 87b/h S 87b/h

0.698 0.705 0.704
AB5 S 189a/cg S 183 b/df S 8 a/abb

0.688 0.686 0.667
AB6 S 139b/ge S 2 S 12a/iii

0.658 0.674 0.695

Table 2.1: Binary crystal structures with the largest packing fraction predicted for various q
ratios for AB (4), AB2 (6), AB3 (4), AB4 (5), AB5 (6) and AB6 (7) stoichiometries where the
number in () refers to the number of colloids per unit cell studied. * was calculated with 12
colloids per unit cell and in addition to Ag2Se another structure was found, which is a distortion
of the MgZn2 Laves phase, but with extremely low symmetry and a packing of 0.716.
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Figure 2.3: Space filling curves for the AB structures listed in Table 2.1 as well as icosahedral
and cuboctahedral AB13. Only a fraction of the data points were plotted to simplify the image.
(Colour online)

still possible that a more thorough study of the binary hard disk system would yield new
structures. Additionally, unlike the algorithm we used, the method of Likos and Henley
involved systematically filling holes in the lattice of typical monodisperse 2D lattices
with smaller particles and allowing the crystalline structures to distort in a manner that
resulted in best packings for the given size ratio and stoichiometry. However, unlike our
search, the method used by Likos and Henley [43] relied on preselected structures for their
searches while the GA implementation used here searches all possible binary crystals with
the only restriction being the number of particles per unit cell.

Additionally, we studied binary mixtures in 3D with AB, AB2, AB3, AB4, AB5, and
AB6 stoichiometries for various size ratios ∗. The structure with the densest packing
fraction had either AB or AB2 stoichiometry for any given size ratio. Our results for all
stoichiometries are summarized in Table 2.1.

The crystal structures are identified by an atomic analogue of the binary structure
which has the same space group and Wyckoff positions. For instance, AuTe2 refers to a
structure which has the symmetry associated with space group 12 when the 2a Wyckoff
positions are occupied by the larger particles and the 4i positions are occupied by the
smaller particles, this leaves 6 degrees of freedom for the structure (a, b, c, β, x, z). Hence,
structures which have been identified as AuTe2 may have different lattice parameters.
When no atomic analogue was found the structures were listed by their space group and
occupied Wyckoff positions.

In order to determine the best-packed crystal structures for a given size ratio, we
calculate the space filling curves for all the AB and AB2 structures predicted by our

∗Since the first submission of this work, a paper predicting 3D binary hard-sphere crystal structures
with AB stoichiometries has been published [44]. We have compared our results for 3D AB stoichiome-
tries with this paper and found agreement. Ref. [44] examined the packing of known inorganic binary
crystalline structures using a simulated annealing approach.
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Figure 2.4: Space filling curves for the AB2 structures listed in Table 2.1 along with the curves
for the Laves structures (MgCu2, MgZn2 and MgNi2). (Colour online)

GA. To this end, we maximize, for a given structure and size ratio, the packing fraction
as a function of the lattice parameters using a simulated annealing algorithm. Since
the number of free parameters describing a given structure is typically small, it is often
possible to maximize the packing fraction for the hard-sphere potential†. The space filling
curves of the AB and AB2 structures listed in Table 2.1 are shown in Figures 2.3 and 2.4
and cartoons depicting the associated crystal structures are shown in Figures 2.5 and
2.6. For comparison with our results, we have also included the space filling curves of
the Laves phases in Figure 2.4 as well as the cuboctahedral (cub) and icosahedral (ico)
AB13 in Figure 2.3. In the case of the AB13 structures, the only parameter varied was the
overall lattice scaling.

2.4 Discussion and conclusions

From the packing fraction curves it is possible to predict the infinite pressure phase
diagrams since, for a given size ratio q, the structure with the largest packing fraction
is stable at infinite pressures. Hence we predict NaCl/NiAs (0 < q ≤ 0.44), HgBr2

(0.44 - 0.48), AuTe2 (0.48 - 0.53), and AlB2 (0.53-0.62). For size ratios larger than 0.62
monodisperse FCC, HCP and rHCP have the largest packing.

In contrast, at finite pressures, it is necessary to compare the Gibbs free energies to
determine the stability of a phase. Such analyses on binary hard-sphere systems have
included NaCl (stable for 0.3 < q < 0.45), AlB2 (0.45 - 0.61), icoAB13 (0.54 - 0.62), CsCl
(no known stable region), and the Laves phases (0.76 - 0.84) [15, 17, 45–47]. Many of

†In the case of Ag2Se however, the structure has 12 internal parameters and the simulated annealing
approach only worked when a good initial guess was known. Hence, near q = 0.82 we were able to use
the structure predicted by the GA, but we were unable to determine the packing for the full set of size
ratios.
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Figure 2.5: Cartoons of the AB crystal structures which have the best overall packing for a
given size ratio. A) NaCl, q = 0.4, B) CsCl, q = 0.73, C-D) γCuTi, q = 0.8, xy and xz planes
respectively, E-F) αIrV, q = 0.82, xy and xz planes G-H) CrB, q = 0.6 xy and xz (Colour online)

these calculations were motivated by experimental evidence for these structures in approx-
imately hard-sphere systems, as well as the fact that they all pack well at some size ratio.
The packing fractions of these structures is shown in Figure 2.3 and 2.4. Experimentally,
AlB2 and icoAB13 have been seen in a large variety of systems, including gem opals [6],
approximately hard colloidal systems [28, 29] , and more recently in nanoparticles [25, 48].
NaCl, NiAs, the Laves phases, and CsCl have also been seen experimentally in colloidal
systems [28, 49–51] and nanoparticle systems [25]. While the question remains whether
these experimentally realized particles interact with truly a hard core interaction, these
structures nonetheless present a reasonable starting place for finite pressure calculations.

While the Laves phases are predicted to be stable for a finite pressure region when
q = 0.76 to 0.84 (see Chapter 3), in Figure 2.4 we see that the Laves phases are not the
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Figure 2.6: Cartoons of the AB2 crystal structures which have the best overall packing for a
given size ratio. A) AlB2, q = 0.6, B) HgBr2, q = 0.69, C) AuTe2, q = 0.78 D) S74e/h , q = 0.72
E) AgSe2, q = 0.82 (Colour online)
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best packed candidates in this range. In particular, at q = 0.82 we find a number of
structures which pack better than the Laves phases, including αIrV, γCuTi, AuTe2 and
Ag2Se. Full free-energy calculations show that the only stable structures at this size ratio
are the Laves phases. Additionally, constant pressure NPT MC simulations show that
Ag2Se melts into MgCu2 at pressures where the more symmetric MgCu2 is predicted to
be stable. Thus, Ag2Se can be looked at as a high pressure distortion of MgCu2. Hence,
at a size ratio of 0.82 the binary hard-sphere system seems to favor the more symmetric
crystal structure over the best packed structure. As a result, the space filling arguments
currently being used to explain the crystal structures of nanoparticles, specifically, studies
such as Ref. [25], which make the direct association of the entropic contribution to the
free energy with the space filling curves, are not always valid.

In contrast, while icoAB13 packs better then cubAB13, as shown in Figure 2.3, NPT
MC simulations show that the more symmetric cubAB13 melts into icoAB13 for the size
ratio range where icoAB13 is predicted to be stable. In this case it appears that the
system chooses the lower symmetry, higher packed crystal structure in agreement with
the space filling arguments. However, in this case, the result violates the symmetry
principle proposed by Laves in 1956 [52], which states that the structure with the highest
symmetry is adopted.

Taken together, these results imply that when examining the phase behavior of systems
at finite pressures it is important to examine both the close-packed structures and the
related higher symmetry crystal structures. While it is possible that this behavior is
simply due to the particle free volume not scaling with the unit cell volume, the fact
that the system (as in the case of the Laves phases) sometimes chooses the lower packed,
higher symmetry structures indicates that lattice vibrations may be important in the
phase behavior of binary hard-sphere crystal structures. Our results also show that there
are a number of additional structures, particularly for q > 0.6, not previously studied in
the context of binary hard-sphere mixtures which may be stable for binary hard-sphere
systems. Moreover, as the structures stable for hard spheres are also seen in systems with
soft interactions, for instance NaCl, AlB2, icoAB13 and the Laves phases have been seen in
nanoparticle systems [24, 25] and icoAB13 was seen in block copolymer micellar systems
[31], the predicted structures can also be used as a starting point for phase behavior
studies of many such systems.

In conclusion, we have used a combination of a GA, MC NPT simulations, and sim-
ulated annealing techniques to predict close-packed binary hard-sphere crystalline struc-
tures for a wide range of stoichiometries and sphere diameter ratios. The results are in
agreement with the known structures and show that there are a number of as yet un-
examined binary crystal structures with competing packing fractions for q between 0.6
and 0.84. Additionally, our results demonstrate the importance of full Gibbs free-energy
calculations in determining the stability of binary crystal structures indicating that the
association of the entropic free-energy contribution to the packing fraction is not always
valid Finally, we stress that our GA and NPT MC simulations can easily be extended to
find crystal structures for multi-component mixtures, particles with soft interactions, and
non-spherical particles.





3

Stability of AB and AB2 crystal

structures in binary hard-sphere

mixtures

We study by computer simulations the stability of various crystal structures in a binary
mixture of large and small spheres interacting with a hard-sphere potential. We consider
structures that have atomic prototypes CrB, γCuTi, αIrV, HgBr2, AuTe2, Ag2Se and
the Laves phases (MgCu2, MgNi2, and MgZn2) as well as a structure with Space Group
symmetry 74. By utilizing Monte Carlo simulations to calculate Gibbs free energies, we
determine composition versus pressure and constant volume phase diagrams for diameter
ratios of q = 0.74, 0.76, 0.8, 0.82, 0.84, and 0.85 for the small and large spheres. For
diameter ratios 0.76 ≤ q ≤ 0.84, we find the Laves phases to be stable with respect to
the other crystal structures that we considered and the fluid mixture. By extrapolating
to the thermodynamic limit, we show that the MgZn2 structure is the most stable one of
the Laves structures.
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3.1 Introduction

Hard spheres are interesting model systems due to their extreme simplicity and yet com-
plex behavior that includes freezing into solid phases and glass formation. While the
stable solid structure of pure hard spheres is always the face-centered-cubic (fcc) crystal
phase [53] with a maximum packing fraction of ∼ 0.741, the number of stable crystal
structures is increased enormously when one considers binary mixtures of large and small
hard spheres. The first experimental observations of binary crystal structures of hard-
sphere-like particles were made by Sanders [7] in natural gem opals. Later, other authors,
[30, 50, 54] observed binary crystals with the large (A) and small (B) spheres arranged
in AB2 (atomic analog AlB2) and AB13 (atomic analog NaZn13) structures. It has since
been shown that both of these structures are stabilized by entropy alone [17]. The AlB2

structure is stable at diameter ratios 0.45 ≤ q ≤ 0.61 for the small and large spheres and
the NaZn13 structure is stable at 0.54 ≤ q ≤ 0.625 [15, 16, 47].

The space filling of hard spheres has been used as a starting point for various theoretical
studies regarding the phase behavior of binary hard-sphere systems (e.g. Ref. [17]) and to
explain experimental observations in binary mixtures of colloids with approximately hard
interactions [30, 54]. At infinite pressures the crystal structure with the highest close
packed density will be stable. However, at lower pressures the stability of a structure
is determined by the free energy, which for hard spheres reduces to a purely entropic
contribution. It is often asserted in such systems that the free volume per particle is
inversely related to the packing fraction of a crystalline structure, and that the entropy
is proportional to the free volume. While this argument is incomplete, as evidenced by
the stability of NaZn13 which has a maximum packing fraction of 0.738 which is lower
than for pure fcc, it has been used successfully by various authors to determine candidate
crystalline structures to examine using full free-energy calculations [15–17].

Recently, it was proposed, based on Gibbs free-energy calculations, that AB2 Laves
crystal structures with atomic analogs MgCu2, MgNi2, and MgZn2 are stable in the range
0.76 ≤ q ≤ 0.84 [45]. All three Laves structures have the same maximum packing fraction,
η ≈ 0.710 at q ≈ 0.816. However, in Chapter 2 we examined the packing of binary
crystal structures in more detail and a number of additional crystal structures have been
identified which pack at least as well as the Laves phases for the size ratios in question.
These structures were identified through the combined use of a genetic algorithm (GA)
and Monte Carlo simulations.

In the size ratio of interest for this chapter, namely sphere diameter ratios between
0.74 and 0.85 the AB structures which packed best have atomic prototypes CrB, CsCl,
and γCuTi, while the AB2 structures included HgBr2, AuTe2, Ag2Se, and a structure
with the Space Group symmetry 74 with Wyckoff positions e and f occupied, which
we call S74 (see Chapter 2). In this chapter we use Gibbs free-energy calculations to
compare the stability of these various new phases with the Laves structures and present
composition vs. pressure and constant volume phase diagrams for binary mixtures of
hard spheres for size ratios q = 0.74, 0.76, 0.8, 0.82, 0.84, and 0.85. The only stable
binary crystal structures we find on this interval are the Laves phases, with a stability
range of 0.76 ≤ q ≤ 0.84. Moreover, we find that MgZn2 is the most stable of the Laves
structures in the thermodynamic limit where the number of particles is taken to infinity.
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Figure 3.1: (Color online) The Laves phases. The large spheres are dark (red) and the small
spheres are light (yellow). (a) MgCu2, (b) MgZn2, (c) MgNi2

The Laves structures are shown in Figs. 3.1(a)-(c), and as can be seen, they differ only
in the way the hexagonal layers formed by the doublets of large (red) spheres are packed:
In the MgCu2 structure in Fig. 3.1(a), this packing is AABBCC, in the MgZn2 structure
in Fig. 3.1(b) AABB, and in the MgNi2 structure in Fig. 3.1(c) AABBAACC. These
different packings can be compared to the ABC and AB packings of hexagonal planes in
fcc and hexagonal-close-packed (hcp) crystals, respectively.

To calculate the stability of the phases, we calculate the Gibbs free energy using Monte
Carlo simulations. Typically, Monte Carlo free-energy calculations consists of two steps:
one first calculates the Helmholtz free energy of a crystal at a single density using the
Einstein crystal (or Frenkel-Ladd) method and then combines this with a fitted equation
of state from e.g. constant pressure simulations to give the free energy in the whole density
range. This approach is followed in this chapter. The advantage of the Monte Carlo free-
energy calculations compared to the theoretical approaches is that the results are more
accurate since there are no approximations and the error only comes from the statistical
noise and the finite system size. This allows us to determine the free-energy differences
between the three Laves structures that all have the same maximum packing fraction, and
where the applicability of approaches based on free volume arguments can be doubted.
Such an approach is followed in the cell theory by Cottin and Monson [55, 56]. In this
theory, the free volume, i.e. the configurational integral, of each sphere is sampled using
Monte Carlo simulations with the surrounding spheres frozen at their lattice sites. The
individual sphere partition functions are then combined to give the total partition function
and hence the free energy. While this approach has been shown to give good agreement
with Monte Carlo simulations, [19, 57, 58] it can miss subtle free-energy differences such
as the difference between the Laves phases.



26
Stability of AB and AB2 crystal structures in binary hard-sphere

mixtures

This chapter is organized as follows. In section 3.2, we introduce the methods used
to calculate the phase diagrams. In section 3.3 we present the phase diagrams for binary
mixtures of hard spheres. We end with conclusions in section 3.4.

3.2 Methods

We consider a binary mixture of NL large spheres with diameter σ and NS small spheres
with diameter qσ where q < 1. The pair potential in units of kBT between two hard
spheres is given by

uHS
ij (r)

kBT
=

{

0 r ≥ 1
2
(σi + σj)

∞ r < 1
2
(σi + σj).

(3.1)

where r is the center of mass difference between sphere i and j, and σi is the diameter of
particle i.

The phase diagrams are determined using common tangent constructions on Gibbs
free energy data. The Gibbs free energy G is given by G = F + PV , where F is the
Helmholtz free energy, P is the pressure, and V is the volume. In the case of the binary
hard-sphere fluid and the pure face-centered-cubic (fcc) hard-sphere crystal, the Gibbs free
energies G are obtained from the analytical functions given in the literature [59, 60]. In
order to obtain the Gibbs free energy of the remaining crystalline phases of hard spheres,
the Helmholtz free energy F was calculated using Monte Carlo simulations and combined
with the equation of state (P vs. η) data. Below we describe this procedure in more
detail.

The Helmholtz free energies of the solid phases are calculated with the Frenkel-Ladd
method [20, 21] using Monte Carlo simulations in the canonical ensemble where the num-
ber of particles N , volume V , and temperature T are fixed. In the Frenkel-Ladd method,
one starts from an Einstein crystal where the particles are tied to their ideal lattice po-
sitions by harmonic springs. Then, the springs are slowly removed and one recovers the
original interactions. The auxiliary potential energy function that includes the harmonic
springs is given by

Uλ(r
N) = U(rN) + kBTλα

N
∑

i=1

(ri − r0,i)
2/σ2, (3.2)

where r0,i is the lattice position of particle i, α is a dimensionless spring constant, and
λ ∈ [0, 1] is a coupling parameter. For the hard-sphere system, U(rN) in Eq. (3.2) is
given by a sum of hard-core potentials (3.1). At λ = 0, we recover the system of interest
with the original interactions, while at λ = 1, once the spring constant α is chosen large
enough, the particles do not “feel” each other and the system reduces to an Einstein
crystal with Madelung energy U(rN0 ) (the potential energy of a crystal with all particles
at their lattice positions which for hard spheres is identically zero). The Helmholtz free
energy is obtained from [20, 21, 61]

F (N, V, T ) = FCM
Ein (N, V, T, α) + FCM(N, V, T )

− αkBT
σ2

∫ 1

0
dλ

〈

N
∑

i=1

(ri − r0,i)
2

〉CM

λ

, (3.3)
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where the ensemble average 〈. . .〉CM
λ is calculated with the Boltzmann factor exp(−Uλ/kBT )

for a crystal with fixed center of mass. In Eq. (3.3), the free energy of an Einstein crystal
with fixed center of mass is given by

FCM
Ein (N, V, T, α) = U(rN0 ) +

3(N − 1)

2
kBT ln

(

αΛ2

πσ2

)

, (3.4)

where Λ is the de Broglie wavelength, and the term

FCM(N, V, T ) = kBT ln

(

Λ3

V N1/2

)

, (3.5)

corrects for the fixed center of mass. As noted in Ref. [20], it is useful to rewrite the
integral in Eq. (3.3) as

∫ ln(α+c)

ln c
(λα+ c)

〈

N
∑

i=1

(ri − r0,i)
2/σ2

〉CM

λ

d[ln(λα+ c)], (3.6)

where

c =
kBT

〈

∑N
i=1(ri − r0,i)2/σ2

〉CM

0

. (3.7)

The integral in Eq. (3.6) is evaluated numerically using a Gauss-Legendre quadrature [62]
with 10-20 integration points.

We calculated Gibbs free energies by first calculating the Helmholtz free energy at a
reference state with packing fraction ηr and then we use equation of state (P vs. η) data
obtained from constant pressure simulations (where the number of particles NL and NS,
pressure P , and temperature T are constant) to calculate the Gibbs free energy at all
densities. We define the packing fraction η = ζN/V with

ζ =
π

6
σ3[(1− x) + xq3] (3.8)

where x = NS/(NL+NS) is the composition, and N = NL+NS. Employing the equation
of state P (η′) for η′ ∈ [ηr, η], the Gibbs free energy at η is obtained from

G(η)

NkBT
=
F (ηr)

NkBT
+
P (η)V

NkBT
+
ζ

kBT

∫ η

ηr

P (η′)

(η′)2
dη′. (3.9)

Equation (3.9) assumes that the reference packing fraction ηr is within the packing fraction
range scanned in the constant pressure simulations. In order to evaluate the integral in
Eq. (3.9), the equation of state data was fitted by analytical functions. For the solid
phases, the fitting was done using

PV

NkBT
=

n
∑

i=−1

aiγ(η)
i, (3.10)

where γ(η) = ηcp/η − 1 and ηcp is the maximum packing fraction of the solid [47]. The
series was typically truncated at n = 3. We performed additional Helmholtz free-energy
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calculations to check that the fitting procedure and the subsequent integration in Eq. (3.9)
produce accurate results.

The ensemble averages for the Helmholtz free-energy calculations were obtained from
MC simulations that consisted of 20 000-100 000 equilibration steps (trials to displace each
particle once) and 20 000-200 000 sampling steps. In the constant pressure simulations,
we used 200 000 equilibration steps and 400 000 sampling steps.

The solid free energies calculated using the above procedure have a system-size depen-
dence that scales as 1/N [61]. While in many cases this system-size dependence only has
an insignificant effect on the phase behavior, it is an important factor in determining the
relative stability of solids that have the same packing efficiency and similar structure, and
that therefore can be expected to have nearly equal free energies, as is the case for the fcc
and hcp solids [53]. Not surprisingly the free energies of the three Laves phases MgCu2,
MgZn2, and MgNi2 turned out to be very close to each other. In order to remove the
system-size dependency, we used the method introduced in Ref. [61] where one performs
free-energy calculations for increasing N and extrapolates to the N →∞ limit.

3.3 Results

We determine the phase diagrams for size ratios q = 0.74 0.76, 0.80, 0.82, 0.84, and 0.85 by
calculating the Gibbs free energy for CrB, γCuTi, αIrV, HgBr2, AuTe2, AgSe2, S74, and
the Laves phases. We employ analytical expressions [59, 60] for the fluid and the fcc phase.
Figures 3.2-3.7 show the phase diagrams in the composition x = NS/(NL+NS) - reduced
pressure p = Pσ3/kBT plane. The constant pressure representation follows directly from
the common tangent constructions and is the most natural one from a theoretical point
of view as this representation can be used e.g. in nucleation studies. In order to compare
our results with experimental data, we convert the phase diagram to the corresponding
ηS-ηL representation. In Figs. 3.8-3.13 we show the phase diagrams for the corresponding
ηS-ηL plane. The only stable solid phases we find for this size ratio are the Laves phases
and the pure fcc phases. In the phase diagrams, "fccL" and "fccS" denote the fcc crystals
of pure large and pure small spheres, respectively. The common features in all the phase
diagrams are the stable fluid phase at low pressure, a phase coexistence between an fcc
crystal of large spheres and the fluid ("fccL+fluid") at elevated pressure for x . 2/3, and
a phase coexistence between an fcc crystal of small spheres and the fluid ("fluid+fccS") at
elevated pressure and x > 2/3. At very high pressure, we find a coexistence between fcc
crystals of pure large and pure small spheres ("fccL+fccS"). From Figs. 3.3-3.6 we see that
the Laves phases are stable at size ratios 0.76 ≤ q ≤ 0.84 in the intermediate pressure
range between the fcc-fluid coexistence region and the fcc-fcc coexistence. The stable
regions of Laves phases consist of a small pocket where the Laves phases coexist with a
fluid phase at low pressure followed by larger coexistence regions of fcc and Laves phases
at higher pressure. Figures 3.3-3.6 show that the Laves phases become stable at p ≈ 25
for all size ratios 0.76 ≤ q ≤ 0.84. We also see that when q increases from 0.82 to 0.84,
the region of stable Laves phases first shrinks and then disappears at q = 0.85. Similar
behavior is observed at lower size ratios when q decreases from 0.8 to 0.76 and 0.74. We
would like to point out here that the phase diagram we drew for size ratio q = 0.85 only
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Phase N neq × 103 nprod × 103 Fex/NkBT ±
MgCu2 216 40 800 7.3957 0.0010
MgCu2 648 40 300 7.4230 0.0010
MgCu2 1080 20 100 7.4286 0.0010
MgCu2 2592 20 20 7.4347 0.0010
MgCu2 5760 20 20 7.4361 0.0010
MgZn2 288 40 800 7.4028 0.0003
MgZn2 1080 20 100 7.4257 0.0010
MgZn2 2304 20 20 7.4315 0.0010
MgZn2 4800 20 20 7.4327 0.0004
MgNi2 288 40 800 7.4043 0.0004
MgNi2 1440 40 100 7.4304 0.0010
MgNi2 2304 20 20 7.4327 0.0020
MgNi2 5760 20 20 7.4351 0.0005

Table 3.1: System sizes and simulation details used to calculate the excess Helmholtz free
energies in Fig. 3.14 for q = 0.82 and η = 0.6. neq and nprod are the number of MC cycles in the
equilibration and production runs, respectively, and the error estimate is given by the standard
deviation of four independent runs.

takes into consideration the Laves phases and the monodisperse fcc phases. Specifically,
we have not considered a substitutional solid solution when drawing this phase diagram.
The size ratio q = 0.85 has been examined before, and a substitutional solid solution has
been found to be stable. Hence, for a complete phase diagram for size ratio q = 0.85 see
Ref. [19].

Figure 3.14 plots the excess Helmholtz free energy per particle Fex/NkBT plus ln(N)/N
as a function of 1/N at q = 0.82 and η = 0.6 for the Laves phases MgCu2, MgNi2, and
MgZn2. The Helmholtz free-energy calculations were performed in a cubic or nearly cubic
box. Details of the calculations can be found in Table 3.1. Note that the number of
production MC cycles, nprod is reduced as the system size is increased without notice-
able effect on the accuracy. This can be done because in large systems spatial averaging
replaces some of the time averaging. In Fig. 3.14, the solid lines are linear fits to the
data points. As shown in Ref. [61], Fex/NkBT + ln(N)/N is a linear function of 1/N
and the intercept at 1/N = 0 gives the excess free energy of the infinite bulk system.
Analyzing the intercept values, we find that MgZn2 has the lowest bulk free energy per
particle at 7.436kBT , followed by MgNi2 at 7.438kBT , and MgCu2 at 7.439kBT . That
is, the free-energy difference between the three Laves phases is on the order of 10−3 kBT
per particle. Due to the small free-energy difference, one expects to observe in experi-
ments a mixture of all three Laves phases similar to the experimental observation of the
random-hexagonal-close-packed (rhcp) crystals of pure hard spheres, which can be seen
as a mixture of fcc and hcp crystals.



30
Stability of AB and AB2 crystal structures in binary hard-sphere

mixtures

0 0.2 0.4 0.6 0.8 1
10

20

30

40

x

p
fccL + fccS

fluid + fccL

fluid

fluid + fccS

Figure 3.2: Phase diagram of binary hard-sphere mixtures in the composition x = NS/(NL+
NS) - reduced pressure p = Pσ3/kBT plane with size ratio q = 0.74. Labels "fccL+fluid" and
"fluid+fccS" denote coexistence regions between an fcc crystal of large (L) or small (S) spheres
and a fluid, and "fccL+fccS" denotes a coexistence region between fcc crystals of large and small
spheres.
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Figure 3.3: Phase diagram of binary hard-sphere mixtures in the composition x = NS/(NL+
NS) - reduced pressure p = Pσ3/kBT plane with size ratio q = 0.76. The labels are the
same as in Fig. 3.2, and additionally "fccL+Laves", "Laves+fccS", and "Laves+fluid" denote the
coexistence regions between the Laves phase and an fcc crystal of large (L) or small (S) spheres,
or a fluid.
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Figure 3.4: Phase diagram of binary hard-sphere mixtures in the composition x = NS/(NL+
NS) - reduced pressure p = Pσ3/kBT plane with size ratio q = 0.8. The labels are the same as
in Fig. 3.3.
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Figure 3.5: Phase diagram of binary hard-sphere mixtures in the composition x = NS/(NL+
NS) - reduced pressure p = Pσ3/kBT plane with size ratio q = 0.82. The labels are the same
as in Fig. 3.3.
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Figure 3.6: Phase diagram of binary hard-sphere mixtures in the composition x = NS/(NL+
NS) - reduced pressure p = Pσ3/kBT plane with size ratio q = 0.84. The labels are the same
as in Fig. 3.3.
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Figure 3.7: Phase diagram of binary hard-sphere mixtures in the composition x = NS/(NL+
NS) - reduced pressure p = Pσ3/kBT plane with size ratio q = 0.85. The labels are the same
as in Fig. 3.2.
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Figure 3.8: Phase diagram of binary hard-sphere mixtures in the ηS − ηL representation with
size ratio q = 0.74. The labels are the same as in Fig. 3.2.
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Figure 3.9: Phase diagram of binary hard-sphere mixtures in the ηS − ηL representation with
size ratio q = 0.76. The labels are the same as in Fig. 3.3.
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Figure 3.10: Phase diagram of binary hard-sphere mixtures in the ηS − ηL representation
with size ratio q = 0.80. The labels are the same as in Fig. 3.3.

Figure 3.11: Phase diagram of binary hard-sphere mixtures in the ηS − ηL representation
with size ratio q = 0.82. The labels are the same as in Fig. 3.3.
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Figure 3.12: Phase diagram of binary hard-sphere mixtures in the ηS − ηL representation
with size ratio q = 0.84. The labels are the same as in Fig. 3.3.
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Figure 3.13: Phase diagram of binary hard-sphere mixtures in the ηS − ηL representation
with size ratio q = 0.85. The labels are the same as in Fig. 3.2.
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Figure 3.14: (Color online) Finite-size scaling of the excess Helmholtz free energy, Fex/NkBT+
ln(N)/N vs. 1/N at q = 0.82 and η = 0.6 for the Laves phases MgCu2, MgNi2, and MgZn2.
The lines are linear fits to the data points.

3.4 Conclusions

We have presented phase diagrams in the composition x vs. pressure p and in the ηS-ηL
representation for binary hard-sphere mixtures of large and small hard spheres for size
ratios q = 0.74, 0.76, 0.8, 0.82, 0.84, and 0.85. The phase diagrams are based on Gibbs
free energy data calculated using thermodynamic integration techniques and constant
pressure Monte Carlo simulations. We showed that the Laves structures, MgCu2, MgZn2,
and MgNi2, are stabilized by entropy alone and that they are stable with respect to
fluid mixtures, binary CsCl, CrB, γCuTi, αIrV, HgBr2, AuTe2, Ag2Se, S74, and single
component fcc crystal structures at size ratio range 0.76 ≤ q ≤ 0.84. By extrapolating
our free energy data to the infinite system limit, we showed that the free-energy difference
between the three Laves phases is small, order 10−3 kBT per particle, and that the MgZn2

crystal has the lowest free energy followed by MgNi2 and MgCu2.
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An efficient method for predicting

crystal structures: Variable box

shape simulations

In this chapter we present an efficient and robust method based on Monte Carlo simu-
lations in the isotension ensemble for predicting crystal structures at finite temperature.
We apply this method, which is surprisingly easy to implement, to a variety of systems,
thereby demonstrating the effectiveness of the method for hard interactions, attractive
interactions, anisotropic interactions, binary mixtures, semi-long-range soft interactions,
and truly long-range interactions. In the case of binary hard-sphere mixtures, star poly-
mers, and binary Lennard-Jones mixtures, the crystal structures predicted by this algo-
rithm are consistent with literature, thereby providing confidence in the robustness of the
method. We also demonstrate that this method can be combined with Ewald sums and
can be applied to systems with long-range interactions. Finally, we predict new crystal
structures for hard asymmetric dumbbell particles, bowl-like particles, patchy particles
and hard oblate cylinders and present the phase diagram for the oblate spherocylinders
based on full free-energy calculations.
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4.1 Introduction

The ability of atomic, colloidal, and nanoparticle systems to self-organize into crystal
structures makes the prediction of stable crystal structures in these systems an impor-
tant challenge for science. In a recent Review Article, Woodley and Catlow claim "The
prediction of structure at the atomic level is one of the most fundamental challenges in
condensed matter science" [63]. It is therefore not surprising that the subject has received
much attention from the scientific community over the last several decades.

The question itself is deceivingly simple: assuming that the underlying interactions
between constituent particles are known, which crystal structures are stable. Before the
1990s most of our understanding of atomic crystal structures came from simple empirical
rules, now well documented in solid state text books. In 1990, Pannetier et. al. proposed
a method based on simulated annealing techniques [64]. In their method a general crystal
structure was described in terms of lattice and basis vectors, and the ‘cost’ function for
the system was minimized using simulated annealing. This method can easily be extended
to any atomic system for which a suitable ‘cost’ function, e.g. the potential energy or
enthalpy, can be constructed [65]. Similarly, in 2009 Torquato [66] applied a method
based on pressure annealing for determining dense packings of platonic and archimedean
solids. Typically these pressure [66] and temperature [64, 65, 67] annealing simulations
break the (detailed) balance condition (i.e. these methods cause a deviation from the
Boltzmann distribution). When only the zero temperature or infinite pressure structures
are required the detailed balance condition is not expected to be important. However, if
the objective is to find stable crystal structures, as we will discuss in this chapter, it is
advantageous to use a simulation method which does not a priori break detailed balance
and thus which samples configuration space according to the Boltzmann distribution, such
as regular Monte Carlo or Molecular Dynamics simulations. We would also like to point
out that simulations which do not break detailed balance have been applied to the study
of phase transitions between solid phases [68, 69]. Particularly, Monte Carlo simulations
and Molecular Dynamics simulations where the box shape was allowed to fluctuate have
been applied for this purpose. However, these simulations were not used to find crystal
structures appearing out of the liquid and relied on an initial guess of the crystal structure.

In addition to simulated temperature and pressure annealing methods, more advanced
minimization techniques such as genetic algorithms (see e.g. Refs. [36, 38] and Chap-
ter 2 of this thesis), and Monte Carlo basin hopping algorithms [70] have been applied.
Typically these techniques are used to locate the minimum in the potential energy of the
system, and as such, probe the zero-temperature phase behavior. However, for systems
where the entropy plays a significant role, these techniques break down. For instance,
new crystal structures can appear in the phase diagram at finite temperature, which are
different from the zero-temperature crystal structures, and hence predicting the zero-
temperature structures will not be sufficient for making predictions at finite temperature.
Additionally, for hard systems the potential energy is always zero as only non-overlapping
configurations contribute to the partition function, and hence, crystal structures are sta-
bilized by entropy alone. For such systems it is difficult to construct an appropriate ‘cost’
function, and therefore the Monte Carlo basin hopping algorithm and the genetic algo-
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Figure 4.1: In the algorithm used in this chapter, the unit cell of the crystal is the simulation
box. Here we give an example of a particle move in our system. Left: A sample (2 dimensional)
unit cell (i.e. simulation box) where the lattice vectors are labelled L1 and L2. Right: The same
unit cell as on the left after a particle has been moved.

rithms cannot directly be applied to hard-core systems ∗. With the recent progress in
the chemical synthesis and fabrication of colloidal particles and nanoparticles, there is
unprecedented ability to control the interparticle interactions in such systems, through
particle synthesis and chemistry [8, 71, 72], through the solvent in which they are dispersed
[73], and through the application of external fields [9]. The resulting interactions between
the colloidal particles can be made sufficiently weak that emerging crystal structures are
stabilized predominantly by entropic contributions to the free energy. For instance, ex-
perimental realizations of binary hard-sphere mixtures and hard bowl-like particles as
described in this chapter, are stabilized purely by entropy. Additionally, crystal struc-
tures found in binary mixtures of nanoparticles (eg. NaCl, AlB2, NaZn13) are consistent
with hard-sphere interactions, indicating a significant entropic contribution to the free
energy of these systems [74]. Hence, locating stable crystal structures for soft interactions
at finite temperature and for hard-core interactions presents an important and exciting
challenge and plays a vital role in the rational design of advanced materials.

One attempt to predict crystal structures for such systems is the ergodicity search
algorithm described in Ref [75]. In the algorithm, the entropic contribution to the free
energy is approximated by the harmonic phonon contribution. However, even such an ap-
proximation is difficult and computationally expensive, and not straightforward to apply
to hard-core interactions.

In this chapter we present a novel method to predict crystal structures at finite tem-
perature for a wide variety of systems, including systems whose phase behavior is purely
entropy-driven such as binary hard-sphere mixtures, hard asymmetric dumbbells, hard
bowl-like particles, and hard oblate cylinders. The chapter is organized as follows, in
Section 4.2 we describe the method we use, in Section 4.3 we describe our results and in
Section 4.4 we describe our conclusions.
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Figure 4.2: An example volume move in our algorithm. On the left is the system before the
volume change and on the right is the same system after the volume change.

4.2 Method

The general algorithm consists of Monte Carlo (MC) simulations in an isotension-isothermal

ensemble. In our MC simulations, lattice vectors ~L comprise the simulation box, and the
positions of the particles in the crystal, i.e. the basis vectors ~R, are expressed in terms of
these lattice vectors (see the cartoon in Figure 4.1). As is typical for an MC simulation in
the isothermal-isobaric (NPT) ensemble, each MC step consists of either a trial particle
displacement (Figure 4.1) or a trial volume change (Figure 4.2) where the acceptance rules
of the particle and volume moves are given by the Metropolis algorithm and thus by defi-
nation obey detailed balance (see Ref. [20]). In order to allow for box shape fluctuations,
a trial volume move involves an attempt to change the orientation and the length of a
random lattice vector. An important part of our algorithm is to treat the simulation box
as a unit cell, and as such work with extremely small particle numbers. In this chapter,
the number of particles in the simulation box ranges from 1-12. Working with small sim-
ulation boxes, and allowing the shape of the simulation box to fluctuate introduces new
problems for the simulations. The main problem is that while the system is in the liquid
phase, the shape of the box fluctuates significantly. Thus, the box can become extremely
distorted, which makes the potential energy summation time consuming. To avoid this
problem, we use a lattice reduction technique to redraw the unit cell when it becomes too
distorted. In 2D we use the well-known Gaussian reduction algorithm, while in 3D we use
the lattice reduction method described in Ref. [38]. Additionally, we impose a restriction
on all the angles and the lengths of the lattice vectors to avoid trivial unphysical crystal
structures. Without these restrictions the particles tend to line up in columns, such that
the particles only interact with their own periodic images in one of the lattice directions
resulting in unphysical contributions to the entropy. Angles less than 30o and greater
than 150o are not accepted. Such a condition prevents the box (particularly while in the
fluid phase) from an extreme distortion, while allowing for all possible crystal phases to
emerge in our simulations. Additionally, for each configuration of interest, we run several
parallel MC runs, with various starting configurations and pressures.

∗For more details on how one might apply a minimization algorithm to hard particles, see Chapter 2.
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Figure 4.3: A) and B) correspond respectively to the xy and xz faces of the AB crystal
structure from Space Group 166 found in the set of predicted phases for size ratios 0.4-0.6. C)
and D) correspond to the xy and xz phases of the AlB2 crystal structure. Note that the planes
made by the small particles in both structures correspond to 2D honeycomb planes, while the
large colloids sit on a hexagonal lattice.

4.3 Results

We applied this method to several representative systems: binary hard-sphere mixtures,
binary Lennard-Jones mixtures, star polymers, dipolar hard spheres in an electric field,
asymmetric hard dumbbells, hard bowl-like particles, patchy particles and hard oblate
cylinders. In this section we explore our results for each system.

4.3.1 Binary hard-sphere mixtures

In the case of binary hard-sphere mixtures, the initial pressure was chosen such that
the simulation started in the fluid phase. The pressure was increased slowly until the
particles crystallized, and the crystal structure remained constant. In order to facilitate
the identification of the crystal structure, the pressure was then increased significantly.
The results for AB and AB2 crystal structures are shown in Table I for varying size ratios
q = σS/σL with σL,S the diameter of the large and small hard spheres, respectively. The
close packed structures for AB [44, 76] and AB2 [76] stoichiometry have been predicted
previously, using a genetic algorithm (see Chapter 2) and a simulated annealing technique
using structures from a crystallographic database [44]. We note that all the structures
predicted in Ref. [44, 76] are also predicted by our algorithm as shown in Table I.
Additionally, the stability of the AB and AB2 structures has been determined in computer
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shape simulations

q structure % structure %
AB (2:2) AB2 (4:8)

0.4 NaCl 40%
NiAs 20%
SG 166∗ 30%

0.5 SG 166 60% AlB2 55%
CrB 30%

0.6 CrB 70% AlB2 40%
SG 166 10%
SG 12 10%

0.7 CsCl 40%
CrB 20%

0.8 γCuTi 30% Laves 75%
αIrV 10% SG139 5%
CsCl 10%

Table 4.1: AB and AB2 structures predicted for binary hard-sphere mixtures for various
size ratio q = σS/σL. Each simulation was repeated between 10-20 times with different initial
configurations, and the frequency (%) of the resulting structures is listed. ∗ has been used to
denote structures which are slightly distorted from their symmetric structure. Structures which
have been previously predicted to be stable [15–17, 77] are indicated in bold. For q = 0.4 and
0.7, our method was unable to predict ordered AB2 crystal structures, which is consistent with
the fact that no AB2 structures are stable for these size ratios.

simulations using free-energy calculations. These studies show that NaCl is stable for
q ∈ [0.414 − 0.45] [15], AlB2 for q ∈ [0.45 − 0.61] [16, 17], and the Laves phases are
stable for q ∈ [0.76 − 0.84] [18]. We indeed observe from Table I that the stable crystal
structures, which are denoted in bold, are indeed predicted by our new method.

For q = 0.5 we see that the most frequently occurring AB crystal structure is not the
best packed structure CrB, but rather a crystal structure within the symmetry group 166
(denoted SG 166). A cartoon of this structure along with AlB2 is shown in Figure 4.3.
While AlB2 is stable for q = 0.5, no AB stoichiometry crystal structure is found to be
stable. An examination of SG 166 shows that while it has a different stoichiometry than
AlB2, it has similar planes, ie. the small colloids sit on a 2D honeycomb lattice, while the
larger colloids are in hexagonal planes. Thus it appears that while the system was unable
to find the structure with the lowest free energy since the stoichiometry was incorrect, it
located a compromise.

The crystal structures appearing at q = 0.8 are also of significant interest. At this
size ratio the Laves phases are expected to be stable. Our results show that a significant
majority of our simulations have resulted in Laves phases (75%). It is interesting to
note that we have been able to improve the results for this size ratio dramatically by
restricting the length of the lattice vectors. When this restriction is removed, we only
find 30% resulting in the Laves phases. Additionally, for all q, the runs with 12 particles
per unit cell do not produce crystal structures when this restriction is removed.

Summarizing, we find that our method predicts the stable crystal structures for binary
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ρ 0.5 1.5 2.25 2.5 3 3.75
structure fcc trigonal∗ diamond diamond hexagonal∗ hcp

Table 4.2: Results for star polymers with a arm number f = 64 and corona diameter σ = 1 as
a function of the number density ρ. ∗ cartoons of these crystal structures can be found in Ref.
[79].

hard-sphere mixtures, including a few additional structures which are the best packed
crystal structures for the given stoichiometry, and structures whose planes were related
to stable crystal structures.

4.3.2 Binary Lennard-Jones mixtures

A recent Molecular Dynamics (MD) simulation demonstrated that the Wahnström bi-
nary Lennard-Jones mixture, which has often been used in simulations to study glassy
behavior, crystallizes spontaneously into the MgZn2 Laves phase [78]. The Lennard-Jones
interaction is given by

u(rij) = 4ǫij
[

(σij/rij)
12 − (σij/rij)

6
]

, (4.1)

where the Lorentz-Berthelot mixing rule

σAB = (σAA + σBB)/2 (4.2)

was used. Choosing the parameter ǫAA = ǫBB = ǫAB = 1, and σBB/σAA = 0.8− 0.84, we
have also located predominantly the MgCu2 and MgZn2 Laves phases, which is consistent
with Ref. [78].

4.3.3 Star-polymers

Star polymers [80] interact via a soft interaction given by

βV (r) =
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where f is the arm number and σ is the corona diameter. In this interaction the potential
scales with the temperature, and thus there are only two thermodynamic parameters
relevant in the phase behaviour, the arm number f and the number density. For studying
this system, we changed the volume move in our MC simulation. We only allowed for box
shape moves which keep the overall volume of the system fixed. In order to obey detailed
balance, this was done in the following manner. Two random lattice vectors were chosen,
and from each lattice vector a random component. A random δr was chosen from the
interval [−δrmax, δrmax] and added to one of the lattice vector components, and the other
vector was changed in such a way that the volume remained unchanged. In the case of
star polymers a single Monte Carlo simulation visited a large range of crystal structures,
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shape simulations

and even upon reaching the lowest energy structure, would then transform again. Thus
in this case, for each run we saved the 5 crystal structures with the lowest energy. We
then found the crystal structure with the lowest potential energy and compared it with
results for a genetic algorithm search and found complete agreement [38]. The results are
shown in Table 4.2.

4.3.4 Dipolar hard spheres

We also implemented box shape moves in a system with long-range interactions, i.e., a
system of dipolar hard spheres in an electric field. The interaction potential is given by

βu(r) = (γ/2)(σ/r)3(1− 3 cos(θ)) (4.4)

with γ = 15. The phase behavior of this system has been studied previously [77], and
the three known stable crystal structures are the body-centered-tetragonal (bct), face-
centered-cubic (fcc) and hexagonal-close-packed (hcp) phase. The crystal phases predicted
by our algorithm included bct, fcc, and hcp, and are consistent with previous phase
diagram calculations [77], thereby demonstrating that our method can be applied to
systems with long-range interactions.

4.3.5 Hard asymmetric dumbbells

Figure 4.4: Cartoon of hard asymetric dumbell.

In the case of asymmetric dumbbell particles consisting of a tangent large and small
hard sphere (see Figure 4.4), our method predicts crystal structures that are atomic
analogs of the NaCl, CsCl, γCuTi, CrB, and αIrV when we regard the two individual
spheres of each dumbbell independently. (Cartoons of these strutures are found in Chapter
2). The bonds that connect the dumbbells appear to connect random small-large pairs,
and hence the crystal structures are in fact aperiodic in positional and orientational
order. These results are consistent with the structures found for the AB stoichiometry
structures of the binary hard-sphere mixtures (see Chapter 2). We also point out that
on further studies of the hard asymmetric dumbbells, where we examined the melting
of the crystalline phases, we also observed a rotator phase based on an underlying NaCl
crystal lattice. This appears to be the asymmetric dumbbell analogue of the hopping in
the interstitial solid solution examined in Chapter 5 for binary hard-sphere mixtures.
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Figure 4.5: Cartoon and predicted crystal structures for bowl-like particles.

4.3.6 Hard bowl-like particles
The bowl-like particles are modeled by the solid of rotation of a crescent, where the
thickness of the crescent is denoted by D, the diameter by σ, and the axis of rotation is
defined as u. A cartoon of the particles is shown in Figure 4.5. To predict the crystal
structures, unit cells of 2 to 6 particles were examined. The system was initialized at a
pressure of βpσ3 = 10 and was increased by a factor of 10 each step until a pressure of
βpσ3 = 106 was reached. The resulting structures are shown in Figure 4.5. Subsequent
free-energy calculations showed that four of the six predicted crystal structures are indeed
stable: IB, IX’, IX and fcc2 [81].

4.3.7 Patchy particles
Here we consider a system of patchy particles modeled as hard spheres whose surface
is decorated by 6 bonding sites at fixed locations in a regular geometry [82]. The pair
potential between particles is the sum of an isotropic hard-core repulsion of diameter σ
and a site-site anisotropic attraction. Sites on different particles interact via a square-well
potential of depth ε = 1 and attraction range δ = 0.119σ. Hence, the interaction V (1,2)
between particles 1 and 2 is

V (1,2) = VHS(r12) +
f∑
i=1

f∑
j=1

VSW (rij12) (4.5)

where the individual sites are denoted by i and j, VHS is the hard-sphere potential,
VSW (z) is a square-well interaction (of depth −ε for z ≤ δ, 0 otherwise) and r12 and
rij12 are respectively the vectors joining the particle-particle and the site-site (on different
particles) centers. Two particles are identified as bonded when their pair interaction
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shape simulations

Figure 4.6: A colour version of this figure can be found on page 123. The figure shows the
unit cells of (from left to right, from up to down): the fully bonded SC crystal, the fully bonded
BCT crystal, the fully bonded FCC crystal (all of them with energy per particle e=-3), the HCP
unit cell whose average energy per particle is e = −2.25, and two partially bonded FCC crystals,
with average energy respectively e = −2.5 and e = −2.0. Note that the number of bonds per
particle is indicated by the colour, red for 6 bonds, blue for 5 bonds and turquoise for 4 bonds.

energy is -ǫ. The choice of δ guarantees that each site is engaged at most in one bond.
Each particle can thus form only up to 6 bonds and consequently the average energy per
particle, e, can vary from 0 (system of monomers) down to −3 (fully bonded systems).

We show in Fig. 4.6 the predicted crystal structures: a face-centered-cubic (FCC)
crystal, a hexagonal-close-packed (HCP) structure, a body-centered-tetragonal (BCT)
crystals, and a simple cubic (SC) crystal. Since the number of bonds per particle is well
defined, particles in the snapshots have colours determined by their number of bonds (red
= 6 bonds, blue = 5 bonds, turquoise = 4 bonds), while sticky sites are always coloured
in green. To better visualize the bonded sites, patches of particles not belonging to the
unit cell are represented together with patches of particles belonging to the unit cell.

4.3.8 Hard oblate cylinders

Hard oblate spherocylinders [83, 84] are rounded cylinders with a diameter D and a
thickness L as depicted in Figure 4.7a. For this system, we find the two crystal phases,
Xtilted and Xaligned, depicted in Figure 4.7. In the Xtilted phase the particles are tilted
with respect to each other. Surprisingly, no analog crystal phase exists in the more
conventional model for platelets, i.e. cut spheres [85]. We note that the Xaligned phase is
the analog to the crystal phase seen in cut spheres, where all particles point in the same
direction. The phase diagram for this system is presented in Figure 4.7. Interestingly,
both predicted crystal structures are stable in some region of phase space, specifically,
Xtitled for L/D . 0.46 and Xaligned for larger L/D. It should be noted that this phase
diagram is based on full free-energy calculations, which are examined elsewhere [86].
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Figure 4.7: The phase diagram of hard oblate spherocylinders in the packing fraction (φ) versus
dimensionless thickness (L/D) representation as obtained by free-energy calculations (d), where
the diameter D and thickness L are depicted in (a). The state points in the dark gray area are
inaccessible since they lie above the maximum close packing line. Xaligned and Xtilted, denote
the aligned and tilted crystal structures as shown in (b) and (c), “iso” is the isotropic fluid,
“nem” the nematic phase, and “col” is the columnar phase. The lines are a guide to the eye.
The coexistence packing fractions of the nematic and the columnar phase for L/D = 0 are from
Ref. [87].

4.4 Conclusions

In conclusion, we have presented an algorithm to predict candidate crystal structures at
finite temperature for a wide variety of systems. We have established the reliability of our
method as all the predicted structures are consistent with the literature. In particular,
the binary hard-sphere mixtures, binary Lennard-Jones mixtures, star polymers and long
range dipolar system all yielded crystal structures consistent with literature. Additionally,
we have applied the method to a variety of systems not previously studied in literature,
namely hard asymmetric dumbbells, patchy particles, hard bowl-like particles and hard
oblate cylinders.

We note that the algorithm is extremely simple to implement. We expect this algo-
rithm to be widely applicable in the study of new materials, such as colloidal particles,
nanoparticles, and micelles.
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5

Self-assembly of a colloidal

interstitial solid solution

In this chapter we explore theoretically and experimentally the self-assembly of a purely
entropic interstitial solid solution. Using full free-energy calculations, we calculate the
constant pressure and constant volume phase diagrams for mixtures of hard spheres with
diameters σS and σL for size ratios q = σS/σL = 0.3, 0.4 and 0.42. For these size ra-
tios we find large regions of phase space where an interstitial solid solution is stable.
In particular, we find interstitial solid solutions for which the filling fraction of small
particles is completely tunable from 0-100%, taking the system from a monocomponent
face-centered-cubic to an NaCl crystal structure. We also find regions of stability for a
binary liquid, phase separated monodisperse face-centered-cubic structures of the large
and small particles, and binary crystal phases with AB6 stoichiometry. Additionally, we
examine in detail the diffusion of small particles in the interstitial solid solution arising
in binary hard-sphere mixtures with size ratio q = 0.3. In contrast to most systems, we
find a region where the diffusion of small particles increases as a function of the packing
fraction.
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5.1 Introduction

An interstitial solid solution (ISS) occurs when a random selection of interstitial sites on
a lattice are filled by a different species. In general, ISSs can be found in systems which
obey the Hume-Rothery rules: the solute particles must be smaller than the holes in
the underlying (solvent) lattice and the electronegativity of both the solvent and solute
must be similar. They appear frequently in atomic systems, e.g. crystalline iron is
strengthened by the addition of interstitial carbon atoms yielding steel, and hydrogen
can be dissolved into intermetallic compounds resulting in metal hydrides for hydrogen
storage [88]. However, to the best of our knowledge, a thermodynamically stable ISS
phase has not been reported in colloidal and nanoparticle mixtures.

Hard-core particle mixtures are one of the most important systems for modelling and
understanding phase behaviour in colloidal, nanoparticle and atomic systems. First, while
interactions between nanoparticles and colloids are complicated, arising from e.g. Van der
Waals interactions, steric stabilization, electrostatics, and depletion effects [89], they can
often be minimized such that these particles behave like hard particles (see. e.g. Refs.
[9, 90]). Secondly, the phases found in hard-particle systems are often also present in
weakly interacting systems and, as a result, hard-particle phases are often a good starting
point for studying the phase behaviour in a wide range of systems. And thirdly, even
in the case of strongly interacting systems, the phase behaviour of hard-particle systems
is an extremely useful tool for interpreting the phase behaviour, particularly in helping
dis-entangle effects associated with interactions from effects associated with the hard core.
Hence, the presence of an ISS in a hard-sphere mixture would demonstrate that ISS phases
should be generally considered an important class of crystal structures when interpreting
and predicting phase behaviour in colloidal and nanoparticle systems.

The stability of an NaCl crystal structure in hard-sphere mixtures has been discussed
in a number of papers. Specifically, between size ratios q = σS/σL = 0.3 and 0.45 stable
binary NaCl [15, 28, 51] phases have been reported. An NaCl lattice is constructed by
filling all octahedral holes in an FCC lattice of large particles with small particles (Figure
5.1). Thus, a random, incomplete filling trivially results in an ISS (Figure 5.2). The

Figure 5.1: Cartoons of crystal structures. On the left is a cartoon image of an FCC lattice
and on the right is an FCC lattice with all of the octahedral holes filled by smaller particles
resulting in an NaCl crystal structure. Note that the small particles are not drawn to scale.
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Figure 5.2: Left: A cartoon of an ISS with approximately localized interstitials. Right: A
cartoon of an ISS with mobile interstitials.

stoichiometry of the ISS phase is defined as ABn where n is a fractional number in the
range [0, 1]. We note that n = 0 corresponds to the FCC phase and n = 1 to a perfect
NaCl structure where the small particles are also on an FCC lattice. An ISS phase can
also be constructed by filling some octahedral holes in the monodisperse HCP lattice. In
this case a complete filling yields a NiAs crystal. However, both the monodisperse FCC
and binary NaCl hard-sphere crystal structures have been shown to be favored over the
competing HCP and NiAs phases with free-energy differences on the order of 0.001 kBT
[53, 61] and 0.002 kBT [51] per particle, respectively. Therefore, in this chapter we focus
on the FCC-NaCl based ISSs. We note, however, that free-energy differences on the order
of 0.001 kBT per particle have minimal effect on crystal structures grown in experiments,
and consequentially any ISS seen experimentally would be expected to be a mixture of
both the FCC-NaCl and HCP-NiAs ISSs. Additionally, the continuous crossover between
a perfect FCC crystal, an FCC crystal with interstitial defects, an ISS, an NaCl crystal
with vacancies, and a perfect NaCl crystal makes differentiation between an ISS and a
defective solid unclear (subjective). Thus, in this chapter, any structure in the crossover
regime will be called an ISS. We point out here that experimentally, the presence of
interstitials in the holes of the FCC lattice can stem from two main causes: (i) a lowering
of the free energy of the system due to the addition of the interstitials resulting in a
thermodynamically stable ISS phase, or (ii) thermodynamically unstable phases caused
by a kinetic trapping of the system. While these two effects are often difficult to distinguish
experimentally, theoretically, full free-energy calculations can demonstrate conclusively if
there are thermodynamically stable ISS phases present, and the stoichiometry of such
phases.

In this chapter we focus on the phase behaviour found in a binary mixture of large
and small hard spheres with diameters σL and σS respectively, and with size ratios q =
σS/σL = 0.3, 0.4 and 0.42. This chapter is organized as follows. In section 5.2 we calculate
the equilibrium phase diagrams, in section 5.3 we discuss the diffusion in a hard-sphere
ISS of size ratio q = 0.3, in section 5.4 we demonstrate an experimental realization of
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an interstitial solid solution, and in sections 5.5 and 5.6 we present a discussion and our
conclusions.

5.2 Phase stability of an interstitial solid solution

In this section we examine the equilibrium phase behaviour for binary hard-sphere mix-
tures with size ratios q = 0.3, 0.40 and 0.42. Using the method discussed in Chapter 4,
we predict candidate binary crystal structures for this mixture where both species exhibit
long-range crystalline order. We find NaCl, NiAs, and, for size ratio q = 0.3, a superlat-
tice structure with AB6 stoichiometry where A (B) represents the large (small) particles.
A cartoon of the AB6 structure is depicted in Figure 5.3.

Figure 5.3: Unit cell of the binary AB6 superlattice structure described in this chapter. Note
that both species exhibit long-range crystalline order. The unit cell is based on a body-centered-
cubic unit cell of the large particles in contrast to the face-centered-cubic unit cell associated
with the interstitial solid solution phase discussed in this chapter.

5.2.1 Phase diagram calculations

To calculate the phase diagrams for binary mixtures of size ratios 0.3, 0.4, and 0.42, we
use common tangent constructions to the Gibbs free energies. Specifically we examine the
stability of the binary hard-sphere liquid phase, monodisperse FCC crystals of the large
and small spheres, the binary NaCl crystal structure, the ISS phase as shown in Figure
5.2 and, for size ratio q = 0.3, the AB6 binary crystal shown in Figure 5.3. The Gibbs
free energies of the monodisperse FCC crystal structures as well as the binary hard-sphere
fluid are taken from analytic expressions [59, 60]. For the purpose of the common tangent
construction, it is useful to fit the Gibss free energy of the liquid at constant pressure as
a function of the composition to a simpler function. The Gibbs free energy of the binary
fluid fits extremely well to the function

βG(xS)

N
= b1xS log(xS) + b2(1− xS)log(1− xS) +

M
∑

i=1

aix
i
S (5.1)
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Figure 5.4: Gibbs free energy (g = βG/N) per particle as a function of concentration for
the binary fluid phase, and the ISS phase at a reduced pressure of βPσ3 = 50. A linear shift
f(x) = ax has been subtracted from the free energies to aid in the visualization of the common
tangent construction. The open circles are data points from the thermodynamic integration for
the ISS and the line is the corresponding fit. The solid data points come from the analytic
expression for the free energy of the binary fluid, and the line is the associated fit. The dashed
line is the common tangent construction. Note that this plot demonstrates the coexistence
between the binary fluid at x ≈ 0.9 and the ISS with a composition x ≈ 0.4.

where xS = NS/(NL+Ns) is the concentration of small particles,M is an integer between
3 and 6, and ai and bi are fitting parameters.

The Helmholtz free energies of the binary crystal structures are calculated using the
Frenkel and Ladd thermodynamic integration method [18, 21, 61]. This method is dis-
cussed in detail in Chapter 3. In this method an Einstein crystal is used as the reference
system and the particles are attached to their lattice positions using harmonic springs.
The thermodynamic integration described by Frenkel-Ladd involves integrating over the
associated spring constant. To preform such integrals, we apply Monte Carlo NV T simu-
lations. Once the Helmholtz free energy (F ) at a reference packing fraction ηr is known,
the Gibbs free energy at any packing fraction can then be determined using

βG(η)

N
=
βF (ηr)

N
+
βP (η)V

N
+ βζ

∫ η

ηr

P (η′)

(η′)2
dη′. (5.2)

with

ζ =
π

6
σ3
L[(1− xS) + xSq

3] (5.3)

and where P (η) is calculated using a simple NPT Monte Carlo simulation. Note that ζ
is the proportionality constant between the packing fraction and the number density (ρ),
i.e. η = ζN/V .

To calculate the Helmholtz free energy of the interstitial solid solution, we use the
method described in Ref. [14]. In this case, we apply thermodynamic integration and
integrate over the fugacity zS = exp(βµS)/Λ

3
S of the small particles. Note that ΛS is the
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de Broglie wavelength of the small particles. The reference system is the FCC crystal of
large particles.

If NL is the number of particles in the underlying FCC lattice of large particles, V is
the volume of the system and zS is the fugacity of the small particles, the free energy of
the system in the NLV zST ensemble, which we denote F z, is then given by

βF z (NL, V, zS) = βF z (NL, V, zS = 0)

+
∫ zS

0
dz′S

(

∂βF z (NL, V, z
′
S)

∂z′S

)

, (5.4)

where
(

∂βF z (NL, V, z
′
S)

∂z′S

)

= −
< NS >z′

S

z′S
. (5.5)

Applying a Legendre transform, the free energy in the N1N2V T ensemble can then be
written

F (NL, NS, V, T ) = F z(NL, V, zS, T ) + µSNS, (5.6)

where µS is the chemical potential of the small particles and NS is the number of small
particles. Monte Carlo simulations in the NLµSV T ensemble are used to determine the
average number of small particles as a function µS. Again the Gibbs free energy is
determined using Eq. 5.2, however, in this case, we use a slightly modified NSNLPT
Monte Carlo simulation to determine the equation of state. In addition to the typical
particle and volume moves, we include trial moves in which a small particle is completely
removed from the simulation box and placed at a new random position. The acceptance
rule for such a move is the same as for a normal particle move. This move is included to
average over the disorder of the small particles in the ISS. The equations of states for the
solid NaCl phase, as well as the ISS phases for size ratios 0.3 and 0.4, are fit using the
expression

βPV

N
=

M
∑

i=−1

ai

(

ηmax
η
− 1

)i

(5.7)

where M is an integer between 3 and 7 and chosen for the best fit, η is the packing
fraction, and ηmax is the maximum packing fraction possible for the given structure. For
the ISS with size ratios 0.3 and 0.4, the maximum possible packing fraction is given by

ηmax =
π
√

2

6
(1 + xSq

3/(1− xS)). (5.8)

In the case of the ISS for size ratios 0.42, the same fitting function is used, however, ηmax
is also treated as a fitting parameter. The Gibbs free energy at constant pressure as a
function of concentration for the ISS is fit to the function

βG(xS)

N
= b1xS log(xS) +

M
∑

i=1

aix
i
S (5.9)

where M is an integer between 3 and 6.
A sample of the Gibbs free energies for the competing phases, as well as the common

tangent construction is shown in Figure 5.4 for size ratio q = 0.3 and a reduced pressure
βPσ3 = 50.
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5.2.2 Phase diagrams for q = 0.3, 0.4 and 0.42

The phase diagrams in the pressure-composition (p-xS) and small particle volume fraction-
large particle volume fraction (ηS − ηL) representations for size ratios q = 0.3, 0.4 and
0.42 are shown in Figures 5.5, 5.6 and 5.7 respectively. Note that p = βPσ3

L is the
reduced pressure, xS = NS/(NS +NL), NS(L) is the number of small (large) hard spheres,
ηS(L) = πσ3

S(L)/6V is the small (large) sphere volume fraction, β = 1/kBT , kB is the
Boltzmann constant, T is the absolute temperature, and V is the volume. From Figures
5.5, 5.6 and 5.7 we see that there is a large region of phase space where the ISS phase is
stable. Additionally, the inset in Figures 5.5 demonstrates how the filling of the octahedral
holes with small particles in the coexisting ISS increases as a function of pressure, slowly
approaching the 100% filling of NaCl. Note that for size ratio q = 0.3 the AB6 phase is
also stable.

5.3 Diffusion of small particles in an interstitial solid

solution with size ratio q = 0.3

We examined the mobility of the small particles using event driven MD simulations. The
event driven code employed an optimised version of the algorithm described by Alder
and Wainwright [91]. The large particles had a mass mL and small particles had a mass

mS = mL∗σ3
S/σ

3
L. The time was measured in units of σL

√

mL/(kBT ). The initial velocities
were drawn randomly from a Maxwell-Boltzmann distribution.

A typical trajectory taken by a single small particle determined in event driven MD
simulation is shown in Figure 5.8. Clearly, the particles spend most of their time in the
octahedral holes of the lattice. However, the particles do not hop directly between the
octahedral holes but rather hop via a neighbouring tetrahedral hole in the FCC lattice.
This process is also depicted in Figure 5.8. We point out that the tetrahedral holes are
significantly smaller than the octahedral holes, 0.225σL in comparison to 0.414σL at close
packing.

At close packing of the underlying FCC crystal, the interstitials are prevented from
moving between neighbouring holes by the presence of the large particles. However, at
lower pressures due to larger lattice constants in combination with the motion of particles
around their lattice sites (including phonons), the small particles can travel between the

octahedral holes. The mean square displacement 〈(∆rS(t))2〉 =
〈

(rS(t)− rS(0))2
〉

of the
small particles displays a subdiffusive regime which increases as the number density of the
large particles ρLσ

3
L increases. Here rS(t) denotes the small particle coordinate at time

t. In Figure 5.9 we show this subdiffusive regime for an ISS with stoichiometry n = 0.5
and varying ρLσ

3
L. From the mean square displacement we can determine the long-time

diffusion coefficient. In Figure 5.10 we plot the long-time diffusion coefficient of the small
particles as i) a function of pressure and ii) a function of number density of the large
particles ρLσ

3
L, for various stoichiometries n of the ISS. In the phase diagrams in Figure

5.5 the grey line corresponds to an isodiffusion line with D
√
βmL/σL=0.05 for the small

particles, wheremL is the mass of the large colloid. This line indicates approximately when
the small particles become mobile (see Figure 5.5). Surprisingly we find that the diffusion
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Figure 5.5: Phase diagrams for binary hard-sphere mixtures with size ratio q =0.3. Top:
Phase diagram of a binary hard-sphere mixture in the composition xs = NS/(NS+NL)-reduced
pressure p = βPσ3 plane. The interstitial solid solution is denoted by ISS, FCC(S) denotes a
face-centered cubic crystal of the small spheres. The tie lines that connect the coexisting phases
are horizontal in this representation. The grey (green in colour) line indicates an isodiffusion
line for the small particles with D

√
βmL/σL=0.05 corresponding approximately to the point

where the fluid of small particles in the ISS crystal solidifies. This line is only an approximation
as for all finite pressures the particles can move around on a long time scale. It should be noted
that this line is not horizontal inside the ISS regime and the isodiffusion line increases slightly
as a function of the concentration. Inside the coexistence area the line is horizontal. Inset: The
filling fraction, i.e. stoichiometry n, of the octahedral holes with small spheres of the coexisting
ISS phase as a function of the pressure. Bottom: Corresponding phase diagram in the ηS-ηL
representation.
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Figure 5.8: Single small particle hopping. On the left is the trajectory of a single particle for
a volume fraction of the large particles ηL = 0.6. Note that none of the lines connecting the
lattice sites are either vertical or horizontal indicating that the small particle does not take the
direct route between neighbouring holes, but rather hops first to a tetrahedral hole, and then to
an octahedral hole. A cartoon demonstrating this process is shown on the right.
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Figure 5.9: Caging of small particles in an interstitial solid solution. Using event driven MD
simulations with NL = 256 large particles and stoichiometry n = 0.5 we measured the mean
square deviation

〈

∆r2S
〉

=
〈

(rS(t)− rS(0))2
〉

of the small particles as a function of time for
various number densities of the large particles ρL. Note that rS(t) denotes the small particle
coordinate at time t. Here we plot the

〈

∆rS(t)2
〉

vs time (in MD units) on a log-log scale. As
ρL increases the subdiffusive regime also increases.
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Figure 5.10: Long-time diffusion coefficient D∗ = D
√
βmL/σL of small particles in an inter-

stitial solid solution. Left: Long-time diffusion coefficient D∗ = D
√
βmL/σL as a function of the

reduced pressure p = βPσ3 for various interstitial solid solution stoichiometries. The diffusion
coefficient D∗ was obtained from mean square displacement

〈

∆r2S(t)
〉

=
〈

(rS(t)− rS(0))2
〉

cal-
culations using event driven MD simulations (see Figure 5.9). Note that rS(t) denotes the small
particle coordinate at time t. The dashed black line corresponds to D∗ = D

√
βmL/σL = 0.05

indicating approximately the crossover from mobile interstitials to frozen interstitials. Right:
Long-time diffusion coefficient D∗ as a function of the number density of large particles (ρLσ

3
L)

for various interstitial solid solution stoichiometries n. Note that the diffusion coefficient in-
creases with stoichiometry n.

coefficient increases as we increase the ISS stoichiometry if we keep ρLσ
3
L fixed. This is in

contrast to most systems where the diffusion constant decreases with density; in general
as the density increases the available space in the system decreases leaving less room for
particles to move resulting in a lower diffusion constant. To explore possible explanations
for this behaviour we determined the attractive depletion potential experienced by the
large particles due to the presence of the small particles. As shown in Figure 5.11, the
depth of this depletion potential increases as the chemical potential of small particles
increases. As a result, the mean square deviation of the large particles from their ideal
lattice sites increases (Figure 5.12) thereby making more space for the small particles to
diffuse. As a consequence, the free-energy barrier heights decrease with stoichiometry n
of the ISS as shown in Figure 5.13 which explains the increase in the long-time diffusion
coefficient of the small particles with increasing n as shown in Figure 5.10.

Note that the free-energy barriers were determined by mapping each small particle
coordinate to the closest position on the line connecting the ideal lattice positions of an
octahedral hole with a tetragonal hole and then determining the normalized probability
(P (x)) of finding a small particle at position x along that line. The free-energy barrier is
then given by βU(x) = − logP (x) (see e.g. Ref. [93]).
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Figure 5.11: Depletion potential for various ISS stoichiometries n = 0.004, 0.04, 0.19 and
0.56 with ρL = 1.2 corresponding to bulk chemical potentials of the small particles βµS =
−2.48, 1.34, 3.24, 4.97, 5.70 and 6.38. The depletion potential was determined using an expression
taken from Ref. [92]. Note that depth of the depletion interaction increases from 0 kBT to 1.4
kBT as n increases from 0.004 to 0.56.

Figure 5.12: Mean square deviation of large particles from their ideal lattice sites as a
function of ISS stoichiometry n for large particle number densities ρL as labelled. The mean

square deviations, < ∆rL(t) >=
〈

(rL(t)− rid
L )2

〉

with rid
L the ideal lattice positions of the large

particles, were determined using an Monte Carlo simulation with NL = 864 large particles and
correcting for the center of mass motion of the large particles.
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Figure 5.13: Free-energy barriers in an interstitial solid solution felt by small particles hopping
from an octahedral hole to a tetragonal hole and back to an octahedral hole at number densities of
the large particles of ρLσ = 1.1 (left) and ρLσ = 1.2 (right). The barriers have been determined
for a range of small particle compositions, xS = NS/(NL +NS) where NS(L) is the number of
small (large) particles respectively. Note that the height of the free energy barriers decreases as
a function of xS .

5.4 Experimental realization of an interstitial solid

solution

The structural and thermodynamic properties of a system under gravity at a certain
height are identical to those of a bulk system at the corresponding pressure. Therefore,
sedimentation experiments are often used in scanning the properties of a system over large
pressure ranges in just a single experiment [94, 95]. As an illustration of the experimental
accessibility of the ISS phase, we performed sedimentation experiments using core-shell
silica colloids. The experiments were performed with large 1.4 µm core shell silica colloids.
The core was dyed with fluorescein isothiocyanate (FITC) and the core diameter was 0.4
µm [96]. The small colloids had a rhodamine isothiocyanate (RITC) dyed core with a
diameter of 0.37 µm and a total diameter of 0.42 µm [51]. The large colloids had a
polydispersity of 2% and the small colloids a polydispersity of 7%. The solvent was an
index matched mixture of 80% (volume percent) dimethylsulfoxide (DMSO) and water.
The size of the domains was increased using an AC electric field of 100 V /mm which was
turned off after the particles had sedimented.

Typical snapshots obtained by confocal microscopy from various samples are shown in
Figure 5.14. The confocal images depict experimental realizations of ISSs for stoichiome-
tries of approximately n ≃ 0.1, 0.3 and 0.8. The stoichiometry of small particles decreases
as a function of height in the sample as shown in Figure 5.15. This is in qualitative agree-
ment with the phase diagram (Figure 5.5) which predicts an increasing concentration of
small particles with pressure. The confocal images and height profile demonstrate not
only the existence of the ISS in this system, but the large range over which the filling of
the ISS can be tuned. Furthermore, in examining the motion of the small particles using
confocal microscopy, we noted some small particles near the top of the sample moving



5.4 Experimental realization of an interstitial solid solution 63

a

b

c

Figure 5.14: Colour version on page 124. Confocal images of an interstitial solid solution
with size ratio q = 0.3 for various stoichometries. The labels a, b, and c correspond to confocal
images of the ISS with n ≃ 0.1, 0.3 and 0.8, respectively. In these images two (111) planes of the
crystal, one consisting of mostly small (red) particles with the other consisting of mostly large
(green) particles have been overlayed in order to be viewable in the same figure. The larger and
darker red regions correspond to defects, such as vacancies, in the underlying lattice of green
particles which have been filled by many small (red) particles. Scalebars are 10 µm.
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Figure 5.15: Experimental and theoretical density profiles of small and large particles as a
function of height in the sample. Left: For z >25 µm, the experimental density profiles show
pronounced layering of the fluid of large spheres, while for z <25 µm an interstitial solid solution
is seen. Note that the peaks of the solid lines are always found between dashed peaks indicating
the small and large particles are in different layers. Right: Theoretical number density profiles
determined using event driven MD simulations. The time is as indicated and is measured in MD
units (σL

√
βmL). The number density of the large particles is shifted up by 3 for clarity. Note

that the layered structure forming in time agrees well with the experimental density profile.

between interstitial lattice sites. Near the bottom of the sample, this was not observed.

5.5 Discussion
The phase behaviour of this system can be examined in the context of previous exper-
imental and theoretical studies of binary hard-sphere mixtures. In an attempt to grow
NaCl crystals, Vermolen et al. examined various methods for producing binary NaCl
hard-sphere crystals including gravitational and electric fields, epitaxial templates, and
dielectrophoretic compression from a binary mixture with relative size ratio 0.3 [51]. How-
ever the crystal structures they found all included a significant number of vacancies of
the small colloids (>10%). This result is in keeping with the phase behaviour observed in
Figure 5.5. Hunt et al. also examined binary hard-sphere mixtures of particles with size
ratio 0.39 and 0.42 and reported the presence of NaCl [28]. However, from their presented
results it is impossible to distinguish between an ISS and an NaCl crystal. On the theoret-
ical side, the closest size ratios examined in literature using full free-energy calculations,
are the phase diagrams presented for binary hard-sphere mixtures with q = 0.2 [14] and
0.414 [15]. For q = 0.2, the phase behaviour is expected to be significantly different than
that for q = 0.3 as the small particles can fit in both the tetragonal and octahedral holes.
However, the phase behaviour for a binary hard-sphere mixture with q = 0.414 is likely to
be qualitatively the same as that of q = 0.40. In both cases, the smaller particles both fit
and are restricted to reside in the octahedral holes. MD snapshots included in Ref. [15]
for the q = 0.414 mixture show a coexistence between a solid and fluid phase which the
authors identified as a monodisperse FCC phase and a binary liquid phase. However, the
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Figure 5.16: Colour version on page 125. Typical confocal image of the ISS structure found
in a binary system of oppositely charged PMMA particles with size ratio σS/σL=0.73 dispersed
in a mixture of 23.7 wt% cis-decahydron aphthalene and 76.3 w% cyclohexylbromide. The large
(green) and small (red) particles have a diameter 1.88 µm (polydispersity 3 %) and 1.37 µm
(polydispersity 5 %) respectively. The overall packing fraction was η = 0.2. The large particles
mutually repel each other and formed a crystal lattice. The small particles were found on random
positions in between the lattice. See Figure 5.17 for more details.

FCC phase depicted in their snapshots contains some small particles, and is more likely
an ISS phase. To summarize, the NaCl phases previously identified experimentally [51]
and theoretically [15] were most likely ISSs. It is, however, impossible to determine the
identity of the phase from Ref. [28].

5.6 Conclusion

In conclusion, we present a simple model system for the study of ISSs. We show, with
simulations and experiments, the self-assembly of a binary hard-sphere mixture into an
ISS phase. We emphasize that the concentration of small particles in the ISS phase is
completely tunable from a monodisperse FCC lattice to a binary NaCl lattice. We point
out that this phase has likely been seen and was not recognized in previous experimental
and theoretical work (e.g. Refs. [15, 51]). Additionally, we remark that there are a
vast number of other colloidal and nanoparticle systems which may form an ISS phase. In
particular we have found an FCC-based ISS phase in binary mixtures of oppositely charged
colloids (Figures 5.16 and 5.17). However, we would also expect some binary mixtures
of charged colloids to form body-centered-cubic (BCC) based ISSs in charged systems
since the BCC lattice is also stable for monodisperse particles interacting via a Yukawa
potential. Hence ISS phases should be considered an important class of crystal structures
in interpreting and predicting the phase behaviour seen in colloidal and nanoparticle
mixtures. In this work we have examined the diffusion of the small particles; this can
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Figure 5.17: Colour version on page 126. 3-D reconstruction of an interstitial solid solution in
a binary mixture of oppositely charged colloids. Left: Rendered 3-D reconstruction from a stack
of 244 confocal images with a spacing of 0.25 µm between them corresponding to the system
described in Figure 5.16. We identified a face-centred-cubic lattice of the mutually repelling
large particles with a lattice parameter for the cubic unit cell of a ≈ 3.8 µm. In the lower part
of the sample an ISS was formed with a fluid on top of it. Whereas the large particles do not
touch each other, the small particles were found to stick to one or more large particles in the
lattice. This, in addition to the observation that the small particles do not appear to occupy
a position on the lattice of the large particles demonstrates that the large and small particles
were oppositely charged. Right: The same 3-D reconstruction showing only the small particles
in the fluid (top) and the ISS (below). We note that in sequential confocal images, some of the
small particles were observed hopping from one interstitial site to another.

easily be extended to examine the interaction between any number of equilibrium defects
in a crystal, stress fields induced in entropic systems due to defects, binary nucleation
of ISSs, and the effect that interstitials have on the photonic and phononic properties of
materials. For instance, intriguing photonic colour tuning has been achieved by interstitial
doping with absorbing nanoparticles in an FCC photonic crystal [97].

5.7 Acknowledgements

I would like to thank M. Hermes for the experimental results on hard spheres presented in
this chapter and J. Hoogenboom and C. Graf for particle synthesis. T. Vissers and J.C.P.
Stiefelhagen are thanked for their work on the oppositely charged particles. Additionally,
I would like to thank F. Smallenburg and M. Marechal for many fruitful discussions.



6

Crystal nucleation of hard spheres:

A numerical study

Over the last number of years several simulation methods have been introduced to study
rare events such as nucleation. In this chapter we examine the crystal nucleation rate
of hard spheres using three such numerical techniques: molecular dynamics, forward flux
sampling and a Bennett-Chandler type theory where the nucleation barrier is determined
using umbrella sampling simulations. The resulting nucleation rates are compared with
the experimental rates of Harland and Van Megen [J. L. Harland and W. van Megen,
Phys. Rev. E 55, 3054 (1997)], Sinn et al. [C. Sinn et al., Prog. Colloid Polym.
Sci. 118, 266 (2001)] and Schätzel and Ackerson [K. Schätzel and B.J. Ackerson, Phys.
Rev. E, 48, 3766 (1993)] and the predicted rates for monodisperse and 5% polydisperse
hard spheres of Auer and Frenkel [S. Auer and D. Frenkel, Nature 409, 1020 (2001)].
When the rates are examined in long-time diffusion units, we find agreement between
all the theoretically predicted nucleation rates, however, the experimental results display
a markedly different behaviour for low supersaturation. Additionally, we examined the
pre-critical nuclei arising in the molecular dynamics, forward flux sampling, and umbrella
sampling simulations. The structure of the nuclei appear independent of the simulation
method, and in all cases, the nuclei contain on average significantly more face-centered-
cubic ordered particles than hexagonal-close-packed ordered particles.
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6.1 Introduction

Nucleation processes are ubiquitous in both natural and artificially-synthesized systems.
However, the occurrence of a nucleation event is often rare and difficult to examine both
experimentally and theoretically.

Colloidal systems are almost ideal model systems for studying nucleation phenomena.
Nucleation and the proceeding crystallization in such systems often take place on exper-
imentally accessible time scales, and due to the size of the particles, they are accessible
to a wide variety of scattering and imaging techniques, such as (confocal) microscopy
[98], holography [99], and light and x-ray scattering. Additionally, progress in particle
synthesis [8], solvent manipulation, and the application of external fields [9] allows for
significant control over the interparticle interactions, allowing for the study of a large
variety of nucleation processes.

One such colloidal system is the experimental realization of “hard” spheres comprised
of sterically stabilized polymethylmethacrylate (PMMA) particles suspended in a liquid
mixture of decaline and carbon disulfide [100]. Experimentally, the phase behaviour of
such a system has been examined by Pusey and Van Megen [90] and maps well onto
the phase behaviour predicted for hard spheres. Specifically, when the effective volume
fraction of their system is scaled to reproduce the freezing volume fraction of hard spheres
(η = 0.495) the resulting melting volume fraction is η = 0.545 ± 0.003 [90] which is in
good agreement with that predicted for hard spheres [12]. The nucleation rates have
been measured using light scattering by Harland and Van Megen [100], Sinn et al. [101],
Schätzel and Ackerson [102] and predicted theoretically by Auer and Frenkel [103].

On the theoretical side, hard-sphere systems are one of the simplest systems which can
be applied to the study of colloidal and nanoparticle systems, and generally, towards the
nucleation process itself. As such, it is an ideal system to examine various computational
methods for studying nucleation, and comparing the results with experimental data. Such
methods include, but are not limited to, molecular dynamics (MD) simulations, umbrella
sampling (US), forward flux sampling (FFS), and transition path sampling (TPS). It is
worth noting here that Auer and Frenkel [103] used umbrella sampling simulations to
study crystal nucleation of hard spheres and found a significant difference between their
predicted rates and the experimental rates of Refs. [100–102]. However, it was unclear
where this difference originated. In this chapter we compare the nucleation rates for the
hard-sphere system from MD, US and FFS simulations with the experimental results of
Refs. [100–102]. We demonstrate that the three simulation techniques are consistent
in their prediction of the nucleation rates, despite the fact that they treat the dynamics
differently. Thus we conclude that the difference between the experimental and theoretical
nucleation rates identified by Auer and Frenkel is not due to the simulation method.

A nucleation event occurs when a statistical fluctuation in a supersaturated liquid
results in the formation of a crystal nucleus large enough to grow out and continue crys-
tallizing the surrounding fluid. In general, small crystal nuclei are continuously being
formed and melting back in a liquid. However, while most of these small nuclei will
quickly melt, in a supersaturated liquid a fraction of these nuclei will grow out. Classical
nucleation theory (CNT) is the simplest theory available for describing this process. In
CNT it is assumed that the free-energy for making a small nucleus is given by a sur-
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face free-energy cost which is proportional to the surface area of the nucleus and a bulk
free-energy gain proportional to its volume. More specifically, according to CNT the
Gibbs free-energy difference between a homogeneous bulk fluid and a system containing
a spherical nucleus of radius R is given by

∆G(R) = 4πγR2 − 4

3
π |∆µ| ρsR3 (6.1)

where |∆µ| is the difference in chemical potential between the fluid and solid phases, ρs
is the density of the solid, and γ is the interfacial free-energy density of the fluid-solid
interface. This free-energy difference is usually referred to as the nucleation barrier. From
this expression, the radius of the critical cluster is found to be

R∗ = 2γ/ |∆µ| ρs

and the barrier height is
∆G∗ = 16πγ3/3ρ2s |∆µ|2

.
Umbrella sampling [104, 105] is a method to examine the nucleation process from

which the nucleation barrier is easily obtained. The predicted barrier can then be used
in combination with kinetic Monte Carlo (KMC) or MD simulations to determine the
nucleation rate [103]. In US an order parameter for the system is chosen and configuration
averages for sequential values of the order parameter are taken. In order to facilitate such
averaging, the system is biased towards particular regions in configuration space. The
success of the method is expected to depend largely on the choice of order parameter
and biasing potential (see e.g. [106]). Note that the free-energy barrier is only defined in
equilibrium, and thus is only applicable to systems which are in (quasi-) equilibrium.

Forward flux sampling [107–109] is a method of studying rare events, such as nucle-
ation, in both equilibrium and non-equilibrium systems. Using FFS, the transition rate
constants (e.g. the nucleation rate) for rare events can be determined when brute force
simulations are difficult or even not possible. In FFS, a reaction coordinate Q (similar to
the order parameter in US) is introduced which follows the rare event. The transition rate
between phase A and B is then expressed as a product of the flux (ΦAλ0) of trajectories
crossing the A state boundary, typically denoted λ0, and the probability (P (λB|λ0)) that
a trajectory which has crossed this boundary will reach state B before returning to state
A. Thus the transition rate constant is written as

kAB = ΦAλ0P (λB|λ0). (6.2)

Forward flux sampling facilitates the calculation of probability P (λB|λ0) by breaking it
up into a set of probabilities between sequential values of the reaction coordinate. Little
information regarding the details of the nucleation process is required in advance, and the
choice of reaction coordinate is expected to be less important than the order parameter in
US. Additionally, unlike US, FFS utilizes dynamical simulations and hence this technique
does not assume that the system is in (quasi-)equilibrium.

Molecular dynamics and Brownian dynamics (BD) simulations are ideal for studying
the time evolution of systems, and, when possible, they are the natural technique to
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η βpσ3 β |∆µ| ρsσ
3

0.5214 15.0 0.34 1.107
0.5284 16.0 0.44 1.122
0.5316 16.4 0.48 1.128
0.5348 16.9 0.53 1.135
0.5352 17.0 0.54 1.136
0.5381 17.5 0.58 1.142
0.5414 18.0 0.63 1.148
0.5478 19.1 0.74 1.161
0.5572 20.8 0.90 1.178

Table 6.1: Packing fraction (η = πσ3N/6V ) , reduced pressure (βpσ3), reduced chemical
potential difference between the fluid and solid phases( β |∆µ|) and reduced number density of
the solid phase ρs of the state points studied in this chapter. The chemical potential difference
was determined using thermodynamic integration [20], and the equations of state for the fluid
and solid are from Refs. [60, 111] respectively.

study dynamical processes such as nucleation. Unfortunately, available computational
time often limits the types of systems which can be effectively studied by these dynamical
techniques. Brownian dynamics simulations, which would be the natural choice to use for
colloidal systems, are very slow due to the small time steps required to handle the steep
potential used to approximate the hard-sphere potential. Event driven MD simulations
are much more efficient to simulate hard spheres and enable us to study spontaneous
nucleation of hard-sphere mixtures over a range of volume fractions. The main difference
between the two simulation methods regards how they treat the short-time motion of the
particles. Fortunately, the nucleation rate is only dependent on the long-time dynamics
which are not sensitive to the details of the short-time dynamics of the system [110].

In this chapter we study in detail the application of US and FFS techniques to crystal
nucleation of hard spheres, and predict the associated nucleation rates. Combining these
nucleation rates with results from MD simulations, we make predictions for the nucleation
rates over a wide range of packing fractions η = 0.5214−0.5572, with corresponding pres-
sures and supersaturations shown in Table 6.1. We compare these theoretical nucleation
rates with the rates measured experimentally by Refs. [100–102].

This chapter is organized as follows: in section 6.2 we discuss the model, in section
6.3 we describe and examine the order parameter used to distinguish between solid- and
fluid-like particles throughout this chapter, in section 6.4 we calculate essentially the
“exact” nucleation rates using MD simulations, in sections 6.5 and 6.6 we calculate the
nucleation rates of hard spheres using US and FFS respectively, and discuss difficulties in
the application of these techniques, in section 6.7 we summarize the theoretical results and
compare the predicted nucleation rates with the measured experimental rates of Harland
and Van Megen [100], Sinn et al. [101], and Schätzel and Ackerson [102] and section 6.8
contains our conclusions.
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6.2 Model

In this chapter we examine the nucleation rate between spheres with diameter σ which
interact via a hard-sphere pair potential given by

βUHS(rij) =

{

0 rij ≥ σ
∞ rij < σ.

(6.3)

where rij is the center-to-center distance between particles i and j and β = 1/kBT with
kB Boltzmann’s constant and T the temperature. This is in contrast to several studies on
“hard” spheres where the hard sphere potential is approximated by a slightly soft potential
(e.g. Refs. [112, 113]) so that Brownian dynamics simulations or traditional molecular
dynamics simulations (i.e. molecular dynamics which is not event driven), which require
a continuous potential, can be used. We would like to emphasize this distinction here
as the hardness of the interaction has previously been shown to play a significant role in
nucleation rates [114, 115]. This point will be further explored in Chapter 8.

6.3 Order parameter

In this chapter, an order parameter is used to differentiate between liquid-like and solid-
like particles and a cluster algorithm is used to identify the solid clusters. For this study
we have chosen to use the local bond-order parameter introduced by Ten Wolde et al.

[116, 117] in the study of crystal nucleation in a Lennard-Jones system. This order
parameter has been used in many crystal nucleation studies, including a previous study
of hard-sphere nucleation by Auer and Frenkel [103].

In the calculation of the local bond order parameter a list of “neighbours” is determined
for each particle. The neighbours of particle i include all particles within a radial distance
rc of particle i, and the total number of neighbours is denoted Nb(i). A bond orientational
order parameter ql,m(i) for each particle is then defined as

ql,m(i) =
1

Nb(i)

Nb(i)
∑

j=1

Yl,m(θi,j, φi,j), (6.4)

where Yl,m(θ, φ) are the spherical harmonics, m ∈ [−l, l] and θi,j and φi,j are the polar and
azimuthal angles of the center-of-mass distance vector rij = rj − ri with ri the position
vector of particle i. Solid-like particles are identified as particles for which the number of
connections per particle ξ(i) is at least ξc and where

ξ(i) =
Nb(i)
∑

j=1

H(dl(i, j)− dc), (6.5)

H is the Heaviside step function, dc is the dot-product cutoff, and

dl(i, j) =

l
∑

m=−l

ql,m(i)q∗l,m(j)





l
∑

m=−l

|ql,m(i)|2




1/2



l
∑

m=−l

|ql,m(j)|2




1/2
. (6.6)
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Figure 6.1: Colour version on page 127. Top: A typical configuration of an equilibrated
random-hexagonal-close-packed (RHCP) crystal in coexistence with an equilibrated fluid. The
crystalline particles are labelled according to three different crystallinity criteria: the red par-
ticles have between ξ = 5 and 6 crystalline bonds, the green particles have between ξ = 7 and
8 crystalline bonds and the blue particles have ξ ≥ 9 or more crystalline bonds. The fluid-like
particles (ξ < 5) are denoted by dots. Bottom: The density profile of particles with a minimum
number of neighbours ξ as labelled. Note that the dips in the density profile correspond to
HCP stacked layers. This implies that near the interface, the order parameter is slightly more
sensitive to FCC ordered particles than to HCP ordered particles.

A cluster contains all solid-like particles which have a solid-like neighbour in the same
cluster. Thus each particle can be a member of only a single cluster.

The parameters contained in this algorithm include the neighbour cutoff rc, the dot-
product cutoff dc, the critical value for the number of solid-like neighbours ξc, and the
symmetry index for the bond orientational order parameter l. The solid nucleus of a
hard-sphere crystal is expected to have random hexagonal order, thus the symmetry
index is chosen to be 6 in all cases in this study. Note that this order parameter does not
distinguish between FCC and HCP ordered particles.

To investigate the effect of the choice of ξc, we examined the number of correlated bonds
per particle at the liquid-solid interface. To this end, we constructed a configuration in
the coexistence region in an elongated box by attaching a box containing an equilibrated
random-hexagonal-close-packed (RHCP) crystal to a box containing an equilibrated fluid.



6.4 Molecular dynamics 73

Note that the RHCP crystal was placed in the box such that the hexagonal layers were
parallel to the interface. The new box was then equilibrated in an NPT MC simulation.
We then examined the density profile of solid-like particles as determined by our order
parameter using rc = 1.4σ, dc = 0.7 and ξc = 5, 7 and 9. As shown in Figure 6.1, for all
values of ξc that we examined the order parameter appears to consistently identify the
particles belonging to the bulk fluid and solid regions. For comparison we also show a
typical configuration of the RHCP crystal in coexistence with the fluid phase. The solid-
like particles, as defined by the order parameter, are labelled according to the number
of solid-like neighbours while the fluid-like particles are denoted by dots. The main
difference between these order parameters relates to distinguishing between fluid- and
solid-like particles at the fluid-solid interface. Unsurprisingly, the location of the interface
seems to shift in the direction of the bulk solid as ξc is increased. We note that the dips
in the density profile correspond to HCP stacked layers which are more pronounced for
higher values of ξc.

6.4 Molecular dynamics

6.4.1 Nucleation rates

In MD simulations the equations of motion are integrated to follow the time evolution of
the system. Since the hard-sphere potential is discontinuous the interactions only take
place when particles collide. Thus the particles move in straight lines (ballistic) until
they encounter another particle with which they perform an elastic collision [91]. These
collision events are identified and handled in order of occurrence using an event driven
simulation.

In theory, using an MD simulation to determine nucleation rates is quite simple.
Starting with an equilibrated fluid configuration, an MD simulation is used to evolve
the system until the largest cluster in the system exceeds the critical nucleus size. The
MD time associated with such an event is then measured and averaged over many initial
configurations. The nucleation rate is given by

k =
1

〈t〉V (6.7)

where V is the volume of the system and 〈t〉 is the average time to form a critical nu-
cleus. Measuring this time is relatively easy for low supersaturations where the nucleation
times are relatively long compared to the nucleation event itself, which corresponds with
a steep increase in the crystalline fraction of the system. However, for high supersatura-
tions pinpointing the time of a nucleation event is more difficult. Often many nuclei form
immediately and the critical nucleus sizes must be estimated from CNT or US simula-
tions. Additionally, the precise details of the initial configuration can play a role at high
supersaturations since the equilibration time of the fluid is of the same order of magnitude
as the nucleation time. Hence, for each individual MD simulation we used a new initial
configuration which was created by quenching the system very quickly.

For the results in this chapter, we performed MD simulations with up to 100,000
particles in a cubic box with periodic boundary conditions in an NVE ensemble. Time
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was measured in MD units σ
√

m/kBT . The order parameter was measured every 10 time
units and when the largest cluster exceeded the critical size by 100 percent we estimated
the time τnucl at which the critical nucleus was formed using stored previous configurations.
We performed up to 20 runs for every density and averaged the nucleation times.

Volume fraction Average nucleation time Rate

η t
√

kBT/(mσ2) kσ5/(6Dl)

0.5316 1 · 106 5·10−9

0.5348 1.7 · 104 3.6·10−7

0.5381 1.4 · 103 5.3·10−6

0.5414 2.0 · 102 4.3·10−5

0.5478 42 3.0·10−4

0.5572 10 2.4·10−3

Table 6.2: The average nucleation time, obtained from MD simulations, to form a critical
cluster that grew out and filled the box. The last column contains the rate (k) in units of
(6Dl)/σ

5.

The results are shown in Table 6.2. The nucleation times shown here are for a system of
2.0 ·104 particles and are given in MD time units. To compare with other data we convert
the MD time units to units of σ2/(6Dl) with Dl the long-time diffusion coefficient mea-
sured in the same MD simulations. We were not able to measure the long-time diffusion
coefficients for high densities because our measurements were influenced by crystalliza-
tion. We used the fit obtained by Zaccarelli et al. [118] who used polydisperse particles
to prevent crystallization. For η < 0.54, we find good agreement between our data for Dl
and this fit.

6.5 Umbrella sampling

6.5.1 Gibbs free-energy barriers

Umbrella sampling is a technique developed by Torrie and Valleau to study systems where
Boltzmann-weighted sampling is inefficient [104]. This method has been applied frequently
to study rare events, such as nucleation [105], and specifically has been applied in the past
to study the nucleation of hard spheres [103]. In general, umbrella sampling is used to
examine parts of configurational space which are inaccessible by traditional schemes, e.g.
Metropolis Monte Carlo simulations. Typically, a biasing potential is added to the true
interaction potential causing the system to oversample a region of configuration space.
The biasing potential, however, is added in a manner such that is it easy to “un”-bias the
measurables.

In the case of nucleation, while it is simple to sample the fluid, crystalline clusters of
larger sizes will be rare, and as such, impossible to sample on reasonable time scales. The
typical biasing potential for studying nucleation is given by [116, 119]

Ubias(n(r
N)) =

λ

2
(n(rN)− nC)2, (6.8)



6.5 Umbrella sampling 75

0 50 100 150 200
0

5

10

15

20

Cluster Size (n)

β 
∆ 

G
(n

)

 

 

ξ
c
=10

ξ
c
=9

ξ
c
=8

ξ
c
=7

ξ
c
=6

ξ
c
=5

Figure 6.2: Gibbs free-energy barriers β∆G(n) as a function of cluster-size n as obtained from
umbrella sampling simulations at a reduced pressure of βpσ3 = 17 for varying critical number
of solid-like neighbours ξc as labelled. For ξc = 5, 7 and 9, the neighbour cutoff is rc = 1.4σ and
for ξc = 6, 8 and 10, rc = 1.3σ. In all cases the dot product cutoff is dc = 0.7.

where λ is a coupling parameter, n(rN) is the size of the largest cluster associated with
configuration rN , and nC is the targeted cluster size. By choosing λ carefully, the simula-
tion will fluctuate around the part of configurational space with n(rN) in the vicinity of
nC . The expectation value of an observable A is then given by

〈A〉 =

〈

A/W (n(rN))
〉

bias

〈1/W (n(rN))〉bias

(6.9)

where
W (x) = e−βUbias(x). (6.10)

Using this scheme to measure the probability distribution P (n) for clusters of size n, the
Gibbs free-energy barrier can be determined by [120]

β∆G(n) = constant− ln(P (n)). (6.11)

Many more details on this method are given elsewhere [20, 120].
For a pressure of βpσ3 = 17, corresponding to a supersaturation of β |∆µ| = 0.54, we

examine the effect of one of the order parameter variables, namely ξc, on the prediction
of the nucleation barriers. The barriers predicted by US using ξc = 5, 6, 7, 8, 9 and 10 are
shown in Figure 6.2. Note that the height of the barriers does not depend on ξc. In gen-
eral, for larger values of ξc more particles are identified as fluid as compared with smaller
values of ξc. This is consistent with the differences between these order parameters as
demonstrated in Figure 6.1. Thus, the radius measured in our simulation will depend on
the definition of the order parameter. However, from classical nucleation theory (Eq. 1),
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Figure 6.3: Classical nucleation theory fits (thick lines) to the Gibbs free-energy barriers
obtained from umbrella sampling simulations at a reduced pressure of βpσ3 = 17 for varying
ξc as labelled. Note that the CNT radius (RCNT ) is related to the radius (R(ξc)) measured by
umbrella sampling by R(ξc) = RCNT + α(ξc), where α(ξc) is a constant that corrects for the
different ways the various order parameters identify the particles at the fluid-solid interface. The
fit parameters are given in Table 6.3. We have shifted the barriers for ξc = 6−9 by 5, 10, 15 and
20 kBT respectively for clarity
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Figure 6.4: Fits of an adjusted classical nucleation theory (ACNT) presented in Section 6.5.1
to the Gibbs free-energy barriers predicted using umbrella sampling simulations at a reduced
pressure of βpσ3 = 17 and for varying ξc as labelled. Note that the CNT radius (RCNT) is
related to the radius measured by umbrella sampling via R(ξc) = RCNT + α(ξc), where α(ξc) is
a constant. The fit parameters are given in Table 6.3. We have shifted the barriers for ξc = 6−9
by 5, 10, 15 and 20 kBT respectively for clarity.
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β |∆µ| βγσ2 R∗CNT

CNT 0.54 0.76 2.49
ACNT 0.54 0.63 2.06

α(5) α(6) α(7) α(8) α(9) c(5) c(6) c(7) c(8) c(9)
CNT -0.425 -0.231 -0.000 0.139 0.380

ACNT -0.879 -0.698 -0.464 -0.335 -0.076 7.80 8.56 8.84 8.87 8.34

Table 6.3: Numerical values for the parameters associated with the fits in Figures 6.3 and
6.4 for classical nucleation theory and the adjusted classical nucleation theory presented in this
chapter.

there exists a unique definition of the liquid-solid interface and this a unique radius asso-
ciated with CNT which we define as RCNT . To a first approximation, for each definition
of the order parameter, this radius (RCNT ) differs from that measured by our simulation
(R(ξc)) by a constant which we denote as α(ξc), which is also dependent on ξc. Thus, we
fit the barriers corresponding to ξc = 5, 6, 7, 8 and 9 using CNT where we have

R(ξc) = RCNT + α(ξc). (6.12)

Note that we have assumed that the cluster size n can be related to the cluster radius
R(ξc) by

n(ξc) =
4πR(ξc)

3ρs
3

. (6.13)

Only the top part of the free-energy barriers are expected to fit to classical nucleation
theory, so we take the top of the barrier corresponding to the region where the difference
between β∆G(n) and β∆G(n∗) is approximately 5. Fitting all barriers simultaneously
for the interfacial free-energy density γ, the classical nucleation theory radius RCNT , and
the various α(ξc), we obtain the fits displayed in Figure 6.3. From the various values of
α, the associated critical CNT radius (R∗CNT) can be determined. We find R∗CNT = 2.49σ.
Additionally, we find an interfacial free-energy density of βγσ2 = 0.76 which roughly
agrees with the results of Auer and Frenkel who obtained βγσ2 = 0.699, 0.738 and 0.748
for pressures βpσ3 = 15, 16 and 17 respectively [103]. However, recent calculations by
Davidchack et al. [121] of γ at the fluid-solid coexistence find βγσ2 = 0.574, 0.557 and
0.546 for the crystal planes (100), (110), and (111) respectively. For a spherical nucleus,
γ is expected to be an average over the crystal planes and was found to be βγσ2 = 0.559
[121]. Thus our result for γ and that of Ref. [103] appear to be an overestimate.

There have been a number of papers discussing possible corrections to CNT (eg. Refs.
[122, 123]). Recent work on the 2d Ising model, a system where both the interfacial free-
energy density and supersaturation are known analytically, demonstrated that in order to
match a nucleation barrier obtained from US to CNT, two correction terms were required,
specifically a term proportional to log(N) as well as a constant shift in ∆G which we define
as c. [122] The US barrier is only expected to match CNT near the top of the barrier
where the log(N) term is almost a constant. Thus, we propose fitting the barrier to an
adjusted expression for CNT (ACNT), by adding a constant c to Eq. 1. Fitting the US
barriers with this proposed form for the Gibbs free-energy barrier, where we assume c is a
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function of ξc, we obtain the fits displayed in Figure 6.4. In this case we find an interfacial
free-energy density βγσ2 = 0.63, and the values for α(ξc) and c(ξc) are given in Table
6.3. We note that this fit is much better than the fits in Figure 6.3. The difference in
the various c(ξc) are around 1kBT and correspond well to the difference in heights of the
barriers. More strikingly, the interfacial free-energy density predicted from this proposed
free-energy barrier is in much better agreement with recent calculations of Davidchack et

al. [121], than the interfacial free-energy density we calculate using classical nucleation
theory directly. We would also like to point out that it has been proposed that the effective
interfacial free energy density will increase with pressure. However, an increase from the
βγσ2 = 0.559 at coexistence predicted by Ref. [121] to βγσ2 = 0.76 predicted from CNT
is larger than what would be expected (see e.g. Refs. [124, 125]). For a more thorough
examination on the interfacial free-energy densities of the hard sphere model, see Ref.
[125]. We would like to point out here that due to the simple form of the nucleation
barrier, it is difficult to be certain of any fit with more than one fitting parameter, as
there are many combinations of parameters which fit almost equally well. To examine
in more detail the accuracy of these fits, we have calculated the root mean square of the
residual for the two fits which we denote as σRMSR. In the case of the CNT fit we find
σRMSR = 0.50 while for the ACNT fit we find σRMSR = 0.11 indicating that the ACNT fit
is much better than the CNT fit. Additionally, we examined the ACNT fits for various
interfacial free-energy densities γ. Fixing the interfacial free-energy density in the ACNT
fit to the value found by CNT (βγσ2 = 0.76), we find σRMSR = 0.27 and when we use
interfacial free-energy density at coexistence [121] (βγσ2 = 0.559) we find σRMSR = 0.18.

Using either expressions for the Gibbs free-energy barrier, namely CNT and ACNT,
we were unable to fit the barrier corresponding to βpσ3 = 17 and ξc = 10 simultaneously
with the other predicted barriers for the same pressure. We speculate that our difficulty
in fitting the barrier at ξc = 10 stems from an “over-biasing” of the system. Specifically,
using ξc = 10 the biasing potential could cause the system to sample more ordered clusters
more frequently, and hence change slightly the region of phase space available to the US
simulations. In general, the least biased systems would be expected to explore the largest
region of phase space resulting in the best results. It should be noted that, in fact, this
problem is simply an equilibration and measuring problem, but it does emphasize the
difficulty caused by using an overly strong biasing potential.

In conclusion, with the exception of ξc = 10, the value of ξc used in the order parameter
did not appear to have an effect on the nucleation barriers once the difference in their
measurements of the solid-liquid interface was taken into consideration. Finally, for use in
our nucleation rate calculations (section 6.5.2) we also determined the Gibbs free-energy
∆G(n) for reduced pressures βpσ3 = 15 and 16 using umbrella sampling simulations. We
present the barrier heights in Table 6.4.

6.5.2 Umbrella sampling nucleation rates

The nucleation barriers as obtained from US simulations can be used to determine the nu-
cleation rates. The crystal nucleation rate k is related to the free-energy barrier (∆G(n))
by [103]

k = Ae−β∆G(n∗), (6.14)
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where

A ≈ ρfn∗
√

|β∆G′′(n∗)|
2π

, (6.15)

n∗ is the number of particles in the critical nucleus, ρ is the number density of the
supersaturated fluid, fn∗ is the rate at which particles are attached to the critical cluster,
and ∆G′′ is the second derivative of the Gibbs free-energy barrier. Auer and Frenkel [103]
showed that the attachment rate fn∗ could be related to the mean square deviation of the
cluster size at the top of the barrier by

fn∗ =
1

2

〈∆n2(t)〉
t
. (6.16)

The mean square deviation (MSD) of the cluster size ∆n2(t) = 〈(n(t)− n∗)2〉 can then be
calculated by either employing a kinetic MC simulation or a MD simulation at the top of
the barrier. For simplicity, in the remainder of this chapter the nucleation rate determined
using this method will be referred to as the umbrella sampling (US) nucleation rate,
although to calculate the nucleation rates both US simulations and dynamical simulations
(KMC or MD) are necessary.

The mean square deviation, or variance, in the cluster size appearing in Eq. 6.16 has
both a short- and long-time behaviour. At short times, fluctuations are due to particles
performing Brownian motion around their average positions while the long-time behaviour
is caused by rearrangements of particles required for the barrier crossings. The slope of
the variance is large at short times where only the fast rattling is sampled. However,
the longer the time the further the system has diffused away from the critical cluster
size at the top of the nucleation barrier. Auer [126] states that runs need to be selected
that remain at the top of the barrier. However, when this is done the attachment rate is
lower than when the average over all runs is taken since it excludes the runs that move
off the barrier fast and have the largest attachment rate. This problem is analogous
to determining the diffusion constant of a particle performing a random walk. By only
including walks which remain in the vicinity of the origin, the measurement is biased
and excludes trajectories which quickly move away from the origin. This results is an
underestimation of the diffusion constant, and similarly, in this case, an underestimate of
the attachment rate. Hence, in this chapter we do not attempt to prevent the trajectories
from falling off the barrier and we include all trajectories. In Figure 6.5 we demonstrate
how, starting from a critical cluster, the size of the nucleus fluctuates as a function of
time and, in fact, can completely disappear or double in size within 0.3τl. Note that τl is
the time that it takes a particle on average to diffuse over a distance equal to its diameter
i.e. τl = σ2/(6Dl).

The kinetic prefactor was determined using KMC simulations with 3000 particles in an
NVT ensemble in a cubic box with periodic boundary conditions. The initial configura-
tions were taken from US simulations in one of the windows at the top of the barrier. We
examined the results from both Gaussian and uniformly distributed Monte Carlo steps
and found agreement within the statistical errors. For all the simulations, the MC step
size was between 0.01σ and 0.1σ. The variance of the cluster size for a typical system
is shown in Figure 6.6. We observed a large variance in the attachment rates calculated
for different nuclei. Specifically, some nuclei have attachment rates more than an order
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Figure 6.5: The cluster size (n(t)) as a function of time in MC cycles for a random selection
of clusters that start at the top of the nucleation barrier.
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Figure 6.6: The mean squared deviation (MSD) of the cluster size
〈

∆n2(t)
〉

as function of
time t in MC cycles. The cluster size has been measured every cycle and averaged over 100
cycles to reduce the short-time fluctuations. The slope of this graph is twice the attachment
rate (Eq. 6.16).
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βpσ3 ξc n∗ β∆G(n∗) β∆G′′(n∗) fn∗/D0 kσ5/D0

15 8 212 42.1± 0.2 −9.6 · 10−4 661.4 4.35 · 10−18

16 8 112 27.5± 0.6 −1.6 · 10−3 429.1 7.80 · 10−12

17 6 102 19.6± 0.3 −1.2 · 10−3 712.9 3.08 · 10−8

17 8 72 20.0± 0.4 −2.0 · 10−3 469.8 1.77 · 10−8

17 10 30 19.4± 0.7 −9.4 · 10−3 316.1 4.49 · 10−8

Table 6.4: Nucleation rates k in units of D0/σ
5 with D0 the short time diffusion coefficient

as a function of reduced pressure (βpσ3) as predicted by umbrella sampling. ∆G′′(n∗) is the
second order derivative of the Gibbs free-energy at the critical nucleus size n∗.

of magnitude higher than other nuclei of similar size. The nuclei with low attachment
rates appeared to have a smoother surface than the nuclei with a high attachment rate.
In calculating the attachment rates we used 10 independent configurations on the top of
the barrier and followed 10 trajectories from each.

Our results for the kinetic prefactors and nucleation rates for pressures βpσ3 = 15, 16
and 17 are reported in Table 6.4.

6.6 Forward flux sampling

6.6.1 Method

The forward flux sampling method was introduced by Allen et al. [107] in 2005 to study
rare events and has since been applied to a wide variety of systems. Two review articles
(Refs. [127, 128]) on the subject have appeared recently and provide a thorough overview
of the method. In the present chapter we discuss FFS as it pertains to the liquid to solid
nucleation process in hard spheres. In general, FFS follows the progress of a reaction
coordinate during a rare event. For hard-sphere nucleation, a reasonable reaction coordi-
nate (Q) is the number of particles in the largest crystalline cluster in the system (n). For
the remainder of this chapter, for all FFS calculations, we take the reaction coordinate
to be the order parameter discussed in Sec. 6.3 with ξc = 8, rc = 1.3σ, and dc = 0.7. In
general, the reaction coordinate is used to divide phase space by a sequence of interfaces
(λ0, λ1, ... λN) associated with increasing values n(rN) such that the nucleation process
between any two interfaces can be examined (see Figure 6.7). In our case the liquid is
composed of all states with n < λ0 and the solid contains all states with n > λN . While
the complete nucleation event is rare, the interfaces are chosen such that the part of the
nucleation process between consecutive interfaces is not rare, and can thus be thoroughly
studied.

In the FFS methodology, the nucleation rate from the fluid phase A to the solid phase
B is given by

kAB = ΦAλ0P (λN |λ0) (6.17)

= ΦAλ0

N−1
∏

i=0

P (λi+1|λi), (6.18)
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Figure 6.7: In forward flux sampling, the nucleation event from A to B is followed by a reaction
coordinate (λ). As sketched above, the reaction coordinate divides phase space by a sequence of
interfaces (λi) associated with increasing values of the reaction coordinate. In the case of hard
spheres, a reasonable reaction coordinate is the order parameter discussed in Section 6.3.

where ΦAλ0 is the steady-state flux of trajectories leaving the A state and crossing the
interface λ0 in a volume V , and P (λi+1|λi) is the probability that a configuration starting
at interface λi will reach interface λi+1 before it returns to the fluid (A). See Figure 6.8
for a sketch depicting this method.

If we apply this method directly to a hard-sphere system a number of difficulties
arise. As shown in Figure 6.5, on short times the size of a cluster measured by the order
parameter fluctuates wildly. The variance in the cluster size displays two different types
of behaviour, short-time fluctuations related to surface fluctuations of the cluster, and a
longer time cluster growth (Figure 6.6). Thus, if we try to measure the flux ΦAλ0 directly,
we encounter difficulties due to these short-time surface fluctuations. In theory, FFS
should be able to handle these types of fluctuations, however, they increase the amount
of statistics necessary to properly measure the flux and the first probability window.
In the second part of FFS calculations, probabilities of the form P (λi+1|λi) need to be
determined. In calculating these probabilities it is important to be able to determine if a
cluster has returned to the fluid (A). For pre-critical clusters we find large fluctuations of
the order parameter, as shown in Figure 6.9, which can lead to a cluster being misidentified
as the fluid (A). Specifically, in this figure the darkest trajectory (black) shows a cluster
containing 43 particles that shrinks to 5 particles before it returns to 40, and finally
reaches a cluster size of 60 particles. Hence, if we had set λ0 = 5, this trajectory would
have been identified as melting back to the fluid phase (A). However, since the growth of
a cluster from size 5 to 60 is a rare event in our system, we presume that this was simply
a short-time fluctuation of the cluster and not a ‘real’ melting of the instantaneously
measured cluster. For pre-critical clusters, these fluctuations result in cluster sizes that
are smaller than the cluster ‘really’ is. We suggest that these fluctuations are largely
related to the difficulty that this order parameter has in distinguishing between solid-
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Figure 6.8: Top: In a typical forward flux sampling simulation the flux is calculated by running
a simulation in the region A (i.e., in the case of hard spheres, the metastable fluid), and counting
the number of times the trajectory crosses the A state boundary in time T . Bottom: A cartoon
demonstrating how the probability P (λN |λ0) is calculated.

and fluid-like particles at the fluid-solid interface. For larger clusters, where the surface
to volume ratio is small, this problem is minimal. However, for elongated or rough pre-
critical clusters, where the surface to volume ratio is large, these surface fluctuations and
rearrangements are important, and can cause problems in measuring the order parameter.

Thus, to try and address these problems, in this chapter, we apply forward flux sam-
pling in a novel way. We regroup the elements of the rate calculation such that

kAB = Φ̃Aλ1

N−1
∏

i=1

P (λi+1|λi), (6.19)

where
Φ̃Aλ1 = ΦAλ0P (λ1|λ0). (6.20)
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Figure 6.9: The cluster size as a function of time t in MC cycles for 4 random trajectories
at pressure βpσ3 = 17 starting with a cluster size of n = 43 using kinetic MC simulations with
step size ∆KMC = 0.1σ and measuring the order parameter every ∆tord = 5 MC steps.

We note that if λ1 is chosen such that it is a relatively rare event for trajectories starting
in A to reach λ1, then

Φ̃Aλ1 ≈
1

〈tAλ1〉V
(6.21)

where 〈tAλ1〉 is the average time it takes a trajectory in A to reach λ1. A sketch of this
method is shown in Figure 6.10. The approximation made here, in contrast to normal FFS
simulations, is that the time the system spends with an order parameter greater than λ1

is negligible. Since even reaching this interface is a rare event, this approximation should
have a minimal effect on the resulting rate. Additionally, in this way we are relatively
free to place the first interface (λ0) anywhere under λ1.

∗ We choose to use λ0 = 1 to
minimize the effect of fluctuations, as seen in Figure 6.9, on the probability to reach the
following interface. Here we assume that any crystalline order in a system with an order
parameter of 1 likely does not arise from fluctuation of a much larger cluster, but rather
is very close to the fluid. Thus, it is expected to fully melt and not grow out to the next
interface. In this manner we are able to start several parallel trajectories from the fluid
in order to measure 〈tAλ1〉, stopping whenever the trajectory first hits interface λ1.

In our implementation of FFS, we employ kinetic Monte Carlo (KMC) simulations at
fixed pressure to follow the trajectories from the liquid to the solid. The KMC simulations
are characterized by two parameters, the maximum step size (∆KMC) per attempt to move
each particle, and the frequency with which the order parameter (reaction coordinate)

∗ While it does appear that Eq. 6.19 is completely independent of λ0, this is not strictly correct as
λ0 creates the border for state A and state A is expected to be a metastable, equilibrated state. For the
purposes of this chapter, the difference is insignificant as the average time for a nucleation event is much
longer than the relaxation time for the fluid.
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Figure 6.10: Top: In our implementation of FFS, instead of calculating the flux as shown in
Figure 6.8, we start a number of simulations in the A region and use them to determine the
average time to reach interface λ1. Equation 6.21 is then used to determine the flux. Bottom:
As sketch showing how P (λN |λ1) is calculated.

is measured ∆tord. However, during an FFS simulation, it is expected that the order
parameter is known at all times such that it is possible to identify exactly when and
if a given simulation reaches an interface. Thus it is possible that ∆tord introduces an
additional error into our measurement of the rate.

To examine the effects of (i) the approximation associated with our method for cal-
culating Φ̃Aλ1 , (ii) the short-time fluctuations of the order parameter (which could be
considered as an error in the measurement of the cluster size), and (iii) the frequency
of measuring the order parameter, we examined the nucleation rate for a simple one-
dimensional model system in the presence of such features. Details of these simulations
are given in Chapter 7. However, we point out here that in this simple model system, we
find that none of these features have a large effect on the rate. In fact, for most cases,



86 Crystal nucleation of hard spheres: A numerical study

∆KMC 0.1 0.1 0.1 0.2 0.2 0.2
∆tord 2 2 2 2 2 2
P (λ2|λ1) 0.112 0.103 0.139 0.101 0.105 0.132
P (λ3|λ2) 0.096 0.117 0.090 0.104 0.093 0.112
P (λ4|λ3) 0.128 0.117 0.074 0.116 0.111 0.161
P (λ5|λ4) 0.180 0.159 0.082 0.156 0.115 0.241
P (λ6|λ5) 0.167 0.154 0.149 0.225 0.148 0.256
P (λ7|λ6) 0.071 0.074 0.060 0.128 0.093 0.118
P (λ8|λ7) 0.104 0.078 0.051 0.109 0.091 0.109
P (λ9|λ8) 0.100 0.100 0.105 0.083 0.075 0.089
P (λ9|λ1) 3 · 10−8 2 · 10−8 4 · 10−9 5 · 10−8 1 · 10−8 2 · 10−7

∆KMC 0.2 0.2 0.2 0.2 0.2 0.2
∆tord 1 1 1 10 10 10
P (λ2|λ1) 0.112 0.146 0.138 0.122 0.127 0.146
P (λ3|λ2) 0.115 0.097 0.079 0.103 0.081 0.080
P (λ4|λ3) 0.151 0.110 0.110 0.121 0.091 0.116
P (λ5|λ4) 0.209 0.189 0.173 0.121 0.073 0.150
P (λ6|λ5) 0.274 0.151 0.189 0.189 0.121 0.187
P (λ7|λ6) 0.121 0.052 0.092 0.169 0.077 0.064
P (λ8|λ7) 0.119 0.077 0.126 0.132 0.087 0.064
P (λ9|λ8) 0.101 0.081 0.129 0.101 0.109 0.068
P (λ9|λ1) 2 · 10−7 1 · 10−8 6 · 10−8 8 · 10−8 6 · 10−9 1 · 10−8

Table 6.5: Probabilities P (λi+1|λi) for the first 8 interfaces at a pressure of βpσ3 = 15 where
the KMC simulations step size (∆KMC) and the number of MC steps between measuring the
order parameter ∆tord are varied. The following interfaces were used: λ2 = 20, λ3 = 26, λ4 = 32,
λ5 = 38, λ6 = 44, λ7 = 54, λ8 = 65, and λ9 = 78. In all cases, 100 configurations were started in
the fluid and reached the first interface, and at each interface, Ci = 10 copies of each successful
configuration were used.

the difference is too small to see within our error bars.

6.6.2 Simulation details and results

All simulations were performed with 3000 particle in a cubic box with periodic boundary
conditions. Initial configurations were produced using NPT MC simulations of a liquid
phase with a packing fraction of η ≈ 0.4 and then simulated at a reduced pressure of
βpσ3 = 1000. The simulations were stopped when the packing fraction associated with
the pressure of interest was reached. In this way the system volume decreased rapidly to
the target density. This initial configuration was then relaxed using an NPT simulation at
the pressure of interest (βpσ3 = 15, 16, 17). The relaxation consisted of at least 10,000 MC
cycles, after which the simulation continued until a measurement of the order parameter
found no crystalline particles in the system.

In order to determine the flux and the probabilities, 100 trajectories were started in
the liquid and terminated when n(rN) = λ1. These trajectories were produced using
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βpσ3 λ1 Φ̃Aλ1/6Dl P (λB|λ1) R/6Dl
17 27 2.66 · 10−5 7.6 · 10−3 2.0 · 10−7

17 27 2.68 · 10−5 1.4 · 10−2 3.7 · 10−7

16 20 8.57 · 10−6 3.1 · 10−7 2.6 · 10−12

16 20 8.57 · 10−6 2.1 · 10−7 1.8 · 10−12

15 15 8.72 · 10−6 1.9 · 10−15 1.6 · 10−20

Table 6.6: Nucleation rates predicted using forward flux sampling in long-time diffusion co-
efficient units (Dl). The probabilities P (λB|λ1), number of steps between the order parameter
measurements ∆ord, and kinetic MC step size are as in Tables 6.7, 6.8, and 6.9. At each interface,
Ci copies of each successful configuration were used.

trial 1 trial 2
i λi Ci−1 P (λi|λi−1) Ci−1 P (λi|λi−1)
2 43 10 0.137 10 0.157
3 60 10 0.272 10 0.312
4 90 10 0.350 10 0.414
5 150 2 0.594 2 0.691
6 250 2 0.988 2 0.988

Table 6.7: Probabilities P (λi+1|λi) for the interfaces used in calculating the nucleation rate
for pressure βpσ3 = 17 with step size ∆KMC = 0.1σ and measuring the order parameter every
∆tord = 5 MC cycles.

trial 1 trial 2
i λi Ci−1 P (λi|λi−1) Ci−1 P (λi|λi−1)
2 28 10 0.105 10 0.110
3 38 10 0.075 10 0.077
4 50 10 0.070 10 0.089
5 70 10 0.114 10 0.089
6 90 10 0.095 10 0.101
7 110 10 0.339 10 0.278
8 250 10 0.152 10 0.112
9 350 1 1.000 1 1.000

Table 6.8: Same as Table 6.7 but for βpσ3 = 16.
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i λi Ci−1 P (λi|λi−1)
2 20 10 0.101
3 26 10 0.104
4 32 10 0.116
5 38 10 0.156
6 44 10 0.225
7 54 10 0.128
8 65 10 0.109
9 78 10 0.083
10 92 10 0.101
11 110 10 0.085
12 135 10 0.062
13 160 10 0.131
14 190 10 0.131
15 230 10 0.134
16 400 10 0.058

Table 6.9: Same as Table 6.7 but for βpσ3 = 15 and with ∆tord = 2.

KMC simulations. The probability P (λ2|λ1) was then found by making C1 copies of the
configurations that reached λ1, and following these configurations until they either reached
λ2 or returned to the fluid. By taking different random number seeds, the various copies of
the same configurations follow different trajectories. The fraction of successful trajectories
corresponds to the required probability. The successful trajectories were then copied C2

times to determine P (λ3|λ2). The remaining P (λi+1|λi)’s are calculated similarly.

To study the effect of the two KMC parameters, namely ∆KMC and ∆tord, on the
nucleation rates, we have examined the first 8 FFS windows for βpσ3 = 15 for various
values of the number of MC steps between the order parameter measurements ∆tord and
the maximum displacement ∆KMC for the KMC simulations. The results are shown in
Table 6.5. As shown in this table we do not find a significant effect on the rate from
either parameter. Thus for numerical efficiency, unless otherwise indicated, the rates in
this section come from ∆tord = 5 MC cycles and ∆KMC = 0.2σ.

For pressures βpσ3 = 16 and 17 we have performed two separate FFS calculations
to determine the nucleation rates, and for pressure βpσ3 = 15 we have the result from
a single FFS simulation. A summary of the results are given in Table 6.6. A complete
summary of the results for P (λi+1|λi) for each simulation is given in Tables 6.7, 6.8, and
6.9.

6.7 Summary and discussion

6.7.1 Nucleation rates

In this section we examine hard-sphere nucleation rates predicted using US simulations,
MD simulations and FFS simulations together with the experimental results of Harland
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Figure 6.11: A comparison of the crystal nucleation rates of hard spheres as determined by
the three methods described in this chapter FFS, US, and MD with the experimental results
from Refs. [100–102] and previous theoretical results from Ref. [103]. Note that error bars have
not been included in this plot. In general, the error bars of the simulated nucleation rates are
largest for lower supersaturations (i.e. lower volume fractions), as the barrier height is higher.
For the FFS and US simulations, the error for βpσ3 = 15 (η = 0.5214) is between 2 and 3 orders
of magnitude, and for βpσ3 = 17 (η = 0.5352) is approximately one to two orders of magnitude.
The MD results are quite accurate around βpσ3 = 17, however the error bars are larger for
the higher pressure MD results. Within these estimated error bars, the simulated nucleation
rates are all in agreement, while the experimentally obtained rates show a markedly different
behaviour, particularly for low supersaturations where the difference between the simulations
and experiments can be as large as 12 orders of magnitude.

and Van Megen, [100] Sinn et al. [101] and Schätzel and Ackerson [102] and the US
simulations of monodisperse and 5% polydisperse hard-spheres mixtures examined by
Auer and Frenkel [103]. The experimental volume fractions have been scaled to yield
the coexistence densities of monodisperse hard spheres [110]. Similarly, we have scaled
the polydisperse results of Auer and Frenkel with the coexistence densities determined
in Ref. [129]. Inspired by the recent work of Pusey et al. [110], we plot the nucleation
rates in units of the long-time diffusion coefficient. In experiments with colloidal particles,
the influence of the solvent on the dynamics cannot be ignored. Specifically, the system
slows down due to hydrodynamic interactions when the density is increased. However, by
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presenting the nucleation rates in terms of the long-time diffusion coefficient, we expect
our simulated nucleation rates from the hard sphere model without an explicit solvent
to be in agreement with the experimental rates with a solvent. The time in experiments
is typically measured in units of D0, the free diffusion at low density. We convert the
short-time diffusion coefficient D0 to long-time diffusion coefficient Dl using

Dl(η)

D0

=
(

1− η

0.58

)δ

. (6.22)

Harland and Van Megen [100] claim that δ = 2.6 gives a good fit to their system and Sinn
et al. [101] use δ = 2.58. Since the system Schätzel and Ackerson [102] examine is very
similar to the other two, we use δ = 2.6 to convert their nucleation rates to long-time
units. We note that both δ = 2.58 and δ = 2.6 give very similar results. The results for
both the theoretical and experimental rates in long time units are shown in Figure 6.11.
Note that for clarity reasons the error bars have not been included in this plot. In general,
the error bars of the simulated nucleation rates are largest for lower supersaturations (i.e.
lower volume fractions), as the barrier height is higher. For the FFS and US simulations,
the error for βpσ3 = 15 (η = 0.5214) is between 2 and 3 orders of magnitude, and for
βpσ3 = 17 (η = 0.5352) is approximately one to two orders of magnitude. The MD
results are quite accurate around βpσ3 = 17, however the error bars are larger for the
higher pressure MD results.

In Ref. [110], Pusey et al. showed that the nucleation rates for various polydispersities
(0 to 6%) of hard-sphere mixtures collapsed onto the same curve when the rates were
plotted in units of the long-time diffusion coefficient. We find similar results here. Both
the monodisperse and polydisperse US results of Auer and Frenkel [103], in addition to our
own US predictions of the nucleation rate, agree well within the expected measurement
error. Additionally, we find that the simulation results of the US, FFS, and MD all agree.
Whereas the simulation results agree well with the experimental results for the nucleation
rate at high supersaturation there is still a significant difference at low supersaturations.
Unfortunately, the origin of this discrepancy remains unsolved.

However, on the experimental side, the nucleation rates of Harland and Van Megen
[100] are approximately one to two orders of magnitude below the experiments of Sinn
et al. [101] and Schätzel and Ackerson [102]. This is unexpected due to the similarity
between the experimental systems. The main difference between these experiments is the
polydispersity of the particle mixtures: 5% in the case of Harland and Van Megen [100],
2.5% in the case of Sinn et al. [101], and < 5% for Schätzel and Ackerson [102]. However,
as demonstrated by Pusey et al. [110], and now also in Figure 6.11, the nucleation
rate when measured in long-time diffusion coefficient units should not be effected by the
polydispersity. Thus, this seems unlikely as an explanation.

6.7.2 Nuclei

To examine whether the structure and shape of the critical clusters from US simulations
depended on the precise threshold values used for the crystalline order parameters, we
compared and analysed the critical clusters obtained when three different crystalline order
parameters were used to bias the US simulations, namely, ξc = 5, 7 and 9. Subsequently we
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ξc = 5 ξc = 7 ξc = 9

Figure 6.12: Colour version on page 128. Two typical snapshots (top and bottom) of the
critical nuclei as obtained with US at a volume fraction η = 0.5355 using different values of
the critical number of crystalline bonds ξc = 5 (left), 7 (middle) and 9 (right) in the biasing
potential. The clusters are analyzed with three different crystalline order parameters. The blue
particles are found by all three cluster criteria, the green particles have ξ = 7 or 8 crystalline
bonds and the red particles have only ξ = 5 or 6 crystalline bonds.

analyzed these critical clusters using the three different order parameters. In Figure 6.12,
two typical critical clusters from different biasing order parameters are shown on the top
and bottom rows. The nucleus of the cluster, shown in blue, was identified by all three
cluster criteria (ξc = 5, 7 and 9). The main difference between the criteria is the location
of the fluid-solid interface as shown by the green and red particles. The strictest order
parameter finds only the more ordered center whereas the loosest version detects the more
disordered particles at the interface as well. In Figure 6.13 we show some of the nuclei
obtained from MD simulations. These snapshots were taken just before the nuclei grew
out so they are not necessarily precisely at the top of the nucleation barrier. They appear
very similar in roughness and aspect ratio to those obtained from US simulations. We
note here that this is not meant to be a thorough study of the critical clusters, but rather
just a rough comparison to demonstrate that to a first approximation the clusters formed
by the three simulation techniques are the same. A more thorough examination of the
structure of the nuclei for high supersaturations can be found in Ref. [130].

To further examine whether the choice of method influenced the resulting clusters,
particularly the presence of the biasing potential in the US simulations and the choice
of reaction coordinate and interfaces in FFS, we calculated the radius of gyration tensor
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Figure 6.13: Colour version on page 128. Snapshots of spontaneously formed nuclei during
an MD simulation at a volume fraction of η = 0.537. The snapshots were taken just before the
nuclei grew. The colour coding of the particles is the same as in Figure 6.12.

for each of the methods for pressure βpσ3 = 17 as a function of cluster size (see Figure
6.14). There is no indication that the clusters in any of the simulation methods differed
substantially.

Additionally, we examined whether the simulation technique influenced the type of
pre-critical nuclei that formed in the simulations, i.e. face-centered-cubic (FCC), and
hexagonal-close-packed (HCP). To do this we used the order parameter introduced by
Ref. [131] which allows us to identify each particle in the cluster as either FCC-like or
HCP-like. The results for a wide range in nucleus size is shown in Figure 6.15. We find
complete agreement between the three simulation techniques. Specifically, in all cases
we find that the nucleus is composed of approximately 80% FCC-like particles. This
was unexpected as the free-energy difference between the bulk FCC and HCP phases is
about 0.001kBT per particle at melting [53] and hence random-hexagonal-close-packing
order in the nuclei would be expected [132]. Note that using our order parameter this
would appear as an approximately 50% occurrence of FCC- and HCP-like particles in the
nucleus. We speculate that this predominance of FCC-like particles in the nuclei arises
from surface effects.

6.8 Conclusions

In this chapter we have examined in detail three independent simulation techniques for
studying nucleation processes and predicting nucleation rates, namely forward flux sam-
pling, umbrella sampling and molecular dynamics. We have shown that the three simu-
lation techniques are completely consistent in their prediction of the nucleation rates for
hard spheres over the large range of volume fractions studied, despite the fact that they
treat the dynamics differently. Additionally, in agreement with the recent work of Pusey
et al. [110], we find that by measuring the nucleation rates in terms of the long-time dif-
fusion constant and scaling to the coexistence density of monodisperse hard spheres, the
5% polydisperse results of Auer and Frenkel [103] also agree. On examining the critical
clusters, we also do not find a difference in the nuclei formed using the three simulation
techniques. Hence we conclude that the original prediction of Auer and Frenkel [103] for
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Figure 6.14: A comparison of the three components of the radius of gyration tensor as a
function of cluster size n, as well as the sum of the three components, for clusters produced
using FFS, MD, and US simulations.
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Figure 6.15: Fraction of particles identified as either FCC or HCP respectively in the clusters
produced via molecular dynamics (MD), forward flux sampling (FFS), and umbrella sampling
(US) simulations as a function of cluster size n. All three methods agree and find the pre-critial
clusters prodominately FCC.
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the nucleation rates in hard sphere systems was indeed robust.
We have also compared our nucleation rates with previous experimental data, specifi-

cally, the nucleation rates predicted by Harland and Van Megen [100], Sinn et al. [101] and
Schätzel and Ackerson [102]. As was found first by Auer and Frenkel [103], while the sim-
ulation results agree well with the experimental results for high supersaturations, there
is a significant difference between the simulations and experiments for smaller volume
fractions. The agreement between the three theoretical methods examined in this chap-
ter, namely molecular dynamics, umbrella sampling, and forward flux sampling, seems to
indicate that either there is a fundamental difference between the simulations and theory
which we are not taking into account, such as some form of collective hydrodynamics
which are included in the experiments but not considered in the theory or some difficulty
in interpreting the experimental data. In either case, the origin of the huge discrepancy
in the theoretical and experimental nucleation rates remains a mystery.
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7

Forward flux sampling in the

presence of measurement error

In this chapter we apply a one dimensional toy model to examine in detail forward flux
sampling as it applies to colloidal nucleation. In Chapter 6 we applied forward flux
sampling to one of the simplest colloidal model systems, namely hard-sphere nucleation.
We found that in order to apply forward flux sampling to such a colloidal system some
small changes to the algorithm were necessary. Additionally, we claimed in Chapter 6
that forward flux sampling was not strongly sensitive to i) how frequently we measured
the order parameter and ii) measurement errors in the order parameter. In this chapter
we examine these points in more detail.
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7.1 Introduction

The term “rare event” typically refers to fluctuation-driven events which occur infre-
quently. They occur in a wide variety of systems including, e.g., nucleation (such as the
hard-sphere crystal nucleation studied in Chapter 6), protein folding, and activated chem-
ical reactions. However, while rare events are often associated with important physical
processes, their infrequency leads to extreme difficulty when trying to examine such events
using computer simulations. More specifically, brute force simulation techniques such as
molecular dynamics and Brownian dynamics are often rendered useless as the rare event
time scales exceed reasonable simulation times.

To address this problem, a number of theoretical and simulation techniques have been
introduced. In particular, umbrella sampling, “Bennett-Chandler” theory, transition path
sampling, transition interface sampling (TIS), milestoning, and forward flux sampling
(FFS). The majority of these techniques are based on (quasi-) equilibrium simulations, i.e.
they can be applied to systems whose dynamics obey detailed balance. The one notable
exception to this rule is forward flux sampling which was developed for the purpose of
examining nonequilibrium systems.

As described in Chapter 6, in FFS the transition rate between states A and B is given
by

k = ΦA0P (λB|λ0) (7.1)

where ΦA0 is the effective flux of trajectories leaving state A through interface λ0 and
P (λB|λ0) is the probability that a trajectory which leaves state A (by crossing λ0) arrives
in state B before returning to A. We should point out here that FFS is not the only
rare event technique to make use of Eq. 7.1 to calculate the nucleation rate, TIS does as
well. In a typical FFS simulation (or TIS simulation), the flux is determined by running
a simulation (i.e. BD, MD, or kinetic Monte Carlo (KMC)) for a time T . The number
of times (N) the simulated trajectory crosses the A state boundary, ie. λ0, is measured.
The flux is then given by

ΦA0 =
N

T
. (7.2)

A cartoon of this is shown in Figure 6.7. In forward flux sampling, the probability
P (λB|λ0) is re-written as

P (λB|λ0) =
n−1
∏

i=0

P (λi+1|λi) (7.3)

where λi are a set of interfaces subdividing the transition path from state A to B. A
cartoon of this is depicted in Figure 6.8.

One of the fundamental assumptions of this technique is that the value of the order
parameter is known at all times, and that it is exact. However, for the hard-sphere system
examined in Chapter 6, this was not possible due to the computational time required for
measuring the order parameter. In particular, in applying the FFS technique to hard
spheres in Chapter 6, we noted two separate sources of error: i) error associated with
our inability to know the value of the reaction coordinate at all times, and ii) an error
in measuring the number of particles in a cluster for a given configuration. To deal with
this problem we introduced a slightly different implementation of FFS in Chapter 6. In
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∆tord 1 2 5 10 50
1.272 · 10−12 1.059 · 10−12 1.807 · 10−12 1.545 · 10−12 1.384 · 10−12

1.378 · 10−12 1.722 · 10−12 1.331 · 10−12 1.446 · 10−12 1.067 · 10−12

1.236 · 10−12 1.292 · 10−12 1.485 · 10−12 1.148 · 10−12 1.613 · 10−12

1.694 · 10−12 1.642 · 10−12 1.948 · 10−12 1.438 · 10−12 1.755 · 10−12

1.266 · 10−12 1.234 · 10−12 1.569 · 10−12 1.606 · 10−12 1.291 · 10−12

1.692 · 10−12 1.353 · 10−12 1.624 · 10−12 1.624 · 10−12 1.401 · 10−12

1.465 · 10−12 1.179 · 10−12 1.693 · 10−12 1.019 · 10−12 1.340 · 10−12

1.681 · 10−12 1.586 · 10−12 1.190 · 10−12 1.623 · 10−12 1.058 · 10−12

1.460 · 10−12 1.702 · 10−12 1.319 · 10−12 1.385 · 10−12 2.373 · 10−12

1.746 · 10−12 1.915 · 10−12 1.564 · 10−12 1.238 · 10−12 1.269 · 10−12

Avg. Rate 1.5 · 10−12 1.5 · 10−12 1.6 · 10−12 1.4 · 10−12 1.5 · 10−12

Std. Error 6.0 · 10−14 8.4 · 10−14 7.0 · 10−14 6.3 · 10−14 1.2 · 10−13

Table 7.1: Nucleation rates for the one-dimensional potential given by Eq. 7.4 and shown in
Fig. 7.1 for ∆tord as indicated. For each ∆tord , we performed 10 independent FFS simulations.
The average rate and associated standard deviation are also as indicated. In all cases, 100
configurations were started in the fluid, and at each interface Ci = 10 copies of the successful
configurations were used to calculate the proceeding probabilities. The interfaces were placed
at λ0 = 0, λ1 = 1.5, λ2 = 1.7, λ3 = 1.9, λ4 = 2.2, λ5 = 2.6, λ6 = 3.3, and λ7 = 4.0.
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Figure 7.1: Toy model potential used to study forward flux sampling in the presence of various
types of measurement error.

this chapter, we use this new implementation to examine the two types of measurement
error listed above.

7.2 Model

A simple analogue for the crystal nucleation in hard spheres consists of a random walk
over the Gibbs free-energy barrier. Hence, to examine in more detail FFS as applied to
crystal nucleation, we study the transition rate for a single Brownian particle to surmount
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σGauss 0.02 0.04 0.06 0.08 0.1
1.862 · 10−12 1.728 · 10−12 1.263 · 10−12 1.063 · 10−12 1.916 · 10−12

1.763 · 10−12 1.609 · 10−12 1.640 · 10−12 1.566 · 10−12 1.879 · 10−12

9.980 · 10−13 1.630 · 10−12 1.580 · 10−12 1.694 · 10−12 1.494 · 10−12

1.374 · 10−12 1.226 · 10−12 1.830 · 10−12 1.773 · 10−12 1.114 · 10−12

1.692 · 10−12 1.805 · 10−12 1.619 · 10−12 1.894 · 10−12 1.040 · 10−12

1.184 · 10−12 1.334 · 10−12 1.328 · 10−12 1.404 · 10−12 7.073 · 10−13

1.529 · 10−12 8.686 · 10−13 1.313 · 10−12 2.711 · 10−12 2.471 · 10−12

1.892 · 10−12 1.433 · 10−12 1.320 · 10−12 1.379 · 10−12 1.629 · 10−12

1.314 · 10−12 1.228 · 10−12 1.046 · 10−12 1.719 · 10−12 1.376 · 10−12

1.665 · 10−12 1.124 · 10−12 1.257 · 10−12 1.963 · 10−12 1.898 · 10−12

Avg. Rate 1.5 · 10−12 1.4 · 10−12 1.4 · 10−12 1.7 · 10−12 1.6 · 10−12

Std. Error 9.5 · 10−14 9.4 · 10−14 7.5 · 10−14 1.4 · 10−13 1.6 · 10−13

Table 7.2: Nucleation rates for the one-dimensional potential given by Eq. 7.4 and shown
in Fig. 7.1 where the order parameter is given by Eq. 7.6 and σGauss is as indicated. For
each σGauss, we performed 10 independent FFS simulations. The average rate and associated
standard deviation is also as indicated. In all cases, 100 configurations were started in the fluid,
and at each interface Ci = 10 copies of the successful configurations were used to calculate the
proceeding probabilities. The interfaces were placed at λ0 = 0, λ1 = 1.5, λ2 = 1.7, λ3 = 1.9,
λ4 = 2.2, λ5 = 2.6, λ6 = 3.3, and λ7 = 4.0.

a one dimensional potential energy barrier given by

βU(x) = 8x2 − 2x3. (7.4)

A plot of the barrier is shown in Fig. 7.1. For this potential, we consider the ‘liquid’ state
to be near x = 0 and the ‘solid’ phase to be near x = 4.

7.3 Exact nucleation rate

We determine the ‘exact’ nucleation rate using spontaneous simulations. To do this we
perform a random walk starting at x = 0 and determine the time it takes the random
walk to surmount the barrier. The rate is then given by

R = 1/ 〈t〉 . (7.5)

Performing 40 such random walks we find the nucleation rate to be 1.3 · 10−12. In all the
calculations in this section, we set the maximum step size equal to ∆ = 0.025.

7.4 Forward flux sampling

In this section we explore the effect on the nucleation rate of not knowing the value of the
order parameter at all times. For this purpose we have performed FFS simulations when
the order parameter was measured every ∆tord = 1, 2, 5, 10 and 50 steps. The results are
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shown in Table 7.1. The average nucleation rates predicted for all values of ∆tord clearly
are the same within error. Similarly, the standard errors associated with ∆tord = 1, 2, 5, 10
are approximately the same, and the standard error for ∆tord = 50 is only marginally
larger. Hence we conclude that the frequency of measuring the order parameter does not
significantly affect the predicted nucleation rate. Additionally, these nucleation rates agree
with the nucleation rate obtained from the exact simulations indicating that applying FFS
as outlined in Section 6.6 predicts the correct nucleation rates.

Finally, we examine the effect that measurement error in the cluster size has on the
nucleation rate. For this purpose, we apply a noise term to our order parameter such that

xm = xtrue + δ, (7.6)

where xm is the value of the order parameter used in the FFS simulation, xtrue is the true
value of the order parameter, and δ is taken from a Gaussian distribution with a mean of
0 and a standard deviation σGauss. In Table 7.2 we demonstrate the effect on the predicted
nucleation rate for various choices of σGauss. The resulting nucleation rates are in good
agreement with the spontaneous results. For larger σGauss, eg. σGauss = 0.08 and 0.1, the
standard error in the results is slightly larger, however, the predicted nucleation rates are
still correct.

7.5 Conclusion

In summary, we have examined the effect of measurement error in the order parameter
and the measurement frequency ∆tord of the order parameter. We do not find a significant
effect on the predicted nucleation rates. Thus we conclude that FFS should be robust to
the types of error we are introducing when we apply the technique to hard spheres.
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8

Crystal nucleation of the WCA

model with βǫ = 40

In this chapter we examine the equilibrium phase behaviour and nucleation of the Weeks-
Chandler-Andersen (WCA) potential with βǫ = 40. Using Monte Carlo simulations in
combination with common tangent constructions, we determine the melting and freezing
number densities. Additionally, we use computer simulations to examine the crystal nucle-
ation. We use Brownian dynamics, forward flux sampling, and a Bennett-Chandler type
theory where the nucleation barrier is determined using umbrella sampling simulations to
predict the nucleation rates for a variety of supersaturations. We compare our results to
a previous simulation study of this model by Kawasaki and Tanaka [T. Kawasaki and H.
Tanaka, PNAS 107 14036 (2010)] and to hard-sphere nucleation rates predicted in simu-
lations and those found with light scattering experiments. After mapping to the freezing
number density of hard spheres, we find that our predicted nucleation rates are in good
agreement with those predicted for the hard-sphere model, but disagree strongly at low
supersaturation to those found experimentally for hard spheres. Strangely, our results
also disagree with the nucleation rates predicted by Kawasaki and Tanaka [T. Kawasaki
and H. Tanaka, PNAS 107 14036 (2010)] using Brownian dynamics simulations.
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8.1 Introduction

Colloidal solutions consist of small particles, which can be in a gas, liquid or solid phase,
suspended in another medium. Colloidal systems are typically characterized by the dy-
namics of these suspended particles, i.e., colloidal particles exhibit Brownian motion. As
a result, Brownian dynamics simulations (BD) are the natural choice to use when ex-
amining dynamical properties of colloidal systems, such as crystal nucleation. Brownian
dynamics are based on a simplified version of Langevin dynamics and correspond to the
“overdamped” limit. Specifically, in BD we assume that the particles’ inertia is completely
damped out by frictional forces. As a result, the motion of the particles is completely
determined by the instantaneous forces acting on the colloid plus a stochastic, diffusive
displacement. However, unlike molecular dynamics simulations (MD) where an event
driven formalism exists which allows one to apply MD to systems with hard-core inter-
actions (see Chapter 6), no such formalism exists to apply BD to hard particles. Hence,
when Brownian dynamics are applied to hard-core interactions, the hard core is typically
approximated.

A number of different approximations have been applied to mimic the hard-core inter-
action [112, 133]. In general they consist simply of a very short range, strongly repulsive
interaction. One such approximation is the Weeks-Chandler-Andersen (WCA) potential.
The WCA potential [134] is given by

βVWCA (r) =







4βǫ
(

(

σ
r

)12 −
(

σ
r

)6
+ 0.25

)

r ≤ 21/6

0 r > 21/6
(8.1)

where σ is a length scale and ǫ is the energy scale. Note that the WCA potential is simply
the Lennard-Jones potential where the cutoff is chosen such that only the repulsive part
remains and the potential is shifted upwards so that the minimum occurs at zero. A plot
of this potential is shown in Figure 8.1.

In a recent set of articles [113, 133, 135], Tanaka and others have approximated the
hard-sphere potential by a WCA potential where they set βǫ = 40. They applied this
approximation to determine, via brute force Brownian dynamics simulations, the nucle-
ation rates in hard spheres. However, as we will show in section 8.4, the results they find
are markedly different from those we found in Chapter 6. In this chapter we examine in
detail the phase behaviour and crystal nucleation of the WCA model with βǫ = 40 and
compare our results to those of Kawasaki and Tanaka.

This chapter is organized as follows: in section 8.2 we calculate the phase diagram
for this model, in section 8.3 we describe the nucleation rates, in section 8.4 we compare
our results to those of Kawasaki and Tanaka [113] and the hard-sphere nucleation rates
presented in Chapter 6 and discuss the role of softness in the crystal nucleation rates, and
our conclusions are found in section 8.5.

8.2 Phase diagram

The phase diagram for the WCA potential with βǫ = 40 has been examined previously
[113, 136]. Kawasaki and Tanaka [113] find the freezing number density to be σ3ρKmin

F =
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Figure 8.1: An overview of four pair potentials βU(r) as a function of the center-to-center
distance r including a hard-sphere potential with a diameter σ, an approximation for the in-
teraction between two PMMA coated particles with radius R/σ = 0.5, mean distance between
attachment points of the ligand chains s/σ = 0.00498, capping layer extension L/σ = 0.0336
and α = 0.025, the WCA potential given in Eq. 8.1 with βǫ = 40 and a hard-core Yukawa
potential with the prefactor βǫ = 20 and screening length κσ = 5.
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Figure 8.2: The triangles correspond to the freezing number density (ρAF ) from Ahmed and
Sadus [136] as a function of T ∗ where T ∗ = kBT/ǫ. The fit corresponds to ρF = 0.635 +
0.473(T ∗)1/2−0.236T ∗. The square corresponds to the freezing number density (ρ∗F ) determined
using full free energy calculations described in this chapter. The circle corresponds to the freezing
number density range determined by Kawasaki and Tanaka [113].
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0.726± 0.002. Additionally, the phase behaviour of the WCA potential was examined by
Ahmed and Sadus [136] for a range of T ∗ = 1/βǫ. Their results are plotted in Figure
8.2. We find that their results for the freezing number density ρF as a function of βǫ fits
well to ρFσ

3 = 0.635 + 0.473(T ∗)1/2 − 0.236T ∗. From this fit we approximate a freezing
number density of ρAFσ

3 = 0.704. Hence, the two values found in literature for the WCA
potential with βǫ = 40 differ by ∆ρσ3 = 0.022.

A difference of ∆ρσ3 = 0.02 can be significant in terms of nucleation rates, thus
we have re-calculated the phase diagram. To calculate the coexistence densities for the
WCA potential, we used full free-energy calculations in combination with common tangent
constructions. For the crystal phase, the excess free energy Fex, was calculated using
Einstein integration [20, 21, 61] at a density of ρσ3 = 0.8 for systems of N = 500, 864, 1372
and 2048 particles. Note that the excess free energy is defined by Fex = Ftot−Fid where Ftot
is the total free energy and Fid is the ideal gas free energy. Following Ref. [61], we plotted
βFex/N + logN/N as a function of 1/N and extrapolated to an infinite system yielding
a free energy of βFtot/N = 4.8975. The free energy at other densities was determined
using thermodynamic integration over the equation of state [20]. The equation of state
was determined with a system containing N = 4000 particles. Note that no significant
difference was found in the coexistence densities for equations of state determined using
N = 1372 and N = 4000. To test our Einstein integration and integration over the
equation of state, we determined the free energy at ρσ3 = 0.9 for N = 1372 and integrated
over the equation of state calculated for N = 1372. The free energies agreed within
0.00046 kBT per particle. The fluid chemical potential was determined using the Widom
insertion technique [20] at ρσ3 = 0.4 with N = 4000 and was found to be βµ = 3.3173;
for N = 1372 we find βµ = 3.3194. Again integration over the equation of state was
used to determine the free energy as a function of density. To test the Widom insertion
calculations, and our integration over the equation of state, we also calculated the chemical
potential at ρσ3 = 0.3 for N = 1372. The difference in the free energy at ρ = 0.3
associated with the Widom insertions and integration over the equation of state results
in a free energy difference of 0.00075 kBT per particle, and hence we concluded that the
Widom insertions and integration over the equation of state were correct. Using these
free energies and common tangent constructions we find freezing and melting coexistence
densities ρ∗Fσ

3 = 0.712 and ρ∗Mσ
3 = 0.784 respectively. All theoretically predicted freezing

number densities ρF are plotted Figure 8.2.

8.3 Nucleation rates

In this section we apply Brownian dynamics, umbrella sampling and forward flux sampling
to study the crystal nucleation of the WCA model. The methods for predicting nucleation
rates have been discussed in detail in Chapter 6, and thus in this chapter we will only
focus on the results. In all of these methods an order parameter is required to identify
crystalline particles and to determine which cluster they belong to. The order parameter
we use here is the same as that described in Chapter 6. We note that this order parameter
depends on four parameters, namely the nearest neighbour cutoff defined as rc, the dot-
product cutoff defined as dc,the minimum number of solid-like neighbours required for a
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ρ M tσ2/6D0 kσ5/D0

0.79228 5 82.8 1.4 · 10−5

0.78507 5 954 1.2 · 10−6

0.78153 9 1560 7.3 · 10−7

Table 8.1: The average nucleation time, obtained from BD simulations, to form a critical
cluster that grew out and filled the box. The last column contains the rate (k) in units of D0/σ

5

where D0 is the short-time diffusion coefficient. M is the number of separate simulations used
to calculate the rate. Each simulation consisted of 4096 particles.

particle to be identified as crystalline denoted ξc, and the symmetry index for the bond
orientational order parameter l. Similar to the hard-sphere case, the nucleus is expected
to have random hexagonal order and thus we set l = 6. Additionally, as in the hard-sphere
case we used dc = 0.7. The value of ξ is set to 8 and rc is always either 1.5 or 1.6 and will
be explicitly indicated in each section.

8.3.1 Brownian dynamics

The nucleation rate from BD simulations can be determined in the same manner as the
nucleation rate from molecular dynamics simulations. Starting with configurations in the
metastable fluid, we ran a number of BD simulations and determined the average time
(< t >) before the largest cluster in our system exceeded the critical size. The nucleation
rate k is then

k =
1

< t > V
, (8.2)

where V is the volume of the system.
The results from our BD simulations are shown in Table 8.1. Note that we also tried

to calculate the nucleation rates for a number density of ρ = 0.774 using BD, however,
after 5 simulations, corresponding to a total simulation length 12000σ2/6D0, a critical
nucleus had still not formed.

8.3.2 Umbrella sampling

In this section, we use umbrella sampling to determine the Gibbs free-energy barriers, and
then calculate the crystal nucleation rates from these barriers. The method for predicting
the Gibbs free-energy barriers and extracting crystal nucleation rates from such barriers
is described in detail in Chapter 6.5. For pressures βpσ3 = 12 and 13, the free energy
barriers are shown in Figure 8.3 and the nucleation rates are listed in Table 8.2.

8.3.3 Forward flux sampling

We use forward flux sampling to determine the nucleation rates for pressures βpσ3 = 12, 13
and 14. The method is the same as the one used in Chapter 6 in determining the crystal
nucleation rates for hard spheres. For a complete description of the method see Chapter
6.6. The dynamics in the forward flux sampling simulations were approximated using
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Figure 8.3: Gibbs free-energy barriers β∆G(n) as a function of cluster size n as obtained
from umbrella sampling MC simulations at reduced pressures βpσ3 = 12 and 13 as labelled.
The neighbour cutoff is rc = 1.5.

βpσ3 fn∗/D0 ∆G(n∗) ∆G′′(n∗) kσ5/D0

12 586.17 32.5 0.0014622 4.8767 · 10−14

13 319.05 20 0.0016641 8.3208 · 10−9

Table 8.2: Nucleation rates k in units of D0/σ
5 with D0 the short-time diffusion coefficient

as a function of reduced pressure (βpσ3) as predicted by umbrella sampling. G′′(n∗) is the
second order derivative of the Gibbs free energy at the critical nucleus size n∗ and fn∗/D0 is the
attachment rate.

kinetic Monte Carlo simulations with a step size of ∆KMC = 0.05σ and measuring the
order parameter every ∆tord = 2 MC cycles. The nearest neighbour cutoff for the order
parameter is rc = 1.5. The probabilities P (λi|λi−1) of going from interface λi−1 to λi
required in the forward flux sampling rate calculation for pressures βpσ3 = 12, 13 and
14 are given in Tables 8.3, 8.4 and 8.5 respectively. The resulting rates in units of the
short-time diffusion coefficient D0 are given in Table 8.6 .

8.4 Discussion

In Figure 8.4 we show our predicted WCA crystal nucleation rates and compare them with
those found in Ref. [113]. We note that the nucleation rates found in Ref. [113], have
been plotted as a function of an “effective” packing fraction φeff

K where the effective particle
diameter was taken to be the solution to βU(σeff) = 1, i.e. σeff = 1.09σ. Hence, we have
rescaled their rates to be in units of number density ρσ3. We note that the uncertainty
in the BD results is approximately one order of magnitude and the uncertainty in the
US and FFS results is approximately two orders of magnitude. Strangely, while our BD,
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i λi P (λi|λi−1)
2 20 0.133
3 26 0.132
4 34 0.107
5 45 0.068
6 60 0.066
7 80 0.041
8 110 0.036
9 150 0.130
10 200 0.317
11 250 0.842

Table 8.3: Probabilities P (λi+1|λi) for the interfaces used in calculating the nucleation rate
for pressure βpσ3 = 12.

i λi P (λi|λi−1)
2 20 0.132
3 30 0.124
4 40 0.193
5 60 0.132
6 100 0.166
7 150 0.633

Table 8.4: Probabilities P (λi+1|λi) for the interfaces used in calculating the nucleation rate
for pressure βpσ3 = 13.

i λi P (λi|λi−1)
2 40 0.164
3 70 0.453
4 100 0.847

Table 8.5: Probabilities P (λi+1|λi) for the interfaces used in calculating the nucleation rate
for pressure βpσ3 = 14.

βpσ3 ΦAλ1σ
5/D0 P (λB|λ1) kσ5/D0

12 2.96 · 10−6 4.32 · 10−10 1.27 · 10−15

13 1.10 · 10−5 4.38 · 10−5 4.80 · 10−10

14 1.06 · 10−5 6.29 · 10−2 6.69 · 10−7

Table 8.6: Nucleation rate kσ5/D0, flux ΦAλ1 , and P (λB|λ1) as a function of pressure predicted
by forward flux sampling.
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βpσ3 β |∆µ| ρliq ρsol φeff
K

12.0 0.42 0.762 0.844 0.524
12.5 0.48 0.769 0.851 0.529
13.0 0.54 0.775 0.858 0.533
13.5 0.61 0.780 0.864 0.537
14.0 0.66 0.786 0.870 0.541
14.6 0.73 0.794 0.876 0.546

Table 8.7: Reduced pressure (βpσ3), reduced chemical potential difference between the fluid
and solid phases(β |∆µ|), reduced number density of the metastable liquid ρliq, reduced number
density of the solid phase ρsol, and the effective packing fraction φeff

K as defined in Ref. [113] for
the state points studied in this chapter.

US, and FFS rates all agree with the uncertainty, we do not find agreement between our
BD results and the BD results of Ref. [113]. At the time this thesis was written, this
discrepancy was still not understood. Note that an overview of the nucleation parameters
for the state points discussed in this section is found in Table 8.7.

We further compare our WCA results with those of the hard-sphere system examined
in Chapter 6. To do this, we scale our WCA results in terms of an effective packing
fraction in the same manner as is done experimentally. Specifically, we scale the freezing
number density of the WCA model (ρFσ

3 = 0.712) to the freezing packing fraction of
hard spheres. Note that in literature there is a range of freezing packing fractions for hard
spheres, namely 0.491 ≤ φHSF ≤ 0.494 (see, e.g. [12, 20, 137]). Here we follow Frenkel
and Smit [20] which we believe to be the most accurate. In their work, finite size effects
are taken into consideration when calculating the free energy of the face-centered-cubic
(FCC) crystal, i.e. they use the result from Ref. [61]. They use the Speedy equations of
state for the solid and fluid [60, 111]. The resulting freezing packing fraction is found to
be φHSF = 0.492 [20]. The WCA nucleation rates scaled to φHSF = 0.492 are compared to
the hard-sphere results in Figure 8.5. We would like to point out here that any error in
the freezing coexistence points results in a horizontal shift in the nucleation rates. Hence,
in addition to an uncertainty of approximately 2 orders of magnitude in the nucleation
rates, there is an additional uncertainty of approximately ∆φerror = ±0.005 in the effective
packing fractions. Thus, within these error bars, we find good agreement between our
predicted hard-sphere and WCA crystal nucleation rates.

Additionally, we use the free energies for the hard-sphere model and the WCA model
to determine the associated supersaturations β∆µ. The nucleation rates as a function of
supersaturation are shown in Figure 8.6. Also included in this plot are the crystal nucle-
ation rates associated with two other models plotted in Figure 8.1, namely an effective
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Figure 8.4: Crystal nucleation rates kσ5/D0 as a function of number density ρσ3 where D0

is the short-time diffusion coefficient. While we have not included error bars in this plot, note
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Figure 8.5: Crystal nucleation rates kσ5
eff/D0 as a function of effective packing fraction φeff

where D0 is the short-time diffusion coefficient. Note that σeff is the size of a hard-sphere particle
which has the same freezing number density as the WCA model. The hard-sphere nucleation
rates are taken from Chapter 6.
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Figure 8.6: Crystal nucleation rates kσ5
eff/D0 for particles interacting via the WCA potential,

as well as the other potentials plotted in Figure 8.1, as a function of supersaturation |β∆µ|
where D0 is the short-time diffusion coefficient. The hard-sphere crystal nucleation rates are
taken from Chapter 6, and the PMMA and Yukawa results are taken from Refs. [114] and [115]
respectively.

model for PHSA coated PMMA colloids ∗, and the hard-core Yukawa potential †. The
rates for these two models are taken from Refs. [114] and [115] respectively. Note that
in Refs. [114] and [115] the authors have attempted to correct for hydrodynamics by
writing the nucleation rates in terms of the short-time self-diffusion coefficient DS which
they relate to the short-time diffusion coefficient D0 by DS/D0 = (1 − φeff/0.64)1.17. In
this expression φeff is a scaled packing fraction determined by setting the freezing packing
fraction equal to that of hard spheres. Unfortunately, we do not know the exact values of
φeff that were used to scale the nucleation rates, however, in the range of interest, DS/D0

∗The steric interaction between PHSA coated PMMA colloids is approximated using the Alexander-de
Gennes model [138]. This model approximates the interaction between plates with an absorbed polymer
layer in a good solvent with a high coverage of the polymer capping molecules. To transform this
interaction between plates to an interaction between spheres of diameter σ the Derjaguin approximation
[138] is used. The resulting interaction between the spheres is given by

βVsteric(r) =







∞ r < σ
16πασL2

70s3

[

28(x−1/4 − 1) + 20
11 (1− x11/4) + 12(x− 1)

]

σ ≤ r < σ + 2L
0 otherwise

where x = (r− σ)/(2L), s is the mean distance between attachment points of the capping ligands and L
is the thickness of the capping layer.
†The hard-core Yukawa potential is given by

βVyukawa (r) =

{

βǫ exp(−κ(r/σ−1))
r/σ r ≥ σ

∞ r < σ
(8.3)

where κ is the screening length and ǫ is the contact value of the potential.
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is always on the order of 0.1. Thus, in order to plot the results of Refs. [114] and [115] in
units of D0 we un-scale the results using the approximation that D0/DS = 10. Note that
the nucleation rates of the hard spheres, the WCA model and the PHSA-coated PMMA
particles are all within a few orders of magnitude. In contrast, the nucleation rates for
the much softer Yukawa potential start to drop off at much lower supersaturations.

8.5 Conclusions

In conclusion, we have examined the crystal nucleation of particles interacting with the
WCA potential with βǫ = 40 using Brownian dynamics, umbrella sampling and forward
flux sampling. As in Chapter 6, we find good agreement between the nucleation rates
predicted using these different methods. Additionally, we find that the nucleation rates
predicted for the WCA model agree well with those of hard spheres both as a function of
the supersaturation as well as effective packing fraction. Note that we have defined the
effective packing fraction such that the effective packing fraction at freezing matches that
of hard spheres. Our Brownian dynamics rates, however, differ significantly from those
by Kawasaki and Tanaka [113], a point which was still not understood when this thesis
was written.
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Colour figures

Figure 4.6: The figure shows the unit cells of (from left to right, from up to down): the
fully bonded SC crystal, the fully bonded BCT c rystal, the fully bonded FCC crystal
(all of them with energy per particle e=-3), the HCP unit cell whose average energy
per particle is e = −2.25, and two partially bonded FCC crystals, with average energy
respectively e = −2.5 and e = −2.0. Note that the number of bonds per particle is
indicated by the colour, red for 6 bonds, blue for 5 bonds and turquoise for 4 bonds.
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a

b

c

Figure 5.14: Confocal images of an interstitial solid solution with size ratio q = 0.3 for
various stoichometries. The labels a, b, and c correspond to confocal images of the ISS
with n ' 0.1, 0.3 and 0.8, respectively. In these images two (111) planes of the crystal,
one consisting of mostly small (red) particles with the other consisting of mostly large
(green) particles have been overlayed in order to be viewable in the same figure. The
larger and darker red regions correspond to defects, such as vacancies, in the underlying
lattice of green particles which have been filled by many small (red) particles. Scalebars
are 10 µm.
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Figure 5.16: Typical confocal image of the ISS structure found in a binary system of
oppositely charged PMMA particles with size ratio σS/σL=0.73 dispersed in a mixture of
23.7 wt% cis-decahydron aphthalene and 76.3 w% cyclohexylbromide. The large (green)
and small (red) particles have a diameter 1.88 µm (polydispersity 3 %) and 1.37 µm
(polydispersity 5 %) respectively. The overall packing fraction was η = 0.2. The large
particles mutually repel each other and formed a crystal lattice. The small particles were
found on random positions in between the lattice. See Figure 5.17 for more details.
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Figure 5.17: 3-D reconstruction of an interstitial solid solution in a binary mixture of
oppositely charged colloids. Left: Rendered 3-D reconstruction from a stack of 244 confo-
cal images with a spacing of 0.25 µm between them corresponding to the system described
in Figure 5.16. We identified a face-centred-cubic lattice of the mutually repelling large
particles with a lattice parameter for the cubic unit cell of a ≈ 3.8 µm. In the lower part
of the sample an ISS was formed with a fluid on top of it. Whereas the large particles do
not touch each other, the small particles were found to stick to one or more large particles
in the lattice. This, in addition to the observation that the small particles do not appear
to occupy a position on the lattice of the large particles demonstrates that the large and
small particles were oppositely charged. Right: The same 3-D reconstruction showing
only the small particles in the fluid (top) and the ISS (below). We note that in sequential
confocal images, some of the small particles were observed hopping from one interstitial
site to another.
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Figure 6.1: Top: A typical configuration of an equilibrated random-hexagonal-close-
packed (RHCP) crystal in coexistence with an equilibrated fluid. The crystalline parti-
cles are labelled according to three different crystallinity criteria: the red particles have
between ξ = 5 and 6 crystalline bonds, the green particles have between ξ = 7 and
8 crystalline bonds and the blue particles have ξ ≥ 9 or more crystalline bonds. The
fluid-like particles (ξ < 5) are denoted by dots. Bottom: The density profile of particles
with a minimum number of neighbours ξ as labelled. Note that the dips in the density
profile correspond to HCP stacked layers. This implies that near the interface, the or-
der parameter is slightly more sensitive to FCC ordered particles than to HCP ordered
particles.
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ξc = 5 ξc = 7 ξc = 9

Figure 6.12: Two typical snapshots (top and bottom) of the critical nuclei as obtained
with US at a volume fraction η = 0.5355 using different values of the critical number of
crystalline bonds ξc = 5 (left), 7 (middle) and 9 (right) in the biasing potential. The
clusters are analyzed with three different crystalline order parameters. The blue particles
are found by all three cluster criteria, the green particles have ξ = 7 or 8 crystalline bonds
and the red particles have only ξ = 5 or 6 crystalline bonds.

Figure 6.13: Snapshots of spontaneously formed nuclei during an MD simulation at a
volume fraction of η = 0.537. The snapshots were taken just before the nuclei grew. The
colour coding of the particles is the same as in Figure 6.12.
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Summary

In this thesis we examined the phase behaviour and nucleation in colloidal systems. A
colloidal system consists of gas bubbles, fluid droplets or solid particles of any shape
suspended in another medium. The defining feature of a colloidal system relates to the
motion of the suspended particles: they exhibit Brownian motion. The requirement that
the particles be able to diffuse in a Brownian manner imposes a length scale on the
particles. Specifically, in general for the particles to be able to display Brownian motion
they have at least one dimension between 1 µm and 1nm.

One of the simplest, and frequently studied colloidal systems consists of polymethyl-
methacrylate (PMMA) or silica particles coated with a polymer. The interaction between
these particles can be quite complex, consisting of van der Waals forces between the cores,
a steric interaction between the polymer coatings which helps to prevent the particles from
sticking together, and charges both on and in the particles and in the solvent. However,
to a first approximation, such particles can frequently be modelled as hard spheres.

In this thesis we explored primarily the self-assembly of solid phases occurring in
mixtures of hard spheres. The chapters of this thesis can be divided into three main
categories, chapters which addressed the question of predicting possible crystal structures,
chapters focused mainly on predicting the equilibrium phase behaviour for a given system,
and chapters focused on the nucleation of colloidal particles.

One of the main difficulties in predicting the phase behaviour in colloidal, atomic and
nanoparticle systems is in determining the stable phases, and in particular, the stable
crystalline phases. In a recent nature materials review article, Scott Woodly and Richard
Catlow argued that the “prediction of structure at the atomic level is one of the most
fundamental challenges in condensed matter science”. This statement also holds for col-
loidal and nanoparticle systems. To date, this remains a two-fold problem. To begin
with we must identify possible stable crystal phases, and secondly we must determine
whether these predicted candidate phases are themselves stable. Ideally we would be able
to accomplish these tasks in a single step, but currently this is not possible.

With respect to predicting candidate crystal phases a number of techniques have been
introduced which partially address this question, including, but by no means limited to,
simulated annealing, basin hopping, and genetic algorithms. In general, these algorithms
attempt to minimize the potential energy of the system. They make the underlying as-
sumption that the system can be approximated by the zero temperature limit and hence
the free energy can be approximated by the potential energy contribution. While this is
often the case for atomic systems, for colloidal and nanoparticles systems the situation is
frequently more complicated since the entropic contribution to the free energy is often sig-
nificant. For instance, in hard-sphere mixtures, such as those examined in this thesis, the
potential energy is always either 0 (corresponding to a configuration without overlapping
particles) or infinity (corresponding to a configuration with an overlap between particles)
and thus does not contribute to the free energy. As a result, the free energy consists of
solely the entropic contribution. Hence, to predict the stable crystal structures, one needs
to predict which crystal structures will have the largest entropy. However, predicting
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which structures have to largest entropy is much more difficult since it is not possible to
determine the entropy of a specific configuration, and more advanced techniques, such
as Einstein integration, must be used to determine the entropic contribution to the free
energy for a specific structure. Such techniques are computationally expensive, and as
such are not practical to use in combination with minimization techniques. Hence, other
approximations (or techniques) must be used to predict candidate crystal structures in
such systems.

One such approximation relies on a “cell theory”-like picture of a crystal. In such
a picture, the entropy is associated with the free volume per particle in the associated
cell. Following this logic, crystal structures which pack well are expected to have large
free volumes per particle and thus have large entropic contributions to the free energy.
The argument clearly holds in the case of monodisperse hard spheres. As argued by
Kepler approximately 400 years ago, the closest packed arrangement of monodisperse
hard spheres corresponds to face-centered-cubic (FCC), hexagonal-close-packed (HCP),
and random-hexagonal-close-packed crystal structures (rHCP). All of these have a packing
fraction of 0.74, and the free-energy differences are very small (on the order of 0.001KBT
per particle). Most importantly, the crystal phase which is stable for monodisperse hard
spheres is FCC and hence one of the best packed crystal structures corresponds to the most
stable. Keeping this in mind, in Chapter 2 we attempted to predict the best packed crystal
structures for binary hard-sphere mixtures. In particular we examined systems where the
size ratio between the diameters of the small and large spheres were 0.4 to 0.8. To do this
we used a genetic algorithm. In this work, we found a number of structures which are
frequently discussed in the context of binary crystal structures, and in particular, binary
hard-sphere mixtures, including structures with atomic analogues NaCl, CsCl, and AlB2.
Additionally, we found a number of less well studied crystal structures.

In Chapter 3, we attempted to predict the phase diagrams for hard-sphere mixtures
with size ratios between 0.74 and 0.85. To do this we calculated the Gibbs free energy
of candidate structures and used common tangent constructions to determine the phase
coexistences. For the candidate crystal phases, we used the best packed structures from
Chapter 2. Additionally, we examined the stability of a binary fluid, monodisperse FCC
phases of the large and small spheres and the binary crystal Laves phases. (Cartoons of
these phases are shown in Chapter 2). The Laves phases had previously been examined
in the context of binary hard-sphere mixtures and we were interested to see how the best-
packed structures compared with the Laves phases. Unexpectedly, the less well packed
Laves phases were found to be more stable than the best packed structures, indicating
that the “cell-theory”-like picture of the entropic contribution to the free energy was
insufficient to explain the phase diagram in this case.

In Chapter 4, we introduced a new method for predicting candidate crystal structures
which circumvents the cell-theory like assumption associated with best-packing argu-
ments. The new method is very simple and consists simply of Monte Carlo simulations in
very small simulation boxes (2-12 particles) where the box shape is allowed to fluctuate.
Simulations are started in the fluid phase, and the pressure is slowly increased until the
system crosses the fluid-solid phase boundary. In the case of binary hard-sphere mixtures,
we found that this method correctly predicted the Laves phases as the candidate crystal
structures. Thus, this method seems to correctly predict entropy stabilized crystal struc-
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tures. Additionally, in Chapter 4, we applied this method to a wide variety of systems
showing that it also works in the case of attractive interactions, anisotropic particles, and
long-range interactions. As such, we expect this method to be widely applicable in the
prediction of candidate crystal structures for colloidal systems.

In Chapter 5, we examined the phase behaviour of binary hard sphere mixtures of
size ratios 0.3-0.42. This system had been examined in the past, and the phase diagram
had been thought to contain only a binary fluid phase, phase separated FCC crystals of
the large and small spheres, and a crystal structure analogous to NaCl. However, initial
constant pressure Monte Carlo simulations appeared to indicate the existence of another
phase, in particular, an interstitial solid solution (ISS). The ISS phase consists of an FCC
crystal of the large particles with some of the octahedral holes filled by smaller particles.
Using full free-energy calculations in combination with common tangent constructions,
we showed that there is a large part of the phase diagram where the ISS phase is stable
and that the filling fraction can be tuned from 0 to 100%. Additionally, we examined
the diffusive properties of the small particles in the ISS for size ratio 0.3. In contrast to
most systems, we found a region where the diffusion increases as a function of the packing
fraction.

In Chapter 6, we re-visited a rather old problem in colloidal systems, namely the nu-
cleation rates in monodisperse hard spheres. This problem has been examined previously
both experimentally (using light scattering experiments) as well as with umbrella sam-
pling simulations. The main interest in the problem stems from the large disagreement
between the simulation and experimental nucleation rates. For low supersaturations (cor-
responding to low volume fractions), this difference is as large as 12 orders of magnitude.
The origin of this difference, however, has never been identified and remains of interest
as it indicates a difficulty to match experimental and simulation nucleation rates in, ar-
guably, the simplest colloidal model system. In Chapter 6, we re-examined this problem
using a number of different simulation techniques, including umbrella sampling (US), for-
ward flux sampling (FFS), and molecular dynamics (MD) (where possible). In general,
MD simulations would be expected to be “exact”, however, due to simulation time con-
straints they can only be used for rather large supersaturations. Umbrella sampling and
FFS, however, are techniques designed to study rare events and thus applicable at lower
supersaturations. Nonetheless, the two techniques are quite different: US uses a biasing
potential to measure the equilibrium distribution of clusters while FFS (like MD) exam-
ines the steady state distribution. Despite these differences between simulation methods,
we found that all the simulated nucleation rates agreed and that the difference between
the simulated and experimental nucleation rates at low supersaturation remains.

Our use of FFS in colloidal crystal nucleation in Chapter 6 was one of the first ap-
plications of FFS to such systems. As discussed in Chapter 6, in our simulations we
encountered a number of difficulties which prevented us from applying the technique di-
rectly, and a few modifications were necessary. In particular, we found that the size of a
growing cluster measured by our simulations contained both short-time fluctuations and
long time growth. To study the effect of such short-time fluctuations on the FFS method,
in Chapter 7 we introduced a one dimensional toy model and examined the effect of mea-
surement error on the toy model. We found FFS to be robust to such measurement error
indicating that is should be effective in the study of crystal nucleation in colloidal hard
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spheres.
Finally, in Chapter 8, we calculated the phase diagram and examined crystal nucleation

of the Weeks-Chandler-Andersen (WCA) model with βε = 40. The WCA potential is
based on the repulsive part of the Lennard Jones model, and while it is slightly softer
than the hard-sphere potential, it is frequently used to approximate hard spheres. One
recent study indicated that the crystal nucleation rates predicted using BD simulations
of the WCA potential with βε = 40 were in agreement with the experimental hard-sphere
nucleation rates. This contradicted with our work in Chapter 6, and as such, we re-
examined this system using BD, US and FFS. We found that our predicted nucleation rates
were all in agreement. Additionally, when scaled such that the freezing point matched
that of hard spheres, the nucleation rates were in agreement with our predictions from
Chapter 6. Hence, the softness did not appear to have a significant effect on the nucleation
rates. Strangely, our BD results differed significantly from those of the previous study.
When this thesis was written this difference we still not understood.



Samenvatting

In dit proefschrift bestuderen we het fasegedrag van colloïden en de nucleatie van colloï-
dale kristallen. Colloïdale oplossingen bestaan uit kleine deeltjes, die zich zowel in een
gas, vloeistof, of vaste fase kunnen bevinden, gedispergeerd in een ander medium. De be-
langrĳkste eigenschap van een colloïdaal systeem heeft te maken met de beweging van de
deeltjes: ze vertonen Brownse beweging. Om door Brownse bewegingen meetbare diffusie
door het systeem te ondergaan, moeten de deeltjes ten minste een grote tussen ongeveer
1 nanometer en 1 micrometer hebben.

Een van de eenvoudigste en meest bestudeerde colloïdale systemen bestaat uit bol-
vormige deeltjes van polymethylmethacrylaat (PMMA) of silica, bedekt met polymeren.
De interacties tussen deze deeltjes kunnen vrĳ ingewikkeld zĳn. Ze worden veroorzaakt
door de vanderwaalskrachten tussen de deeltjes zelf, een sterische interactie tussen de
coatings die voorkomt dat de deeltjes aan elkaar plakken en lading zowel op de deeltjes
als in het oplosmiddel. Toch wordt het gedrag van deze deeltjes als eerste benadering
goed beschreven door een model van harde bollen.

In dit proefschrift hebben we vooral gekeken naar de kristalstructuren die worden
gevormd door zelforganisatie in mengels van harde bollen. De hoofdstukken kunnen
verdeeld worden in drie categorieën: hoofdstukken over het voorspellen van mogelĳke
kristalstructuren, hoofdstukken waarin het fasegedrag van systemen wordt voorspeld, en
hoofdstukken over de nucleatie van colloïdale deeltjes.

Bĳ het voorspellen van het fasegedrag van colloïdale en atomaire systemen is een van
de moeilĳkste factoren het voorspellen van de stabiele kristalstructuren. In een recent
review article schreven Woodley and Catlow dat “prediction of structure at the atomic
level is one of the most fundamental challenges in condensed matter science.” Dit is ook
van toepassing op colloïdale systemen. Dit probleem bestaat uit twee delen: ten eerste
het vinden van mogelĳk stabiele kristalstructuren, en ten tweede het vaststellen of deze
structuren ook daadwerkelĳk stabiel zĳn.

Voor het voorspellen van mogelĳke kristalstructuren zĳn een aantal technieken geïn-
troduceerd, waaronder simulated annealing, basin hopping en genetic algorithms. In de
meeste gevallen worden deze algoritmes gebruikt om de potentiële energie van het systeem
te minimaliseren. Hierbĳ wordt de aanname gemaakt dat de kristalstructuur overeen komt
met de structuur die gevormd wordt in de limiet van lage temperaturen, waar de vrĳe
energie benaderd kan worden door alleen de potentiële energie. Hoewel dit vaak werkt
voor atomaire systemen, is de situatie in colloïdale systemen ingewikkelder, omdat de
entropische bĳdrage aan de vrĳe energie daar ook belangrĳk is. Voor mengsels van harde
bollen, zoals bestudeerd in dit proefschrift, is de potentiële energie bĳvoorbeeld altĳd
gelĳk aan nul (voor configuraties zonder overlappende deeltjes) of oneindig (voor configu-
raties waarin ten minste twee deeltjes overlappen), zodat deze niet bĳdraagt aan de vrĳe
energie. Om de stabiele kristalstructuren te voorspellen moeten we dus de kristalstruc-
turen vinden met de grootste entropie. Voorspellen welke structuren de grootste entropie
hebben is echter veel moeilĳker, omdat het niet mogelĳk is om de entropie van een spec-
ifieke configuratie te berekenen. Hoewel er technieken bestaan, zoals Einstein integratie,
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om de entropische bĳdrage aan de vrĳe energie in een systeem te berekenen, kosten deze
vaak erg veel rekentĳd, en zĳn daardoor niet geschikt voor gebruik in combinatie met
minimalisatietechnieken. Daardoor zĳn andere benadering (of technieken) noodzakelĳk
om mogelĳke kristalstructuren in zulke systemen te voorspellen.

Een van de mogelĳke benaderingen is gebaseerd op de beschrĳving van een kristal
binnen de cell theory. In dit beeld is de entropie geassocieerd met het beschikbare volume
per deeltje in zĳn Wigner-Seitz cel. Volgens deze logica verwachten we dat kristalstruc-
turen met een dichte maximale pakking per deeltje een groot beschikbaar volume hebben
bĳ lagere dichtheden. Dit is zeker waar voor monodisperse harde bollen. Zoals Kepler
400 jaar geleden al voorstelde, komt de ordening van monodisperse bollen met de hoogst
mogelĳke dichtheid overeen met de face-centered-cubic (FCC), hexagonal-close-packed
(HCP) en random-hexagonal-close-packed (rHCP) structuren. Al deze structuren hebben
dezelfde maximale volumefractie: 74%, en de verschillen in vrĳe energie zĳn erg klein (in
de orde van 0.001 kBT per deeltje). De kristalstructuur die stabiel is voor monodisperse
harde bollen is FCC, en komt dus overeen met een van de structuren met de grootste
maximale volumefractie. Met dit idee in gedachten probeerden we in hoofdstuk 2 de
structuren met maximale pakking te voorspellen voor binaire mengsels van harde bollen.
We keken daarbĳ naar systemen waarin de verhouding tussen de diameters van de kleine
en grote bollen lag tussen de 0.4 en 0.8, en maakten gebruik van genetische algoritmes.
We vonden een aantal structuren die vaak voorkomen in studies van binaire kristalstruc-
turen, waaronder de colloïdale equivalenten van NaCl, CsCl en AlB2. Daarnaast vonden
we een aantal minder bestudeerde kristalstructuren.

In hoofdstuk 3 constueerden we fasediagrammen voor mengsels van harde bollen met
grootteverhoudingen tussen de 0.74 en 0.85. Hiervoor berekenden we de Gibbs vrĳe en-
ergie van kandidaatfasen en maakten gebruik van ’common tangent’ constructies om de
fasecoëxistenties te berekenen. Als kandidaten voor de kristalstructuren gebruikten we
de dichtstgepakte kristalstructuren uit hoofdstuk 2. Daarnaast bekeken we de stabiliteit
van een binaire vloeistof, monodisperse FCC-kristallen van de grote en kleine bollen en de
binaire Laves kristalstructuren (plaatjes van deze structuren zĳn te vinden in hoofdstuk
2). Er was al eerder bekend dat de Laves-structuren stabiel zĳn voor grootteverhouding
0.8, maar veel van de structuren uit hoofdstuk 2 waren niet meegenomen in dit onder-
zoek. Verrassend genoeg bleken de minder dicht pakkende Laves-structuren stabieler dan
de structuren met de maximale volumefractie. Dit laat zien dat de meest dichte kristal-
structuur niet zondermeer de hoogste entropie heeft.

In hoofdstuk 4 introduceerden we een nieuwe methode om kandidaatstructuren te
voorspellen, waarbĳ geen gebruik wordt gemaakt van de aanname dat de entropie gerela-
teerd is aan de maximale volumefractie. De nieuwe methode is erg makkelĳk en bestaat
uit Monte Carlo simulaties van kleine systemen (2-12 deeltjes), waarbĳ de vorm van het
gesimuleerde volume kan fluctueren. De simulaties beginnen als een vloeistof en de druk
neemt langzaam toe tot het systeem kristalliseert. In het geval van mengsels van harde
bollen vonden we inderdaad de stabiele Laves-structuren. De methode lĳkt dus ook in
staat te zĳn structuren te voorspellen die gestabiliseerd worden door entropie. In hoofd-
stuk 4 passen we deze methode ook toe op een aantal zeer verschillende systemen, en
laten zien dat ze ook werkt in systemen waarin de deeltjes elkaar aantrekken, de inter-
acties anisotroop zĳn, of de interacties over lange afstanden werken. We verwachten dus
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dat deze methode ruim toepasbaar is voor het voorspellen van kandidaatstructuren in
colloïdale systemen.

In hoofdstuk 5 bekeken we het fasegedrag van binaire mengsels van harde bollen met
grootteverhoudingen tussen de 0.3 en 0.42. Deze systemen waren al eerder bestudeerd, en
het fasediagram leek enkel te bestaan uit een binaire vloeistof, FCC kristallen van grote
of kleine bollen, en een kristalstructuur analoog aan NaCl. Monte Carlo simulaties bĳ
constante druk wezen echter uit dat er nog een fase stabiel zou kunnen zĳn, een interstitial
solid solution (ISS). De ISS fase bestaat uit een FCC kristal van grote deeltjes, waarin een
gedeelte van de gaten, die met de vorm van een octaëder, in het kristal gevuld is met kleine
deeltjes. Met behulp van volledige vrĳe energie berekeningen in combinatie met common
tangent constructies toonden we aan dat de ISS fase stabiel is in een groot gedeelte van
het fasediagram, waarbĳ het percentage van de gaten in het kristal dat gevuld is varieert
van 0 tot 100%. Daarnaast bekeken we de diffusie van kleine deeltjes door de ISS bĳ
grootteverhouding 0.3. In tegenstelling tot de meeste andere systemen vonden we hier
een gebied waar de diffusie toeneemt als functie van de volumefractie.

In hoofdstukken 3 en 5 hebben we de thermodynamische stabiliteit van verschillende
kristalstructuren in evenwicht aangetoond, maar om kristallen ook experimenteel waar
te nemen, moet het systeem ook in staat zĳn de kristalstructuur te vormen. Een van
de belangrĳkste manieren waarop kristallen worden gevormed is via nucleatie. Bĳ de
nucleatie van een kristal ontstaat een nucleus in een oververzadigde vloeistof door ther-
mische fluctuaties. Een van de interessantste vragen over dit systeem is hoe lang het
duurt voordat een nucleus wordt gevormd die groot genoeg is om uit te groeien tot een
kristal. Deze tĳd wordt gegeven door de nucleation rate. Voor harde bollen, het een-
voudigste modelsysteem voor colloïden, is de nucleation rate al eerder bestudeerd, zowel
in experimenten (met behulp van lichtverstrooiing) als in simulaties. Helaas blĳkt dat
zelfs voor harde bollen de nucleation rates voorspeld door simulaties en die gemeten in
experimenten ver uit elkaar liggen: de verschillen liggen in de orde van 1012. De oorzaak
van deze verschillen is niet bekend. In hoofdstuk 6 bekeken we dit probleem met be-
hulp van verschillende simulatietechnieken, waaronder umbrella sampling (US), forward
flux sampling (FFS), en molecular dynamics (MD). We verwachten dat de resultaten
uit MD simulaties exact zĳn, maar omdat deze simulaties erg lang kunnen duren kan
deze techniek alleen gebruikt worden bĳ vrĳ hoge oververzadiging. Umbrella sampling en
FFS zĳn echter ontwikkeld om rare events te bestuderen, en zĳn dus ook toepasbaar bĳ
lage oververzadiging. De technieken verschillen sterk: US maakt gebruik van een biasing
potential om de evenwichtsverdeling van clusters te meten, terwĳl met FFS en MD de
steady state verdeling wordt bekeken. Ondanks deze verschillen zagen we dat de resul-
taten van alle simulatiemethoden met elkaar overeenkomen, en dat de verschillen tussen
de simulaties en experimenten blĳven bestaan.

Onze toepassing van FFS op nucleatie in hoofdstuk 6 was een van de eerste keren dat
deze techniek werd toegepast op de nucleatie van colloïdale kristallen. Zoals beschreven in
hoofdstuk 6 ondervonden we een aantal problemen in onze simulaties, die ervoor zorgden
dat een aantal wĳzigingen in de methode nodig waren voor deze toegepast kon worden.
We zagen dat de grootte van een groeiende cluster wordt beïnvloed door fluctuaties op
zowel korte als lange tĳdsschalen. Om het effect van de fluctuaties op korte tĳdsschalen
op de simulaties te bepalen, gebruikten we in hoofdstuk 7 een eenvoudig eendimensionaal
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model, en bekeken daarin de effecten van een meetfout op de gemeten nucleation rate.
Het effect van een dergelĳke meetfout op FFS bleek klein te zĳn. Dit suggereert dat
de methode goed toepasbaar zou moeten zĳn voor het meten van de nucleation rate in
colloïdale harde bollen.

Uiteindelĳk berekenden we in hoofdstuk 8 het fasediagram van het Weeks-Chandler-
Andersen (WCA) model met βε = 40, en bestudeerden we de nucleatie van een kristal
in hetzelfde systeem. De WCA potentiaal is gebaseerd op het repulsieve deel van het
Lennard-Jones model, en is zachter dan de potentiaal voor harde bollen. Toch wordt
dit model regelmatig gebruikt om harde bollen te benaderen. Een recent onderzoek liet
zien dat de nucleation rates in dit model, gemeten met behulp van Brownian Dynamics
(BD), overeenkwamen met de experimenteel gemeten nucleation rates voor harde bollen.
Aangezien dit in tegenspraak is met onze resultaten uit hoofdstuk 6, onderzochten we
dit systeem nogmaals met zowel BD, US als FFS. Onze nucleation rates kwamen overeen
voor alle drie de methoden. Daarnaast konden de resultaten in overeenstemming gebracht
worden met de resultaten voor harde bollen uit hoofdstuk 6, door de dichtheden zo te
schalen dat de vriespunten van de twee systemen overeen komen. De zachtere interacties
lĳken dus geen sterke invloed te hebben op de nucleatie. Vreemd genoeg verschilden onze
BD resultaten sterk van die uit het eerdere onderzoek. Op het moment dat dit proefschrift
werd geschreven hadden we nog geen verklaring voor dit verschil.
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