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Introduction

According to textbook definitions, colloids are particles within a size range of a nanometer
to a micron that are moving around in a solvent. Surprisingly many user products fall
under that definition: Milk, latex paint, mayonnaise and ice creams, to name just a
few. Obviously, a better understanding of colloids could improve some of these products.
Aside from these applications, colloids are also useful to gain fundamental understanding
of atomic systems. As Perrin [1] showed, the motion of the colloids is caused by collisions
with the molecules of the solvent, which cause the colloids to move in an irregular fashion,
so called Brownian motion. This actually proved the existence of atoms and molecules,
the first (and probably still foremost) fundamental insight into atoms that was gained
by studying colloids. The Brownian motion allows the particles to explore phase space
and find the most favorable configurations, as described by the same statistical physical
theories that were derived for atoms. For example, for colloids hydrostatic equilibrium
holds in the same way that it does for air molecules, except that according to Archimedes’
principle, the mass is reduced (to the buoyant mass mB) by the mass of the volume of
solvent that a particle displaces. At large altitudes the number density profile (ρ(z)) of
the colloids follows the barometric height formula,

ρ(z) = ρ0 exp(−mBgz/kBT ), (1.1)

where z is the height in the sample, g is the gravitational acceleration, kB is Boltzmann’s
constant, T is the temperature and ρ0 is an (unknown) prefactor. This expression holds
only when the colloids are acting like an ideal gas, when the density is sufficiently low
i.e. at sufficiently large heights. Using this expression Perrin [2] was able to calculate
a fundamental property of atoms from the number density of colloids as a function of
height: Boltzmann’s contant and therefore Avogadro’s number. This example also shows
one of the major advantages over studying colloids as atoms rather than atoms themselves:
the number density of the colloids was measured simply by counting the colloids under a
microscope. Although microscopes have advanced a lot since Perrins days, the fact still
remains that colloids are observable under a light microscope, while atoms are not.

Another advantage of colloids over atoms, is the tunability of the colloid-colloid in-
teractions. Colloids, as a rule, are charged objects, since the surface of a colloid always
absorbs some charged molecules and, as is also often the case, some ions (usually protons)
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dissociate from the surface. The (counter) ions in the solvent, screens the bare Coulomb
colloid-colloid interactions, making them decay (slightly faster than) exponentially:

φ(r) = ε
exp(−(r − σ)/lD)

r
, (1.2)

where ε is the strength of the interaction, lD, is the decay length of the charged induced in-
teractions, often called the screening length or the Debye length, r is the distance between
the colloids and σ is their diameter (this expression holds only for spherical colloids). By
adding or removing ions, the screening length can be tuned and by changing the charge
of the particle, ε can be tuned. In fact, for interactions between two particles of a dif-
ferent type, one positively and one negatively charged, ε can be negative. Furthermore,
there are numerous other interactions which can be added, for instance attractive tunable
range interactions by adding non-adsorbing polymers and even type-specific interactions
by attaching carefully selected strands of DNA to the surface of the particles. In the
present thesis however, we study colloids for which most of the interactions are removed:
our model particles interact via hard-core interactions, that is, interactions that only pre-
vent the particles from interpenetrating. Hard spheres have been a favorite model for
theoreticians and simulators alike, because it is a system which only depends on packing
fraction (the volume of the particle times the number of particles per unit volume or the
fraction of the volume that is filled by the particles). The phase behavior of hard spheres
is well known: The stable phase is a fluid up to a volume fraction, φ ≡ vN/V = 0.494
and a crystal for volume fractions above 0.545 [3–5], where v = πσ3/6 is the volume
of a colloid and N is the number of particles in a volume V . In between these packing
fractions, there is coexistence between the fluid and the crystal phase. The type of crystal
has been under debate for a long time, until it was proven that the stable crystal is the
face-center-cubic crystal (FCC) using computer simulations [6]. However, the difference
in stability between FCC and the other candidate, hexagonally close packed (HCP), is so
small, that even relatively large crystallites will usually consist of almost equal mixtures
of FCC and HCP. Hard spheres can be used as a zeroth order approximation to the in-
teractions between atoms. In principle, interactions can then be added a posteriori using
some form of perturbation theory. With colloids, this highly theoretical model particle
can actually be obtained experimentally. By adding many screening ions, and by coating
the surface of the colloids with an uncharged polymer brush, the particles can interact
(almost) hard core-like over a distance that is larger than the screening length. In this
case, it is important to adjust the refractive index of the solvent to match the refractive
index of the colloids and hence minimize the Van der Waals attractions. At high salt
conditions, the interaction decays so fast, that φ(r) is essentially zero when r is larger
than a certain distance σeff, and infinity for r < σeff. In other words, even if no polymer
brush is present, the colloids can be made to interact almost like hard spheres with a
certain effective diameter σeff.

Since a spherical colloid can be used as a model for a single atom, a next step in
complexity is the study of colloidal molecules. The simplest molecule is a dimer, such as
nitrogen, and its model colloid is the dumbbell, a pair of fused spheres whose center-to-
center distance is smaller than their diameter. The synthesis of these particles is briefly
considered in Chapters 3 and 4, which are dedicated to simulations of hard dumbbells.



Introduction 3

One can keep on adding more (fused) spherical cores obtaining trimers, quadrumers etc.
Furthermore, one can also go to more complex shaped colloids, which cannot be thought
of as a collection of (overlapping) spheres. Colloidal particles have been synthesized in an
incredibly large variety of shapes: disks, rods, crosses, bowls, capsules, icecones, snowmen,
etc. In this thesis we perform simulations on a few of those shapes: as mentioned,
dumbbells in Chaps. 3 and Chap. 4, bowls in Chap. 5 and finally discs in Chap. 6. The
molecular analogs of these are the nitrogen molecule, molecular bowls and molecular discs,
where the last two are applied in the field of molecular liquid crystals. Liquid crystals

rods discs
(a) (b)

(c)
(d)

Figure 1.1: Configurations of liquid crystals: Nematic phases formed by rods (a) and discs
(b). When the packing fractiom is increased, the nematic phases of rods and discs transform
into the smectic (c) and columnar (d) phases respectively. We study discs in Chap. 6; rods have
been studied extensively in previous work [7].



4 Chapter 1

are phases that are somewhere in between a liquid and a crystal phase, because there is
ordering in one or more of the spatial or orientational degrees of freedom of the particles,
while other degrees of freedom are fluid-like. Examples are the nematic phase, where
the particles are aligned, but free to translate, the smectic phase in which the particles
are aligned and confined to layers, but the movement within the layers is fluid-like, and
the columnar phase, where particles are aligned and confined to (usually) hexagonally
arranged columns, but there is no ordering within the column. Sufficiently thin discs
exhibit nematic and columnar liquid crystal phases, as described in Chap. 6, while the
liquid crystalline phase behavior of the bowls is restricted to the columnar phase (see
Chap. 5). Typical configurations of nematic and smectic phases of rods and nematic and
columnar phases of discs are shown in Fig. 1.1.

One aspect of colloids is not yet explicitly mentioned, but which was implicit in the
experiment of Perrin. Perrin could do his experiments on a sample cell with a height of
a tenth of a millimeter. If he would have done his experiments on atoms, (were he able
to see them), he would have to have a sample container which is higher than the decay
length of the barometric height profile, kBT/mg ' 10km for air molecules, which would
never have fit inside his laboratory. For micron sized colloids on the other hand, kBT/mBg
is about a micron. The buoyant mass of the colloids, mB, is equal to the volume of a
colloid times the difference between the mass density of the constitutive material of the
colloid and the mass density of the solvent, ∆ρ, for which we took ∆ρ ' 1kg/l. Although,
smaller colloids can easiliy be synthesized, the individual colloids become more difficult to
distinguish when they become much smaller than a micron, as Perrin already mentioned
in Ref. [1]. By carefully chosing the solvent and the colloidal material, one can lower
the mass density difference by one or two orders of magnitude. However, the gravitional
length will never become much larger than a hundred times the diameter of the colloid;
it is usually smaller than the height of the container. Therefore, gravitational effects will
always be important for experiments on micron-sized colloids on earth (there have been a
few experiments on colloids in space precisely for this reason). Here, we see the advantage
of simulations: we can selectively turn the gravitational field on and off, allowing us to first
study the phase behavior in the absence of gravity as was done in previous work for hard
spheres and in Chap. 3 for hard dumbbells. Subsequently, we can turn the gravitational
field on, and study both hard spheres (see Chap. 2) and hard dumbbells (Chap. 4) under
gravity.

Our method of choice to study colloidal particles is computer simulations. For atoms
the disadvantages of simulations, notably that one can simulate only a limited number of
particles (up to a few hunderd thousand at present) for a short time (up to nanoseconds),
are made up for by the fact that more information, such as the positions of the individual
atoms, can be obtained in simulations than in experiments. Colloids, unlike atoms, can be
tracked in real space and hence their positions can be obtained. However, the tunability
of colloids, that was mentioned in the previous section, also has its disadvantages: Even
for simple charged colloidal spheres, quantities like the diameter, charge, screening length
and even packing fraction all need to be measured (resulting in uncertainties), while for
simulations these are input parameters. This fact has been exploited in Ref. [8], where
the interaction potential of a colloid has been obtained by fitting simulation results of
hard spheres that also interact with the potential (1.2) for various ε to the experimental
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results. A well known expression can then be used to obtain the (effective) charge of the
colloids. The limited time window of the simulations is much less an issue for colloidal
systems because colloids move much slower than atoms, such that, for instance, systems of
(not too many) micron-sized colloids can be simulated almost real time. Finally, computer
simulations can be run on a fast personal computer, while experiments usually require a set
up, that is quite a bit more expensive to acquire and maintain. Nevertheless, simulations
and experiments (and theory) can not function separately for colloidal systems, (which
can be seen from the many joint publications) since experiments often require simulations
and theory to understand the fundamental processes that occur, while simulations and
theory need verification from experiments.

In this thesis, we will be interested mainly in the phase behavior of anisotropic col-
loids. The rest of this introductory chapter is reserved for a brief introduction into the
simulations methods and free energy calculations we performed. In Chap. 2 we will first
study hard spheres in gravity. In the next chapter we will study our first anisotropic
model particle, the hard dumbbell. The insights gained in these two chapters will be used
in Chap. 4, which is dedicated to hard dumbbells in gravity. We will then proceed to
study the bulk phase behavior of hard bowls in Chap. 5 and compare to experimental
results, which we will also briefly describe. Finally, in Chap. 6 we will calculate the phase
diagram of a cusp-free model for platelets or discs.

1.1 Simulations
In this section we will give a short introduction to the two simulation methods we have
used in this thesis. Almost all of the work has been done using Monte Carlo simulations,
although in Chap. 6 molecular dynamics has also been used. In statistical physics of
continuously moving particles a static quantity A i.e. a quantity that does not depend on
the momenta of the particles, is measured by the following integral:

〈A〉 =
∫

drNA(rN)e−βΦ(rN )/N , (1.3)

where rN are the positional and (in the case of anisotropic colloids) angular coordinates of
all particles, β = 1/kBT , Φ is the potential energy of the system and N is a normalization
factor: N =

∫
drN exp(−βΦ(rN)). In principle, this integral can be evaluated using so-

called Monte Carlo integration: Values for all coordinates of the particles are generated
that are distributed randomly over the whole phase space. The integrands of Eq. (1.3) and
N are summed over all these trial configurations until sufficient precision is achieved for
Eq. (1.3). For many systems though, the exponent in the integrand is very small for most
of the randomly generated rN and only a few terms will give an appreciable contribution
to the integral Eq. (1.3). An example is a dense fluid of hard spheres, where almost
all of the randomly generated configurations will cause an overlap and therefore have a
zero contribution to the integral. The solution to this problem, is to sample phase space
according to the Boltzmann probability exp(−βΦ(rN)), by so-called Metropolis sampling.
In this method the phase space is explored by performing so-called Monte Carlo moves.
In such a move, the state of the system, characterized by the coordinates ro

N (o stands
for “old”), is changed slightly, usually by displacing or rotating a single particle by a
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small amount. Thus a new state rn
N is created, which is accepted or rejected with the

probability
max

{
1, exp

(
− β[Φ(rn

N)− Φ(ro
N)]

)}
. (1.4)

If the new state is rejected, it is replaced by the old state. It can be shown that an en-
semble of configurations that was Boltzmann distributed, remains Boltzmann distributed
after successive application of Monte Carlo moves, and even that a poorly chosen initial
configuration will be converted into a Boltzmann distributed ensemble by these moves. In
our simulations, integral (1.3) is evaluated simply by averaging A(rN) over all generated
configurations rN . We will refer to this method, Monte Carlo integration combined with
Metropolis sampling, as Monte Carlo simulation (MC) in the remainder of this thesis.

One might think that the above method is overly complicated, as the motion of the
particles is decribed by Newton’s laws. The corresponding equations of motion can be
integrated numerically to obtain the trajectories of all particles. This method is called
molecular dynamics (MD) and is also widely used in computer simulations. The integra-
tion of the equations of motion is usually stepwise, where the positions and velocities of
the particles at a certain time t are obtained from the positions and the velocities at a time
t−∆t, where ∆t is the fixed time step, that is used in the discretization of the equations of
motion. For hard particles, this way of integrating the equations of motion breaks down,
because the forces are only nonzero during the instantaneous collisions. These collisions
will in general not occur at the time of an integration step, so they will be missed, leading
to overlaps. Instead, we take a different route, where the positions and velocities only
need to be evaluated at the time of a collision event. For every pair of particles, we look
for a collision by moving the particles forward using the known analytical free motion
until a collision is found. For hard spheres the prediction of the time of a collision is
analytical, for anisotropic particles that rotate, the collision must be sought numerically
(see Chap. 6 for more details on this numerical search). We then sort the collisions in
order of the time that they occur and cycle through them one by one. After each collision
the future collisions of the colliding particles need to be recalculated and reinserted into
our list of collisions, in such a way that it remains time ordered. In practice, we use a
binary sort tree for this purpose. Since the time advances by processing events in this
type of molecular dynamics simulation, it is called an event driven molecular dynamics
simulation.

1.2 Free energy calculations
In theory, using (event driven) MD or MC, all the measurable properties of the particles
can be obtained. In this thesis, we will mainly be interested in systems that undergo
phase transitions, and we wish to locate these phase transitions. In principle, we can
initiate a simulation in one of the phases, change the pressure or number density and
simply observe whether the system changes phase or not. Unfortunately, in order for a
phase transition to occur, the system usually has to overcome a considerable free energy
barrier, which is determined by the interfacial free energy required to create an interface
between the coexisting phases. Or, in other words, the states on the path through phase
space, that connects the two phases, are exceedingly rare. For crystallization in gravity,
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this is not such a large problem because the flat wall at the bottom of our sediments
promotes layering, which is a first step in crystallization in this system. In the absence
of such a wall, we can usually not directly determine the transition point. Instead, we
calculate the chemical potential µ and the pressure P of both phases, and we find the
pair of densities at which the chemical potentials and the pressures of the respective
phases are equal. We can calculate the chemical potential in a single simulation, but
only when the number density is low [9]. This method was used for the isotropic fluid
to nematic phase transition of discs in Chap. 6. For higher densities, we need some way
of calculating the free energy, F = U − TS, where U is the energy of the system, T is
the temperature and S the entropy. The chemical potential can then be obtained using
µ = (F + PV )/N . Usually, only free energy derivatives can be measured in Monte Carlo
and molecular dynamics simulations. The exceptions are the simulations that have been
biased to allow the system to go through the gateway states that lie in between the two
phases: umbrella sampling, Wang Landau sampling, and multicanonical Monte Carlo. In
these simulations one can measure how often the simulation is in one of the two phases
compared to the other phase, which is proportional to the free energy difference between
the phases. We used multicanonical Monte Carlo simulations to calculate the free energy
difference between the FCC and the HCP stacking of a plastic crystal phase of dumbbells
in Chap. 3. In all other cases, we relate the free energy of a phase to the free energy of a
reference state, usually a noninteracting variant of the phase of interest or the phase that
coexists with the phase of interest. Suppose that there is a path through parameter space
that connects the phase of interest to this reference state and that we can parametrize
this path by a parameter λ, where λ = 0 denotes the reference state and λ = 1 the state
of interest (for details about the integration paths we employed, see for instance Chap. 3).
Then, the free energy of the state of interest F1 can be related to the free energy of the
reference state F0 by

F1 = F0 +
∫ 1

0
dλ∂Fλ

∂λ
, (1.5)

where we measure ∂Fλ/∂λ, the derivative of the free energy with respect to λ, in our
simulations for many values of λ along the path. Therefore, to calculate a phase diagram,
in which the coexistence densities are plotted against the aspect ratio of an anisotropic
colloid, many simulations have to be run, to calculate the free energy derivatives at a
sufficient number of points along the various integration paths.
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Crystallization of colloidal hard
spheres under gravity

Using grand canonical Monte Carlo simulations, we study the crystallization of colloidal
hard spheres under gravity. More specifically, we investigate the nature of the freezing
transition as a function of gravity and chemical potential of the hard spheres. We find
a discontinuous freezing transition where several fluid layers close to the bottom of the
sample freeze simultaneously, i.e. at the same chemical potential. We also find that
the number of layers that freezes at the same chemical potential decreases for higher
gravitational field strength. Upon increasing the chemical potential further, the crystalline
film thickness increases continuously.
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2.1 Introduction

The bulk phase behavior of hard spheres has been studied in great detail and is well-
understood by now. In particular, it was shown by computer simulations that such a
system shows a purely entropy-driven phase transition from a disordered fluid phase to a
face-centered-cubic (fcc) crystal phase at sufficiently high densities [3–5]. Although the fcc
phase is the most stable phase, the free energy difference with respect to the metastable
hexagonal-close-packed (hcp) structure is only very small and is on the order of 10−4kBT
per particle at the melting transition [6]. Here we define kB as Boltzmann’s constant and
T the temperature. The crystallization of hard spheres at flat walls has also been subject
of many studies. It has been shown that a smooth hard wall causes pronounced layer-
ing of the fluid phase at the wall, which can lead eventually to prefreezing and complete
wetting by the hard sphere crystal upon increasing the density towards bulk coexistence
[10–12]. Confining the hard-sphere system between two parallel hard walls leads to an
intriguing sequence of capillary freezing and capillary melting transitions upon increasing
the distance between the two walls and the formation of many different crystal structures
like square, triangular, rhombic, buckling and prism phases [13, 14]. Prefreezing [15] and
epitaxial crystal growth [15, 16] was also observed for walls with a surface pattern that
is similar in symmetry as one of the crystal planes. Using templates that are charac-
teristic for the hcp crystal structure, i.e., templates that induce the ABAB stacking of
the hexagonal layers perpendicular to the wall, the hcp crystal, that is metastable in
bulk, has been grown experimentally in suspensions of colloidal particles [17, 18]. These
suspensions can serve as excellent experimental realizations of the hard-sphere system as
the effective interactions of the colloids can be tuned in such a way that the particles
interact approximately as hard spheres. However, gravity is often non-negligible in col-
loidal suspensions, as the gravitational energy becomes comparable to the thermal energy
for colloid sizes of about a micrometer. Hence, a spatial inhomogeneous suspension is
obtained due to the gravitational field, which is characterized by a density profile ρ(z)
that varies with altitude z. The parameter that is associated with a gravitational field is
the so-called gravitational length and reads `/σ = (βmgσ)−1 where m is the effective or
buoyancy mass of the colloidal particles, β = (kBT )−1, σ the diameter of the colloids, and
g the gravitational acceleration. Typically, `/σ is of the order of 10−1 − 103 for colloidal
particles. The density profile ρ(z) follows from a competition between minimal energy
(all colloids at the bottom) and maximum entropy (a homogeneous distribution in the
available volume). In the case of a very dilute colloid concentration or at high altitude,
where the suspension becomes sufficiently dilute, the system behaves like an ideal gas
and the system obeys the Boltzmann distribution, yielding an exponential density profile
with a decay length given by `. In 1910, Jean Perrin measured such a density profile
under the microscope which enabled him to determine Boltzmann’s constant and hence,
Avogadro’s number [2]. However when the interactions become important, the density
profile becomes highly non-exponential. Density profiles for hard spheres have been cal-
culated using density functional theory and simulations [19–26], and are measured by
light scattering techniques [27, 28] and confocal microscopy in suspensions of colloidal
hard spheres [29]. The measured concentration profiles obtained from a single experiment
or simulation can be inverted to obtain the osmotic equation of state over a whole range
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of densities [19, 27, 28, 30]. Crystallization in sedimentation profiles of hard spheres was
studied using Monte Carlo simulations and density functional theory [20–24, 26]. The
simulations in Ref. [20] show a discontinuous transition where two layers crystallize at
the same gravitational field strength. Upon increasing the gravitational field further, the
crystalline film grows continuously. However, density functional theory predicts a discon-
tinuous crystal growth via layering transitions upon increasing gravity in contrast with
the simulation results [20].

In this chapter we investigate in more detail the nature of the freezing transition in
suspensions of hard spheres as a function of chemical potential while keeping the gravita-
tional field strength fixed. In Ref. [20], crystallization was studied as a function of gravity.
However, in order to study the phase behavior of colloids in an external field, it is more
convenient to treat the system grand-canonically and to study the freezing transition as
a function of chemical potential for a fixed value of the gravitational field strength [31].
Moreover, keeping the gravitational length of the particles fixed is closer to the experi-
mental situation as the experimental ` is determined by system parameters that are often
constant in an experiment. To be more specific, ` depends on the gravitational accelera-
tion, which is often equal to the value on earth, and on the buoyancy mass m, which is
related by Archimedes’ principle to m = m0 − ρ̃v with ρ̃ the mass density of the solvent,
m0 the bare mass of the colloidal particles, and v the particle volume. Our results show
a discontinuous freezing transition where a number of layers freezes at the same chemical
potential. Upon increasing the chemical potential further, the crystalline film thickness
increases continuously. It is important to stress that Monte Carlo simulations gives only
information about the equilibrium structure and not on the crystallization kinetics. The
chapter is organized as follows. In Sec. 2.2 we describe the model. In Sec. 2.3, we present
our Monte-Carlo simulation results and we end with some concluding remarks in Sec. 2.4.

2.2 Model
We consider a system of hard spheres with diameter σ in a gravitational field oriented
along the z-direction. In addition, the spheres are confined between two smooth hard
parallel walls at z = 0 and z = H. The spheres are subjected to the external potential:

φ(z) =
{
mgz σ/2 ≤ z ≤ H − σ/2
∞ otherwise (2.1)

where z is the vertical coordinate, g is the gravitational acceleration, and m the buoyant
mass of the hard spheres. The height H is chosen such that the density at z = H−σ/2 is
sufficiently small, i.e., ρσ3 < 10−6 and thus the system can be considered to be infinite in
the z−direction. The lateral dimensions of the box are Lx = 9 a0 n and Ly = 10 a0 n

√
3/2

with n an integer. Note that the lateral dimensions of the simulation box are nearly
equal, which minimizes the finite-size effects for the fluid phase and accommodates a
hexagonal crystalline layer (the (111) plane of a fcc crystal) with lattice constant a0. We
employ periodic boundary conditions in the lateral dimensions and we use n = 2 in our
simulations.
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Figure 2.1: The contact density ρ(σ+/2)σ3 of a crystalline sediment of hard spheres as a
function of the lattice constant a0 of the crystal at the bottom of the sample for varying gravity
g∗ = mgσ/kBT = 2, 3, and 4. The error in the data is smaller than the size of the symbols.
The solid lines denote the pressure at the bottom of the sample given by βP (z = 0)σ3 = g∗ρ∗A,
where ρ∗A ≡ Nσ2/A.

2.3 Results and discussion
First, we perform Monte Carlo (MC) simulations in the canonical ensemble, i.e., we fix the
number of particles N = 2004, the area A ≡ Lx × Ly = 18a0 × 10

√
3a0 in the x− and y-

direction, and the height H of the box. Moreover, we fix the strength of the gravitational
field or the inverse gravitational length g∗ ≡ mgσ/kBT = (`/σ)−1. The thermodynamic
parameter that was defined in Ref. [20] is the mean area ρ∗A ≡ Nσ2/A, which equals the
number of particles per unit area of the bottom of the sample. The pressure at the bottom
of the sample, i.e., at z = 0, is directly related to ρ∗A, as the pressure is determined by
the gravitational force of all the spheres per unit area, i.e., βP (z = 0)σ3 = g∗ρ∗A. In our
simulations, we measure the dimensionless density profile:

ρ(z) = 1
A

∫ ∫
dxdyρ(x, y, z) = 1

A

〈
N∑
i=1

δ(z − zi)
〉
, (2.2)

where ρ(x, y, z) is the local density and the brackets denote an ensemble average. It is
well-known that for any one-component fluid or crystal near a hard wall, the contact
density ρ(σ+/2) satisfies the sum rule ρ(σ+/2) = βP (z = 0). The starting configurations
that we use in our simulations consist of a face-centered-cubic (fcc) crystal structure with
the (111) axis normal to the bottom of the sample and with varying lattice constant a0. In
Ref. [20], the contact theorem was employed to obtain the “correct” a0 for the crystalline
sediment. These authors found that the sum rule was only satisfied for a lattice constant
a0 = 1.088σ. In Fig. 1, we plot the contact density ρ(σ+/2)σ3 as a function of a0 for
g∗ = 2, 3, and 4. For comparison, we also plot βP (z = 0)σ3 denoted by the solid lines.
Fig. 2.1 shows that the sum rule is satisfied for all values of the lattice constants we
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considered, i.e., 1.04 ≤ a0/σ ≤ 1.11. Hence, we are not able to obtain the “correct”
lattice constant by requiring consistency of the bottom pressure with the contact density.

In order to solve this problem, we perform Monte Carlo simulations in the grand-
canonical ensemble, i.e., we fix the chemical potential µ∗ ≡ βµ− ln(Λ3/σ3), where Λ is the
thermal wavelength, and the volume of the box. Due to particle removals and insertions
in a grand-canonical Monte-Carlo simulation, the system equilibrates more easily to the
equilibrium crystal structure by relaxing the stress and strain in the crystal and adapting
the lattice constant. Hence one does not have to estimate the equilibrium value for the
lattice constant beforehand as in the case of Monte Carlo simulations in the canonical
ensemble. Moreover, it proves more convenient to study phase behavior in inhomogeneous
systems in the grand canonical ensemble in order to ensure equal chemical potential in
coexisting phases [31].

We perform grand-canonical Monte-Carlo simulations for varying values of gravity
g∗ = 1, 2, 3, and 4. The box shape is set by a0 = 1.11 and n = 2. We checked that
simulation runs with larger box sizes and different box shapes show the same results
within the statistical error. The crystal can adapt itself to the “correct” lattice constant
by changing slightly the crystal orientation, as can be seen in Fig. 2.4. In each Monte
Carlo cycle we perform with a probability Pexch an attempt to exchange a particle with an
ideal reservoir and otherwise an attempt to displace a particle. We use Pexch = 0.5 or 0.9.
The maximum displacement in each direction was 0.1 if Pexch = 0.5 and 0.2 if Pexch = 0.1.
A simulation run consists of 1.6 1010 (Pexch = 0.1) or 8 109 (Pexch = 0.5) MC cycles to
thermalize the system and twice as many cycles for the production runs to sample the
statistical averages of interest. The number of trial moves to displace a particle was always
larger than 8 105 per particle. We study both crystallization and melting. In the first case,
the initial condition is a dilute cubic crystal which melted within 106 MC cycles. We also
start with an fcc crystal phase to study melting. We checked that our simulation results
did not depend on the starting configuration. However, the equilibration of the system is
about 10 times longer near the freezing transition.

In Fig. 2.2, we show density profiles for hard spheres in a gravitational field with
strength g∗ = 1, 2, 3, and 4. The profiles were averaged in bins of width δz = 0.01σ.
For each g∗, we show density profiles at µ∗ = 14, at a value of µ∗ just above the freezing
transition of the first layer, and at µ∗ = 25. At µ∗ = 14, we find density profiles of a liquid
phase with pronounced layering of the fluid phase at the lower wall. Upon increasing µ∗
just above the value at the freezing transition of the first fluid layer, we observe the
formation of crystalline layers at the bottom: ρ(z) drops to zero between the density
peaks close to the wall. At µ∗ = 25, we find for all g∗ the formation of several crystalline
layers at the wall. From Fig. 2.2 we observe that the number of crystalline layers decreases
upon increasing g∗ at fixed µ∗. This trend is to be expected since an infinite number of
crystalline layers are expected to be formed for zero gravity and a chemical potential µ∗
fixed at its bulk value, i.e., µ∗coex = 16.071.

We now take a closer look at the crystallization of the fluid layers at the bottom wall.
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Figure 2.2: Density profiles ρ(z) for hard spheres in a gravitational field with strength g∗ = 1
(top, left), 2, 3, and 4 (bottom, right). For each g∗, density profiles are shown for a fluid phase
(µ∗ = 14, thick solid line), just above the freezing transition of the first layer (14 ≤ µ∗ ≤ 25,
thin solid line ), and a fluid with crystalline layers at the bottom (µ∗ = 25, dashed line). The
results are shifted vertically for clarity of display.

To this end, we measure the hexagonal bond order parameter profile:

ψ6(z) =

∣∣∣∣〈∑N
i=1 ψ6,iδ(z − zi)

〉∣∣∣∣〈∑N
i=1 δ(z − zi)

〉 . (2.3)

Here the hexagonal bond order parameter of particle i is defined as

ψ6,i = 1
Ni

Ni∑
j=1

e6ı θij , (2.4)

where the sum over j is over the Ni nearest neighbors of particle i, θij is the angle between
rij ≡ ri − rj and some arbitrary axis in the horizontal plane and ı (without dot) is the
imaginary number. Particles i and j were considered nearest neighbors when they satisfied
x2
ij + y2

ij + 4z2
ij < (1.3a0)2. Due to the factor 4, this condition preferably selects nearest

neighbors, which lie within one layer. Examples are plotted in Fig. 2.3 for the same state
points as in Fig. 2.2. For µ∗ = 14, we find a flat hexagonal bond order parameter profile,
i.e., ψ6(z) = 0 for all values of z. For a value of µ∗ slightly above the freezing transition
of the first layer, we observe clearly that the first and second layer crystallize at the same
chemical potential for all values of g∗ considered here. We also find a discontinuous jump
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Figure 2.3: Hexagonal bond order parameter profiles ψ6(z) for hard spheres in a gravitational
field. Profiles are shown for the same state points as in Fig. 2.2. The results are shifted vertically
for clarity of display. For µ∗ = 14, we find ψ6(z) = 0.

in the hexagonal bond order of the third layer at this chemical potential, although the
jump is much smaller than that of the first two layers. The jump in ψ6 of the third layer
increases upon decreasing g∗. Upon increasing µ∗ further, the hexagonal bond order ψ6
of the n-th layer with n ≥ 3 increases continuously within each layer. First, the layer is
fluid-like, i.e., ψ6 is low. As µ∗ increases, we observe the presence of crystallites, which
merge and form a crystal with many defects upon further increase of µ∗. At very high
chemical potential, the defects will be annealed out, resulting in a high value of ψ6. In
Fig. 2.4, we show typical configurations of the third layer of a fluid of hard spheres in a
gravitational field with strength g∗ = 4 and increasing values of µ∗.

The nth maximum of ψ6 is a measure for the crystalline order in the nth layer. These
maxima are plotted for the first six layers in Fig. 2.5. Again our results suggest a dis-
continuous freezing transition of the first two layers at the same chemical potential, and,
upon increasing µ∗, additional layers crystallize continuously. We also observe a discon-
tinuous jump in ψ6 of the third layer at the same µ∗. If we adopt the criterion that a layer
is crystalline if ψ6(zn) > 0.5 with zn the nth local maximum of ψ6(z), we can conclude
that the number of layers that freeze at the same chemical potential equals 3 for g∗ = 1
and 2 for g∗ = 2, 3, and 4. Our results show that the number of layers that crystallizes
simultaneously, i.e. at the same µ∗, increases for decreasing g∗. As already mentioned
before, this finding can be explained by the fact that an infinite number of crystalline
layers will be formed at zero gravity and at a chemical potential equal to its bulk value
µ∗coex. It is tempting to argue that for low g∗ three or more layers will crystallize at the
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µ∗ = 21 ψ6 = 0.23 µ∗ = 22 ψ6 = 0.36

µ∗ = 23 ψ6 = 0.54 µ∗ = 24 ψ6 = 0.78

µ∗ = 25 ψ6 = 0.85 µ∗ = 28 ψ6 = 0.90

Figure 2.4: Typical configurations of the third fluid layer in a system of hard spheres in a
gravitational field with strength g∗ = 4 at varying values of the chemical potential. The white
rectangle denotes the horizontal box area. Some periodic images of the particles are shown as
well.
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Figure 2.5: The maximum hexagonal bond order parameter in the nth layer as a function
of chemical potential µ∗ for a system of hard spheres in a gravitational field with strength
g∗ = 1, 2, 3, and 4. The horizontal dashed line denotes our crystallinity criterion ψ6(zn) > 0.5.

same µ∗. A natural question to ask is whether the first and second layer always crystallize
at the same µ∗.

To this end, we perform simulations at g∗ = 10. The resulting density profiles are
plotted in Fig. 2.6. In Fig. 2.7, we plot the maximum hexagonal bond order parameter
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Figure 2.6: Density profiles ρ(z) for hard spheres in a gravitational field with strength g∗ = 10
at varying values of the chemical potential. The results are shifted vertically for clarity of display.
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for the first four layers as a function of µ∗. Our results indicate a first-order freezing
transition of the first layer, and a continuous freezing transition of the second and third
layer at higher µ∗. To summarize, we expect that the number of layers that crystallizes
simultaneously at the same chemical potential with a first-order phase transition increases
from 1 to ∞ upon lowering the gravitational field strength.

In Fig. 2.8, we plot the freezing transitions for the first six layers as a function of g∗ and
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Figure 2.8: Phase diagram of the freezing transitions of the first six layers as a function of
µ∗ and g∗ as obtained from simulations (symbols). The lines denote our prediction for the
freezing transitions µ∗int(z′n) ' µ∗coex = 16.071 with z′n given by Eq. (2.6). The solid line denotes
a first-order freezing transition, while the dashed lines denote continuous transitions.
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µ∗ using our crystallinity criterion ψ6(z′n) > 0.5. The total chemical potential at height
z for a system of hard spheres in a gravitational field reads µ∗ = µ∗int(z) + g∗z/σ, where
µ∗int(z) is the internal chemical potential i.e., the chemical potential the system would
have, if there is no external potential. One expects that the fluid at height z crystallizes
if µ∗int(z) ' µ∗coex. In Fig. 2.8 we compare our results for freezing of the first six layers
with the estimate that the nth layer crystallizes when

µ∗int(z′n) = µ∗ − g∗z′n/σ ' µ∗coex, (2.5)

where we use that z′n is the z-position of the (n − 1)th local minimum of ρ(z), which
corresponds to the minimum just below the nth layer. For the freezing transition of the
first and second layer we use, however, that z′n is given by the first local minimum, which
lies in between the first and second layer:

z′n/σ =
{

1.0 n = 1, 2
0.9× (n− 1) n > 2 . (2.6)

Note that the predictions are denoted by dashed lines for n > 2, corresponding to
a continuous freezing transition, while for n = 1, 2 the first-order freezing transition is
denoted by a solid line. As the simulation results for the freezing transition of the different
fluid layers agree well with these predictions, we can conclude that the nth layer for n ≥ 2
is crystalline not because the chemical potential at this height is higher than µ∗coex, but
because the chemical potential of the (n − 1)th layer is sufficiently high that this layer
is fully crystalline. This layer then acts as a template for the nth layer, resulting in
crystallization of this layer [32].

For g∗ = 10, Eq. (2.5) with z′1/σ = 1 as obtained from Eq. (2.6) for n = 1 predicts
that the first layer freezes at a chemical potential µ∗ = 26.07. Fig. 2.7 shows, however,
that the crystallization of the first layer occurs at µ∗ ' 24 which corresponds to a height
z′1/σ = 0.8. This is closer to the position of the first layer itself, rather than the minimum
between the first and the second layer. Reassuringly, the crystallization of the second layer
does occur at µ∗ ' 26. Apparently, our prediction (2.6) only holds for a phase transition
from a fluid phase to a stable ordered phase consisting of two crystalline layers , while it
fails for g∗ = 10, where we observe a transition from a fluid phase to a phase with only one
frozen layer. Hence, one would also expect that if the freezing transition involves a phase
with 3 or more crystalline layers (at g∗ ≤ 1) the freezing transition occurs at a different
µ∗ than predicted by (2.6). The value of µ∗ at the discontinuous freezing transition will
probably correspond to a (weighted) average of all the layers that crystallize. However,
the error bars in Fig. 2.8 are too large to confirm this conjecture.

In order to compare our results to earlier work we calculate the pressure at the bottom
P ∗0 = βP (z = 0)σ3 of the sample and the pressure on the first layer P ∗1 = βP (z = z′1)σ3:

P ∗0 = 〈N〉σ
2g∗

A
(2.7)

and
P ∗1 = (〈N −N1〉)σ2g∗

A
, (2.8)
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Exp. [29] Sim. [20] Our work

g∗ 1.2 2.625 1.0 2.0 3.0 4.0
P ∗0 14.0 14.25 12.6 13.4 14.3 15.3
P1 - - 11.8(3) 11.6(2) 11.6(3) 11.5(1)

Table 2.1: The pressure at the bottom P ∗0 = βP (z = 0)σ3 and the pressure on the first layer
P ∗1 = βP (z = z′1)σ3 at the freezing transition of the first layer for gravity g∗ = 1, 2, 3, and 4.
For comparison, we also show results from experiments [29] and simulations [20].

where N1 is the number of particles in the first layer. Tbl. 2.1 displays P ∗0 and P ∗1 at the
freezing transition of the first (and second layer) of our simulations. In Ref. [33], it was
argued that the first bottom layer will crystallize when βP (z = σ/2)σ3 reaches the bulk
pressure at coexistence βPcoexσ

3 = 11.56 [9]. However, we observe that P ∗0 depends on
g∗ and is always > βPcoexσ

3, while P ∗1 is independent of g∗ and equals βPcoexσ
3 within

the error bars. A similar result was obtained using density functional theory and kinetic
theory [21, 22], where a linear behavior between 〈N〉σ2/A and g∗ was found for the freezing
transition. For comparison, we also show P ∗0 for previous simulations [20] and experiments
[29], which are in reasonable agreement with our simulations.

Finally, we investigate the lattice constant of the bottom layer as a function of µ∗ and
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Figure 2.9: Lattice constant of the first layer a1 as function of the chemical potential for
varying gravities: g∗ = 1, 2, 3, 4 as obtained from simulations (�). The dashed lines denote the
lattice constant of a bulk crystal at µ∗, while the short-dashed lines show an averaged lattice
constant given by Eq. (2.11).
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g∗. In our simulations, we determine the lattice constant of the nth layer by:

an =
√√√√ 2A√

3〈Nn〉
, (2.9)

where we assumed a triangular symmetry for the crystal layer and where 〈Nn〉 is the
number of particles in layer n. In practice, 〈Nn〉 is calculated by

〈Nn〉 = A
∫ zn−1

zn
ρ(z)dz. (2.10)

We plot in Fig. 2.9 the lattice constant of the first layer a1 as a function of the chemical
potential µ∗ for gravitational field strengths g∗ = 1, 2, 3, and 4. For comparison, we also
plot the lattice constant of a bulk crystal at µ∗ using Speedy’s equation of state [34]. We
clearly observe in Fig. 2.9 that the simulation results for a1 are much higher than those of
the corresponding bulk crystal. Upon closer inspection, we find that the lattice constants
an for n > 1 are all equal to a1 within the statistical error for all values of µ∗ and g∗ we
considered. This finding is remarkable as the pressure varies enormously with height. As
the lattice constants in all the layers are the same, all layers must adjust to each other.
Consequently, one might expect that the lattice constant is determined by an average
over all layers which have a chemical potential µ∗coex ≤ µ ≤ µ∗:

ābulk(µ∗) =
∫ µ∗
µ∗coex

abulk(µ)dµ
µ∗ − µ∗coex

(2.11)

Fig. 2.9 shows that the agreement between the simulations and this expression has been
improved. However, this expression still underestimates the observed lattice constant
systematically. This effect is caused by “crystalline” layers with a high ψ6, for which
µint(z) < µ∗coex. Ignoring these layers with a relatively low µint(z) and hence a large lattice
constant of the corresponding bulk crystal underestimates ābulk given by (2.11).

2.4 Conclusions
We have investigated the nature of the freezing transition in sedimenting colloidal hard
spheres. Our results provide evidence for a first-order freezing transition where several
fluid layers close to the bottom of the sample freeze at the same chemical potential. If the
chemical potential is increased further, additional fluid layers will solidify continuously.
We have determined a phase diagram of the freezing transitions of the first six fluid layers
as a function of chemical potential and gravity using computer simulations, and we show
that our simulation results agree well with a simple prediction given by (2.5) with (2.6). A
better understanding of the mechanisms of crystallization is important both for a better
insight in colloidal crystallization, as well as for advanced applications. For instance,
sedimentation is often used as a method to grow large colloidal crystals for (photonic)
applications [35–40]. We also note that the solidification of hard spheres under gravity
has implications for granular matter systems [21, 22, 33].
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On the stability of orientationally
disordered crystal structures of

colloidal hard dumbbells

We study the stability of orientationally disordered crystal phases in a suspension of
colloidal hard dumbbells using Monte Carlo simulations. For dumbbell bond length
L/σ < 0.4 with L the separation of the two spheres of the dumbbell and σ the diameter
of the spheres, we determine the difference in Helmholtz free energy of a plastic crystal
with a hexagonal-close-packed (hcp) and a face-centered-cubic (fcc) structure using ther-
modynamic integration and the lattice-switch Monte Carlo method. We find that the
plastic crystal with the hcp structure is more stable than the one with the fcc structure
for a large part of the stable plastic crystal regime. In addition, we study the stability
of an orientationally disordered aperiodic crystal structure in which the spheres of the
dumbbells are on an random-hexagonal-close-packed (rhcp) lattice, and the dumbbells
are formed by taking random pairs of neighboring spheres. Using free energy calcula-
tions, we determine the fluid-aperiodic crystal and periodic-aperiodic crystal coexistence
regions for L/σ > 0.88.
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3.1 Introduction
Originally, hard dumbbells were studied as a suitable model for simple nonspherical di-
atomic or polyatomic molecules, like nitrogen and carbondioxide. In particular, the struc-
ture and thermodynamics of the fluid phase of hard dumbbells were investigated, since
the structure of molecular liquids is mainly determined by excluded volume effects [41].
Additionally, in order to understand the stable crystal structures in molecular systems,
the solid-fluid equilibria of hard dumbbells have been studied intensively by density func-
tional theory [42, 43] and computer simulations [44–46]. However, for simple nonspherical
molecules effects other than size and shape can play an important role, such as dispersion
forces, Coulombic, and quadrupolar interactions. This might explain the stability of the
α−N2 crystal phase of nitrogen which is not a stable crystal structure for hard dumbbells
[44]. Still, hard dumbbells can be regarded as a reference system for simple molecules, in
the same way as hard spheres can serve as a reference system for monatomic fluids.

Recently, new routes to synthesize colloidal dumbbells have become available and the
interest in dumbbells has been revived [47–49]. However, the size distributions of these
dumbbells are relatively large and often the quantities that can be synthesized are very
small. A new method has been proposed to synthesize large quantities of monodisperse
colloidal dumbbells for which the aspect ratio can be tuned very easily [50]. In this
method, the anisotropic particles are formed by destabilizing a dispersion of colloidal sil-
ica spheres resulting in an initial aggregation of the spheres, i.e. dumbbell formation.
Subsequently, a layer of silica is grown around these cores to obtain a dumbbell of any
length-to-diameter ratio L∗ = L/σ, where L is the distance between the centers of the
spheres and σ is the diameter of the dumbbell. By adding salt to the solvent, the dumb-
bell interactions can be tuned from hard to long-range repulsive interactions. Moreover,
the interest in colloidal dumbbells has been triggered by their potential use in photonic
applications. In a photonic band gap crystal, light of certain frequencies cannot propa-
gate, irrespective of its direction or polarization. Photonic band gap calculations show,
however, that a complete band gap is not possible in a simple system of spherical par-
ticles, although for an fcc crystal of air spheres in a background with a high dielectric
contrast a full band gap can be obtained [51]. Such an fcc crystal of air spheres can be
obtained by infiltration of an fcc crystal of (polymer latex) spheres with a material with a
large dielectric constant and subsequent removal of the spheres. Unfortunately, the band
gap opens up at high frequencies, where absorption or disorder have a large effect on the
transmission [51]. It has been shown that complete band gap at relatively low frequencies
can be opened by using anisotropic particles [52, 53]. For instance, it has been shown that
dumbbells of tangent spheres on a face-centered-cubic (fcc) or base-centered-cubic lattice
exhibit a complete band gap between the second and third band [52]. Unfortunately,
these crystal structures are not stable in the bulk for hard dumbbells, but it does show
that anisotropic particles are promising for photonic applications. The availability of this
new model system of colloidal dumbbells and their potential use for photonic applications
warrants a more detailed study of the phase behavior of these particles.

Previous computer simulation studies of hard dumbbells have shown the stability of at
least three different solid phases. For small anisotropies and low densities, the dumbbells
form a plastic crystal phase in which the particles are on an fcc lattice, but are free to
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(a) (b) (c)

Figure 3.1: Snapshots of a few dumbbells in the stable crystal phases. Shown are the plastic
crystal phase at L = 0.2σ (a), the CP1 phase at L = 0.6σ (b) and the aperiodic phase at L = 0.9σ
(c). One of the spheres of a dumbbell is colored red, the other sphere is green. For clarity of
display we show a cubic fcc unit cell of spheres in the aperiodic phase, which is actually part of
a larger randomly stacked hexagonal close packed crystal. If the other sphere of the dumbbell
was not part of the unit cell, it is shown as a transparent sphere.

rotate, see Fig. 3.1. At sufficiently high density, the orientationally ordered crystal phase
(called CP1 in Ref. [44], see Fig. 3.1) becomes stable for all anisotropies. In the ordered
solid phase, the dumbbells are arranged into two-dimensional hexagonal close-packed
layers in such a way that the spheres of each dumbbell also form a hexagonal close-packed
layer. The orientations of the dumbbells are parallel with an angle of arcsin(L∗/

√
3)

between the dumbbell axis and the normal of the hexagonal layers. The hexagonal layers
of dumbbells are stacked in an ABC sequence, so that the spheres form an fcc crystal
structure at L∗ = 1. At large anisotropies, the particles can freeze into an aperiodic
crystal in which not only their orientations but also the centers-of-masses of the dumbbells
are disordered, see Fig. 3.1, although the spheres of each dumbbell are on an rhcp lattice
at L∗ = 1 and at close packing. When L∗ is smaller than the lattice constant the spheres
must be slightly off-lattice and then the crystal is truly aperiodic in all the coordinates.
Monte Carlo simulations have shown that the aperiodic crystal is more stable than the
ordered solid in a two-dimensional system of hard dimers [54–57]. The stability of an
aperiodic crystal structure for a three-dimensional system of hard dumbbells has been
proven by free energy calculations and theory in Ref. [58], but only for L∗ = 1.

In the present chapter we first address the question of whether the fcc or hexagonal-
close-packed (hcp) structure of the plastic crystal has the lowest free energy for hard
dumbbells. The fcc and hcp structures both consist of hexagonally close-packed layers,
but they differ in the way the planes are stacked. The stacking sequence for fcc is ABC,
while it is ABAB for hcp. The question of which configuration is the most stable structure
for hard spheres has been a longstanding issue in the literature. However, it is now well-
accepted that the fcc crystal is more stable, although the free energy difference is very
small, < 10−3kBT per particle, with kBT the thermal energy, kB Boltzmann’s constant
and T the temperature [6, 59–61]. In this chapter, we show that the hcp structure is more
stable for hard dumbbells for a large part of the stable plastic crystal regime. Furthermore,
the free energy difference is more than an order of magnitude larger than in the case of
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hard spheres.
In the second part of this chapter, we study the stability of an orientationally disor-

dered aperiodic crystal structure for L∗ > 0.88. We confirm that the aperiodic crystal
structure is stable for hard dumbbells and we determine the fluid-aperiodic crystal and
aperiodic-periodic crystal coexistence regions using free energy calculations. However, to
the best of our knowledge, we are not aware of any atomic counterpart of the aperiodic
crystal phase of hard dumbbells, or any evidence of a colloidal aperiodic crystal structure.
We hope that our findings will stimulate a more detailed experimental investigation of
the phase behavior of (colloidal) dumbbells.

3.2 Model
We consider a system of hard dumbbells consisting of two fused (i.e. overlapping) hard
spheres of diameter σ with the centers separated by a distance L. We define the reduced
bond length or anisotropy of the dumbbell by L∗ ≡ L/σ, such that the model reduces to
hard spheres for L∗ = 0 and to tangent spheres for L∗ = 1. We study the phase behavior
of hard dumbbells using computer simulations for 0 ≤ L∗ ≤ 1. We focus our attention on
the plastic crystal phase for L∗ < 0.4 and the aperiodic crystal phase for L∗ > 0.9. Below
we describe the simulation methods that we employ to study the plastic crystal and the
aperiodic crystal structures.

3.3 Methods and Results
3.3.1 Plastic crystal: hcp vs. fcc
We calculate the free energy of both the fcc and the hcp plastic crystal phase by ther-
modynamic integration using the Einstein crystal as a reference state [9]. The Einstein
integration scheme that we employ here involves the usual integration over a path through
parameter space which connects the system of interest with the noninteracting Einstein
crystal, without crossing a first order phase transition. This means that the Einstein
crystal must have the same symmetries as the plastic crystal phase. In particular, the
dumbbells must be free to rotate, while the centers-of-masses are fixed to their ideal lattice
positions using a harmonic spring with dimensionless spring constant λ. The potential
energy function for the harmonic coupling of the particles to their ideal lattice positions
reads

βU(rN ,uN ;λ) = λ
N∑
i=1

(ri − r0,i)2/σ2, (3.1)

where ri and ui denote, respectively, the center-of-mass position and orientation of dumb-
bell i and r0,i the lattice site of particle i, and β = 1/kBT . The usual thermodynamic
integration path for hard spheres consists of a gradual increase of λ from 0, i.e., the
system of interest, to λmax, where λmax is sufficiently high that the system reduces to a
non-interacting Einstein crystal. However, this method fails in the case of freely rotating
hard dumbbells as the system will never reach the limit of a non-interacting Einstein
crystal due to the rotational degrees of freedom of the dumbbells: if the lattice constant
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is smaller than σ + L, the dumbbells will collide while rotating even if their centers of
mass are fixed at their lattice sites. We therefore combine the usual Einstein integration
method with the thermodynamic integration technique that was introduced recently for
hard spheres by Fortini et al. [62], which is based on penetrable potentials that allows
us to change gradually from a non-interacting system to a system of freely rotating hard
dumbbells. We changed the dumbbell-dumbbell potential energy function to

βUsoft(rN ,uN ; γ) =
∑
i<j

∑
η,µ

βϕ(|riη − rjµ|, γ) (3.2)

with
βϕ(r, γ) =

{
γ(1− A(r/σ)2) r < σ

0 otherwise , (3.3)

where riη with η = ±1 are the positions of the two spheres of dumbbell i, A is an
adjustable parameter that is kept fixed during the simulation at a value A = 0.9, and
γ is the integration parameter. The limit γ → ∞ reduces to the hard-core interaction,
but convergence of the thermodynamic integration is already obtained for γmax = 200. In
Ref. [62] it was shown that in order to minimize the error and maximize the efficiency
of the free energy calculation, the potential must decrease as a function of r and must
exhibit a discontinuity at r such that both the amount of overlap and the number of
overlaps decrease upon increasing γ. Here, we have chosen this particular form of the
potential because it can be evaluated very efficiently in a simulation. We start at a very
high value of γmax = 200 where the particles behave as hard dumbbells. Subsequently,
we turn on the springs that couple the dumbbells to the lattice by increasing λ from 0 to
λmax. We then decrease γ to 0 such that the system becomes an ideal Einstein crystal.
By integrating over both paths and adding the free energy of the noninteracting Einstein
crystal, one obtains the Helmholtz free energy F of a plastic crystal of hard dumbbells,

βF (N, V, T ) = βFEinst(N, V, T )−
∫ λmax

0
dλ

〈
∂βF

∂λ

〉
γmax

+
∫ γmax

0
dγ

〈
∂βF

∂γ

〉
λmax

, (3.4)

where 〈∂βF/∂λ〉 =
〈∑N

i=1(ri − r0,i)2/σ2
〉
, and 〈∂βF/∂γ〉 =

〈
βUsoft(rN ,uN ; γ)/γ

〉
. The

Helmholtz free energy of the noninteracting Einstein crystal plus the center of mass cor-
rection terms [9] reads:

βFEinst = −3(N − 1)
2 ln

 π

λmax

+N ln
Λ3

t

σ3

+N ln
Λr

+ ln
 σ3

V N1/2

. (3.5)

where Λt = (h2/2πmkBT )1/2 denotes the de Broglie wavelength and Λr = (h2/8π2IkBT )1/2

with m the mass and I the moment of inertia. We determine the Helmholtz free energy
Ffcc and Fhcp of the fcc and hcp plastic crystal, respectively, as a function of the reduced
density ρ∗ and anisotropy 0.1 ≤ L∗ < 0.4. We define the dimensionless density as

ρ∗ = d3N

V
and P ∗ = d3P

kBT
(3.6)

where d3/σ3 = 1+ 3
2L
∗− 1

2(L
∗)3 is the volume of a dumbbell divided by that of a sphere with

diameter σ, so d is the diameter of a sphere with the same volume as the dumbbell. The



28 Chapter 3

initial configurations for the plastic crystal are generated by placing the dumbbells on an
fcc or hcp lattice and by picking random directions for the dumbbells until the dumbbells
do not overlap anymore. For state points close to the plastic crystal–cp1 coexistence
region, we use isobaric-isothermal (NPT) simulations to generate initial configurations.
We perform simulations of 864 particles for the fcc and 900 particles for the hcp plastic
crystal. We use a 20-point Gauss-Legendre integration for both the γ− and λ−integration.

We find that for L∗ = 0.05 and L∗ = 0.1 at low densities, the free energy difference
is very small < 0.001kBT per particle. As the free energies of the fcc and hcp plastic
crystal are almost equal, subtracting the free energies will give rise to large errors in the
free energy differences. Moreover, we find that the result of the γ integration depends
on the precise details of the numerical integration method. This dependence is small
compared to the free energy of either phase, but it is a significant error relative to the free
energy difference between the phases. In order to circumvent this problem, we measure
directly the free energy difference in a single simulation using the so-called lattice-switch
multicanonical Monte Carlo method [61]. This method has been used successfully to
calculate the difference in free energies of the fcc and hcp phase for hard spheres [59–
61]. Below, we discuss briefly the method and its extension to dumbbells. For a detailed
description of the method, we refer the reader to Ref. [61].

The lattice-switch Monte Carlo method is based on a lattice-switch transformation
that maps an fcc configuration onto an hcp configuration, and vice versa. This enables us
to sample in a single simulation both crystal structures and to measure the difference in
free energies by measuring the probability to find the system in one of the two phases. To
this end, we express coordinate ri of particle i in terms of its displacement ∆ri from its
ideal lattice position R(α)

i in phase α, i.e., ri = R(α)
i + ∆ri. A lattice switch from lattice

α to lattice β is then defined by ri = R(α)
i +∆ri → R(β)

i +∆ri, for particles i = 1, · · · , N .
In the present work, we fixed the orientations of the dumbbells during the lattice switch.
The states for which we can perform the lattice switch without causing any overlaps are
rare. We therefore bias the sampling to favor the gateway states that allows us to perform
the lattice switch. We define an order parameter that measures how close we are to those
gateway states

M({∆r}) =M({∆r}, hcp)−M({∆r}, fcc), (3.7)

whereM({∆r}, α) denotes the number of overlaps in the configuration where the particle
positions are given by the set of displacements {∆r} in phase α. For an fcc structure,
M≥ 0, while an hcp structure corresponds toM≤ 0. IfM = 0, there will be no overlaps
in both the fcc and hcp structure, and a lattice switch will be successful. By assigning
multicanonical weights exp[η(M)] to each macrostateM we can bias the system towards
the switching states, whereM = 0.

We first measure the probability distribution P(M) of being in stateM for an unbi-
ased system, i.e., multicanonical weights η(N ) = 0. Subsequently, we use the P(M), to
define the multicanonical weights in the biased sampling for the next simulation using

η(M) = − ln
(
P(M)

)
+ C0, (3.8)

where C0 is an arbitrary constant. In this simulation we measure the biased probability
distribution, correct for the bias to obtain the new estimate for P(M) and use the above
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Figure 3.2: The difference in the Helmholtz free energies of the hcp plastic crystal Fhcp
and the fcc plastic crystal Ffcc as a function of ρ∗ and φ = (πd3/6)N/V for different
L∗ = 0.05, 0.1, . . . , 0.35 from top to bottom. The free energy difference at L∗ = 0.05 and
the one at L∗ = 0.1 with ρ∗ < 1.2 are results from the lattice-switch Monte Carlo calculations
(error bars are smaller than the symbols), while all other points are obtained using the Einstein
integration method.

expression to get the new weights. We repeat this process, until the measured probability
distribution in the biased simulation is essentially flat. We then use these weights in a
long simulation to calculate the final P(M).

The probability P(M) can either be measured directly in a simulation by the number
of times a macrostate is visited, i.e. the visited-state (VS) method, or one can measure in
a simulation the bias corrected transition probability matrix ρ (M → N ) of going from
stateM to N and use the “detailed balance” condition

P(M) ρ (M→N ) = P(N ) ρ (N →M), (3.9)

in order to obtain P(M), i.e. the transition probability (TP) method.
We use the lattice-switch Monte Carlo method to measure directly the Helmholtz

free energy in a simulation of 1728 particles. We expect the finite size effects to be
small for this system size. We use the transition probability method to determine the
set of multicanonical weights. In Fig. 3.2, we show the Helmholtz free energy difference
Fhcp−Ffcc using the Einstein crystal thermodynamic integration method and the lattice-
switch Monte Carlo method as a function of ρ∗ (and packing fraction φ ≡ (πd3/6)N/V )
for varying L∗.

Fig. 3.2 clearly shows that the stability of hcp with respect to fcc increases upon
increasing L∗. It is striking that even for L∗ = 0.05, hcp is more stable for sufficiently
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high densities, since it is well-known that the fcc phase is the most stable one for hard
spheres. For L∗ > 0.1, the hcp plastic phase is stable for all densities that we considered.
Furthermore, the absolute value of the Helmholtz free energy difference increases by more
than an order of magnitude upon increasing L∗. The maximum value of the Helmholtz
free energy difference per particle, that we find, is 0.023(2)kBT for L∗ = 0.35, which is
more than a factor of 20 larger than the free energy difference for hard spheres at close
packing.

3.3.2 aperiodic vs. periodic crystal
We now turn our attention to the stability of the aperiodic crystal phase with respect
to the periodic crystal structure. At large anisotropies and sufficiently high densities, we
expect the aperiodic crystal phase to be stable, because for those parameters the aperiodic
phase has a close packed density which is almost as high as the close packed density of the
CP1 phase, while the degeneracy increases the entropy of the aperiodic phase compared
to the entropy of the CP1 phase.

Aperiodic crystal phase

In an aperiodic crystal at close packing and L∗ = 1, the individual spheres of the dumbbells
are arranged on a close-packed fcc lattice, while the dumbbells, which can be considered
as bonds between two sites, are chosen randomly. In the remainder of the chapter, such an
arrangement is referred to as a bond configuration. If there are Ωaper possible bond con-
figurations that all have the same free energy Fconf , the total free energy of the aperiodic
crystal reads

βF = − ln Ωaper + βFconf . (3.10)

Ignoring the slight variation of Fconf for now, we average Fconf over several typical aperi-
odic bond configurations and use this value. Furthermore, we approximate Ωaper by the
multiplicity at close packing and L∗ = 1. We note, however, that Ωaper may depend on
density and L∗, which we ignore here for simplicity.

In order to determine the multiplicity of the aperiodic crystal Ωaper at close packing and
L∗ = 1, we introduce a method that allows us to switch from the aperiodic crystal phase
to a reference phase of which the degeneracy is known, and vice versa. By measuring
the probability that the system is in either of the two phases, we can determine the
multiplicity of the aperiodic phase:

Ωaper = Paper/Pref × Ωref , (3.11)

where the subscript “ref” denotes the periodic reference phase.
For the reference phase, we use the so-called CP3 phase, which is the phase where all

the dumbbells are arranged into two-dimensional hexagonal layers with all the particles,
as in the CP1 phase, aligned in the same direction within the hexagonal layer, while the
tilt angle alternates between successive layers. However, in order to form a close packed
crystal, the particles in different hexagonal layers can point in three different directions,
yielding a certain degeneracy for the CP3 phase as well. The degeneracy of CP3 can
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Figure 3.3: The probability distribution lnP(N ) of the parallel bond order parameter N for
systems with varying particle numbers N . The inset shows an enlarged view of the region where
P(N ) is maximal.

be calculated by considering all 3Nz possibilities for the directions of the Nz hexagonal
layers, and by correcting for the number of possibilities that are identical if one takes into
account the periodic boundary conditions in the z-direction.

In order to measure the probability ratio as defined in Eq. (3.11), we first define an
order parameter that enables us to distinguish the CP3 phase from the aperiodic phase.
We define the parallel bond order parameter N ≡ 1

4
∑2N
i=1

∑6
j=1 fij, where the first sum

runs over all sites i of the lattice and the second sum runs over the 6 nearest neighbors j
of site i within the same layer. If the dumbbell, which has a sphere on site i, is parallel
to the dumbbell that has a sphere on site j, fij = 1, otherwise fij = 0. Since every bond
is counted twice and the number of parallel bonds can change by a minimum of two, the
factor 4 ensures that N changes by at least 1 if we change the bond configuration. For
the CP3 phase, N = 2N × 6/4 = 3N , since all six neighbors of all 2N sites are parallel
in this phase.

We now introduce a MC move which allows us to generate a new configuration of
bonds with a different value of N . This bond switch move involves disconnecting and
reconnecting bonds until a new configuration is found. We refer the reader for more
technical details to App. 3.A. We now employ the bond switch move for a random hcp
crystal phase with L∗ = 1. We use multicanonical Monte Carlo to measure the probability
(P(N )) of being in state N using weights η(N ), which are refined using the VS method.
The probability ratio reads simply,

Paper

PCP3
=
∑
N<3N P(N )
P(N = 3N) . (3.12)

In Fig. 3.3, we plot the probability distribution P(N ) of the parallel bond order parameter
N for systems with varying particle numbers N . We note that the probability distribution
P(N ) has a maximum of about exp[1.5N ] at N /N ' 0.25. In Fig. 3.4, we plot the
degeneracy of the aperiodic crystal phase as a function of the number of particles N . For
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comparison, we also plot the theoretical result of Ref. [63], and we find good agreement
for N ≥ 256.

We determine Fconf at L∗ = 1 using the Einstein integration method as described
above for the plastic crystal phase. However, we include an additional coupling of the
orientation of dumbbell i, i.e., ui, to an aligning field. The potential energy function that
we use to achieve both couplings reads:

βU(rN ,uN ;λ) = λ
N∑
i=1

(ri − r0,i)2/σ2 +
N∑
i=1

λ(1− | cos(θi0)|) + βUsoft(rN ,uN ; γ), (3.13)

where θi0 is the angle between ui and the ideal tilt vector of particle i. The ideal tilt
vectors of all particles are measured in an NPT simulation. The free energy of the hard
dumbbell system βF (N, V, T ) can now be related to the known free energy of an Einstein
crystal by thermodynamic integration

βF (N, V, T ) = βFEinst(N, V, T )−
∫ λmax

0
dλ〈

N∑
i=1

(ri − r0,i)2/σ2〉γmax

−
∫ λmax

0
dλ〈

N∑
i=1

λ(1− | cos(θi0)|)〉γmax +
∫ γmax

0
dγ
〈
βUsoft(rN ,uN ; γ)/γ

〉
λmax

. (3.14)

The Helmholtz free energy of the noninteracting Einstein crystal plus the center of mass
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phase L∗ ρ∗ fexc

aper 1 1.15 13.887(7)
CP1 1 1.181 14.176(2)
CP1† 1 1.15 13.45
CP1 0.95 1.216 14.555(3)
CP1† 0.95 1.181 11.28
CP1 0.88 1.2283 14.172(3)
CP1† 0.88 1.181 10.71

Table 3.1: Excess free energies, fexc ≡ (F −Fid)/(NkBT ), of the aperiodic and periodic phase,
where Fid is the ideal gas free energy. †calculated using thermodynamic integration (3.17).

correction terms [9] reads:

βFEinst = −3(N − 1)
2 ln

 π

λmax

+N ln
Λ3

t

σ3


+N ln[Λr] + ln

 σ3

V N1/2

−N ln(J(λmax)), (3.15)

where
J(λ) =

∫ 1

0
eλ(x−1)dx = 1− e−λ

λ
. (3.16)

We perform the Einstein crystal thermodynamic integration method for an aperiodic
crystal with L∗ = 1 averaging over ten different bond configurations, see Tbl. 3.1. The
initial configurations of aperiodic crystal structures for these and all other simulations
of aperiodic crystals were obtained in two steps. First, we generated ten configurations
of dumbbells with L∗ = 1 at close packing, using moves similar to bond switch moves.
Secondly, starting at L∗ = 1, then decreasing L∗ in steps of 0.01, we measured the average
configuration in an NPT simulation with reduced pressure, P ∗ = d3P/kBT = 100, which
was stored to be used as initial configuration for the simulation at the next L∗ and for all
further simulations of the aperiodic phase.

The Helmholtz free energy of the hard dumbbell systems for lower L∗ and arbitrary
density ρ∗ is obtained by the following thermodynamic integrations,

βF (ρ∗1, L∗) = βF (ρ∗0, L∗) +
∫ ρ∗1

ρ∗0

dρ

〈
NβP (ρ, L)

ρ2

〉
and (3.17)

βF (ρ∗, L∗1) = βF (ρ∗, L∗0) +
∫ L∗1

L∗0

dL

〈
∂βF (ρ∗, L)

∂L

〉
. (3.18)

The integrand in Eq. (3.17) is calculated using standard NPT simulations, in which we
measure the density and average over 5 different bond configurations. Alternatively, we
use bond switch moves in NPT simulations of N − 1 dumbbells and 2 hard spheres to
calculate the density, see App. 3.B. In Figs. 3.5 and 3.6, we show the equation of state
for 5 different aperiodic crystal structures at L∗ = 1 and L∗ = 0.92, respectively. These
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were obtained in simulations without bond switch moves. We observe that the equations
of state of all five aperiodic crystal structures are almost indistinguishable.

The derivative of the free energy with respect to the elongation L∗ in Eq. (3.18) is
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at L∗ = 0.92. The inset shows an enlargement to be able to distinguish the pressures of the
different configurations of the aperiodic phase
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determined using [64]
〈
∂βF (ρ∗, L)

∂L

〉
= −1

2 lim
r↓σ

〈∑
i<j

∑
η,µ

δ(|riη − rjµ| − r)
riη − rjµ
|riη − rjµ|

· (ηui − µuj)
〉

− 3N(1− (L∗)2)
2 + 3L∗ − (L∗)2

βP

ρ
, (3.19)

where the latter term arises as the free energy derivative is determined at fixed ρ∗, rather
than at fixed ρ ≡ σ3N/V . Using a similar expression, the pressure in this term is calcu-
lated:

βP

ρ
= 1 + 1

3N lim
r↓σ

〈∑
i<j

∑
η,µ

δ(|riη − rjµ| − r) riη − rjµ
|riη − rjµ|

· (ri − rj)
〉
. (3.20)

This expression is the equivalent of the virial expression for the pressure of hard spheres,
βP/ρ = 1 + 4φ limr↓σ g(r), where φ = (πσ3/6)N/V is the packing fraction. We checked
that the integration of 〈∂βF/∂L〉 yields the same results within the statistical error as
those obtained from the Einstein integration method. Both the virial expression for the
pressure and the expression for 〈∂βF/∂L〉 require an extrapolation of r to σ. This can
only be done reliably if the function to extrapolate is nearly linear, which corresponds to
restricting the function to a very small interval range near σ. To get sufficient accuracy
on this small interval we need to run long simulations. For this reason we do not use
the virial expression for the pressure to obtain the equation of state, instead, we use
NPT simulations. We perform standard NV T simulations to measure 〈∂βF/∂L〉 and we
average over the ten initial configurations mentioned above. Alternatively, we use bond
switch moves in NV T simulations of N − 1 dumbbells and 2 hard spheres to calculate
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〈∂βF/∂L〉, see App. 3.B. Fig. 3.7 shows that 〈∂βF/∂L〉 is negative and that its absolute
value decreases with L∗ if no bond switch moves are used. However, if bond switch moves
are employed, 〈∂βF/∂L〉 is actually positive and its dependence on L is much reduced
and nonmonotonic. Although 〈∂F/∂L∗〉/N is rather large (in absolute value) compared
to kBT , the free energy difference as calculated by the integral in Eq. (3.18) is never very
large for the aperiodic phase. This is because the integration interval is no larger than
the small region (0.9.L≤1) where the aperiodic phase is stable.

Periodic crystal structure (CP1)

In order to obtain the lattice direction and lattice constant for the CP1 phase, we per-
form NPT simulation with a variable box shape [65], as the lattice direction changes as
a function of density and L∗ [44]. We employ these configurations in the Einstein crys-
tal thermodynamic integration method as described in Eqs. (3.13)-(3.15) to obtain the
Helmholtz free energy for varying L∗, see Tbl. 3.1. We perform NPT simulations to obtain
the equation of state for varying L∗. We plot the equation of state for the CP1 phase in
Fig. 3.5 and we find that the equation of state is indistinguishable from the equations of
state of the different bond configurations of the aperiodic crystal structure for L∗ = 1.
For comparison, we plot the equation of state of the CP1 phase for L∗ = 0.92 in Fig. 3.6.
We clearly see that the pressure P ∗ is higher for the aperiodic crystal structure than for
the CP1 phase, as the dumbbells fit less efficiently in the aperiodic crystal structure upon
decreasing L∗. We obtain the Helmholtz free energy as a function of ρ∗ by integrating the
equation of state of CP1 for varying L∗, see Eq. (3.17).

Fluid phase

We employ the equation of state of Tildesley and Street for the fluid phase of hard
dumbbells, which is known to be very accurate [41].

Phase diagram

We determine the fluid–plastic crystal, fluid–aperiodic crystal and the aperiodic–CP1
crystal coexistence by employing the common tangent construction to the free energy
curves. The resulting phase diagram, together with the data from Refs. [44, 45] for
L∗ < 0.9, is shown in Fig. 3.8. We checked that the phase boundaries for the fluid–hcp
plastic crystal and the hcp plastic crystal–cp1 coexistences hardly change compared to
the results from [44, 45] for the fcc plastic crystal phase. We find for L∗ > 0.92, a fluid-
aperiodic crystal phase coexistence at low densities and an aperiodic-CP1 crystal phase
coexistence region at higher densities. The stable region of the aperiodic crystal phase
increases upon increasing L∗ → 1. If we measure 〈∂F/∂L〉 and P in simulations that
include bond switch moves, the coexistence lines shift slightly, such that the aperiodic
phase is stable in a larger region of the phase diagram, at the cost of the stability of the
CP1 phase and, to lesser extent, the fluid phase, see Fig. 3.9. In Tbl. 3.2 the resulting
coexistence data of both methods are tabulated.

If we compare our densities of the fluid–aperiodic crystal coexistence, ρ∗fluid = 0.976
and ρ∗aper = 1.085 with Ref. [58], we find a small deviation from their simulation results,
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Figure 3.8: The phase diagram of hard dumbbells in the ρ∗ (and packing fraction φ) versus
L∗ = L/σ representation. F denotes the fluid phase and CP1 the periodic crystal. The aperiodic
phase (aper) is stable only in a narrow region of the phase diagram. The stable fcc type plastic
crystal is denoted by filled squares, the hcp plastic crystal phase is denoted by empty squares.
The coexistence densities for L < 0.9 are taken from Refs. [44, 45].

ρ∗fluid = 0.990 and ρ∗aper = 1.105, while the theoretical results obtained from an extension
of the Wertheim theory [66], ρ∗fluid = 0.983 and ρ∗aper = 1.094, agree slightly better with
our coexistence densities. We wish to note here that it is surprising that such a simple
theory predicts the fluid–solid equilibrium very accurately, as many theories fail to predict
the freezing transition of molecular fluids.

3.4 Summary and discussion
In this chapter we have studied the phase behavior of hard dumbbells. First, we have
investigated whether the fcc or the hcp structure of a plastic crystal of hard dumbbells
has the lowest free energy. We calculated the Helmholtz free energies of the hcp and fcc
plastic crystal using the Einstein integration method and the lattice-switch multicanonical
Monte Carlo method. We have shown that the hcp structure is more stable for hard
dumbbells for a large part of the stable plastic crystal regime. This should be contrasted
with hard spheres (L∗ = 0) for which fcc is more stable than hcp for all densities. The
free energy difference between hcp and fcc increases with L. The maximum free energy
difference is about 0.02NkBT , a factor of 20 higher than that of hard spheres. The fact
that this difference grows with L might be explained by the difference in available volume
for a dumbbell in a fcc or hcp crystal structure. If one considers a perfect frozen fcc or
hcp crystal structure with a subset of particles that are moveable, one can expand the
entropy of the fcc or hcp crystal structure into the volume available for a single moveable
dumbbell, two, three, four, etc. moveable dumbbells in the cage formed by all the frozen
particles [67, 68]. For hard spheres the available volume for a single sphere is identical for
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Figure 3.9: The large-L part of the phase diagram of dumbbells with (dashed line) and without
bond switch moves (solid line) in ρ∗ (and packing fraction φ) versus L∗ = L/σ representation.
The lines are a guide to the eye. The stability of the aperiodic phase (aper) increases if bond
switch moves are included. CP1 denotes the periodic crystal and F the fluid phase.

using standard MC simulations
L∗ phase 1 phase 2 ρ1d

3 ρ2d
3 βPd3 µ∗

0.92 fluid aper 1.060 1.127 32.89 40.21
0.92 aper CP1 1.153 1.209 37.66 44.40
0.95 fluid aper 1.022 1.107 28.04 35.84
0.95 aper CP1 1.227 1.267 54.72 58.48
0.97 fluid aper 1.002 1.097 25.90 33.91
0.97 aper CP1 1.291 1.317 86.88 83.60
1.00 fluid aper 0.976 1.085 23.60 31.85

using bond switch moves
L∗ phase 1 phase 2 ρ1d

3 ρ2d
3 βPd3 µ∗

0.88 fluid aper 1.082 1.152 35.15 41.94
0.88 aper CP1 1.154 1.205 35.62 42.34
0.90 fluid aper 1.061 1.135 32.34 39.50
0.90 aper CP1 1.181 1.228 40.37 46.43
0.95 fluid aper 1.015 1.109 27.12 34.94
0.95 aper CP1 1.279 1.303 72.30 72.14
1.00 fluid aper 0.977 1.083 23.67 31.92

Table 3.2: Reduced densities, pressures and chemical potentials µ∗ = βµ − ln(Λ3
tΛr/σ3) of

the fluid–aperiodic crystal and the aperiodic crystal–CP1 coexistences at various L∗, see also
Fig. 3.9
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hcp and fcc, but the available volume for a pair of spheres is larger at close packing for
the hcp phase, which would suggest that hcp is more stable for hard spheres. However,
the available volume for five moveable spheres is higher for fcc than for hcp, and hence
the fcc phase is more stable. As it is not possible to calculate higher-body corrections,
one cannot draw any definite conclusions for hard spheres on the basis of this expansion.
For dumbbells with a finite anisotropy the free volume of a single dumbbell in the cage
formed by its neighbors is different for fcc than for hcp. The difference in the available
volume of a single moveable dumbbell increases with L∗, which might explain the increase
in free energy difference as L increases. However, as we did not include any higher-body
corrections, we have to take this with a grain of salt. Furthermore, we conclude that
including the hcp phase does not change the fluid–plastic crystal phase boundary.

In the second part of this chapter, we studied the stability of an orientationally dis-
ordered aperiodic crystal structure for L∗ > 0.88. We first determined the degeneracy
of the aperiodic crystal phase using a bond switch move. Subsequently, we calculated
the free energy by varying methods, such as the Einstein integration method, equation
of state integration, and integration of the derivative of the Helmholtz free energy with
respect to the elongation of the dumbbells. Using the free energy calculations, we have
shown that the aperiodic crystal structure is stable for hard dumbbells for L∗ ≥ 0.92 or,
if bond switch moves were used, L∗ ≥ 0.88 and we have determined the fluid-aperiodic
crystal and aperiodic-periodic crystal coexistence. In conclusion, we have shown the sta-
bility of two new crystal structures, i.e., the hcp plastic crystal phase and the aperiodic
crystal structure, in a system of hard dumbbells. We hope that our results stimulate new
experiments on colloidal dumbbells with a focus on these new structures.

Appendix 3.A Bond switch moves at close packing
A (biased) bond switch move at close packing is very similar to the configurational bias
Monte Carlo (CBMC) method [9].

It consist of the following steps:

• step 1: Choose a site of the lattice at random. This site is called the loose end and
its position is labeled r(1). Break the bond which connects the loose end to another
site at r(0).

• step 2 to n-1: Pick a nearest neighbor of the loose end with probability Pi. We
use Pi = exp[−βui]/wi, where ui = λb|ri − r(0)|2, and wi = ∑

k exp(−βuk), the
sum is over all the neighbors of the loose end and ri is the position of neighbor
i. We disconnect the bond which paired this neighbor i with another site at r(1),
which becomes the new loose end. In this way, the loose end will make a trajectory
throughout the system.

• step n: After a certain number of steps, one of the neighbors of the loose end is
site r(0). If this site is selected we connect the loose end to r(0). There are no loose
ends anymore in the system and the bond switch move is complete. The length of
the trajectory is determined by λb. An example of the entire bond switch move on
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a hexagonal lattice is depicted in Fig. 3.10. We note that in our simulations bond
switch moves are performed in 3 dimensions.

The bond switch move satisfies detailed balance as the probability to generate the
new bond configuration starting with the old bond configuration equals the probability
of generating the old configuration from the new configuration, since both probabilities
are equal to products of the same factors Pi, the only difference being the order in which
the factors occur.

Appendix 3.B Off-lattice bond switch moves
For densities lower than close packing or if L∗ < 1 not all bond configurations are equally
probable. However, if we are able to construct a bond switch move that visits configura-
tions with a Boltzmann probability, i.e. that obeys detailed balance, we can take this into
account. Two problems arise, when one applies the bond switch move as it was defined
in the last section, to lower ρ∗ and L∗. First of all, the connection and reconnection step
needs to be adjusted, as spheres must be moved to detach from one dumbbell, and attach
to another. Suppose that i is a single sphere at ri and j is a dumbbell with direction
vector uj and center of mass position rj and that we wish to connect sphere η = ±1 of
dumbbell j to sphere i, turning particle i into a dumbbell with direction vector u′i and
center of mass position r′i and particle j into a sphere at r′j. The way to do this is

u′i = (ri − rjη)/a,
r′i = rjη + L

2 u′i and (3.21)
r′j = rjη − aηuj,

where a = |ri − rjη|, see Fig. 3.11. Note, that the position of sphere η of the dumbbell
is fixed during the move. Still, the first step of the bond switch move, disconnecting a
dumbbell, will involve making an arbitrary choice for a and for the last step, connecting
two spheres, we must choose the acceptance probability of a certain value for a. The
second problem is that, although the spheres are now moved to connect and disconnect a
dumbbell, the bond switch move will still fail due to overlaps with the particles which are
not directly involved in the bond switch move. One can resolve this problem by combining

(0)r (1)r

step 1 step 2 step 3 afterbefore

Figure 3.10: An example of the bond switch move on a hexagonal lattice. The dumbbells are
denoted by thick lines, the loose spheres by circles: r(0) by the open circle and the loose end,
r(1) by the filled symbol. The bond configuration is depicted at the instant just after the bond
indicated by a dashed line has been disconnected and before a new bond is chosen.
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the bond switch moves with displacement moves of the particles. However, in this case
one has to make sure that each step in the bond switch move preserves detailed balance,
while in App. 3.A only the entire bond switch move preserves detailed balance. To this
end we accept the generated move with a probability of w(f)/w(r), where w(f) is the
weight wi as occurring in a step in the bond switch move and w(r) is the weight of the
reverse move.

In this case, the system consists ofN−1 dumbbells and 2 spheres during one part of the
simulation and of N dumbbells during the other part. As a result, since the bond switch
moves will consist of varying numbers of steps, the sampling, which can only occur when
the system consists of only dumbbells, is biased. We, therefore, decided to use a system of
N − 1 dumbbells and 2 spheres during the entire simulation. An additional advantage is
that we do not have to bias the system anymore (λb = 0), since the trajectory of the loose
end throughout the system does not have to be closed. The results of these simulations
will be nearly equal to the results of a simulations of N dumbbells provided that N is large
enough and that the definitions of ∂F/∂L and ρ∗ are adjusted: ρ∗ ≡ ((N −1)d3 +2σ3)/V
and we approximate ∂F/∂L of N dumbbells to N/(N − 1) times ∂F/∂L, as measured
in our system of N − 1 dumbbells and 2 spheres. In our simulations, we used N = 864,
and we checked that ∂F/∂L and ρ∗ measured in a simulation of N − 1 dumbbells and 2
spheres without bond switch moves were nearly equal to the results of a simulations with
N dumbbells, with a difference of the order of 1/N .

i

j j
i

a

a

Figure 3.11: A typical bond switch move for a non-close-packed structure: particles are not
positioned on a lattice.
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Hard dumbbells in gravity:
structure and crystallization

We study the structure and phase behavior of hard dumbbells in gravity. The fluid is
shown to layer near the wall, where subsequent layers of dumbbells align either preferably
along or parallel to the wall. We observe coexistence of a fluid with a plastic crystal (PC)
and an aligned crystal (CP1) in a single sediment for short dumbbells. For longer dumb-
bells, we observe a direct fluid CP1 coexistence, while for dumbbells of almost tangent
spheres, the aperiodic phase appears in between the fluid and CP1. The coexistences are
explained using a simple expression based on an approximation similar to the local den-
sity approximation, which was already applied to hard spheres in gravity in Chap. 2. The
fluid–PC-CP1 coexistence could not be explained using this expression. We attributed
this discrepancy to a lattice constant mismatch between the PC phase and the CP1 phase.
Finally, we show using direct simulations that the plastic crystal stacks preferably in hcp
for short dumbbells, as was already shown to be the case in a bulk plastic crystal in
Chap. 3.
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4.1 Introduction
The phase behavior of hard spheres in bulk, arguably the simplest system imaginable, is
well understood by now. In particular, it was shown by computer simulations that such a
system shows a purely entropy-driven phase transition from a disordered fluid phase to a
face-centered-cubic (fcc) crystal phase at sufficiently high densities [3–5]. Although the fcc
phase is the most stable phase, the free energy difference with respect to the metastable
hexagonal-close-packed (hcp) structure is only very small and is on the order of 10−3kBT
per particle at the melting transition [6]. Here we define kB as Boltzmann’s constant and T
the absolute temperature. Historically, this system was mainly investigated as a model for
simple atomic liquids. The advent of well controlled colloidal model systems has changed
this. In fact, by screening the interactions between charged colloidal particles one can get
interactions that are almost hard core-like. However, gravity is usually not negligible for
colloids, which are much larger than atoms. Hence, a spatial inhomogeneous suspension
is obtained due to the gravitational field, which is characterized by a density profile ρ(z)
that varies with altitude z. The parameter that is associated with a gravitational field is
the so-called gravitational length and reads `/σ = (βmgσ)−1 where m is the effective or
buoyant mass of the colloidal particles, β = (kBT )−1, σ the diameter of the colloids, and
g the gravitational acceleration. Typically, `/σ is of the order of 10−1 − 103 for colloidal
particles. The density profiles in the earliest measurements were obtained simply by
counting the number of particles by eye at a certain height, for instance by Perrin [2],
who used the resulting density profile to calculate Boltzmann’s constant kB and hence
Avogadro’s number. More recently density profiles have been measured by light scattering
techniques [27, 28] and confocal microscopy in suspensions of colloidal hard spheres [29].
In light of these experiments on colloidal spheres and as a natural extension to the bulk
hard sphere theoretical studies and simulations, one can add a gravitational field. Density
profiles of hard spheres in gravity have been obtained using density functional theory and
simulations [19–26].

In a sediment, the local density increases with depth and (before equilibrium is
reached) with time, which leads to crystallization when the hard sphere freezing pres-
sure is exceeded. In fact, in colloidal systems, this is probably the most widely used
method to obtain crystals of micron-sized colloids [29]. Crystallization in sedimentation
profiles of hard spheres was studied using Monte Carlo simulations and density functional
theory [20–24, 26] and in more detail by us in Chap. 2. The simulations in Ref. [20]
show a discontinuous transition where two layers crystallize at the same gravitational
field strength. Upon increasing the gravitational field further, the crystalline film grows
continuously. However, density functional theory predicts a discontinuous crystal growth
via layering transitions upon increasing gravity in contrast with the simulation results
[20]. Our Monte Carlo simulations in Chap. 2 supported the continuous layer-by-layer
growth as found in the Monte Carlo simulations of [20]. Furthermore, we showed that the
chemical potential, µ, at which the nth layer crystallizes can be obtained from

µ−mgz′n = µcoex, (4.1)

where µcoex is the chemical potential at bulk coexistence and z′n is the height of layer n.
One has some freedom of choosing this z′n, depending on the definition of the interface.
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For hard spheres the best choice was to choose z′n in between the layer that crystallizes
and the layer below, while z′n = 1σ worked best for the initial simultaneous crystallization
of layers 1 and 2 at 1 < σ/` ≥ 4 and z′n = 0.8σ for the crystallization of a single layer at
the extreme case σ/` = 10.

Having calculated the structure and phase behavior of hard spheres in gravity, one
possible next step is to investigate a more complicated particle shape. Dĳkstra and
Savenko [69] investigated the freezing transitions of hard rods in gravity for a L/D = 5,
where L is the distance between the centers of the hemispherical end caps and D is the
diameter of the caps and the cylinder. The authors find coexistences between up to four
phases, a consequence of the rich phase diagram of hard rods, that features isotropic,
nematic, smectic and crystal phases for this L/D. The coexistences were compared to a
theoretical expression, that is similar to Eq. (4.1). However, since the calculations were
performed in the canonical ensemble, the equations feature the number of particles per
unit area instead of the chemical potential µ.

While rods (in the form of viruses [70, 71]) are among the earliest colloidal systems
to be studied, it is difficult to tune the aspect ratio of such systems. On the other hand
it is difficult to obtain a narrow size distribution for synthetic rods. However, colloidal
dumbbells can be synthesized that are monodisperse and whose aspect ratio can be tuned
very easily [50]. In this method, the anisotropic particles are formed by destabilizing a
dispersion of colloidal silica spheres resulting in an initial aggregation of the spheres, i.e.
dumbbell formation. Subsequently, a layer of silica is grown around these cores to obtain
a dumbbell of length-to-diameter ratio L∗ = L/σ, where L is the distance between the
centers of the spheres and σ is the diameter of the spheres. By adding salt to the solvent,
the dumbbell interactions can be tuned from hard to long-range repulsive interactions.
This method is especially suited for growing relatively long dumbbells. For very short
dumbbells a very thick layer must be grown to sufficiently decrease L/σ, which results in
difficulties in the synthesis, such as secondary nucleation i.e. a spontaneous nucleation and
growth of silica spheres instead of growth on top of the existing cores. For short dumbbells
another synthesis method is more suited [72, 73]. It is possible to swell polymer latex
particles with a monomer. In suitable solvent conditions the swelling will become a bulge
that protrudes from one side of the particle. By tuning the amount of monomer added, the
protrusion can be grown to the same radius as the original polymer particle, such that a
homonuclear dumbbell can be obtained. Subsequently, the monomer can be polymerized
to solidify the particle.

In this chapter we investigate the phase behavior of dumbbells in gravity. The bulk
phase diagram of dumbbells was mapped out for a large part by Vega et al. [44–46] and in
Chap. 3 we investigated the phase diagram for large L which features, aside from the close
packed crystal aligned CP1 also the aperiodic phase, where the spheres are on a lattice,
but the dumbbells are randomly oriented. Furthermore, for small L we determined the
type of plastic crystal: face centered cubic (fcc) or hexagonally close packed (hcp) by
calculating free energy differences. Ref. [69] focused on coexistences between the fluid,
various mesophases and one crystal phase for rods, due to their choice of L/D = 5.
Instead, we will study in this work the direct fluid–aligned crystal coexistence and the
fluid–disordered crystal–aligned crystal coexistence for dumbbells. The phase diagram
of dumbbells is similar to short spherocylinders especially for L/σ ∼ L/D . 0.6 [46].
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Therefore we expect that the results described in this chapter for dumbbells with L ≤ 0.6σ,
also apply quantitatively to short rods. The results for L & 0.9σ certainly do not apply
to rods, as spherocylinders do not order into an aperiodic phase. In this chapter, we
show that at short L we obtain the expected fluid–plastic crystal–CP1 coexistence, at
intermediate L a direct fluid–CP1 crystal coexistence and finally at large L a fluid–
aperiodic crystal–CP1 coexistence. Furthermore, we show that although the free energy
difference between the fcc and the hcp plastic crystal is small, we can observe by direct
simulations in gravity that the hcp phase is more stable for L = 0.3σ.

4.2 Model
We consider a system of hard dumbbells consisting of spheres of diameter σ. The center–
to–center distance between the spheres is L ≤ σ. We denote the center-of-mass position
and the orientation of dumbbell i by ri and ui respectively. The particles are subjected
to a gravitational field oriented along the z-direction. In addition, the dumbbells are
confined between two smooth hard parallel walls at z = 0 and z = H. In other words,
the dumbbells are subjected to the external potential:

φ(zi, ui,z) =
{
mgzi zi − L/2|ui,z| > σ/2 and zi + L/2|ui,z| < H − σ/2
∞ otherwise (4.2)

where zi is the vertical coordinate, ui,z is the z component of the direction vector of particle
i, g is the gravitational acceleration, and m the buoyant mass of the hard dumbbells. All
simulations in this chapter were performed at mgσ/kBT = 2, so the gravitational length
is equal to ` = σ/2. The height H is chosen such that the number density (see Sec. 4.3)
at z = H − σ/2 is sufficiently small, i.e., ρ(H − σ/2)d3 < 10−6, where d is the diameter
of the sphere that has the same volume as a dumbbell and ρ(z) is the density at height
z, and thus the system can be considered to be infinite in the z−direction. The lateral
dimensions of the box are Lx = a0 n and Ly = a0 m

√
3/2 with n,m integers. We choose

n and m such that the lateral dimensions of the simulation box are nearly equal, which
minimizes the finite-size effects for the fluid phase and still accommodates a hexagonal
crystalline layer with lattice constant a0. We employ periodic boundary conditions in the
lateral dimensions in our simulations. Rather than fixing the number of particles we fix
the chemical potential, µ, by adding standard [9] particle insertion and deletion moves to
our Monte Carlo simulations. We define a dimensionless chemical potential by

µ∗ = βµ− log(V/σ3) (4.3)

where V is the thermal volume. This definition is such that the dimensionless ideal gas
chemical potential equals log(Nσ3/V ). Equilibration of the number of crystalline layers
was rather slow. This is caused by the glassy behavior at high chemical potentials, which
are necessarily above the bulk coexistence chemical potentials. We often needed over 107

successive Monte Carlo moves per particle for equilibration. Equilibration was checked
by comparing order parameter profiles.
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Figure 4.1: The CP1 crystal, its lattice vectors, a1, a2 and a3, and the direction vector of the
dumbbells, u0. (a) Side view: a1 points into the plane of view. (b) Top view. The A face of the
crystal is spanned by a1 and a3; the B face is spanned by a1 and a2. The A face is buckled i.e.
one sphere of each dumbbell is closer to a plane spanned by a1 and a3, than the other.

4.2.1 Initial configuration
The close packed phase for hard dumbbells is the CP1 phase. Starting from an fcc crystal
of spheres that lies on its (111) face (i.e. the z-direction is parallel to the [111] direction),
CP1 can be obtained by shifting every second hexagonal layer of spheres downwards and
sideways. This shift is such that each sphere of every second layer only overlaps with
exactly one sphere of every first layer and remains in contact with its other neighbors.
The overlapping spheres form dumbbells, that remain horizontally arranged in hexagonal
layers. The other hexagonal layers of fcc are slightly deformed (buckled). The lattice
vectors and the direction vector of CP1 at a given density are

a1 =

a0
0
0

 a2 =

 a0/2
a0
√

3/2
0

 a3 =

 b0
b0/
√

3
c0

 ,u0 =


√

3 sin θ0/2
sin θ0/2
cos θ0

 , (4.4)

where a0, b0 and c0 are lattice parameters and θ0 is the angle between the z-axis and
the equilibrium direction vector of the particles, u0. The CP1 crystal, its lattice vectors
and u0 are depicted in Fig. 4.1. For hard spheres the (111) hexagonal layers (rather than
say (100) or (110)) lie parallel to a hard wall (see Chap. 2) which is a combined effect of
a lower interfacial tension between the (111) face of an fcc hard sphere crystal and the
wall, compared to other crystal planes [74, 75], and the gravitational energy, which is also
slightly lower for the (111) face (the difference for the (100) face and the (111) face is
mga0(1−

√
3/2)/

√
6 per particle for instance). The crystal–fluid interfacial tension does

not play a major role in determining which crystal plane lies at the wall (and therefore
also at the fluid-crystal interface), as this dependence on the crystal orientation of the
crystal-fluid interface is weak.

When starting from a fluid configuration, we never observed the CP1 phase, although
it is the stable bulk phase at high pressures for all aspect ratios. The CP1 phase is
probably stable in gravity as well, since it is the close packed crystal phase. However,
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the crystal probably does not nucleate spontaneously in our system, due to the slow
dynamics which occurs at high pressures. This means that we have to make an educated
guess as to which face of the CP1 phase lies at the wall. Unfortunately, the wall–crystal
interfacial tensions have not been calculated for hard dumbbells. From the results for
hard spheres we expect that one of the faces that corresponds to the (111) faces of fcc
has the lowest interfacial tension. The gravitational energy expressions are a bit more
cumbersome for this low symmetry crystal, therefore we only tabulate the results in
Tbl. 4.1 for the lattice parameters measured near coexistence and for the close packed
crystal for L/σ = 0.3, 0.6, 0.92. These results show that the gravitational effect on the
orientation of the crystal at the wall is small, although, as it scales with the number of
particles (N), it will outweigh the interfacial tension effect, that does not scale with N ,
when the sediment is thicker than a certain number of layers. The fluid–crystal interfacial
tension has been calculated for the fluid–CP1 coexistence [76], and is considerably more
anisotropic than the interfacial tensions for hard spheres. In contrast to hard spheres,
the CP1-melt interfacial tension is higher, when the hexagonal layer is in contact with
the fluid, than it is when either of the buckled crystal planes is in contact with the fluid
phase [76]. In light of these results, there are two likely candidates for the crystal plane
at the wall, the buckled face (A), spanned by a1 and a3 and the flat hexagonal layer (B),
spanned by a1 and a2, see Fig. 4.1 (the third face, spanned by a1 and a2, is equivalent
to the A face). We suspect that the buckled A face at the wall is less stable because
the crystal will be deformed, when the particles are pushed against the bottom wall. To
check this idea, we ran a simulation starting with the A face at the wall at L = 0.6σ,
which indeed deformed, although the deformed configuration proved to be mechanically
stable. However, less stable layers form and the crystal melts into a fluid at higher
chemical potential than the B candidate. From Tbl. 4.1, we see that for L = 0.3σ the A
configuration has a lower gravitational energy than the B configuration, however the A
oriented CP1 crystal melts directly into a plastic crystal at a chemical potential where the
B configuration is stable. In the remainder of this chapter, we only consider simulations
that were initiated in one or two initial configurations. The first initial configuration is
a CP1 crystal with the hexagonal B plane at the wall, using the bulk lattice parameters
at coexistence as listed in Tbl. 4.1. The second type of initial configuration is an empty
simulation box (N = 0). In this case, the number of particles will increase slowly due
to exchange moves and initially the configuration of these particles will be fluid-like.
Since the layers are able to shift upwards and sidewards due to the periodic boundary
conditions, we expect that all lattice parameters except a0 can be adjusted during the
simulation. Whenever possible we started with the final configuration of a previous run,
except when we consider the stability of hcp versus fcc of the plastic crystal phase. The
crystallization of the aperiodic phase and the plastic crystal showed little to no hysteresis,
similar to simulations of hard spheres under gravity as discussed in Chap. 2. In particular,
the initial crystallization of a system starting with a fluid occurred at the same chemical
potential as the melting of the last few layers when we started with a crystal phase within
the statistical uncertainty.
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∆Φz/(mgNσ)
L/σ a0/σ b0/σ c0/σ θ0 coex cp
0.3 1.08 0.538 1.14 18.8◦ -0.013 0.019
0.6 1.08 0.664 1.43 18.4◦ 0.0066 0.019
0.92 1.05 0.917 1.65 30.3◦ 0.0058 0.0051

Table 4.1: The lattice parameters at coexistence as a function of L and the gravitational
energy difference between perfect crystals with the A and the B crystal plane (see Fig. 4.1)
parallel to the bottom wall at coexistence (coex) and at close packing (cp). The gravitational
energy difference is divided by Nmgσ to make it dimensionless. A positive energy difference
implies that the A configuration is more stable.

4.2.2 Bond switch moves

The aperiodic phase consists of many arrangements of bonds between the particles (bond
configurations) as described in Chap. 3. These arrangements are only strictly degenerate
at L = σ and close packing i.e. only then the free energy of the dumbbells is the same for
all bond configurations. As density and especially L is decreased, some of the arrange-
ments become more frustrated than others by the fact that the bond length L between the
spheres within a dumbbell is smaller than the distance between spheres of a neighboring
dumbbell, which is equal to the lattice constant. For this reason when considering an
aperiodic crystal at L < σ, it is paramount to implement a move which switches between
bond configurations while preserving detailed balance. Such a bond switch move was in-
troduced in Chap. 3 in order to sample the different arrangements of bonds according to
their local free energies and therefore correctly calculate the free energy of the aperiodic
crystal in the bulk. To implement bond switch moves that preserve detailed balance and
still work at finite density it was necessary to add single spheres to the simulation. In
short, the bond switch move consists of two steps: First, we connect a non-bonded sphere
to a sphere of a neighboring dumbbell and we cut the bond of that dumbbell, effectively
moving the sphere from one lattice site in the aperiodic phase to another (see Fig. 3.11
in Chap. 3). In the bond switch moves in bulk, the diameter of the spheres was set to σ.

As the CP1 phase can be viewed as a deformed version of fcc, it can transform into
the aperiodic crystal phase using bond switch moves, provided that the layers can shift
back to their positions in the fcc crystal phase. In our simulations in gravity, the top
wall is far away so the layers can shift upward, when the loss of gravitational energy is
overcome by the gain in entropy due to degeneracy. Furthermore, the periodic boundary
conditions allow for a shift in the horizontal directions. We implemented the bond switch
moves, as introduced in Chap. 3, for dumbbells under gravity and observed a successful
transformation from CP1 to the aperiodic phase. There are a few differences between the
implementation of these moves in gravity and in bulk (see Chap. 3), related to the (non-
bonded) spheres that are required in order to be able to perform the bond switches. First,
we subject the spheres to insertion and deletion moves and set their chemical potential
to µ∗/2 −∆µ, where µ∗ is the reduced chemical potential of the dumbbells and ∆µ = 8
ensures that the total fraction of single spheres is always small but nonzero. The (buoyant)
mass ms of the spheres was chosen to be half the mass of of a dumbbell (m), while the
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diameters of the spheres (σs) was chosen such that the volume of a sphere is equal to
half the volume of a dumbbell. In this way the internal mass densities of spheres and
dumbbells are equal and separation of the dumbbells and the spheres by gravity should
be minimal, according to Archimedes’ principle. Moreover, the acceptance ratio of the
bond switch moves increases as the probability of creating an overlap with a particle that
is not involved in the bond switch move is lower if we move a smaller particle.

4.3 Methods
In order to analyze our simulation results, we calculate two types of density profiles: One
that measures the height distribution of the centers of mass of the dumbbells: ρcom(z)∗ =
〈d3

A

∑
i δ(z−zi)〉 and one that measures the height distribution of the individual spheres of

each dumbbell: ρ∗sphere = 〈d3

A

∑
i

1
2
∑
η δ(z− zi,η)〉, where d is the diameter of a sphere with

the same volume as a dumbbell, which is given by π
6 (σ3 + 3Lσ2/2− L3/2). Similarly, all

order parameter profiles can either be defined for the center-of-mass of the dumbbells or
for the individual spheres of each dumbbell. To lighten the notation, we use the following
definitions to abbreviate the averaging over the delta functions in the definitions of the
order parameter profiles: 〈Ai〉z,com ≡ 〈

∑
iAiδ(z − zi)〉/〈

∑
i δ(z − zi)〉 and 〈Ai〉z,sphere ≡

〈∑i,η A{i,η}δ(z − zi,η)〉/〈
∑
i,η δ(z − zi,η)〉, where Ai is any measurable property of particle

i and A{i,η} is a property of sphere η = ±1 of dumbbell i. To study the orientational
order of the dumbbells, we measure the tensor Qαβ(z) = 〈32ui,αui,β −

1
2δαβ〉z,com, with

α, β = x, y, z. We use the zz component of Q(z) to investigate the alignment along
the z axis (Qzz(z) = 1) or perpendicular to z (Qzz = −1/2). We define the nematic
order parameter at height z, S2(z), as the largest eigenvalue of Q(z). For a fluid with
a uniaxial rotation symmetry of the director field, as in the case of a fluid of dumbbells
near a wall, one can show that Qxx = Qyy = −1

2Qzz and all other components of Q are
zero, where z is the axis of the rotational symmetry. All dumbbells very close to the wall
(zi ' σ/2) are oriented nearly parallel to the wall (otherwise they would overlap with
the wall, see Eq. (4.2)). Therefore, S2(σ/2) = Qxx(σ/2) = −1

2Qzz(σ/2) ' 1
4 . We use

S2(z) to distinguish between the CP1 phase (S2 ' 1) and the plastic crystal (S2 = 0). In
the aperiodic phase, the bonds that connect two spheres in adjacent layers correspond to
dumbbells that are upright and whose center of mass position is in between the layers.
Therefore, the value of S2(z) in between two layers is nonzero. Consequently, we can
not use S2(z) to distinguish between the CP1 phase and the aperiodic crystal. Instead,
we define the bond directional order, Sbond(z) = |〈ηui〉z,sphere|. This order parameter is
1 for the perfect CP1 phase, since in a given layer of spheres ηui is always the same.
In the aperiodic phase the bonds are randomly oriented, so Sbond = 0. To determine
crystallization, we measure the hexagonal bond order parameter of dumbbell γ = i or
sphere γ = {i, η} using

ψ6,γ = 1
Nγ

Nγ∑
λ=1

exp
(
ı6θ(rγλ)

)
, (4.5)

where the bond angle θ(rγλ) is defined as the angle between a reference axis and the
center-of-mass displacement vector, rγλ = rλ − rγ and the sum over λ runs over the Nγ
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nearest neighbors of γ. A particle is defined as a neighbor, when

x2
γλ + y2

γλ + (4zγλ)2 < (1.4σ)2, (4.6)

where xγλ, yγλ and zγλ are the respective x, y and z components of rγλ. This criterion
is chosen in such a way, that the neighbors γ are located primarily in the same layer as
particle λ

The center of mass hexagonal bond order profile is defined as

ψcom
6 (z) = |〈ψ6,i〉z,com|. (4.7)

This parameter considers (virtual) bonds between the center of mass of a dumbbell and
the centers of mass of its neighbors. It is 1 if the centers of mass of all dumbbells at height
z are hexagonally ordered. Similarly, the hexagonal bond order profile of the spheres is
defined as

ψsphere
6 (z) = |〈ψ6,{i,η}〉z,sphere|. (4.8)

In this case, bonds between sphere η of dumbbell i and neighboring spheres are considered.
These neighbors can be part of another dumbbell or belong to the same dumbbell i.
ψsphere

6 (z) = 1 if the spheres of the dumbbells are perfectly hexagonally ordered.
In bulk systems, plastic crystals were found to stack either like fcc or hcp. To distin-

guish between the two types of stacking we use the ψ3 order parameter, which was used
in Ref. [77] to study crystallization in sediments of colloidal spheres. We require the local
trigonal ordering in the layer above (+) or below (−) dumbbell i to define the trigonal
bond orientational order parameter ψ±3 :

ψ±3,i = 1
N±

N±∑
j

exp
(
3ıθ(rij)

)
, (4.9)

where the sum over j runs over the N± neighbors of dumbbell i in the layer above (+) or
below the particle (−). In this case, a particle is deemed a neighbor when its horizontal
distance to particle i is smaller than 1.1σ and its vertical distance is between 0.65σ and
1.4σ. If particle i is in a perfect fcc environment, ψ+

3,i = −ψ−3,i, while in an hcp environment
ψ+

3,i = ψ−3,i. Accordingly, the ψ3 profiles that are sensitive to hcp resp. fcc are defined as
follows

ψhcp
3 (z)
ψfcc

3 (z)

}
=
〈1

2 |ψ
+
3,i ± ψ−3,i|

〉
z,com

. (4.10)

4.4 Results
4.4.1 Structure
We perform Monte Carlo simulations of a fluid of hard dumbbells with elongation L =
0.3σ, L = 0.6σ and L = 0.92σ. Here and in the remainder of the chapter we set the
gravitational length ` to σ/2. We measure the dimensionless density profiles for the
center-of-mass of the dumbbells, ρ∗com(z), and for the individual spheres of each dumbbell,
ρ∗sphere(z) and the order parameter profile Qzz(z), that measures the alignment parallel
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(Qzz(z) = 1) and perpendicular Qzz(z) = −1/2 to the z-axis. In Fig. 4.2, we show
these profiles for L = 0.3σ and µ∗ = 20, for L = 0.6σ and µ∗ = 40 and for L = 0.92σ
and µ∗ = 34, somewhat below the respective freezing transitions. From Fig. 4.2, we
clearly observe pronounced layering in the density profiles, but the precise details depend
heavily on L: For short dumbbells, the center of mass density profile resembles the density
profiles obtained in sedimentation of hard spheres (with some effective diameter), while
the density profile of the individual spheres of each dumbbell has a small bump at z = L
that corresponds to upright particles. The Qzz(z) profile in Fig. 4.3, shows oscillations
that seem to be out of phase with the oscillations in the density profile. To be exact, there
is a minimum in Qzz(z) at a slightly lower z-position than a maximum in the center-of-
mass density profile, and also a maximum in Qzz(z) just below a minimum in ρ∗com(z).
This is caused by the fact that upright dumbbells that stand on top of a layer have a
slightly higher z-position (of their center of mass) than dumbbells that lie flat on the
same layer. For very long dumbbells (L = 0.92σ), the spheres of each dumbbell show the
usual type of layering, while the center of mass profile has an unusual structure. From
Fig. 4.2, we find density peaks in ρ∗com(z) at intermediate values of z i.e. σ+L

2 , 3(σ+L)
2 ,

etc. (the position of the wall is at z = 0 so the smallest possible z-position is σ/2). In
addition, Fig. 4.2 shows that the layering in ρ∗com(z) correlates with the oscillations in Qzz.
The odd numbered density peaks in ρ∗com(z) correspond to particles that are aligned on
average perpendicular to z (Qzz(z) = −1/2), while the even numbered layers are aligned
parallel to z (Qzz(z) = 1). This is caused by the fact that dumbbells with each sphere in
a different layer are aligned along z and have a center-of-mass position that is in between
two layers of spheres, while dumbbells with both spheres in the same layer have their
direction vector perpendicular to the z-axis and their center-of-mass z-position in a layer.
For intermediate length L = 0.6σ, the dumbbells show a complicated behavior that shows
aspects of both the short dumbbell and the long dumbbell profiles.

We also measure the density profiles and hexagonal order parameter profiles for crys-
talline sediments of hard dumbbells with the same elongations as for the fluid: L/σ =0.3,
0.6 and 0.92. Fig. 4.4 shows the formation of crystalline layers at the bottom of the
sample, which can be seen from the negligible density in between the layers and the sharp
peaks in the profiles. At L = 0.3σ the center-of-mass profile shows well defined layers that
are about σ apart for all heights. A small jump in the ψ6 order parameter profile can be
observed, which marks the transition from the CP1 crystal at low z to the plastic crystal
further up in the sediment. It can be seen from Fig. 4.4 that peaks in the density profile
of the plastic crystal (PC) are lower and less sharp, corresponding to larger fluctuations of
the positions of the dumbbells. This also explains the slightly lower value of ψcom

6 for the
plastic crystal. A similar jump in the hexagonal order parameter profile of the spheres,
ψsphere

6 (z), can be observed for L = 0.92σ, corresponding to the CP1 to aperiodic crystal
transition. Here the ρ∗com(z) profile of the CP1 phase (only two layers of dumbbells) has
an interlayer spacing of almost 2σ, while the aperiodic crystal peaks are separated by half
the diameter. Half of the peaks of the aperiodic phase are caused by the bonds which
connect spheres within a layer of spheres and therefore the center of mass of the dumbbell
is within the layer. The other half of the peaks is caused by inter-layer bonds. The center
of mass profile of the aperiodic phase looks rather ragged i.e. the peaks heights differ, be-
cause the number of inter-layer bonds and the number of intra-layer bonds are not equal.
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Figure 4.2: Dimensionless density profiles for the center of mass of the dumbbells ρ∗com(z) and
for the individual spheres of the dumbbells of a fluid at µ∗ = 20 and L = 0.3σ (top), µ∗ = 40
and L = 0.6σ and µ∗ = 34 and L = 0.92σ (bottom). The insets show the decay of the profiles
over the full sediment.



54 Chapter 4

L = 0.3σ

-0.5

 0

 0.5

 1

 0  1  2  3  4  5  6
Q

z
z
(z

)

z/σ

L = 0.6σ

-0.5

 0

 0.5

 1

 0  1  2  3  4  5  6

Q
z
z
(z

)

z/σ

L = 0.92σ

-0.5

 0

 0.5

 1

 0  1  2  3  4  5  6

Q
z
z
(z

)

z/σ

Figure 4.3: Orientational order parameter profiles Qzz(z) of a fluid for the same parameters
as in Fig. 4.2. The positions of the maxima of the center-of-mass density profiles, ρ∗com(z) (see
Fig. 4.2) are indicated by vertical dashed lines.

For these reasons, it is more convenient to use the hexagonal order parameter profile for
the individual spheres, rather than the hexagonal order parameter profile for the centers
of mass of the dumbbells. The ψspheres

6 (z) profile shows pronounced ordering for both the
CP1 and the aperiodic crystal phase. In conclusion, we find a triphasic coexistences both
for small L and for large L, which is a nice consequence of the phase diagram of dumbbells
compared to that of hard spheres. At the intermediate value of L = 0.6σ we observed a
sediment containing only the CP1 phase and the fluid phase, as expected from the bulk
phase diagram of hard dumbbells.

4.4.2 Crystallization
We now study the crystallization of the fluid layers at the bottom wall. To this end, we
measure the nematic order parameter profile S2(z) at small L and the bond orientational
profile at large L. Instead of showing the profiles themselves, we show the values of the
relevant order parameters at the height of each layer (defined using the maxima of the
profile) as a function of µ in Fig. 4.5. We define the z-position of the nth layer, zn, of the
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Figure 4.4: Center-of-mass density profile ρ∗com(z) and hexagonal order parameter profile
ψcom

6 (z) for dumbbells with L = 0.3σ at µ∗ = 55 (top row), and with L = 0.6σ at µ∗ = 54 (middle
row), the center-of-mass density profile ρ∗com(z) and hexagonal bond order profile ψsphere

6 (z) of
the individual spheres of dumbbells with L = 0.92σ at µ∗ = 54 (bottom row). The inset in
the bottom left plot is an enlargement of part of the ρ∗com(z) profile, showing oscillations with a
period ∼ 0.5σ in the aperiodic crystal.
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aperiodic phase as the position of nth maximum of ρ∗sphere(z), i.e. layer n is the nth layer of
spheres for L = 0.92σ, while at L = 0.3σ and L = 0.6σ we number the layers of dumbbells
via the maxima in the center-of-mass density profile, ρ∗com(z) and, correspondingly, zn is
the z-position of the nth maximum in the center-of-mass profile. Fig. 4.5 shows that the
initial crystallization of all crystal phases appears to be discontinuous, while the following
layers freeze continuously, except for the CP1 crystal, where all layers seem to crystallize
discontinuously. We define a layer at height z to be crystalline if ψ6(z) is larger than
0.5, while we define a crystalline layer to be CP1 if the orientational parameter, S2(z) or
Sbond(z), is larger than 0.5. Using these definitions, we find for L = 0.3σ that the first
two layers crystallize at the same chemical potential from the fluid phase to the plastic
crystal (ψcom

6 ' 0.8 and S2 < 0.5) between µ∗ = 24.5 and 25.0, and these two layers
transform into a CP1 phase (ψcom

6 ' 0.95 and S2 ' 0.9) between µ∗ = 31 and 32. For
L = 0.6σ, we observe that only a single fluid layer crystallizes into CP1 (ψcom

6 ' 0.9 and
S2 ' 0.85) between µ∗ = 41.50 and 42.0. For very long dumbbells (L = 0.92σ), two fluid
layers (of spheres) crystallize simultaneously into the aperiodic crystal (ψspheres

6 ' 0.8 and
Sbond ' 0) between µ∗ = 38 and 39, while one layer of dumbbells transforms into the
CP1 crystal (ψspheres

6 ' 0.95 and S2 ' 0.55) between µ∗ = 48.5 and 49.5. The nonzero
value of S2(z) for the first and second layer of the fluid and the plastic crystal is caused
by particles parallel to the wall, and not by an alignment within the plane (see Methods
section). Note, that also the first layer of the fluid on top of the CP1 crystal at L = 0.6σ
has a nonzero value of S2(z), which implies that the dumbbells in this fluid layer are
parallel to the fluid-CP1 interface.

The chemical potential at which the first few layers freeze, µ∗trans, is compared to the
bulk coexistence chemical potential in Fig. 4.6 and tabulated in Tbl. 4.2. For L = 0.6σ
and L = 0.92σ, µ∗trans corresponds nicely to the bulk values, which gives confidence in
the equilibration. However, for L = 0.3σ the PC–CP1 freezing transition is far off. To
investigate this discrepancy, we investigate the structure of a fluid–PC–CP1 sediment at
µ∗ = 35, where we did not expect to find any stable CP1 crystal phase. From the structure
of one layer of plastic crystal we observe that the lattice direction of the plastic crystal
conforms to that of the CP1 phase and to the simulation box. Furthermore, we find that
the PC layer in contact with the CP1 crystal has a horizontal lattice constant of about
1.18σ, which is significantly smaller than the lattice constant of the bulk plastic crystal
at the PC–CP1 coexistence, which is about 1.2σ. The other layers of the plastic crystal
phase have a lattice constant of about 1.24σ, similar to the lattice constant in the bulk
at the fluid–PC coexistence. In other words, the plastic crystal forms two crystallites,
one is adjusted to the fluid, while the other one is compressed due to presence of the
CP1 crystal. Because of the small amount of layers, the free energy penalty for having a
grain boundary inside the plastic crystal is considerable and perhaps enough to decrease
the stability of the plastic crystal compared to the bulk. Furthermore, the diminished
lattice constant of the lower plastic crystal compared to the bulk crystal at the PC–CP1
coexistence, explains why the height of the PC–CP1 freezing transition is affected more
than the fluid-PC freezing transition.

To test that the unexpected lattice constants of the plastic crystal are not caused by
the horizontal dimensions of the simulation box, we ran simulations with varying box
dimensions corresponding to 10× 10, 14× 16 and 20× 20 particles in a layer of the initial
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Figure 4.5: Order parameters at height zn of layer n, where zn is defined as the nth maximum
of ρ∗com(z) (top and middle row) or ρ∗spheres(z) (bottom row). Accordingly, the layers are defined
as layers of dumbbells for the top and the middle figures and as layers of spheres for the bottom
figures. Top: center of mass hexagonal order parameter ψcom

6 (zn) (left), nematic order parameter
S2(zn) (right) at L = 0.3σ. Middle: ψcom

6 (zn) (left) and S2(zn) (right) at L = 0.6σ. Bottom:
hexagonal order parameter ψsphere

6 (zn) of the individual spheres of each dumbbell (left) and bond
orientational order Sbond(zn) (right) at L = 0.92σ. The order parameters of the second layer do
not differ significantly from the order parameters of the first layer, except for L = 0.6σ (middle
row). For clarity, we only show odd n for all values of L, augmented by n = 2 for L = 0.6σ.
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Figure 4.6: Bulk phase diagram for hard dumbbells in the µ∗-L/σ representation, where µ∗
is the bulk chemical potential nondimensionalized by Eq. (4.3) and the results indicated by the
solid lines are obtained in standard Monte Carlo simulations without special moves, while bond
switch moves were employed for the results indicated by the dashed lines. The squares denote the
dimensionless chemical potentials (µ∗) at which the phase transitions occur in a gravitational
field with strength g∗ = σ/` equal to 2 (here and in the rest of the chapter). Fluid denotes
the fluid phase, PC denotes the plastic crystal phase, CP1 the periodic crystal and Aper the
aperiodic crystal phase.

CP1 crystal. The 10 × 10 system is chosen in such a way, that the plastic crystal can
only form layers of 9× 9 particles, which results in the right lattice constant for PC–CP1
coexistence. As expected, the CP1 phase is less stable in this case. However, if we scale
up the system by a factor of two in both horizontal directions (20× 20), we get the same
results as for the 14×16 system, which are shown in Figs. 4.4 and 4.5. This gives us some
confidence that our results are not affected by finite size effects, but in stead are due to the
mismatch between the plastic crystal and the CP1 lattice. In comparison, the aperiodic
crystal has a lattice constant that is very similar to the lattice constant of the CP1 phase.
Therefore, such a mismatch plays a smaller role, which can be seen from the excellent
agreement between the freezing transition in bulk and in gravity. Another possibility for
the anomalous behavior of the PC–CP1 transition is the slow thermalization. In order
to speed up the equilibration of the aper–CP1 transition we introduced the bond switch
moves. For the PC–CP1 transition at L = 0.3σ we were unable to implement such moves.
However, if we the simulation for ten times more cycles, again at µ∗ = 35, we find no
change in the number of crystalline layers and hence we do not attribute the deviation to
thermalization problems.

Now, we compare our results for the freezing of the nth layer with the estimate that
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layer n crystallizes when
µ−mgzn = µcoex (4.11)

where µcoex is the chemical potential at bulk coexistence and zn = ∆z(n− 1), where ∆z
is the thickness of a layer. According to this definition, zn is the z-position in between
layers n and n − 1. The thickness ∆z is obtained from a fit of zk as a function of the
number of crystalline layers (Nlayers), where k is the top layer of the crystal of interest.
The resulting layer thicknesses are tabulated in Tbl. 4.2. Note that for the plastic crystal
and the aperiodic phase, k is not equal to Nlayers, when there are also layers of the CP1
crystal phase present in the sediment. The expression for the chemical potential at which
the kth layer crystallizes, Eq.4.11 for n = k, can be inverted to obtain the number of
crystalline layers as a function of µ:

Nlayers(µ) = b(µ− µcoex)/(mg∆z)c+ 1, (4.12)

where bxc is the largest integer smaller than x. The number of crystalline layers and the
prediction (4.12) are plotted in Fig. 4.7. As before, we plot the number of layers of spheres
in Fig. 4.7 at L = 0.92σ, while for the other values of L we plot the number of dumbbell
layers. At L = 0.92σ, we used the average of the two bulk chemical potentials (one with
bond switch moves and one without) for µcoex in Eq. 4.12. The agreement between the
prediction (4.12) and the data is reasonable except for L = 0.3σ. Furthermore, the slope
is correctly predicted for all L. For L = 0.3σ, the number of layers of CP1 (NCP1) is
similarly affected by the mismatch between the plastic crystal lattice and the CP1 lattice
as the PC–CP1 transition itself. To quantify this mismatch we fit Eq. (4.12) to NCP1
with µcoex as the only fit parameter; the result for the chemical potential µcoex was 31.4,
while the chemical potential at bulk PC-CP1 coexistence is 43.12. It should be noted,
that Eq. (4.12) with adjusted µcoex might not give the correct result for other values of
the gravitational length `.

In experiments, the chemical potential is usually not readily available, although it has
been obtained in a (mass) density matched suspension in ref. [78] using a variant of the
Widom particle insertion method [79]. However, the pressure can be easily obtained by
integrating the density profile from the ideal gas at the top of the sediment to the height
of interest. We checked for hard spheres, for the center of mass profile of dumbbells and
for ρ∗sphere(z)/2 that the pressure at height z obtained by this integration oscillates around
the bulk pressure that corresponds to the chemical potential µ−mgz. These unavoidable
oscillations are caused by the layering, but we noticed that the pressure at the peak of
the density profile as well as the pressure right in the middle between two layers, P (z′n),
corresponds almost exactly to the bulk pressure at those heights. This is a nontrivial
result, since the gravitational field is rather strong (`/σ = 0.5). Using this result, we
can say that layer n will be crystalline, when the pressure exactly in between layers n
and n − 1, P (z′n) is higher than the bulk coexistence pressure. In the case of the CP1
at L = 0.3σ, the fitted µ∗coex = 31.4 can be inserted in Eq. (4.11) to obtain the chemical
potential at which a layer crystallizes. As mentioned, this chemical potential is much
lower than the chemical potential at bulk PC-CP1 coexistence, therefore we have no bulk
pressure data at this chemical potential. Instead, we use the local pressure P (z′n) as a
function of local chemical potential µ(z′n) = µ−mgz′n in our sediment. Using the result,
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L/σ phase µ∗trans µ∗coex ∆z/σ
0.3 PC 24.75± 0.25 21.50 1.14
0.3 CP1 31.5± 0.5 43.12 1.13
0.6 CP1 41.75± 0.25 41.66 1.42
0.92 aper 38.50± 0.5 38.47 0.83
0.92 CP1 49.0± 0.5 49.15 0.78

Table 4.2: The phases found in our simulations versus the center–to–center distance to diameter
ratio (L/σ), the lowest chemical potential at which they were found (µtrans) and the parameters
describing the number of layers (see Eq. (4.12)). These parameters are: the chemical potential
of the coexistence between the phase of interest and the phase at lower density (see Fig. 4.6)
and the thickness of the layers ∆z. The expression (4.12) with the parameters as listed here,
underestimates the number of layers of CP1 at L = 0.3σ (see text). At L = 0.92σ, ∆z is the
thickness of a layer of spheres.

d3P (z)/kBT ' 27 at µ∗(z) = 31.4, we can conclude that layer n will be crystalline when,

P (z′n) > P0, (4.13)

where P0 is equal to the coexistence pressure (see Chap. 3 and Refs. [44–46]), except for
the PC–CP1 transition at L = 0.3σ where d3P0/kBT ' 27.

4.4.3 Plastic crystal: hcp or fcc?
The plastic crystal phase of dumbbells can stack in either hcp or fcc. The free energy
difference between these two phases in bulk is small ( . 0.01NkBT ), but still much larger
than the free energy difference between the fcc and hcp phases of hard spheres (differ-
ence is of order 10−3kBT per particle). Furthermore, the stable phase for dumbbells of
any appreciable aspect ratio (L > 0.1σ) is hcp, while the stable phase for hard spheres
is fcc. We investigated whether the small free energy difference between the two types
of plastic crystals can be observed in a spontaneously crystallized sediment i.e. starting
from a fluid phase. We initiated all runs with zero particles; the number of particles
slowly increases during the simulation due to insertion moves. In this case, it is in fact
advantageous that the CP1 phase never forms spontaneously, as it allows us to investi-
gate higher chemical potentials than the plastic crystal–CP1 coexistence. In Fig. 4.8 we
show the probability to find an hcp layer as obtained from ψhcp

3 /(ψfcc
3 + ψhcp

3 ) for lay-
ers n = 2, 3 and 4 for hard dumbbells with L = 0.3σ and gravitational field strength
` = σ/2. We ran 10 simulations at each chemical potential, therefore the measured prob-
abilities are multiples of 0.1. We indeed find that the probability to find an hcp layer is
higher than the probability to find an fcc layer, although for higher chemical potentials
the data is rather noisy because of the slow equilibration at high pressure. Using the
bulk free energy differences between hcp and fcc for hard dumbbells as determined in
Chap. 3, one can estimate the probability to find an hcp layer in the bulk. The prob-
ability that one layer in the bulk, consisting of Nl particles, is hcp stacked is given by
Phcp = exp(−βNlfhcp)/(exp(−βNlfhcp) + exp(−βNlffcc) = 1/(1 + exp(βNl∆f), where
f ≡ F/N is the bulk free energy per particle, and where the surface tension between fcc
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Figure 4.7: The number of CP1 crystalline layers and the total number of crystalline layers as
a function of reduced chemical potential µ∗ for (from top to bottom) L = 0.3σ, 0.6σ and 0.92σ.
The lines labeled by “pred” denote our prediction 4.12 based on the chemical potential at bulk
coexistence, while “fit” denotes a fit (see text).
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and hcp (which is only known for hard spheres [80]) is ignored. We fit ∆f = (Ffcc−Fhcp)/N
to the bulk free energy difference as a function of ρ and L. For L = 0.3σ it is always
positive and of order 0.01kBT per particle. Subsequently, we fit the density as a function
of the chemical potential in the bulk and use this expression in the fitted free energy
difference to get a free energy difference as a function of the chemical potential (∆f(µ)).
We use this expression as an approximation for the free energy difference between hcp
and fcc for a single layer in our sediment even though it is only valid for a system that is
thermodynamically large in all dimensions. Using a variant of the local density approxi-
mation, F (z) = Fbulk(µ−mgz), the free energy difference of a layer at height zn is found
be ∆f(µ−mgzn). Inserting this free energy difference in the expression for the probabil-
ity, we obtain Phcp(zn) = 1/[1 + exp(βNl∆f(µ−mgzn))], where Nl = 124 is the number
of particles in a single layer. We plot this expression along with our simulation results in
Fig. 4.8. Although the dependence on µ and the layer number can not be confirmed by
our data, we see that for low µ our simulation results agree roughly with the theoretical
prediction. In Fig. 4.8 we also show the number of hcp stacked layers, Nhcp along with
the total number of crystalline layers Ntotal and the ratio of the Nhcp over the number of
crystalline for which the stacking can be defined Ntotal − 2. Similarly as described above,
the average number of layers that are hcp stacked can be calculated using the bulk free
energy:

〈Nhcp〉 =
∑
{sn}

∑
n sn exp(+β∑n sn∆Fn)∑

{sn} exp(+β∑n sn∆Fn)
, (4.14)

where n denotes the nthe layer, sn denotes the stacking of layer n: sn = 1 if the layer is
hcp stacked, sn = 0 if the layers is fcc stacked, {sn} is a particular stacking configura-
tion, such that the sum over {sn} is over all possible stacking configurations and finally
∆Fn = Nl∆f(µ −mgzn)). This sum can be calculated explicitly because the number of
layers is not very large. Furthermore, we can approximate ∆Fn = Nl∆f , where ∆f is an
average free energy difference. In this case the average number of layers is simply equal
to NtotalPhcp. If we set ∆f ' 0.014, we obtain 〈Nhcp〉/Ntotal ' 0.85. From the inset of
Fig. 4.8, we see that the full expression and the approximation of 0.85 both overestimate
the actual number of layers, except at low chemical potential. We attribute this discrep-
ancy to the statistical noise, which tends to randomize the stacking i.e. bring the stacking
probability closer to 0.5.

In ref. [81] it was shown that weakly charged colloidal spheres in a sediment show a
much larger fraction of fcc layers than one would expect on the basis of the bulk free
energies of such particles [82]. It was reasoned that this mismatch must be related to the
gravitational field. To make sure that the difference between the probability of occurrence
of hcp and fcc in our simulations is not caused by gravity, we revisited the simulations of
hard spheres in gravity of Chap. 2. We measuredNhcp/(Nfcc+Nhcp) using the same method
as described in this chapter. Our simulations on hard spheres show that the probability
to observe an fcc layer equals the probability to observe an hcp layer within the error
bars. The free energy difference for hard spheres is of the order 10−3kBT per particle,
and the sign of the free energy difference is such that fcc is favored. The probability to
find an fcc layer is given by 1/(1 + exp(βNl∆f) ' 0.6. Since our error bars are larger
than 0.1 our simulations are in agreement with the theoretical estimate. Hence, we do
not expect that the deviation of the stacking probability from one half for the dumbbells
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Figure 4.8: Left: Probability to find an hcp layer as measured (symbols) using ψ3(zn), and as
calculated from the bulk probability Pbulk(zn). Right: number of hcp layers and total number
of crystalline layers; inset: Nhcp/(Nfcc +Nhcp) as measured and as predicted by Eq. (4.14). The
stacking of the top and bottom layer is undefined, so Nfcc +Nhcp = Ntotal − 2.

is not caused by the gravitational field as reasoned in ref. [81] for spherical colloids, but
by the bulk free energy difference for dumbbells.

4.5 Summary and discussion
We investigated the structure of a fluid of hard dumbbells in gravity for a gravitational
length, ` = σ/2. We observed pronounced layering of the dumbbells for short elongations,
while for long dumbbells layering of the individual spheres of the dumbbells was found,
and a more complex center-of-mass density profile. For long dumbbells, we showed that
the first peak in this profile corresponds to particles lying flat against the wall, the next
to particles standing upright, etc. Furthermore, we measured the density profile and the
hexagonal order parameter profiles of crystalline sediments. At L = 0.3σ, we observed a
three-phase coexistence with an aligned crystal phase (CP1) at the bottom of the sample,
the orientationally disordered plastic crystal in the middle and the fluid on top. For longer
dumbbells (L = 0.6σ) the plastic crystal phase disappears, and we find a direct fluid–CP1
coexistence. For very long dumbbells (L = 0.92σ) the aperiodic crystal phase appears in
between the CP1 phase and the fluid. The density profiles of these crystalline layers are
sharply peaked, except for the plastic crystal phases, where the peaks are broadened due
to fluctuations of the centers of mass of the dumbbells.

Next, we studied the phase behavior of hard dumbbells in gravity as a function of
chemical potential, again for a gravitational length ` = σ/2 . We measured the hexagonal
order parameters and order parameters that measured the degree of alignment of the
dumbbells at the nth maximum of the density profile i.e. in the middle of a layer. It was
shown that the initial crystallization of all crystal phases appears to be discontinuous,
while the following layer-by-layer crystal growth is continuous. An exception occurs for
the CP1 crystal, where the crystal growth appears to be discontinuous as well. Using a
handwaving argument, one can explain these results using the structure of the fluid layer,
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which lies directly on top of the crystal. This fluid layer has some degree of hexagonal
ordering, which can be appreciated from the nonzero value of the ψ6(z) profiles in Fig. 4.4.
The same structuring is also observed for hard spheres and is caused by the top crystalline
layer, that serves as a template. However, there is little directional alignment of the fluid
layer. Therefore, in order to form a CP1 layer on top of a already formed crystal the
rotational symmetry of the direction vectors must be broken, while for the plastic crystal
and the aperiodic crystal phase the hexagonally structured fluid can smoothly transform
in a crystal. Typically, a transition that breaks a symmetry is discontinuous, which
might explain the discontinuous growth of the CP1 crystal. In the initial crystallization
the translational symmetry is broken, since the fluid is not hexagonally ordered, and
therefore we might expect this transition to be discontinuous. As a word of caution, we
note that the same reasoning can be applied to a 2D hard disc solid, while that particular
system has a second order (or very weakly first order) freezing transition [83, 84].

The bottom two layers usually crystallized at the same chemical potential, with the
exception of the CP1 phase at L = 0.6σ and L = 0.92σ, where only one layer undergoes
the phase transition at once. However, for large L a single layer of CP1 can be identified
with two layers of spheres. In conclusion, the same number of layers of spheres crystallize
initially for dumbbells as was the case for hard spheres at the same gravitational strength
g∗ = σ/` = 2 in Chap. 2.

The lowest chemical potential at which a crystal was found, was compared to the
chemical potentials at the bulk coexistences. These chemical potentials corresponded
quite well, with the exception of the CP1–PC coexistence at L = 0.3σ. The CP1 phase
is stable at a much lower chemical potential than is to be expected from the bulk phase
behavior. There are two possible reasons for this discrepancy: Our system has not ther-
malized yet, although we ran very long simulations to check this. Another explanation is
that the plastic crystal phase is frustrated by the CP1 phase that acts as a template and
imposes a lattice constant on the plastic crystal which differs from the lattice constant at
the same pressure in the bulk. We observed that the bottom layer of the plastic crystal
has a lattice constant which differs from the lattice constant of the rest of the layers,
which probably gives an additional free energy penalty.

We measured the number of layers of a certain crystal that were formed as a function of
chemical potential. The number of layers are mostly described quite well by an expression
that has been shown to work for all gravitational lengths in a system of hard spheres in
Chap. 2. The exception, again, is the CP1 phase, which has more layers than expected
from the bulk chemical potential, presumably for the same reason the chemical potential
at which the PC-CP1 transition occurs, was too low. For the other phases, we expect that
our expression can be directly applied to other gravitational field strengths. To enable the
comparison with (future) experiments, we also gave an expression for the crystallization
of layers n in terms of the local pressure.

Finally, we studied the type of lattice (hcp of fcc) of the plastic crystal. We showed
using direct simulations that hcp is favored, which was already shown in the bulk in
Chap. 3. We checked that this was not caused by gravity, which has been proposed as a
reason for the increased fcc stacking of crystals of weakly charged colloids [81] compared
to the bulk crystal [80]. To this end, we measured the stacking probability of hard sphere
crystals in gravity, which showed the expected randomly stacked crystal.
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Phase behavior and structure of a
new colloidal model system of

bowl-shaped particles

We study the phase behavior of bowl-shaped particles using confocal microscopy and
computer simulations. Experimentally, we find the formation of a worm-like fluid phase
in which the bowl-shaped particles have a strong tendency to stack on top of each other.
However, using free energy calculations in computer simulations, we show that the worm-
like phase is out-of-equilibrium and that the columnar phase is thermodynamically stable
for sufficiently deep bowls and high densities. In addition, we employ a novel technique
based on simulated annealing to predict the crystal structures for shallow bowls. We find
four exotic new crystal structures and we determine their region of stability using free
energy calculations. We discuss the implications of our results for the development of
materials with ferroelectric order.
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5.1 Introduction
The concept of a mesogenic particle in the form of a bowl is relatively old in the molecular
liquid crystal community. Such molecules are expected to form a columnar phase, which
can be ferroelectric, i.e., a phase with a net electric dipole moment, when the particles
possess a permanent dipole moment. Ferroelectric phases have potential applications
for optical and electronic devices. In fact, crystalline (as opposed to liquid crystalline)
ferroelectrics are already applied in sensors, electromechanical devices and non-volatile
memory [85]. A columnar ferroelectric phase may have the advantage over a crystal, that
grain boundaries and other defects anneal out faster due to the partially fluid nature of
the columnar phase. In reality, columnar phases of conventional disc-like particles often
exhibit many defects, as flat thin discs can diffuse out of a column and columns can split
up. The presence of these defects limits their potential use for industrial applications [86].
Less defects are expected in a columnar phase of bowl-shaped mesogens, where particles
are supposed to be more confined in the lateral directions. A whole variety of bowl-
like molecules have already been synthesized and investigated experimentally [87–90].
However, the number of theoretical studies is very limited as it is difficult to model the
complicated particle shape in theory and simulations. In a recent simulation study, the
attractive-repulsive Gay-Berne potential generalized to bowl-shaped particles has been
used to investigate the stacking of bowl-like mesogens as a function of temperature [86].
The authors reported a nematic phase and a columnar phase. This columnar phase did
not exhibit overall ferroelectric order, although polar regions were found.

Recently, a procedure has been developed to synthesize bowl-shaped colloidal parti-
cles [91]. This method starts with the preparation of highly uniform silicone oil-in-water
emulsion droplets by hydrolysis and polymerization of dimethyldiethoxysilane. Subse-
quently, the silicone oil droplets were used as templates around which a solid shell with
tunable thickness is grown by using tetraethoxysilane. In the next step of the synthesis,
the silicone oil in the droplets is dissolved in ethanol and finally, during drying in air,
the shells collapse into hemispherical double-walled bowls (Fig. 5.1a). The final shape of
the bowls is determined by a trade-off between bending and stretching elastic energy [92].
Axially symmetric bowls are found if the ratio of shell thickness to particle radius is
between 0.05 and 0.25 [91, 92]. We also note that recently hemispherical particles were
synthesized at an air-solution interface [93] and on a substrate [94]. These hemispherical
particles are intended to be used as microlense arrays, but they can also serve as a new
type of shape-anisotropic colloidal particle.

In our simulations, we model the particles as the solid of revolution of a crescent (see
Fig. 5.1b). The diameter σ of the particle and the thickness D are defined as indicated in
Fig. 5.1b. We define the shape parameter of the bowls by a reduced thickness D/σ, such
that the model reduces to infinitely thin hemispherical surfaces for D/σ = 0 and to solid
hemispheres for D/σ = 0.5. The advantages of this simple model is that it interpolates
continuously between an infinitely thin bowl and a hemispherical solid particle (the two
colloidal model systems, which we discussed above), and that we can derive an algorithm
that tests for overlaps between pairs of bowls, which is a prerequisite for Monte Carlo
simulations of hard-core systems.

In this chapter, we study whether columnar liquid crystalline phases with directional
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(a)

D

σ
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Figure 5.1: (a) Transmission electron micrograph of a bowl-shaped colloid. (b) The theoretical
model of the colloidal bowl is the solid of revolution of a crescent around the axis indicated by
the dashed line. The thickness of the double-walled bowl is denoted by D and the diameter
of the bowl by σ. (c) The shells are defined using two spheres of radii R1 and R2, that are a
distance of L apart. The direction vector, ui and the reference point of the particle, ri, (the dot
in the center of the smaller sphere) are indicated.

alignment (polar order) can be driven by entropy alone without any attractive interactions.
To this end, we investigate experimentally the stacking and phase behavior of a new
colloidal model system of purely repulsive bowl-like particles using confocal microscopy.
We complement our study with computer simulations of hard bowls, which allows us
to investigate the effect of particle shape on the equilibrium phase behavior of bowl-like
particles. First we describe the experiments on which this chapter is based. Subsequently,
we elaborate on the model for the collapsed shells; the overlap algorithm is left for the
appendix. Also, the (free energy) methods are explained. In the results section, we look
at the properties of the isotropic phase. We will investigate the existence and the nature
of the transition between the homogeneous fluid phase and the fluid phase that contains
the worm-like stacks. Furthermore, we show the packing diagram and the phase diagram
with a tentative homogeneous–to–worm-like fluid transition line. In the last section we
summarize and discuss the results.

5.2 Experiment
Our experimental system consists of hemispherical collapsed shells, which were obtained
following the procedure described in Ref. [91]. The only modification was that the dye,
rhodamine B-isothiocyanate (RITC), was incorporated in the shell during the coating step.
To obtain stable dispersions in the presence of this dye, we used 1% DMDES and 10% NH3
by volume. The radius of the uncoated droplets as determined from static light scattering
(SLS) experiments is 520 nm. The thickness of the shell was determined by fitting the
SLS data of the coated emulsion droplets with the full Mie solution for the scattering
factor of core-shell particles with the core radius kept fixed at 520 nm. The result for
the shell thickness was 80 nm. The colloids were dispersed in an index-matched mixture
of dimethylsulfoxide (DMSO) and ethanol. A bottomless vial was glued to a cover slip
and filled with the suspension and the bowls were allowed to sediment. The gravitational
length was estimated to be L/σ = kBT/mBgσ ' 4 with kB Boltzmann’s constant, g the
gravitational acceleration, T the temperature, and mB the buoyant mass of the bowls.
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(a) (b)

Figure 5.2: Confocal microscope image of the bottom layer of the colloidal bowls after 65 days
of sedimentation (a). The final configurations obtained from simulations at Pσ3/kBT = 50 and
D = 0.3σ (b). The gray values denote different stacks.

Confocal microscopy images of the sediment were recorded at regular intervals with a
Leica SP2 and excitation wavelength of 532 nm. The sediment continued to compact for
several weeks, while the particles formed stacks. A typical image is shown in Fig. 5.2a
taken after 51 days of sedimentation. We clearly observe that the bowls form stacks as
can be recognized by the “C” shapes that are stacked on top of each other. These stacks
are present throughout the whole sample and can have lengths up to 15 particles running
in random directions. We also note that many stacks are bent and bifurcated by forming
Y-shaped junctions. The dynamics of the bowls has been slowed down dramatically as
the density at the bottom of the sample had increased significantly due to sedimentation.
The bowl-shaped particles seem to get caged by the neighboring particles, which may
have prevented them from finding a more ordered thermodynamically equilibrium phase.
Even after 234 days the structure had not changed noticeably compared to the structure
as observed after 51 days of sedimentation.

5.3 Simulation methods

5.3.1 Model
Now we describe the model that we use to represent the collapsed shells or bowls in more
detail. Consider a sphere with a radius R1 at the origin and a second sphere with radius
R2 > R1 at position −Lui, where ui is the unit vector denoting the orientation of the
bowl and L > 0. The bowl is represented by that part of the sphere with radius R1 that
has no overlap with the larger sphere, see Fig. 5.1b. We have chosen the values for L and
R2 such that the bowls are hemispherical and resemble the experimental model system.
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We define the thickness of the bowls by D = L− (R2−R1), such that the model reduces
to the surface of a hemisphere for D = 0 and to a solid hemisphere for D = R1. The
volume of the particle is π

4 D (σ2 −Dσ + 2
3D

2), where σ ≡ 2R1 is our unit of length. The
algorithm to determine overlap between our bowls is described in the appendix.

5.3.2 Fluid phase
We employ standard NPT MC simulations to obtain the equation of state (EOS) for the
fluid phase. In addition, we obtain the compressibility by measuring the fluctuations in
the volume:

〈V 2〉 − 〈V 〉2

〈V 〉
= kBT

ρ

∂ρ

∂P
, (5.1)

where ρ = N/V is the number density. We determine the free energy at density ρ1 by
integrating the EOS from reference density ρ0 to ρ1:

F (ρ1)
N

= µ(ρ0)−
P (ρ0)
ρ0

+
∫ ρ1

ρ0

P (ρ)
ρ2 dρ (5.2)

where the chemical potential µ(ρ0) is determined using the Widom particle insertion
method [79], and P (ρ0) is determined by a local fit to the EOS.

To investigate the structure of the fluid phase, we measure the positional correlation
function [95],

gc(z) = 1
NρAcol

〈
N∑
i=1

Ncol(i)∑
j=1

δ(rij · ui − z)〉, (5.3)

where the sum over j runs over Ncol(i) particles in a column of radius σ/2 with orientation
ui centered around particle i, and where the area of the column is denoted by Acol = πσ2/4.
At sufficiently high pressure the particles stack on top of each other to form disordered
worm-like piles which resemble the stacks observed in the experiments. As the stacks have
a strong tendency to buckle, we cannot use gc(z) to determine the length of the stacks.
We therefore determine the stack size distribution using a cluster criterion. Particle i and
j belong to the same cluster if

|rij + (ζD/2 + σ/4)(uj − ui)| < σ/2 and
ui · uj > 0, (5.4)

and where the first condition has to be satisfied for ζ = −1, 0 or 1 and rij = rj − ri, with
ri denoting the center of the sphere with radius R1 of particle i, see Fig. 5.1b. If both
conditions are satisfied, particle j is just above (ζ = 1) or below (ζ = −1) particle i in
the stack, or, when the stack is curved, particle j can be next to particle i (ζ = 0). We
now define the cluster distribution as the fraction of particles that belongs to a cluster
of size n: Pstack(n) ≡ nNn/N , where Nn is the number of clusters of size n. We checked
that the cluster size distribution does not depend sensitively to the choice of parameters
in Eq. (5.4).
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5.3.3 Columnar phases
We also perform NPT simulations of the columnar phase using a rectangular simulation
box with varying box lengths in order to relax the inter-particle distance in z direction,
along the columns, independently from the lattice constant in the horizontal direction.
The difference between the free energy of the columnar phase at a certain density and
the free energy of the fluid phase at a lower density is determined using a thermodynamic
integration technique [96]. We apply a potential which couples a particle to its column:

Φhex(rN , λ) = λ
N∑
i=1

cos(2πNxxi/Lx) sin(πNyyi/Ly), (5.5)

where xi and yi are the x and y components respectively of ri, Nα is the number of columns
in the α direction and Lα is the size of the box in the α direction. In our simulations, we
calculate Eq. (5.5) while fixing the center of mass. We calculate all four combinations

N∑
i=1

trig1(2πNxxi/Lx)trig2(πNyyi/Ly) (5.6)

for trig1 = cos, sin and trig2 = cos, sin, although we are only interested in ϕhex(ri), that
is Eq. 5.6 with trig1 = cos, and trig2 = sin. By using some basic trigonometry one can
express the change in these four expressions upon displacement of a single particle in
terms of single particle properties and the previous values of the expressions. As a result,
we do not have to perform the full summation over all particles in Eq. (5.6) every time we
displace a particle. Unfortunately, this calculation requires the evaluation of many more
trigonometric functions than the simple expression (5.5), but the extra computation time
is negligible compared to the overlap check. In addition to this positional potential, we
also constrain the direction of the particle, using the potential

Φang(uN , λ) = λ′
N∑
i=1

ui,z, (5.7)

where we used λ′ = 0.1λ. The thermodynamic integration path from the columnar phase
to the fluid is as follows: We start from the columnar phase at a certain density ρ2.
Subsequently, we slowly turn on the two potentials, i.e. we increase λ from 0 to λmax.
Next, we integrate the equation of state to go from ρ2 to ρ1, while keeping λ = λmax fixed.
During this step the columnar phase will only be stable below the coexistence density, if
λmax is high, although λmax = 20kBT proved to be sufficient. Finally, fixing the density
ρ1, we gradually turn off the potentials, while integrating over λ from λmax to 0. During
this last step, the columnar phase melts continuously, provided that the density ρ1 is low
enough and that λ is high enough to prevent melting during the density integration step.
The resulting free energy difference between the columnar phase and fluid phase is given
by

Fcol(ρ2)− Ffluid(ρ1) =
∫ λmax

0

〈
Φhex(rN , λ)/λ+ Φang(uN , λ)/λ

〉∣∣∣
ρ=ρ1

+∫ ρ2

ρ1
dρ

NP (ρ)
ρ2

∣∣∣∣∣
λ=λmax

−
∫ λmax

0

〈
Φhex(rN , λ)/λ+ Φang(uN , λ)/λ

〉∣∣∣
ρ=ρ2

(5.8)
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Positional potential (5.5) is designed to stabilize a hexagonal array of columns, but, strictly
speaking, it does not have the hexagonal symmetry of the columnar phase, since it is
not invariant under a 60 degrees rotation of the whole system around a lattice position.
However, we have found that replacing Eq. 5.5 by a positional potential that does have
this symmetry, does not have a significant effect on the free energy difference.

A second type of columnar phase can be constructed by flipping half of the bowls. In
this way we obtain alternating vertical sheets (i.e. rows of columns) of bowls that point
upwards and sheets of bowls that point downwards, we will refer to this phase as the
inverted columnar phase. We calculate the free energy of this phase using the method
described above, with the modification that the angular potential now reads,

Φang(uN , λ) = λ′
∑
i

u2
i,z. (5.9)

This potential could also have been used for the non-inverted columnar phase, and we
have found that the result of the free energy integration for the columnar phase is the
same whether we use Eq. (5.9) or Eq. (5.7).

5.3.4 Crystals
Packing

As the crystal phases of the bowls are not known a priori, we developed a novel pressure
annealing method to obtain the possible crystal phases [97], which we named after the
common used thermal annealing technique. Fully variable box shape NPT simulations
were performed on system of only 2-6 particles. By construction, the final configuration
of such a simulation is a crystal, where the unit cell is the simulation box. One cycle of
such a simulation consists of the following steps: We start at a pressure of 10kBT/σ3.
Subsequently, we run a series of simulations, where the pressure increases by a factor
of ten each run: Pσ3/kBT = 10, 100, . . . , 106. At the highest pressure (106kBT/σ

3) we
measure the density and angular order parameters, S1 ≡ ‖〈ui〉‖ and S2 ≡ λ2, where λ2
is the highest eigenvalue of the matrix whose components are Qαβ = 3

2〈uiαuiβ〉 −
1
2δαβ,

where α, β = x, y, z. We store the density if it is the highest density found so far for these
values of S1 and S2. We ran 1000 of such cycles for each aspect ratio, which is enough
to visit each crystal phase multiple times. After completing the simulations, we tried to
determine the lattice parameters of the resulting crystal by hand. Although this last step is
not necessary, it is convenient to have analytical expressions for the lattice vectors and the
density at hand. The pressure annealing runs were performed at D/σ = 0.1, 0.15, . . . , 0.5.
For many of the crystals, we were not able to find analytical expressions for the lattice
parameters. For these crystals, we obtain the densities of the close packed crystals for
intermittent values of L by averaging the density in single simulation runs at a pressure
of 106kBT/σ

3. The initial configurations for the value of L of interest were obtained from
the final configurations of the pressure annealing simulations for another value of L by one
of the following two methods, depending on whether we needed to decrease of increase L:
When decreasing L no overlaps are created so the final configuration of the simulation for
the previous value of L can be used as initial configuration. On the other hand, increasing
L results in an overlap, which is removed by scaling the system uniformly. Subsequently,
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the pressure is stepwise increased from 1000kBT/σ3 to 106kBT/σ
3, by multiplying by 10

each step.

Free energies

We calculate the free energy of the various crystal phases by thermodynamic integration
using the Einstein crystal as a reference state [9]. The Einstein integration scheme that we
employ here is similar to the one, that was used to calculate the free energies of crystals
of dumbbells in Chap. 3. We briefly sketch the integration scheme here and discuss the
modifications that we applied. We couple both the positions and the direction of the
particles with a coupling strength λ, such that for λ → ∞, the particles are in a perfect
crystalline configuration. First, we integrate ∂F/∂λ over λ from zero to a large but finite
value for λ. Subsequently we replace the hard core particle–particle interaction potential
by a soft interaction, where we can tune the softness of the potential by the interaction
strength γ. We integrate over ∂F/∂γ from a system with essentially hard core interaction
(high γ = γmax), to an ideal Einstein crystal (γ = 0). Some minor alterations to the
scheme of Chap. 3 were introduced, which were necessary, because of the different shape
of the particle. For the coupling of the orientation of bowl i, i.e., ui, to an aligning
field, we have to take into account that the bowls have no up down symmetry, while the
dumbbells are symmetric under ui → −ui. The potential energy function that achieves
the usual harmonic coupling of the particles to their lattice positions, as well as the new
angular coupling, reads:

βU(rN ,uN ;λ) = λ
N∑
i=1

(ri − r0,i)2/σ2 +
N∑
i=1

λ(1− cos(θi0)), (5.10)

where ri and ui denote, respectively, the center-of-mass position and orientation of bowl i
and r0,i the lattice site of particle i, θi0 is the angle between ui and the ideal tilt vector of
particle i, and β = 1/kBT . The Helmholtz free energy (Eq. (3.15)) of the noninteracting
Einstein crystal is modified accordingly, but the only modification is the integral over the
angular coordinates:

J(λ) =
∫ 1

−1
eλ(x−1)dx = 1− e−2λ

λ
. (5.11)

Although the shape of the bowls is more complex than the dumbbell, we can still use
a rather simple form for the pairwise soft potential interaction:

βUsoft(rN ,uN ; γ) =
∑
i<j

βϕ(ri − rj,ui,uj, γ) (5.12)

with

βϕ(rj − ri,ui,uj, γ) =
{
γ(1− A(r′ij/σmax)2) if i and j overlap

0 otherwise , (5.13)

where r′ij ≡ |rj − ri + σ−D
2 (ui− uj)| i.e. the distance between the “centers” of bowl i and

bowl j, σmax is the maximal r′ij for which the particles overlap: σ2
max = σ2 + (σ −D)2, A

is an adjustable parameter that is kept fixed during the simulation at a value A = 0.5,
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and γ is the integration parameter. It was shown in Ref. [62] that in order to minimize
the error and maximize the efficiency of the free energy calculation, the potential must
decrease as a function of r and must exhibit a discontinuity at r such that both the
amount of overlap and the number of overlaps decrease upon increasing γ. Here, we have
chosen this particular form of the potential because it can be evaluated very efficiently
in a simulation, although it does not describe the amount of overlap between bowls i
and j very accurately. We checked that adding a term that tries to describe the angular
behavior of the amount of overlap does not significantly change our results of the free
energy calculations. Also, we checked that by employing the usual Einstein integration
method (i.e. only hard core interactions) at a relatively low density we obtained the same
result as by using the method of Fortini et al.[62]. As the final modification, we increase
the maximum interaction strength γmax to 200.

We perform variable box shape NPT simulations [65] to obtain the equation of state
for varying D. In these simulations not only the edge length changes, but also the angles
between the edges are allowed to change. We employ the averaged configurations in the
Einstein crystal thermodynamic integration. We calculate the free energy as a function
of density by integrating the EOS from a reference density to the density of interest:

F (ρ∗1) = F (ρ0) +
∫ ρ1

ρ0
dρ

〈
NP (ρ)
ρ2

〉
(5.14)

5.4 Results

5.4.1 Stacks
We compare the experimental results from Sec. 5.2 with computer simulations. We
perform standard Monte Carlo simulations in the isobaric-isothermal ensemble (NPT).
Fig. 5.2b shows a typical configuration of bowl-shaped particles with D = 0.3 σ at
Pσ3/kBT = 50, displaying similar stacking behavior as observed in the experiments.
The equation of state (EOS) of the fluid is somewhat peculiar: the pressure as a func-
tion of density is not always convex for all densities, although the compressibility does
decrease monotonously with packing fraction φ for D = 0.1σ, see Fig. 5.3, where the
packing fraction is defined as φ = πD

4 (σ2 −Dσ + 2
3D

2)N/V . This behavior persist for all
D ≤ 0.2σ, but for D ≥ 0.25σ the pressure is always convex. We investigate the origin
of these peculiarities using gc(z), the positional correlation function along the director
of a particle, which includes only the particles in a column around a particle, as defined
in Eq. (5.3). As can be seen from gc(z) in Fig. 5.4, the structure of the fluid changes
dramatically as the pressure is increased. At P ∗ ≡ βPσ3 = 1, the correlation function is
typical for a low density isotropic fluid of hemispherical particles; no effect of the dent of
the particles is found at low densities. The only peculiar feature of gc(z) for P ∗ = 1 is
that it is not symmetric around zero, but this is caused by our choice of reference point
on the particle (see Fig. 5.1b), which is located below the particle if the particle points
upwards. In contrast, at P ∗ = 10 gc(z) already shows strong structural correlations.
Most noteworthy is the peak at z = D, that shows that the fluid is forming short stacks
of aligned particles. Also, note that the value of gc(z) is nonzero around z = 0. This is
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caused by pairs of bowls that align anti-parallel and form a sphere-like object, as depicted
in Fig. 5.4. Finally, at P ∗ = 50 and higher, long worm-like stacks are fully formed and
gc(z) shows multiple peaks at z = Dn for both positive and negative integer values of n.
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Figure 5.4: The pair correlation function, gc(z), of a fluid of bowl-shaped particles with
D = 0.2σ as a function of the dimensionless inter-particle distance z/σ along the axis of a
reference bowl for various reduced pressures P ∗ ≡ βPσ3. Only particles within a cylinder of
diameter σ around the bowl are considered, as indicated by the subscript ‘c’. We show typical
two-particle configurations that contribute to gc(z) for z/σ = −0.5,−0.2, 0.2, 0.4 and 1, where
the filled bowls denote the reference particle, and the open bowls with thick outlines denote the
other particle.
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Figure 5.5: The probability, Pstack(n), to find a particle in a stack of size n for D/σ = 0.2, 0.3
and 0.4 and Pσ3/kBT = 50 (a). Stack distribution for the same state points as in (a), but now
in a slab of thickness σ (b).

Furthermore, at these pressures, there are no sphere-like pairs, as can be observed from
the value of gc(0). The formation of stacks explains the peculiar behavior of the pressure:
At low densities, the bowls rotate freely, which means that the pressure will be dominated
by the rotationally averaged excluded volume. The excluded volume of two particles that
are not aligned is nonzero, even for D = 0, and gives rise to the convex pressure which is
typical for repulsive particles. As the density increases and the bowls start to form stacks,
the available volume increases, and the pressure increases less than expected, which can
even cause the pressure to be concave. At even higher densities the worm-like stacks are
fully formed, and the pressure is again a convex function for D > 0, dominated by the
excluded volume of locally aligned bowls. The excluded volume of completely aligned
infinitely thin bowls is zero, and, therefore, the pressure increases almost linearly with
density for D = 0 when the stacks are fully formed.

To quantify the length of the stacks we calculated the stack distribution, both in sim-
ulations and in experiments. The cluster distribution of the shells are shown in Fig. 5.5a.
As can be seen from the figure, the length of the stacks is strongly dependent on D/σ.
However, we have found that above a certain threshold pressure the distribution of stacks
is nearly independent of pressure. In the experiments the cluster distribution was deter-
mined from a single confocal slice i.e. only shells in a single focal plane were imaged. So
in addition to the 3D cluster distribution, we also calculated the cluster distribution of
the shells within a slab of thickness σ. Furthermore, a stack seen from above could not be
distinguished from a single stack in the experiments. So in the simulations, all bowls with
a tilt vector within 30◦ to the normal of the slab could not be part of a cluster. Instead,
for simplicity, they were counted as clusters of size 1, while in the experiments a group
of them could be counted as a single particle. For this reason the fraction of particles
in a cluster of size 1, Pstack(1) can not directly be compared between the experiments
and the simulations. Accordingly, the normalization is also slightly affected. The cluster
distributions obtained in this fashion are shown in Fig. 5.5b for L/σ = 0.2σ, 0.3σ and
0.4σ, together with the experimental results. From this figure we can conclude that of
these values of L, the cluster distribution for simulated bowls with L = 0.3σ shows the
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most similarity to the experimental distribution. Note especially, that, according to both
of these distributions, stacks of 8-10 particles occur with an appreciable probability, while
larger stacks are nearly never found. We checked that modifying the experimental value
of Pstack(1) by a factor of two (and adjusting the normalization correspondingly) did not
change this conclusion. The thickness of the sediment in the experiment is in the millime-
ter range, so the gravitational pressure on the bottom layers is very large. Therefore, we
can safely assume that the pressure in the experiments exceeds the threshold pressure,
that was mentioned above, and that our comparison with the experiments is warranted.
In our theoretical model, the distance of closest approach of two bowls is equal to the
thickness D of the bowl-shaped particles. By measuring the inter-particle distance in a
short straight stack in the experimental system, we can map the colloidal bowls onto the
theoretical model. By equating D to the measured inter-particle distance, we obtain a
reduced thickness D/σ ' 430nm /1360nm ' 0.32, where we have defined the radius, σ/2,
of the double-walled colloids to be the core radius plus two times the shell thickness. This
estimate for D/σ is remarkably close to D/σ = 0.3 for which we find good agreement for
the stack distributions, providing confidence in our theoretical model.

We investigated whether the worm-like stacks could spontaneously reorient to form a
columnar phase. We increased the pressure in small steps of 1 kBT/σ3 from well below
the fluid–columnar transition to very high pressures, where the system was essentially
jammed. At each pressure, we ran the simulation for 4 · 106 Monte Carlo cycles, where
a cycle consists of N particle and volume moves. These simulations show that the bowls
with a thickness D ≥ 0.25σ always remained arrested in the worm-like phase, which is
similar to the experimental observations. However, forD/σ = 0.1 and 0.2, we find that the
system eventually transforms into a columnar phase in the simulations (see Fig. 5.6). This
might be explained by the fact that the isotropic-to-columnar transition occurs at lower
packing fractions for deeper bowls (smaller D), which facilitates the rearrangements of the
particles into stacks and the alignment of the stacks into the columnar phase. However,
using our experimental procedure to synthesize colloidal bowls, it is hard to obtain a
thickness D ≤ 0.2σ, as theoretical calculations and experiments show that colloidal shells
with smaller shell thickness collapse into bowls with wrinkles [92], which makes it harder
for them to stack. Preliminary attempts to form ordered phases of the bowl-shaped
particles by applying oscillating electric fields (as in Ref. [98]) and sedimentation on a
template (as in Ref. [35]) have not been successful. So in the remainder of this chapter,
we will study the crystallization of the shells using only simulations.

5.4.2 Packing

We found five candidate crystal structures, denoted X,IX,IX’,B and IB, using the pressure
annealing method. Snapshots of a few unit cells of these crystal phases are shown in
Fig. 5.8 along with the fcc2, which was not found in the pressure annealing simulations.
We will describe these crystal structures using the order parameters S1, that measures
alignment of the particles, and the nematic order parameter (S2), that is nonzero for both
parallel and anti-parallel configurations. Crystal structure X has S1 ' 1 and S2 ' 1, and
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Figure 5.6: The final configuration of a simulation of bowls with L = 0.1D at Pσ3/kBT = 38.
The gray values denote different columns.

the particles are stacked head to toe in columns. The lattice vectors are
a1 = σx̂ a2 = Dẑ

a3 = σ

2 x̂+ 1
2

√
σ2 −D2 + 2σ

√
σ2 −D2 ŷ + D

2 ẑ,
(5.15)

and the density is

ρσ3 =
[
Dσ

2

√
σ2 −D2 + 2σ

√
σ2 −D2

]−1
. (5.16)

The order parameters of the second crystal structure, are S1 ' 0 and S2 ' 1, which
is caused by the fact that one half of the particles point upwards, and the other half
downwards. Further investigation shows that there are two phases with S2 ' 1 and
S1 ' 0: one at low D (IX) and one at D ' σ/2 (IX’). The structure within the columns
of the first (IX) of these two structures is the same as for the X structure, but one half
of these columns are upside down, like in the inverted columnar phase (in fact, the IX
crystal melts into the inverted columnar phase). The lattice vectors of crystal structure
IX are

a1 = σx̂ a2 = Dẑ

a3 = σ

2 x̂+ 1
2
√

3σ2 − 4D2 ŷ,
(5.17)

and the density is

ρσ3 =
[
Dσ

2
√

3σ2 − 4D2
]−1

. (5.18)
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Figure 5.7: Packing diagram: maximum packing fraction (φ) of various crystal phases as a
function of the thickness (D) of the bowls. The points are the results of the pressure annealing
simulations. The thin dot-dashed lines are obtained from the pressure annealing results by slowly
increasing or decreasing L as described in Sec. 5.3.4, except for the IX phase (thin dashed line
with open squares) and the X phase (thin solid line with filled squares), for which the packing
fraction can be expressed analytically. The thick lines denote the packing fractions of the perfect
hexagonal columnar phase (col) and the paired fcc phase (fcc2). Any points that lie below these
lines are expected to be thermodynamically unstable (see text).

The columns in the IX crystal are arranged in such a way that the rims of the bowls can
interdigitate nicely. The IX’ crystal can be obtained from the IX phase at D = σ/2 by
shifting every other layer by some distance perpendicular to the columns, such that the
particles in these layers fit into the gaps in the layers below or above. In this way a higher
density than Eq. (5.18) is achieved. The columns of the third crystal phase (B) resemble
braids with alternating tilt direction of the particles within each column. Because of this
tilt S1 and S2 have values between 0 and 1, that depend on D. Furthermore, the inverted
braids structure (IB), that has 0 < S2 < 1 and S1 = 0, can be obtained by flipping one
half of the columns of the braid-like phase (B) upside down. These braid-like columns
piece together in such a way that the particles are nicely interdigitated. In other words,
this phase is related to the B phase in exactly the same way as the IX phase is related to
the X phase. Finally, in the paired face-centered-cubic (fcc2) phase, pairs of hemispheres
form sphere-like objects that can rotate freely and that are located at the lattice positions
of an fcc crystal. The density at close packing is 2

√
2/σ3, i.e. twice the density of fcc.

In Fig. 5.7 the results of the pressure annealing method are shown, along with the
known packing fractions of the perfect hexagonal columnar phase (col) and the paired fcc
phase (fcc2). Since these phases have one-dimensional positional or rotational degrees of
freedom, we expect these phases to have a higher entropy (lower free energy) than any
crystal phase with the same or lower maximum packing fraction whose degrees of freedom
have all been frozen out. Therefore, any crystal structure with a packing fraction below
the thick lines in Fig. 5.7 is most likely thermodynamically unstable. We were unable to
find the fcc2 and the columnar phase using the pressure annealing method as described
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Figure 5.8: The various crystal phases that were considered as possible stable structures. Five
of these were found using the pressure annealing method: X, IX, B, IB and IX’. X, IX, B and
IB are densely packed structures for D . 0.5σ and fcc2 and IX’ are densely packed crystal
structures for (nearly) hemispherical bowls (D ' 0.5σ).

in Sec. 5.3.4. The first reason for this is the fact that the columnar and fcc2 phases are
not stable at high pressures. Furthermore, the translational symmetry of the system in
the direction of the column decreases the number of degrees of freedom in the columnar
phase that are not frozen out to N − 1, and therefore the entropy decreases as well.
However, if we increase the pressure slowly to 100kBT/σ3 in simulations of 12 particles,
we did observe the fcc2 phase for hemispherical particles (D = σ/2). In these simulations
at finite pressure, it is important to constrain the length of all box vectors such that it
remains larger than say 1.5σ. Otherwise the box will become extremely elongated, such
that the particles can interact primarily with their own images. In this way, the system
lowers its Gibbs free energy G = F + PV , because the volume decreases without any
decrease in entropy due to restricted translational motion (if a particle moves, its image
moves as well, so a particle translation will never cause overlap of the particle with its
image). The decrease in Gibbs free energy is of course an extreme finite size effect, which
should be avoided if we wish to predict the equilibrium phase behavior. For the pressure
annealing simulations at very high pressures, these effects are not important, because the
entropy term in the Gibbs free energy is small compared to PV . We did not attempt to
find the columnar phase using the modified pressure annealing method, as we were only
interested in finding candidate crystal structures. Furthermore, the columnar phase was
already found in more standard simulations with a larger number of particles.
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5.4.3 Free energies
In the remainder of the chapter we focus on the phase behavior of the bowls. For that
purpose we calculated the free energies as explained in the Methods section. The results
of the reference free energy calculations are shown in Tbls. 5.1 and 5.2.

We find that the columnar phase with all the particles pointing in the same direction is
more stable than the inverted columnar phase, where half of the columns are upside down.
However, the free energy difference between the two phases is only 0.013± 0.002kBT per
particle at φ = 0.5193 and D = 0.3σ. Based on this small free energy difference we do
not expect polar ordering to occur spontaneously. Similar conclusions, based on direct
simulations, were already drawn in Ref. [86].

The dense-packed crystal structures in Fig. 5.8 at D . 0.3, the worm-like fluid phase
(Fig. 5.2) and the columnar phase (Fig. 5.6) show striking similarity in the local structure:
in all these phases the bowls are stacked on top of each other, such that (part of) one
bowl fits into the dent of another bowl. As a result, the free energies and pressures of the
various phases, are often almost indistinguishable near coexistence. For this reason it was
sometimes difficult to determine the coexistence densities for D < 0.3σ. Exemplary free
energy curves for the various stable phases consisting of bowls with D = 0.3σ are shown
in Fig. 5.9.

5.4.4 Phase diagram
In Fig. 5.10, we show the phase diagram in the packing fraction φ - thickness D/σ repre-
sentation. The packing fraction is defined as φ = πD

4 (σ2−Dσ+ 2
3D

2)N/V . For D/σ ≤ 0.3,
we find an isotropic-to-columnar phase transition at intermediate densities, which resem-
bles the phase diagram of thin hard discs [95]. However, the fluid-columnar-crystal triple
point for discs is at a thickness-to-diameter ratio of about L/σ ∼ 0.2− 0.3, while in our
case the triple point is at about D/σ ∼ 0.3 − 0.4. The shape of the bowls stabilizes the
columnar phase compared to the fluid and the crystal phase. We find four stable crystal
phases IX, IB, IX’ and fcc2, while we had six candidate crystals: five from the pressure

phase D/σ ρfluid ρcol fdiff
fluid–col 0 1.461 4.679 7.33272

phases D/σ φfluid φcol fdiff
fluid–col 0.1 0.1780 0.2848 3.2630(7)
fluid–col 0.2 0.3116 0.4674 3.268(2)
fluid–col 0.3 0.3760 0.5193 3.802(1)
fluid–inv col 0.3 0.3760 0.5193 3.8155(8)
fluid–col 0.4 0.4440 0.5772 5.843

Table 5.1: Free energy differences, fdiff ≡ (Fcol(ρcol) − Ffluid(ρfluid)/(NkBT ), between the
(inverted) columnar phase at density ρcol or packing fraction φcol and the fluid phase at ρfluid or
φfluid. In the column “phases”, “col” denotes the columnar phase and inverted columnar phase
is abbreviated to “inv col”.
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phase D/σ φ fexc
IX 0.3 0.6669 15.505(4)
IB 0.3 0.6971 18.407(3)
IX 0.4 0.6177 12.52(1)
IB 0.4 0.6170 13.195(2)
IX 0.45 0.6768 17.918(2)
IB 0.45 0.6662 14.9873(4)
fcc2 0.45 0.6192 12.8591(5)
IX’ 0.45 0.6950 18.170(5)
fcc2 0.5 0.5455 8.7673(7)
IX’ 0.5 0.5597 10.854(3)

Table 5.2: Excess free energies, fexc ≡ (F −Fid)/(NkBT ), of the various crystal phases, where
Fid is the ideal gas free energy. The various crystal phases are labeled as in Fig. 5.8.

annealing method and fcc2. The two phases that were not stable are the X and B crystals,
which are very similar to the stable IX and IB crystals respectively, except that X and B
have considerable lower close packing densities. Therefore, one could have expected these
phases to be unstable. On the other hand, we observe from the phase diagram, that IX
is stable at intermediate densities for 0.25σ < L < 0.45σ, while IB packs better than IX.
In other words, stability can not be inferred from small differences in packing densities.

Almost all coexistence densities were calculated by employing the common tangent
construction to the free energy curves, except for the col–IX coexistence at D = 0.1σ and
0.2σ. At these values of D the transition occurs at very high pressures, while the free
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in such a way that the free energy of the ideal gas reads βF/V = ρ(log(ρσ3) − 1). The free
energies of the various phases are so close, that they are almost indistinguishable.



82 Chapter 5

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.1  0.2  0.3  0.4  0.5

φ

D/σ

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.1  0.2  0.3  0.4  0.5

φ

D/σ

IX’

fcc2

col

IBIX

F

Figure 5.10: Phase diagram in the packing fraction (φ) versus thickness (D) representation.
The light gray areas are coexistence areas, while the state points in the dark gray area are
inaccessible since they lie above the close packing line. IX, IB, IX’ and fcc2 denote the crystals
as shown in Fig. 5.8, “F” is the fluid and “col” is the columnar phase. The lines are a guide to
the eye. Worm-like stacks were found in the area marked “worms” bounded from below by the
dashed line. On this line the probability to find a particle in a cluster that consists of more than
two particles, Pstack(n > 2), is equal to one half.

energy of the columnar phase is calculated at the fluid–col transition, which occurs at a
low pressure. To get a value for the free energy of the columnar phase we would have to
integrate the equation of state up to these high pressures, accumulating integration errors.
Furthermore, we expect the coexistence to be rather thin, which would further complicate
the calculation. So, instead we just ran long variable box shape NPT simulations to see at
which pressure the IX phase melts into the inverted columnar phase. As the free energy
difference between the inverted columnar phase and the columnar phase is small, we
assume that this is the coexistence pressure for the col–IX transition, although technically
it is only a lower bound. The density of the columnar phase at this pressure is determined
using a local fit of the equation of state. All coexistences are tabulated in Tbl. 5.3. We
draw a tentative line in the phase diagram to mark the transition from a structureless
fluid to a worm-like fluid i.e. a fluid with many stacks. In a dense but structureless
fluid, stacks of size 2 are quite probable, but larger stacks occur far less frequently. We
calculate the probability to find a particle in a stack that contains more than 2 particles
Pstack(n > 2) = 1 − Pstack(1) − Pstack(2) and define when the system is worm-like by the
criterion Pstack(n > 2) ≥ 1/2. We do not imply that the transition to the worm-like phase
is a true phase transition; the transition is rather continuous.

5.5 Summary and discussion
We have studied the phase behavior of hard bowls in Monte Carlo simulations and in
experiments. In both systems, we find that the bowls have a strong tendency to form
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D/σ phase 1 phase 2 ρ1σ
3 ρ2σ

3 βPσ3 µ∗

0 fluid col 4.083 4.824 26.11 15.22

D/σ phase 1 phase 2 φ1 φ2 βPd3 µ∗

0.1 fluid col 0.2778 0.3297 26.35 15.59
0.1 col IX 0.8095 0.8104 2.7·103 -
0.2 fluid col 0.4096 0.4688 27.23 16.68
0.2 col IX 0.7021 0.7108 325 -
0.3 fluid col 0.5286 0.5472 49.52 26.13
0.3 col IX 0.6864 0.6944 281.4 91.03
0.3 IX IB 0.6117 0.6226 110.9 44.92
0.4 fluid IB 0.609765 0.645511 105.9 51.06
0.45 fluid IB 0.6026 0.6545 87.92 46.90
0.5 fluid fcc2 0.4878 0.5383 28.34 22.10
0.5 fcc2 IX’ 0.6870 0.7278 139.2 67.36

Table 5.3: Reduced densities, pressures and chemical potentials µ∗ = βµ− ln(Λ3
tΛr/σ3) of the

coexisting phases for hard bowl-shaped particles with thickness D.

stacks, but the stacks are bent and not aligned. We measured the equation of state and
the compressibility in Monte Carlo NPT simulations. The pressure we obtained from
these simulations is concave for some range of densities for deep bowls. This is due
to the increase in free volume when large stacks form. Using gc(z), the pair correlation
function along the direction vector, we showed that the concavity of the pressure coincides
with a dramatic change in structure from a homogeneous fluid to the worm-like fluid.
We measured the stack distribution both in the experiments and in the simulations.
The experimental distribution shows excellent agreement with the simulation results for
D = 0.3σ, where D is the thickness of our model particle. This is in agreement with
the distance between two neighboring particles within a stack in experiments, which is
equal to the thickness D for large pressure in simulations. When the pressure is increased
slowly the deep bowls (which are difficult to achieve experimentally with our synthesis
route) spontaneously order into a columnar phase in our simulations. This poses severe
restrictions on the thickness of future bowl-like mesogens (molecular or colloidal), which
are designed to easily order into a globally aligned lyotropic columnar phase. As the
experimental system did not show spontaneous ordering, we determined the phase diagram
using free energy calculations in computer simulations for a particle shape ranging from
an infinitely thin bowl to a solid hemisphere. We find that the columnar phase is stable
for D ≤ 0.3σ at intermediate packing fractions. In addition, we show using free energy
calculations that the stable columnar phase possesses polar order. However, the free
energy penalty for flipping columns upside down is very small, which makes it hard to
achieve complete polar ordering in a spontaneously formed columnar phase of bowls.
Future work should be focused on new routes to synthesize deeper bowl-shaped particles
or on additional control to obtain polar ordering by applying external fields.
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Appendix 5.A Overlap algorithm
The overlap algorithm for our bowls checks whether the surfaces of two bowls intersect.
Fig. 5.1 shows that the surface of the bowl consists of two parts. Part p of the surface
contains the part of the surface of the sphere of radius Rp, within an angle θp from the
z-axis, where p = 1 denotes the smaller sphere and the larger sphere is labeled p = 2. We
set θ1 = π/2, to get a hemispherical outer surface. The edges of both surfaces have to
coincide, such that our particles have a closed surface. Using this restriction L, θ2 and R2
can all be expressed in terms of the radius of the smaller sphere, R1, and the thickness of
the bowl D, in the following way:

R2 =R1 + D2

2(R1 −D) (5.19)

θ2 = arcsin(R1/R2) (5.20)
L=R2 cos(θ2). (5.21)

Overlap occurs if either of the two parts of the surface of a bowl overlaps with either
of the two parts of another bowl. So we have to check four pairs of infinitely thin (and
not necessarily hemispherical) bowls, labeled i and j, for overlap. The existence of such
an overlap or intersection is checked in three steps.

• First, we check whether the full surfaces of the spheres intersect, i.e. |Ri − Rj| <
rij ≡ |rj − ri| < Ri + Rj. If this intersection does not exist, there is no overlap,
otherwise we proceed to the next step.

• Secondly, we determine the intersection of the surface of each sphere with the other
bowl. The intersection of bowl i with the sphere of bowl j exists if

|ωij + ζφij| < θi (5.22)

for ζ = 1 or −1, where

cos(φij) =
R2
i −R2

j + r2
ij

2rijRi

and (5.23)

cos(ωij) = ui · rij
rij

. (5.24)

see Fig. 5.11a. This intersection is an arc, which is part of the circle that is the
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intersection between the two spheres. If in fact this arc is a full circle and the other
particle has a nonzero intersection, the particles overlap. This is the case when
Eq. (5.22) holds for ζ = 1 and ζ = −1. If, on the contrary, either of the two arcs
does not exist, there is no overlap. Otherwise, if both arcs exist, but neither of them
is a full circle, proceed to the next step.

• Finally, if the two arcs overlap there is overlap, otherwise the particles do not overlap.
The arcs overlap if

|αij| < |γi|+ |γj|, (5.25)
where

cos(αij) =
n⊥i · n⊥j
|n⊥i ||n⊥j |

(5.26)

cos(γi) = cos(θi)− cos(φij) cos(ωij)
sin(φij) sin(ωij)

, (5.27)

where n⊥i = ni − (rij · ni)rij/r2
ij and the expressions for γj and n⊥j are equal to the

expressions for γi and n⊥i with i and j interchanged. The arcs together with the
relevant angles are drawn in Fig. 5.11b.

The inequalities (5.22) and (5.25) are expressed in cosines and sines using some simple
trigonometry. In this way no inverse cosines need to be calculated during the overlap
algorithm.

For D = 0.5σ the bottom surface is a disk rather than an infinitely thin bowl. So the
overlap check consists of bowl–bowl, bowl–disc and disc–disc overlap checks. For brevity,

ij

jR

Ri

φ
ij

θ i

ijr
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ω
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γ
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njγ
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i
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Figure 5.11: The relevant lengths and angles which are used in the first and second
steps (a) and in the third step (b) of the overlap algorithm. Shown are bowl i and (part
of) the sphere of bowl j (a), the arcs of i and j and the circular intersection of the spheres
of i and j (b). In (a) rij lies in the plane, while the plane of view in (b) is perpendicular to
rij . In this case, the sphere of particle j overlaps with bowl i, but the arcs do not overlap,
so particle i and particle j do not overlap.
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we will not write down the bowl–disk overlap algorithm, but it can be implemented in
a similar way as the algorithm for bowl–bowl overlap described above. The disk–disk
overlap algorithm was already implemented by Eppenga and Frenkel [99].
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Phase behavior of cusp-free
platelets

In this chapter we investigate the phase behavior of a cusp-free model for platelets: the
hard oblate spherocylinder (OHSC) using free energy methods. We confirm some of the
results from an earlier study [100], although we find one columnar phase and two crystal
structures instead of three columnar phases. We compare the results to the phase diagram
of cut spheres [95], which have two circular cusps. Since the cut sphere has a similar shape
to the OHSC, the phase diagram of the two types of particles are quite similar. However,
we find an additional crystal phase for the OHSC, which is of a type of crystal that is
frequently found in experiments on disc-like molecules. Furthermore, although we have
found a cubatic phase, it was shown to be unstable, unlike the cubatic phase of cut
spheres. Finally, we also show that the phase boundaries shift significantly compared to
cut spheres. These are remarkable consequences of a subtle change in shape, which show
that for a detailed comparison to the phase behavior of experimental particles, which
usually do not have appreciable cusps, the OHSC should be used as a model particle.
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6.1 Introduction
Disk-like molecules are one of the most common particles that form liquid crystal phases,
in particular columnar phases, which are interesting for applications [90]. The most
common model for hard discs or platelets that form a columnar phase is the cut sphere [95,
101, 102], which is a sphere where a top and bottom section are chopped off. Some concern
has been expressed [100] that the sharp edges or cusps of the top and the bottom plane
of the particle make the cut sphere a poor model for the shape of molecular mesogens.
Furthermore, it is difficult to add attractions to the model that have the same shape
anisotropy as the core. As there is no upper limit on the size of the molecules that can
display liquid crystalline behavior, as long as sufficient thermal motion is present, also
colloidal rods [71, 103] and disks [104, 105] can form liquid crystals. These colloids are
stabilized either by charge repulsive or steric interactions, which tend to round off any
sharp features of the underlying bare particles. So a model particle without cusps is
required to model these colloidal mesogens. The rod-like colloids are usually modeled
as spherocylinders and disc-like colloids as cut spheres [102, 106]. Cut spheres, unlike
spherocylinders, have cusps on their surfaces, so it is interesting to investigate the effect
of these cusps, by comparing the phase behavior of cut spheres to the phase behavior
of cusp-free platelets. In analog to the (prolate) spherocylinder, where the particle is
defined as the volume within a certain distance from a line, an oblate spherocylinder can
be defined by the volume within a certain distance to a circle [107]. For both prolate
and oblate spherocylinders the particle-particle interactions are defined using a closest
distance between the lines and circles respectively. For hard particles an overlap occurs if
this closest distance is smaller than a certain distance. This hard core interaction can be
replaced by a soft and/or attractive potential, that is a function of only one variable, the
closest distance. Defining the potential in this way preserves the shape of the particles.
In Ref. [100] the phase diagram of oblate hard spherocylinders (OHSC) was tentatively
explored using direct simulations. Three columnar phases were found for 0.2 ≤ L/D ≤
0.5, where L is the thickness of the platelet and D its diameter. At high densities the
particles form columns that are interdigitated in the so-called interdigitated columnar
phase (Dhi). As the density is decreased this Dhi phase melts into a columnar phase
(Dho) with local ordering within the columns, which melts into a disordered columnar
phase (Dhd) at even lower density. In this chapter we study the phase behavior of this
system of cusp-free platelets using free energy calculations. We first explain the method
we used to find candidate crystal stuctures, and the free energy methods we employed.
Subsequently, we show our results, which include the packing diagram and the phase
diagram. Finally, we summarize our results.

6.2 Model
We consider a system consisting of cusp-free hard platelets. We model the platelets as
oblate hard spherocylinders (OHSC), which have been extensively decribed in previous
work [100, 107–113]. Therefore, we will only briefly describe the shape of our platelets.
The OHSC consists of a flat cylindrical core with diameter σ and height L, and a toroidal
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D

Figure 6.1: The oblate hard spherocylinders (OHSC) considered in this study (top), compared
to cut spheres (bottom), for L = 0.2D, where L is the thickness of the platelets and D the
diameter. An OHSC is obtained by padding a circle of diameter σ, as indicitated by the black
line, with a layer of uniform thickness L/2.

rim, with tube diameter L, see Fig. 6.1. Consequently the total diameter of the OHSC
is D = L + σ. We detect overlaps between OHSC using the efficient, although partially
numerical algorithm, which was introduced in Ref. [100].

6.3 Methods
In this section we briefly reiterate the methods we employed to study the phase behav-
ior using Monte Carlo simulations, as these methods have been described extensively in
Chaps. 3 and 5. First, we use the pressure annealing method to obtain candidate crys-
tal structures. Then we use the modified Einstein integration method as described by
Eqs. (3.13) to (3.15), to obtain the free energy of these crystals at a certain reference den-
sity. Since our particles, like the dumbbells, have an up-down symmetry, we use the same
angular potential energy function as in Eq. (3.13). The interpenetrable particle–particle
potential in this case is set to Eq. (5.13), with r′ij equal to the closest distance between
the circles in the middle of the particles and σmax = L. We also use Widom insertion [79]
to obtain the chemical potential and therefore the free energy of the isotropic fluid and
the nematic phase at a reference density (see Eq. (5.2)). Thirdly, we use the method by
Bates and Frenkel [96] as described in Eqs. (5.5) to (5.9), to get the free energy differ-
ence between the columnar phase at a reference density and the fluid phase at a lower
density. Finally, we integrate over the equation of state as described in Eq. (5.14), to
obtain the free energy as a function of density. The equations of state for the crystal and
the columnar phase were calculated using NPT simulations, where the length of the box
vectors were allowed to change, but the angles between the box vectors were fixed at 90
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degrees. It was not necessary to allow these angles to adjust as the stable crystals all have
rectangular unit cells. We checked that there was no difference between the equations
of state that were obtained using NPT simulations with a rectangular box shape and
simulations with a fully adjustable box shape. The equations of state of the fluid and the
nematic phase were obtained from Ref. [100] and Ref. [114] when available. Otherwise, the
equation of state of the fluid was obtained from event driven molecular dynamics (MD)
simulations, as described below. Two oblate spherocylinders overlap, when the closest
distance between the two central discs (see Fig. 6.1) is shorter than L. Therefore, one
can easily determine a collision event, that occurs when the closest distance between two
particles is equal to L. As a result, we can use event driven MD simulations to investigate
the phase behavior of the hard oblate spherocylinders. The advantage of event driven
MD simulations over Monte Carlo simulations is the fast accumulation of statistics of the
pressure [7]. In our NPT Monte Carlo simulations the density changes by volume moves,
which makes the density equilibrate slowly, especially for large numbers of particles. In
the MD the pressure is calculated from the collisions [7], and therefore comes for free with
the integration of the equations of motion. Unfortunately, the shape of the simulation box
needs to be known a priori, since the equilibration of the shape is just as slow or slower
than the equilibration of the density. Therefore, the event driven MD simulations were
most useful for the isotropic fluid and nematic phases. We implemented the event driven
simulation similarly as described in Ref. [115], except for the way we checked for grazing
collisions (i.e. near misses). In an event driven MD of anisotropic particles, one searches
for collisions on a grid in time i.e. pairs of particles are moved forward in time and checked
for overlap at regular intervals. In the event of a grazing collision, an overlap occurs in
between two grid points, while no overlap is found at the grid points. Without a way to
check for these grazing collisions, they will be missed, resulting in overlaps. In Ref. [115],
a change in sign of the time derivative of the closest distance signals the presence of a
minimum, which is a necessary condition for a grazing collision. Unfortunately, we were
unable to find a robust and efficient way to calculate the time derivative of our numerical
closest distance. Instead, we look for a minimum by comparing the closest distance at
the middle of three grid points to the closest distance at the other two. If this closest
distance is smaller than a certain cut off, we use a standard numerical routine to find
the minimum and check whether this closest distance is smaller than L, in which case a
collision is detected. Once a collision has been found we use a standard numerical root
finder to locate the exact time of the collision.

To determine the isotropic–nematic coexistence we use a rather simple method: We
simply measure the pressure from the collisions and the chemical potential by the Widom
particle insertion method [79]. Subsequently, we fit lines through the chemical potential
as a function of pressure and define the coexistence as the crossing point of these two
lines. This would not have been possible using an NPT Monte Carlo simulation, because
(i) very long simulations would be required to sufficiently reduce the statistical error and
(ii) the large system size required to prevent the system from fluctuating between the
isotropic and the nematic phase would slow down the NPT simulations even further.
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(a) (b)

Figure 6.2: The unit cells of the tilted crystal phase for L = 0.3D (a) and the aligned crystal
phase for L = 0.5D (b).

6.4 Results
We employ the pressure annealing method to find candidate crystal structures for the
oblate hard spherocylinders. We find only two crystal structures for 0 < L/D < 0.5,
while we found 6 structures for the bowls in Chap. 5. The particles in both crystal
structures are stacked in columns and both crystals have a body centered orthorhombic
unit cell, see Fig. 6.2. One phase that we expected to find is the equivalent of the close
packed phase for cut spheres, although slightly stretched to accommodate the slightly
different form of the OHSC. This phase consists of columns of platelets that are aligned
along the z-axis i.e. ui is along z for all particles i, where the z-direction is in the direction
of the column. The columns are shifted with respect to each other in the z-direction, such
that each column interdigitates with 4 of its neighboring columns, while each particle
is at the same z-position as two particles in the other two neighboring columns. In the
other crystal phase, particles again form columns. The particles in half of these columns
tilt compared to the z-axis in the x-direction, where the x-axis is along the lattice vector
perpendicular to z. The other half of the particles is tilted by the same angle in the
−x-direction. In this way each column interdigitates with all six of its neighbors. Some
molecular mesogens also form tilted crystals [90], which were explained by calculating
packing energies [116], but cut spheres do not [95]. The packing fractions of these phases
are shown in Fig. 6.3 as a function of L. We see that the OHSC always pack less dense
than the cut spheres. We determined the lattice vectors (of the primitive unit cell) of the
first, aligned crystal phase (Xaligned):

a1 = Dx̂ a2 = Lẑ

a3 = D

2 x̂+
√(

σ + L

2
√

3
)2
−
(
D

2

)2
ŷ + L

2 ẑ,
(6.1)

and the particles are aligned along z. These lattice vectors result in a density:

ρD3 = DL

√(
σ + L

2
√

3
)2
−
(
D

2

)2
. (6.2)
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the tilted and aligned crystal phases as a function of dimensionless thickness , L∗ ≡ L/D, for the
OHSC. The points are the results of the pressure annealing. The thin lines are obtained from
the analytical expression for the aligned crystal phase (solid line), while, for the more complex
tilted crystal phase, we used single high pressure runs with most of the degrees of freedom fixed,
as described in the text (dashed line). The packing fraction, φ ≡ π

4L(D2 − L2/3)N/V , of the
cut spheres as a function of L∗ ≡ L/D, is shown for comparison (dot-dashed line).

We determined the lattice vectors and the direction vectors (u±) of the tilted crystal
phase (Xtilted) up to a free parameter b,

a1 =
(
σuz + L

√
L2 − σ2 sin2 θ0

)
x̂ a2 = bŷ

a3 = (L/ cos θ0)ẑ u = ± sin θ0x̂+ cos θ0ẑ,

(6.3)

where cos(2θ0) =
√

1− (L/σ)2 and θ0 is the angle between the direction vectors and the
z-axis. The free parameter, b, cannot be determined analytically, since the closest distance
between some of the neighboring particles in the tilted crystal can only be determined
numerically. Instead, b was determined in NPT Monte Carlo simulations, which only
include moves that change b. To be precise, we ran a single simulation of two particles
at a pressure of 106kBT/D

3 for each value of L/D = 0.01, 0.02, . . . , 0.5. The resulting
average packing fractions are shown in Fig. 6.3 along with the analytical result for the
aligned phase as continuous lines. The packing fraction is defined as φ = vN/V , where

v = π

6L
3 + π2

8 σL
2 + π

4Lσ
2 (6.4)

is the volume of a OHSC. Additionally, we show the packing fraction of the close packed
crystal for cut spheres in Fig. 6.3, which is clearly higher than the maximum packing
fraction of OHSC for all elongations.

The coexistence between the isotropic fluid phase and the nematic phase were deter-
mined from the pressure and the chemical potential, that were both directly measured in
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Figure 6.4: The dimensionless chemical potential (βµ) versus the dimensionless pressure
(βPD3) for the isotropic (I) and the nematic phase (N) near coexistence for a system of OHSC
with L/D = 0.1. The chemical potential is shifted such that the ideal gas chemical potential
reads kBT log(ρD3). The errors in the pressure and the errors in the chemical potential data
for the isotropic phase are smaller than the symbol size. The lines are fits to the data.

event driven MD simulations. In Fig. 6.4, the chemical potential as a function of pressure
is plotted for L/D = 0.1 along with fits to the data. The coexistence pressure defined
by the intersection of these fits is D3PIN/kBT = 32.0 ± 0.1. The coexistence packing
fractions as obtained using local fits to the equation of state, are shown in the phase
diagram (Fig. 6.5a). The aligned crystal (Xaligned) changed spontaneously into the Xtilted
crystal phase for L/D ≤ 0.4 in a diffusionless transition (which is not a Martensitic tran-
sition, because there is no shearing involved). Aside from the nematic phase and the two
crystal phases, that were already mentioned, the phase diagram also features a columnar
phase. The coexistences between the isotropic fluid and the crystal and columnar phases
were calculated using common tangent constructions on the free energy curves. The
columnar–crystal coexistence pressure is the pressure at which the crystal melted and the
corresponding coexistence densities are found using a fit to the equation of state. This
means that these coexistence densities are actually lower bounds, except for L = 0.3D,
where the columnar phase crystallized spontaneously with very little hysteresis. The free
energy calculations at L = 0.3D show that the columnar phase-to-crystal phase transition
is only very weakly first order or even second order.

We compare the phase diagram from this work with the phase diagrams of Refs. [100]
and [95] in the panel on the right in Fig. 6.5. Our coexistence areas (in gray) are plot-
ted into the phase diagram (Fig. 6.5b) as obtained using direct simulations of OHSC in
Ref. [100]. At a first glance, there are almost no similarities between our phase diagram
and the phase diagram from Ref. [100], since there is only one columnar phase, instead of
three distinct columnar phases, while there are two crystal phases in our phase diagram.
The simulations in Ref. [100] were initiated in a columnar phase, which might be the
reason why no crystal phases were reported. We also see that the strongly first order
phase transitions, i.e. from the isotropic to the columnar or crystal phases, are shifted.
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Figure 6.5: Phase diagram in the packing fraction (φ) versus dimensionless thickness (L/D)
representation as obtained by free energy calculations in this work (a). The state points in the
dark gray area are inaccessible since they lie above the maximum close packing line. Xaligned
and Xtilted, denote the aligned and tilted crystal structures as shown in Fig. 6.2, “iso” is the
isotropic fluid, “nem” the nematic phase, and “col” is the columnar phase. The dashed lines
enclose estimated areas of stability for phases where we do not have simulation data. The
solid lines are a guide to the eye, connecting coexistence points found in our simulations and,
for L/D = 0, from Ref. [96]. In the panel on the right, we compare our results for OHSC
(gray coexistence areas) to the phase diagrams in L/D–φ representation as obtained by direct
simulations of OHSC (b) in Ref. [100] and free energy calculations on cut spheres (c) in Ref. [95].
The various phases are labeled as in the previous works, and include, aside from the phases
already mentioned, the three columnar phases Dhd, Dho and Dhi (see text) from Ref. [100] and
the cubatic (cub) and crystal (X) phases of the cut spheres from Ref. [95].

This is to be expected, as for such first-order transitions usually a large free energy barrier
needs to be overcome to crystallize. The transition from the columnar phase to the tilted
crystal phase, occurs at nearly the same packing fraction as the Dho to Dhi transition in
Ref. [100]. This, combined with the fact that the equation of state of the Dhi and the
Xtilted phases are very similar, leads to the conclusion that the Dhi columnar phase from
Ref. [100] is actually an Xtilted or Xaligned crystal with many defects. In Fig. 6.5a, we
do not distinguish between the other two columnar phases Dho and Dhd, where the first
has more order than the second. It should be noted, that, at least for L ≥ 0.3D, the
Dhd phase was found at packing fractions below the melting transition of the columnar
phase as calculated using our full free energy calculations. In other words, we find only
one columnar phase for the OHSC, with the possible exception of a small pocket in the
phase diagram around L = 0.2D. In summary, we find that our phase boundaries deviate
considerably from the earlier work in Ref. [100], but this can easily be explained by the
fact that our phase diagram is obtained using free energy calculations and the pressure
annealing method to find crystal structures, while the previous work was obtained from
direct simulations starting from a columnar phase.
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(a) (b)

Figure 6.6: The configuration at t = 1200τ (a) and the final configuration at t = 6700τ (b),
where τ2 = mD2/kBT , of an event driven MD simulation of OHSC for L = 0.2D at packing
fraction, φ = 0.6. In the final configuration some particles are removed to expose a columnar
cluster.

The other popular model for platelets, the cut sphere, has a phase diagram which
is quite similar to our phase diagram (see Fig. 6.5c), which is to be expected, since the
shape of the cut sphere is not very different from the OHSC shape. There are a few
interesting differences, such as the position of the isotropic–columnar–crystal triple point.
This triple point is located in the range 0.1 < L/D < 0.2 for cut spheres, where L/D is
the thickness-to-diameter ratio of the cut spheres, while in our case it lies in the range
0.2 < L/D < 0.3 This is caused by the increased stability of the crystal of the cut spheres
compared to the Xtilted phase, which can probably be related to the much better packing
of the cut sphere crystal, see Fig. 5.7. The other difference between the OHSC and
the cut sphere, is the absence of the cubatic phase in the phase diagram of the OHSC.
Upon compression of the isotropic phase, we did indeed find a phase which resembled
the cubatic phase. In Fig. 6.6a, a configuration with cubatic order is shown, which was
obtained in the early stages of an event driven MD simulation of OHSC with L = 0.2D
at packing fraction φ = 0.6. We show the evolution of the nematic order parameter, S2
(as defined in Chap. 4), during this event driven MD simulation in Fig. 6.7. Note, that
the nematic order parameter is zero for both the isotropic fluid and the cubatic phase
(actually for our system size of 1500 particles, 0.05 . S2 . 0.1 [101]). Therefore, we also
show the probability distribution P(θ, ϕ)/ sin θ of the polar (θ) and azimuthal (ϕ) angles,
which shows four distinct peaks around the equator (θ ' π/2) and two more peaks near
θ = 0 and π, which are smeared out due to the mapping of the unit sphere onto the θ, ϕ
plane. The presence of these 6 peaks shows that there is cubatic order, however, there
is one dominant nematic axis, since the nematic order parameter is considerably larger
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Figure 6.7: The nematic order parameter S2 versus time t/τ , where τ2 = mD2/kBT , for the
event driven MD simulation, for which snapshots are shown in Fig. 6.6. The insets show the
angular probability distribution function P(θ, ϕ)/ sin θ, where θ is the polar angle (measured
from the z-axis) and ϕ is the azimuthal angle. P(θ, ϕ)/ sin θ is averaged over a time interval of
500τ centered on the time indicated by the corresponding arrow.

than zero. This can also be seen from the angular probability distribution in the insets of
Fig. 6.7. Two of the peaks in this distribution are considerably higher than the other four
peaks, and the difference in peak heights increases with time, as does the nematic order
parameter. In other words, the cubatic phase transformed into an aligned phase during
the simulation. The final snapshot of the simulation, Fig. 6.6b, shows a large columnar
cluster in the system. Since the packing fraction φ = 0.6, is above the coexistence density
of the columnar phase i.e. φ ' 0.57, we expect this cluster to grow until it contains all
particles. Here, we find an advantage of our platelets over the cut spheres, for which
it was not possible to design a simulation, which allowed a transition from the cubatic
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to the columnar phase, or vice versa [101]. At packing fractions below the coexistence
packing fraction of the columnar phase, we have not found any evidence of the cubatic
phase. In conclusion, for the OHSC, the cubatic phase is an unstable intermediate phase,
which is formed during the initial stages of the crystallization of an isotropic fluid into the
columnar phase. The presence of the cubatic phase in the phase diagram for cut spheres
is probably caused by the almost cylindrical shape or the cut sphere with L ' 0.2D (see
Fig. 6.1, which stabilizes stacks of around four particles, that are rotated by 90 degrees
compared to adjacent stacks (see Fig. 6.6a).

6.5 Summary
We determined the phase behavior of a model for hard cusp-free platelets: oblate hard
spherocylinders (OHSC). Two crystal phases were found using the pressure annealing
method. The first crystal is similar to the crystal structure of cut spheres, albeit with
a considerably lower packing fraction. The second crystal that we found, consists of
columns of particles that are tilted with respect to the column and with respect to each
other. Interestingly, tilted crystals are also commonly found for disc-like molecules [90].
However, only an aligned crystal phase was found for cut spheres, which shows that the
OHSC is a better model for molecular mesogens. Crystal phases have a lower close packed
density than the cut spheres. We calculated the phase diagram using free energy methods.
We did not find further evidence for the existence of the two separate non-interdigitated
columnar phases, that were found for the OHSC in Ref. [100]. The third (interdigitated)
columnar phase that was found in Ref. [100] is most likely a defect-rich variant of one of
our crystal phases. The shape of the phase diagram is very similar to the phase diagram
of cut spheres, with isotropic, nematic, columnar and crystal phases. However, we have
found two stable crystal phases instead of one. Furthermore, we did not find a stable
cubatic phase, which was found for cut spheres. These differences were explained using
subtle differences in the shape of the respective particles. The isotropic-columnar-crystal
triple point for the OHSC is shifted to lower L compared to cut spheres, which can be
understood from packing arguments. It is surprising that the phase behavior depends so
sensitively on the precise details of the particle shape, which justifies the current work
and motivates the use of the OHSC as a model for particles that do not have sharp edges.
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Summary

In this thesis we studied the phase behavior of anisotropically shaped (i.e. nonspherical)
colloids using computer simulations. Because we were interested in the effects of shape
alone, only hard-core interactions between the colloids were taken into account. In the
introductory first chapter, we first gave a general introduction on colloids. Then we
remarked that the number of different shapes that can be achieved in the synthesis of
colloids has grown spectacularly in recent years, and that with these new nonspherical
shapes, new phase behavior, such as liquid crystals, is found. In the remainder of Chap. 1,
we introduced computer simulations and briefly discuss the two most common types of
simulations that can be used to simulate hard particles. We also briefly introduce the
free energy methods that we employ to calculate the regions of stability for most of the
systems in this thesis.

Gravity is often non-negligible for the relatively large colloids that can be observed us-
ing a confocal microscope. Although this thesis is about anisotropic colloids, we first stud-
ied the crystallization of hard spheres in the presence of a gravitational field in Chap. 2.
In previous work, discontinuous crystallization of the first few layers was found to occur,
while the subsequent growth of the number of crystalline layers proceeded continuously
as the gravity was increased. We showed that the same behavior is obtained when the
chemical potential (or number of particles per unit area) is increased. Furthermore, a sim-
ple expression for the chemical potential at which a certain layer crystallizes was shown
to quantitatively describe the results from the simulations. We also measured the lattice
constant of the crystal and showed that the particles are spaced further apart than one
would expect on the basis of the bulk crystal at the same chemical potential (even if the
latter is averaged over the entire crystal).

The simplest anisotropic molecule imaginable is a dimer, such as nitrogen. The col-
loidal equivalents of dimers are the dumbbells, that consist of two overlapping spheres.
In chapter 3, we investigated two crystal phases of dumbbells with intrinsic disorder: the
plastic crystal and the aperiodic crystal. For almost spherical dumbbells, we showed using
multicanonical Monte Carlo simulations (MCMC) that the stable plastic crystal is of the
face-centered cubic (FCC) type, as is the case for spheres. However, the hexagonal close
packed (HCP) type of plastic crystal phase becomes stable as the aspect ratio increases
only slightly, especially at large densities. Using Einstein integration it was shown that the
free energy difference between the two types of stacking can be up to 25 times larger than
the (absolute) free energy difference between the FCC and HCP crystals of hard spheres
(which is only 10−3 kBT per particle). For the aperiodic crystal, we first calculated the
degeneracy using a method related to MCMC and confirmed an earlier theoretical result,
which was obtained using a series expansion. We used this result and the results of free
energy calculations to determine the region of stability of the aperiodic crystal phase and
showed that this region is not very large. To enable the system to equilibrate the config-
uration of bonds, we implemented a bond switch move. The region of stability that was
obtained using simulations that included these moves is somewhat larger than the region
that was obtained without bond switch moves.
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The simulations of the previous chapters were combined in Chap. 4 to simulate hard
dumbbells in gravity. The rich phase behavior of the bulk phase diagram, manifests itself
in the structure of the sediment of hard dumbbells, which is fluid on top, aligned crystal
(CP1) at the bottom and possibly a plastic crystal or an aperiodic phase in between.
We investigated the order of the crystallization transitions of the various crystals and
showed that apart from the aligned crystal, the hard sphere behavior is recovered. The
simple expression that was posed in Chap. 2 to describe the chemical potential at which
a certain layer crystallizes was shown to describe our results reasonably well, except for
the freezing of the orientational degrees of freedom in the plastic crystal–CP1 transition.
Finally, we studied the type of plastic crystal that forms in gravity and showed that
the preference for HCP for notably nonspherical dumbbells can be observed directly in
a sediment. We wrote down an expression based on the bulk free energy difference that
qualitatively described the number of HCP layers compared to the number of FCC layers.

In Chap. 5, we studied bowl-shaped colloids in the form of collapsed shells. It was
shown that these colloids form long curved stacks in the fluid at high density (the worm-
like phase). We implemented an algorithm for the overlap between two model bowls (as
described in the appendix of Chap. 5), which share the features of the colloidal bowls that
are important for the phase behavior. We showed that the experimental stack distribution
is similar to the distribution from simulations of model particles that have a similar
bowl thickness as the experimental particles. For thinner bowls the stacks align and
order hexagonally to form a columnar phase at high pressure. As the colloidal bowls
remained arrested in the worm-like phase, we studied the crystallization of bowls using
only simulations. The columnar phase was shown to be stable for bowls that are thinner
or equally thick as the experimental bowls, showing that the worm-like phase, as observed
in the experiments (and in our simulations that were started from a fluid), is metastable.
We calculated the free energies of the columnar phase where all particles point in the
same direction and the columnar phase with alternating orientations and showed that the
free energy difference is very small, although the fully aligned columnar phase is favored.

The last shape that is studied in this thesis is a platelet. Usually, platelets are described
using a so-called cut sphere, a model particle which has sharp edges or cusps. In Chap. 6,
we investigate the phase behavior of cusp-free platelets, which are expected to better
describe both colloidal platelets and disk-like molecules. We found two candidate crystal
phases using the method described in Chap. 6: one crystal is the equivalent of the stable
crystal of cut spheres, while the other crystal is reminiscent of the crystal that is often
observed for disk-like molecules at low temperatures. The latter crystal is not stable
for cut spheres. Cut spheres have been shown to form a fluid-like phase with cubatic
orientational order. We show that, although our particles do form such a phase, the
cubatic phase always slowly transforms into the columnar phase. The phase diagram
is calculated using free energy methods and compared to that of cut spheres. While the
general shape of the phase diagram is the same (except of course for the additional crystal
phase and the absence of the cubatic phase in our phase diagram), the positions of the
phase boundaries are sensitive to the precise shape of the particle. We also compared our
results to the previous work on the same particles where direct simulations were used to
determine the phase boundaries. The difference is shown to be large for the strongly first
order phase transitions (i.e. the isotropic or nematic fluid to crystal transitions).



Samenvatting voor een breder publiek

In dit proefschrift wordt het fase gedrag van anisotrope (dwz. niet-bolvormige) colloïden
bestudeert door middel van computersimulaties. In deze samenvatting zal allereerst een
poging gedaan worden om de woorden colloïden, fase gedrag en computersimulaties uit te
leggen, voordat we overgaan tot de daadwerkelĳke samenvatting van dit proefschrift.

Colloïden zĳn deeltjes die beduidend groter zĳn dan atomen, maar wel zo klein dat
ze niet met het blote oog zichtbaar zĳn, zelfs niet met een vergrootglas. De deeltjes
waar mĳn collega’s experimenten aan doen bĳvoorbeeld, zĳn ongeveer honderd keer zo
klein als de dikte van een gemiddelde menselĳke haar. Dit is groot genoeg om ze waar te
nemen met een microscoop, die gewoon met zichtbaar licht werkt. Een verdere eigenschap
van colloïden is dat ze altĳd in een vloeistof (bĳv. water) zweven. Zo’n combinatie van
zwevende colloïden in een vloeistof word een colloïdale suspensie genoemd. Voorbeelden
van zo’n colloïdale suspensie zĳn melk, latex verf en bloed, waar de colloïden respectivelĳk
vetbolletjes, latex bolletjes en rode bloedcellen zĳn. Zoals deze voorbeelden laten zien zĳn
de meeste colloïden bolvormig, maar niet allemaal.

In 1827 nam de botanist Robert Brown pollen waar, die op een willekeurige manier
leken rond te bewegen, alsof ze levend waren. Hĳ liet zien dat stofdeeltjes, die zeker
niet levend zĳn, ook hetzelfde gedrag vertonen. Als dit gedrag dus niet door leven werd
veroorzaakt, waar door dan wel? Albert Einstein beargumenteerde dat de atomen in de
vloeistof, waar de colloïden in zeven, tegen de colloïden op botsen. Voor een klein genoeg
deeltje kan het voorkomen dat er merkbaar meer atomen aan een kant tegen de colloïd
opbotsen dan aan de andere kant. Dit verschil wordt veroorzaakt door de willekeurige
bewegingen van de atomen, en veroorzaakt dus ook een willekeurige verplaatsing van de
colloïd. Deze willekeurige verplaatsingen hebben tot gevolg dat de colloïden zich in zekere
zin gedragen als grote atomen. Ter illustratie beschrĳven wĳ een experiment van Jean
Perrin in de introductie van die proefschrift (hoofdstuk 1). Dit experiment laat zien dat de
suspensie van colloïden in het altĳd aanwezige zwaartekrachtsveld op vergelĳkbare manier
manier ĳler word op grotere hoogte als de lucht in de atmosfeer. Het grote verschil is
dat zoals gezegd colloïden veel groter en dus zwaarder zĳn dan luchtmolekulen. Ander
belangrĳk gedrag van atomen is dat ze in verschillende fases kunnen voorkomen, zoals
vloeibaar, gasvormig en vast. Dit zogenaamde fasegedrag vertonen colloïden ook, maar
dan op een schaal die waargenomen kan worden met een licht microscoop. De anologie
met colloïden stelt ons dus in staat om experimenten te doen aan atomaire fases, die met
atomen niet mogelĳk zĳn.

In de wetenschap worden, als het goed is, experimenten altĳd ondersteund door the-
orie, die dan weer bewezen of ontkracht wordt met behulp van experimentele resultaten.
Het onderscheid tussen de twee was traditioneel altĳd heel duidelĳk: experimenten werden
in het lab gedaan en theorie op papier. Met de komst van (steeds snellere) computers is
deze situatie een beetje gewĳzigd. Allereerst moeten theoreten steeds vaker computers ge-
bruiken om hun vergelĳkingen op te lossen en zĳn veel experimentele wetenschappers vaak
minstens evenveel tĳd bezig om hun data op de computer te analyseren als ze daadwerke-
lĳk in het lab aan het meten zĳn. Maar ook is er een derde soort wetenschap gekomen, die
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een beetje tussen theorie en experimenten instaat: de zogenaamde computersimulaties.
Hierbĳ wordt allereerst de beweging van een deeltje met een basale theorie beschreven,
bĳv. een deeltje voelt een kracht van rechts en beweegt dus naar links met een bepaalde
snelheid. Vervolgens worden veel (100-100000) van dit soort deeltjes in de computer ge-
programmeerd en worden interacties tussen de deeltjes in het programma voorgeschreven.
Het programma word daarna gedraaid op de computer en de veranderende posities en/of
snelheden en krachten van de deeltjes worden gemeten, alsmede andere daarvan afgeleide
eigenschappen. Het voordeel van simulaties boven experimenten is dat ze soms sneller en
in ieder geval goedkoper zĳn: geavanceerde experimentele opstellingen kunnen makkelĳk
meer dan honderd keer duurder zĳn dan de computers, waar de meeste simulaties op
gedaan worden. Bĳ het bedrĳven van pure theorie zĳn vaak ingrĳpende benaderingen
nodig om oplosbare vergelĳkingen te krĳgen, terwĳl bĳ de basale theorie, die in comput-
ersimulaties gebruikt wordt, veel minder benaderingen gedaan worden. Daarom zĳn de
resultaten van computer simulaties vaak betrouwbaarder dan de resultaten van theorie,
mits de simulaties met voldoende zorg uitgevoerd zĳn.

Colloïden zĳn de droom van een computer simulator, omdat de interacties tussen de
colloïden naar harte lust aan te passen zĳn. In de inleiding van dit proefschrift (hoofd-
stuk 1) word beschreven hoe colloïden tot een soort zeer kleine knikkers gemaakt kunnen
worden, dat wil zeggen: de colloïden worden dan beschreven als harde bollen die verder
geen interacties hebben met elkaar. Dit wordt gedaan omdat dit de theorie en simulaties
heel veel eenvoudiger maakt. Behalve de interacties, is ook de vorm van de colloïden
door recent ontwikkelde geavanceerde scheikundige methoden aan te passen. Zo kunnen
colloïden de vorm aannemen van staafjes, schĳfjes, kommetjes, dubbele bollen, etc. Het
beschrĳven van deze deeltjes als enkel harde deeltjes (dwz. geen interacties door lad-
ing e.d.) heeft als voordeel dat we puur het effect van de vorm van de deeltjes op het
fasegedrag kunnen bekĳken. Daarentegen is bĳ molekulen het effect van de vorm van
het deeltje op het fasegedrag vaak lastig te scheiden van het effect van de interacties.
Vooral het fasegedrag van zeer lange staafvormige of zeer platte schĳfvormige colloïden
is zeer anders dan dat van bollen, zoals dit ook voor zeer lange of zeer platte molekulen
het geval is. Deze deeltjes kunnen fases vormen die tussen een vloeistof en een kristal
fase inzitten, de zogenaamde vloeibare kristallen, zie het plaatje in hoofdstuk 1. Verder
worden in hoofdstuk 1 de verschillende soorten computersimulaties in wat meer detail dan
hierboven beschreven en worden de zogenaamde vrĳ energie berekeningen uitgelegd die
ons instaat stellen om het fasegedrag precies te bepalen.

Eén eigenschap van colloïden, die lastig is aan te passen, is dat ze door hun grootte
vaak ook vrĳ zwaar zĳn (ten opzichte van hetzelfde volume aan vloeistof). Zwaartekracht
is dus meestal niet te verwaarlozen in colloïdale systemen. Hoewel dit proefschrift over
niet bolvormige deeltjes gaat, bekĳken we in hoofdstuk 2 eerst het fasegedrag van harde
bollen in zwaartekracht. Hier is al eerder naar gekeken in de literatuur, maar wĳ poneren
in dit hoofdstuk voor het eerst een uitdrukking die de kristallisatie van een bepaalde laag
bollen beschrĳft in termen van de zogenaamde chemische potentiaal, die gerelateerd is
aan het aantal deeltjes in het system. Deze uitdrukking beschrĳft de kristallisatie van de
lagen, die geobserveerd werd tĳdens onze simulaties, vrĳ goed. Verder hebben we nog de
roosterconstante van het uiteindelĳke kristal gemeten in onze simulaties en laten zien dat
die hoger is dan de roosterconstante van het bulk kristal bĳ dezelfde chemische potentiaal.
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In het volgende hoofdstuk word ons eerste niet-bolvormige colloïd bekeken. Dit deeltje
bestaat uit twee bollen, naar anologie van molekulen die uit de twee atomen bestaan. Deze
twee bollen worden aan elkaar geplakt en de vorm wordt gevarieerd door een laag van
hetzelfde materiaal om de twee bollen heen te groeien. Deze deeltjes worden halters
(Engels: dumbbells) genoemd, omdat ze een beetje lĳken op de halters die gebruikt
worden bĳ het gewichtheffen (hoewel de bollen niet door een stok verbonden worden). De
halters zĳn interessant omdat berekeningen hebben aangetoond dat bepaalde kristallen
van halters een zogenaamd fotonisch kristal kunnen vormen. Fotonische kristallen zouden
een toepassing kunnen hebben in schakelingen die met licht werken, in tegenstelling tot
de elektrische schakelingen in een computer. Helaas blĳkt dat deze kristallen, die naar
anologie van kristallen van atomen verzonnen zĳn, niet stabiel te zĳn voor harde halters.
Zoals is aangetoond in eerder werk, ordenen de halters zich wel in drie andere kristal
fases. In de eerste van deze kristalfases, het plastische (vervormbare) kristal, kunnen
de halters ronddraaien terwĳl ze op roosterposities staan. Wĳ hebben gekeken naar het
specifieke type plastisch kristal wat de halters vormen. Bollen (of sinaasappels bĳ de
groenteboer) kunnen op verschillende manieren gestapeld worden, waar de twee uitersten
kubisch vlakgecentreerd (FCC naar het Engelse face-centered cubic) en de hexagonale
dichtste pakking (HCP naar hexagonal close packed) zĳn. Deze twee types kristalroosters
zĳn ook mogelĳk bĳ halters: bĳna bolvormige halters vormen het FCC type plastic crystal,
terwĳl langere halters het HCP type vormen. Verder is er nog een kristal (CP1) waarin
alle deeltjes dezelfde richting opstaan. Dit kristal is bĳna altĳd stabiel bĳ een (zeer)
hoge druk. Het laatste kristal is een aperiodisch kristal wat gemaakt kan worden van
een kristal van bollen waar de bollen paarsgewĳs verbonden worden tot halters op een
willekeurige manier. We hebben gekeken naar de competitie van dit aperiodische kristal
en het CP1 kristal. Het blĳkt dat alleen halters waar maar een kleine laagje over de bollen
heen gegroeid is (die dus maar nauwelĳks aan elkaar vast zitten) in een aperiodisch kristal
kunnen ordenen.

De vorige twee hoofdstukken worden gecombineerd in hoofdstuk 4, waarin halters in
zwaartekracht worden bestudeerd. Hierbĳ is het mogelĳk om twee verschillende kristallen
en een vloeistof in één systeem te krĳgen, doordat de druk afneemt als functie van de
hoogte. Op de bodem vormt zich dan CP1, dat ook zonder zwaartekracht stabiel is bĳ
de hoogste drukken. Daarop ligt ofwel een plastisch kristal of een aperiodische kristal en
helemaal bovenaan vormen de halters en vloeibaare fase. De kristallisatie van de verschil-
lende lagen van deze kristallen werd meestal redelĳk beschreven door de uitdrukking die
we in hoofdstuk 2 al gebruikten voor de kristallisatie van harde bollen in zwaartekracht.
Alleen voor de overgang van het plastiche kristal naar CP1 werkte deze uitdrukking niet.
We hebben ook in zwaartekracht gekeken naar de formatie van FCC of HCP types van
het plastische kristal. Deze resultaten konden althans kwalitatief beschreven worden met
behulp van de berekeningen uit hoofdstuk 3.

De volgende twee hoofdstukken gaan over colloïden waarvoor de equivalente molekulen
vloeibare kristal fases vormen. Deze fases vinden tegenwoording vrĳ veel toepassingen,
bĳvoorbeeld in LCD schermen. Hoofdstuk 5 gaat over komvormige deeltjes, waarvan
de hoop is dat ze opstapelen in rechte kolommen die dan ordenen in een zogenaamde
columnaire fase. De colloïdale kommetjes worden gemaakt door een schilletje van een
soort latex in te laten klappen. We presenteren zowel experimenten, die door onze collega’s
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uitgevoerd zĳn, als simulaties, zodat een goede vergelĳking gemaakt kan worden. In de
experimenten vormen de deeltjes wel stapels, maar de stapels zĳn gebogen en wĳzen
niet allemaal in dezelfde richting. In de simulaties gebeurt dit ook, tenzĳ we vrĳ diepe
kommetjes bekĳken, die wel een columnaire fase vormen. Deze diepe kommetjes zĳn
helaas lastig te maken met de hierboven beschreven methode. Het verdere fasegedrag is
alleen bepaald met behulp van computersimulaties, omdat het experimentele systeem vast
bleef zitten in de fase met de gebogen stapels. Behalve de columnaire fase en de vloeistof
(al dan niet met stapels), zĳn er ook nog vier kristal fases, waar de deeltjes in kunnen
kristalliseren. Zo is er bĳvoorbeeld een kristalfase waar paren van kommetjes bolletjes
vormen, die dan een kristal vormen.

Als laatste vorm hebben we schĳfjes of plaatjes bestudeerd. Colloïdale plaatjes kunnen
op verscheidene manieren gemaakt worden, maar over het algemeen zal een schĳfvormige
colloïde een glad oppervlak hebben zonder scherpe randen. Het meest gebruikte simu-
latiemodel is een bol waarvan een boven- en een onderstuk zĳn afgesneden. Deze zoge-
naamde afgesneden bol heeft scherpe randen waar de snĳvlakken en de rand van de bol
bĳ elkaar komen. Deze deeltjes worden gebruikt omdat het relatief makkelĳk is om ze te
simuleren. Wĳ hebben een ander modeldeeltje bestudeerd wat geen scherpe randen heeft,
om te kĳken wat het effect is van die scherpe randen op het fase gedrag. Allereerst vonden
we een kristal wat niet gevonden is voor afgesneden bollen, maar wel voor schĳfvormige
molekulen. Deze molekulen hebben ook nog andere interacties dan onze deeltjes, maar we
kunnen speculeren dat de kristalfase van de molekulen in ieder geval gedeeltelĳk veroorza-
akt wordt door hun vorm, die meer op ons deeltje dan op een afgesneden bol lĳkt. Verder
is er nog een zogenaamde cubatische fase die (mogelĳk) stabiel is voor afgesneden bollen,
maar die in ons geval overgaat in de columnaire fase, maar alleen na een lange tĳd. Het
verdere fasegedrag van afgesneden bollen komt in grote lĳnen overeen met onze resultaten,
behalve dat de kristallisatiedichtheden niet volledig overeenkomen.
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