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Introduction

1.1 Colloidal suspensions and self-assembly
The study of colloidal suspensions represents a peculiar example of how research can be
driven by very fundamental questions or by very practical applications. It also serves as
an example of how physics and chemistry meet, and how a synergy between physicists
and chemists, but also engineers, mathematicians, biologists, computer scientists, as well
as theory, computer simulations, experiments can lead to scientific progress. Clearly, the
motivation in spending time in performing research in such an interdisciplinary and wide
field can be different.

For what we discuss in this thesis, the first relevant aspect to consider is that colloids
self-assemble due to Brownian motion.

The term “colloids” usually identifies particles with dimensions between 1 nm and
1 µm [1]. It comes from the Greek word κoλλα (glue) since it was introduced in 1860 by
Thomas Graham to describe sticky particles that were stuck on a semipermeable mem-
brane [2]. Colloids are (more) interesting when dispersed in another medium. Examples
of colloidal particles of different materials dispersed in media of different nature are avail-
able everywhere around us: toothpaste, creams, milk, butter, mayonnaise, paints etc...
When the suspended insoluble particles are in the colloidal size range, they constantly
experience collisions with the smaller solvent particles (e.g. molecules) that are in con-
stant motion because of thermal agitation. As a result, colloids have a random component
in their trajectories. The first observation of this erratic motion is commonly attributed
to Robert Brown, who studied in 1827 the behaviour of grains of pollen suspended in
water [3]. A theoretical explanation of his observations was provided by William Suther-
land [4] and by Albert Einstein [5]. Jean Baptiste Perrin provided further evidences of
the so-called Brownian motion of colloidal particles with his sedimentation experiments
on colloids [6, 7], and in 1926 he was awarded the Nobel Prize “for his work on the dis-
continuous structure of matter”. Einstein and Perrin are just the last protagonists that
proved for once and for all that matter is composed of “atoms”, an idea that can even
be dated back to the Greek philosopher Democritus (∼400 BC). As a consequence, also
kinetic theory and statistical mechanics, that provide the link between the microscopic
description of particles (e.g. atoms) and the macroscopic physical behaviour of matter,
were finally accepted.
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We have seen that the discovery of Brownian motion, in which colloids played a crucial
role, represented a great advancement in the physics of condensed matter. The fact that
colloids exhibit such a spontaneous motion is still largely exploited in nowadays research.
Colloids exhibiting Brownian motion are able to move around in the suspension and can
interact with each other or with the solvent molecules. Therefore, they are in principle
able to explore all the possible configurations in which the system (colloids+solvent) can
be. In statistical mechanics, this corresponds to the ergodic hypothesis, which is the cen-
tral assumption of this theoretical framework. Its development had taken place during
the 19th century, with Ludwing Boltzmann (1844-1906) as one of the main contributors,
and represents nowadays one of the most important tools to study colloidal suspensions,
whereas vice versa studies on colloids can be used to test and refine theoretical predictions.
More practically, the (effective) interactions between colloids can lead to the formation
of a great variety of structures (e.g. gas, liquids, crystals, liquid-crystals, glasses) that
directly depend on both colloidal and solvent properties. Therefore, colloids can be con-
sidered as big brothers of atoms and molecules since they can exhibit the same behaviour,
but at much larger length scales and longer time scales giving rise to several advantages
that will be explained below. Since the colloidal self-organization occurs autonomously
without direct human intervention, we describe this process as self-assembly of colloids,
irrespective if they form finite-size structures (e.g. clusters) or thermodynamically stable
bulk phase (e.g. crystals), or irrespective if this occurs with or without external field (e.g.
gravity or confinement) [8]. “The concept of self-assembly is increasingly used in many
disciplines, with a different flavor and emphasis in each” and therefore we refer to Ref. [8]
for a more precise classification.

The study of colloidal suspensions can reflect the desire of answering fundamental ques-
tions such as “What are the microscopic properties needed to form a particular structure?
Under which conditions will this structure form? What is the precise particle arrange-
ment? How does the structure affect the macroscopic physical properties?” and so on.
This is indeed the main motivation behind this thesis.

A second aspect, not to be overlooked, is the opportunity of addressing these ques-
tions by using very different approaches (e.g. experiments, theory and simulations) and
achieving a complete understanding when all these approaches lead to the same answer.

From this point of view, the study of colloidal suspensions is currently in an exquisite
position with respect to other fields of research. The existence of a well developed the-
oretical framework has been already highlighted and allows for a variety of theoretical
formulations of problems under consideration. “Colloidal systems are also the simulator’s
dream”, as many model systems and predictions have been later realized and verified in
the laboratory [9]. On the other hand, computer simulations often provide a clear in-
terpretation to a given experiment. In general, computer simulations are a valuable tool
to study the behaviour of colloidal suspensions, often quicker and in many respects more
controlled than experiments. Feasible simulations require simple models that yet can cap-
ture the main underlying physics of the experimental systems. Computer simulations can
then be used both as a final validation of a given theory or as a “computer experiment”
to explore new territories (see for example the introduction of Ref. [10]). From an ex-
perimental point of view, significant advancements have been recently made in preparing
colloidal suspensions and tuning their properties (e.g. chemical synthesis) [11], therefore
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increasing our possibility of manipulating these systems [12]. Moreover, because of their
typical size, colloids are well suited to be imaged in real space and, because of their slow
dynamics, in real time, by using light microscopy. Again, thanks to recent developments,
e.g. confocal laser scanning microscopy, the self-assembly of colloids can be nowadays
quantitatively studied in real-time and in real-space, on a single-particle level, and in
3D [13]. Something that is not yet possible for atoms, as they are too small and too fast.
Computer simulations are the central tool of investigation in this thesis, but results for the
experimental counterpart are also shown in chapters 2, 3, 4, and theoretical predictions
are often made throughout this work.

Finally, the self-assembly of colloidal particles holds a great promise of structuring
matter in three dimensions, at different length-scales, in a bottom-up, affordable and
sustainable fashion. The design of materials with novel properties like materials with a
photonic band gap or with a negative refractive index, is a clear goal [14–18]. To achieve
this, a combination of theoretical, simulations and experimental studies are needed to
identify the key features in the self-assembly processes. In this respect, the results of
this thesis can be also interpreted as part of this joint effort of identifying design rules
for the materials of the future. Colloids are also used in other applications not related
to materials science, that ranges from biomedical applications to products for daily uses
(cosmetics, paints, food), which however are not directly related to the content of this
thesis.

1.2 Entropy and order
In order to reach the equilibrium state, a system minimizes its (Helmotz) free energy

F = U − TS , (1.1)

where U is the internal energy of the system, T its temperature and S is the system
entropy. A consequence of this fact is that upon changing some conditions (temperature,
density etc..), phase transitions between different states of matter, e.g. formation of a
crystal from a liquid, occur. Naively, it is tempting to always associate these transitions
from a disordered to a more ordered state to the attractions between the particles. Indeed,
this would be consistent with a decrease of the internal energy U . However, analogous
transitions between disorder and order can be obtained by only increasing the entropy
S [19]. The concept of entropy was first introduced by Clausius [20], who postulated the
second law of thermodynamics, and later by Boltzmann, Gibbs and Planck, who gave a
microscopic interpretation of entropy that is summarized in the following formula:

S = kB lnW . (1.2)

This formula is usually attributed to Boltzmann, and it can be even found on Boltzmann’s
gravestone, but it was actually written in this form by Planck [21, 22]. It states that the
entropy S (of an isolated system with fixed number of particles, volume and energy) is
proportional (via Boltzmann’s constant kB) to the logarithm of the number W of the
possible microscopic realizations of the system. It means that in the so called entropy-
driven phase transitions the system moves towards phases for which more configurations
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are accessible. Quoting Daan Frenkel: “the idea of entropy-driven phase transitions is an
old one. However, it has only become clear during the past few years that such phase
transformations may not be interesting exceptions, but the rule!” [19]. Here, we give two
paramount examples of entropy-driven phase transitions, whereas we will briefly discuss
some more recent studies at the end of this chapter.

In 1957, Alder and Wainwright [23], and Wood and Jacobson [24], reported computer
simulation results indicating a transition from a fluid to a crystal phase upon compressing
a system of hard spheres. Hard spheres are spherical particles that simply cannot overlap,
they have infinite repulsion at contact but otherwise they do not interact. The freezing
transition in hard spheres was also predicted a few years earlier by Kirkwood [25]. It can
be understood recalling the microscopic definition of entropy. In this case the number
of states accessible for the system is determined by the free volume of each particle,
i.e., the volume in which the particle can move around without bumping onto another
one. Upon increasing the system density, hard spheres spontaneously order in a crystal
lattice to not lose their free volume, and therefore to increase their entropy. However,
the possibility of having an ordered crystal phase in absence of attractions was received
with huge scepticism. During a workshop in 1957 there was even a vote by a panel of
experts that was evenly split “against” the simulation evidences [21, 26]. Nowadays, this
transition is widely accepted, especially thanks to the experimental studies performed on
colloidal suspensions [27–29]. Nevertheless, we will show in chapter 2 that, almost 60
years later, hard spheres are still a source of unexpected behaviour, since they can form
stable icosahedral clusters under spherical confinement.

The earliest entropy-driven transition was actually predicted in 1949 by Lars Onsager
for a system of thin hard rods [30]. On compression, the system undergoes a transition
from an isotropic disordered state, in which the rods are uniformly distributed in space
and have random orientations, to a partially ordered state, called nematic phase, in which
the rods are on average aligned, still maintaining a homogeneous distribution in space
of their centres of mass. In this case, there are different contributions to the entropy,
one associated with the translational and one with the orientational particle degrees of
freedom. The transition occurs because when rods align, despite losing orientational
entropy, they decrease their excluded volume, and therefore gain translation entropy.
This trade-off becomes crucial beyond a certain density, that is the one at which the
transition occurs, and therefore to increase the total entropy, rods have to form a nematic
phase. In the 1980s, Frenkel et al. provided computer simulation evidences not only for
an entropy-stabilized nematic phase [31] but also for more complex liquid crystal phases,
such as smectic [32] and columnar [33] phases, for which was thought, once more, that
attractions were necessary [34]. Liquid crystal phases have an important role in this
thesis and therefore the next section is dedicated to briefly introduce this peculiar state
of matter.

1.3 Liquid crystals
Liquid crystals are an intermediate state of matter featuring properties in between those
of conventional liquids and those of (solid) crystals, as the name suggests. For example, in
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terms of mechanical properties, molecular liquid crystals flow, like a liquid, but have also
elastic responses, like a crystal. A more rigorous definition can be formulated in terms of
the microscopic arrangement of the particles: liquid crystals have long-range orientational
order but no, or only partial, positional order [35]. Several liquid crystal phases have been
discovered or predicted. In some cases, the naming of a given phase is associated to a
peculiar property noticed at the moment of discovery, e.g. nematic comes from the Greek
word νηµα that means threads, because of the presence of thread-like topological defects
(called disclinations) that are clearly visible under cross-polarizers. In other cases, the
name comes from the system in which the phase was first observed, e.g. cholesteric phases
from cholesterol or discotic phases from disk-like molecules. However, these phases are
not necessarily specific of a particular system and a general classification can be actually
obtained in terms of phase symmetry, i.e. based on the microscopic arrangement of the
particles. Nematic phases have only orientational order, i.e., particles are on average
aligned along a common direction; smectic phases have an additional 1D positional order,
i.e. particles form layers; columnar phases feature a 2D positional order, i.e. particles
form columns, which are arranged on a 2D lattice. Nematic phases can be further divided
into (i) prolate (or calamitic) uniaxial, (ii) oblate (or discotic) uniaxial and (iii) biaxial
phases, depending if the long-range orientational order of the phase is associated to (i)
the long, (ii) the short or (iii) both particle axes. Furthermore, in case of chiral particles,
i.e., particles lacking mirror symmetry, the nematic organisation is usually chiral as well,
i.e., the direction along which the particles are on average oriented twists in an helical
fashion, and the phase is named cholesteric. Such phases were also simply termed as chiral
nematic but this is now source of ambiguity since other nematic phases different from the
cholesteric phase feature chiral arrangement, e.g. twist-bend nematics [36] and screw-like
nematics [37]. Analogously, smectic phases are also often distinguished (according to a
less descriptive naming) into smectic-A, smectic-B, smectic-C, and so on, until smectic-H,
based on the type of positional order within the layers, the chiral nature of the phase
and so on. Similar classification can be done for columnar phases. Some of these phases
will be studied in detail in this thesis, and are only part of the multitude of liquid crystal
phases observed or predicted, such as blue phases, chiral liquids in which defects could be
arranged in a periodic fashion, and gyroid phases [38]. When systems exhibit long-range
positional order but no orientational order, we refer to them as plastic crystal phases, or
rotator phases, which are different kinds of mesophases, specular to liquid crystals. Liq-
uid crystals can be distinguished into thermotropic and lyotropic, depending if the phase
behaviour is mainly governed by temperature or by the system concentration, respec-
tively. Thermotropics are usually composed of molecules and have found a widespread
use in optoelectronic applications. Moderately dense suspensions of anisotropic colloids
can also exhibit liquid crystalline behaviour. Examples range from organic rods, such
as tobacco mosaic virus, fd-virus, DNA, to inorganic materials, like ferric oxyhydroxide
rods, boehmite, vanadium pentoxide, gibbsite platelets, silica rods [39–50]. Comparisons
between simulations and experiments on silica rods will be made in chapters 3 and 4.

Several theoretical frameworks have been proposed to describe the liquid crystalline
behaviour, and can be roughly divided in microscopic or (more or less coarse-grained)
phenomenological approaches, depending if the discrete nature of the constituent parti-
cles is explicitly taken into account or not. Microscopic approaches to describe the liquid
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crystal order will be used in this thesis. Examples range from Onsager’s theory and clas-
sical density functional theory, to particle-based computer simulations. Such techniques
are valid for both thermotropic and lyotropic liquid crystals providing that the micro-
scopic model, e.g. particle shape and interactions, captures the essential physics of the
system. Ellipsoids interacting via Gay-Berne (and similar) potentials have been proven
to be a simple model to reproduce the essential physical features of many thermotropic
liquid crystals [51]. Hard bodies have been extensively used in theory and simulations [52]
as models for colloidal systems, and will be used in this thesis as well. Other theories
for liquid crystals do not explicitly consider the properties of the individual entities but
rather coarse-grained (with different level of coarse-graining) properties such as, for ex-
ample, the local averaged orientation of the particles (nematic director field) or the order
parameter associated to a given symmetry. For example, the isotropic-nematic transition
can be described by means of a phenomenological Landau-de Gennes theory, based on
an expansion of the free energy in terms of the nematic order parameter, or the elastic
distortions in a liquid crystal can be described by a continuum elastic theory, which is
based on a change in free energy in terms of Frank elastic constants.

1.4 Methods

1.4.1 Monte Carlo computer simulations
In this thesis, we mostly employ Monte Carlo (MC) methods to study the self-assembly
in many-body systems. MC simulations can be used to sample the phase space associated
to the possible configurations in which the system can be. The evolution of the system is
then based on trial moves that are rejected or accepted according to a given probability,
that depends on the chosen statistical ensemble. The aim of this scheme is to efficiently
sample the most relevant states. Such states are then used to calculate the equilibrium
properties of the system.

Let us consider the simple case of N particles in a volume V at temperature T (canon-
ical ensemble). Assuming that the particles interact via a pair potential U(r), the Hamil-
tonian of the system is given by

H(rN ,pN) =
N∑
i=1

p2
i

2m +
∑
i<j

U(rij) , (1.3)

where rN denotes the particles positions and pN the particles momenta. The canonical
partition function of such a system is given by

Z(N, V, T ) = c
∫
drN exp(−βU(rN)) , (1.4)

with c a normalization constant that also takes in account the fact that we have integrated
out the degrees of freedom associated to the particle momenta (the kinetic part of the
Hamiltonian), and β = 1/kBT , with kB the Boltzmann constant. The average of an
observable O is therefore given by

〈O〉 =
∫
drNO exp(−βU(rN))∫
drN exp(−βU(rN)) , (1.5)
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where we assume that O depends only on the particle coordinates. An efficient way of
evaluating Eq. 1.5, that cannot be computed directly for a many-particle system, is to cal-
culate O over a large number of relevant configurations that are obtained by a Metropolis
algorithm. This sampling scheme consists of generating a sequence of random configu-
rations, called Markov chain, that are accepted or rejected such that the configurations
follow the Boltzmann distribution. In practice, starting from a given configuration of
particles rNold, a trial configuration rNnew is obtained, for example, by randomly select-
ing a particle and randomly displacing it. The trial configuration is accepted with the
probability

acc(old→ new) = min(1, exp{−β[U(rNnew)− U(rNold)]}) . (1.6)
In case of rejection the old configuration is kept. This procedure is repeated to generate a
large number of configurations. For sufficiently long simulation times, the system should
be able to reach equilibrium and the average over several equilibrium configurations can
be performed. By implementing different moves and by varying the acceptance rules,
systems can be simulated in different statistical ensembles. Trial moves need to obey
specific balance rules to correctly produce the right set of configurations, but for example
do not need to be physical, which can be exploited to speed-up the simulations. For
a more comprehensive description of different MC techniques and their current use, see
Ref. [10].

Simulating anisotropic hard particles

The focus of this thesis is on hard particles, i.e., particles that interact only via an hard-
core potential. The basic ingredient for MC simulations is therefore to determine when
particles overlap or not, and accordingly accept or not the trial configuration. In the
simplest case of spherical particles with diameter σ the pair potential reads

U(rij) =
{
∞ rij < σ
0 rij ≥ σ

, (1.7)

where rij is the center-to-center distance between the two particles i and j that can
be obviously calculated analytically. However, for anisotropic particles, the hard-core
potential depends also on the orientations of the two particles:

U(xi,xj) =
{
∞ d(xi,xj) < σ(xi,xj)
0 d(xi,xj) ≥ σ(xi,xj)

, (1.8)

where x indicates the generalized coordinates (positions and orientations), d(xi,xj) the
center-to-center distance between particles i and j, and σ(xi,xj) the “thickness” of the
two hard bodies in that particular configuration. The orientation of the particles can be
described by a unit vector in case of a uniaxial shape. For biaxial shapes, the use of a 3×3
rotation matrix (like in this thesis) or the use of quaternions are the most common choices.
In some cases, the distance between anisotropic particles can be still efficiently computed
numerically. For example, for two spherocylinders the minimum distance between two
line segments in space d(rij, ûi, ûj), with û the unit vector indicating the orientation
of the main axis, is calculated by an efficient algorithm [53]. An overlap occurs when
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d(rij, ûi, ûj) < D, with D the diameter of the spherocylinders. A similar algorithm can
be employed to determine the distance between a spherocylinder and a sphere (distance
between a point and a line segment in 3D). However, in other cases, it is faster to directly
check if the two shapes intersect, without calculating the minimum distance between the
two particles. For convex shapes, possible choices are the intersection-detection algorithm
based on the Separating Axes Theorem (SAT) [54] or the Gilbert-Johnson-Keerthi (GJK)
algorithm [55, 56]. In case of non-convex shapes, a possibility (used in this thesis) is
to decompose the surface of the particle in triangular faces and check for intersection
between these triangles. This can be done efficiently by using the RAPID library [57].
Anyway, it is always possible to calculate the minimum distance between two shapes (e.g.
based on GJK algorithm for convex particles or based on triangle-triangle distance for
non-convex ones), that could be necessary for some types of analysis. To minimize the
number of overlap checks, cell lists are often used in computer simulations [10, 58]. In
case of (almost) spherical particles, a cubic cell list is a simple and efficient solution. For
strongly anisotropic particles, i.e., very long or very flat shapes, different tricks can be
implemented. Pre-checks based on embedded shapes for which the overlap algorithm is
simple (e.g. circumscribed sphere, spherocylinder containing the entire particle) are con-
venient. It can be also advantageous to divide the long shapes in smaller parts, e.g. fully
cover the particles with a set of (overlapping) spheres with a diameter larger than the
particle diameter, and use these smaller parts to construct a cubic cell list (as in the case
of simulations of simply spheres). These spheres are then used to identify the neighbours
(overlaps are always checked in the proper way according to the algorithm suitable for the
shape under consideration) and by keeping track of the pairs already checked this simple
procedure could speed up substantially the simulation. More sophisticated implementa-
tion can be based on bounding boxes and other tricks, that can be found in literature.
However, the efficiency of the simulation code always depends on the type of simulation,
e.g. it can vary if the simulation is carried out in an NV T or NPT ensemble, where
in the latter additional moves are used to change the volume of the simulation box, on
the exact particle shape and on the exact implementation, and hence, the performance
must be checked case by case. Finally, we highlight that for anisotropic particles, overlap
checks must be performed also after an expansion of the system. For convex shapes, this is
relevant only for anisotropic expansions (e.g. scaling only one side of the simulation box),
whereas for non-convex shapes both isotropic and anisotropic expansions could introduce
an overlap between particles.

1.4.2 Classical density functional theory
Some of our simulation results presented in this thesis are complemented with theoretical
predictions based on classical density functional theory (DFT) [59]. DFT methods were
originally developed to describe the properties (in particular the electronic structure) of
quantum many-body systems by using appropriate functionals of the electron density. The
classical analogue is also based on the relation between the single-particle density ρ(x),
with x a generalized coordinate, to the macroscopic properties of a given structure through
an intrinsic free-energy functional F [ρ(x)]. Such a functional contains all the information
about the system and in general cannot be computed exactly. Once the free-energy
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functional is defined, within some approximations, by following a variational principle
it is possible to arrive at an explicit equation for the equilibrium single-particle density
ρeq(x). The latter contains information about the equilibrium microscopic organization
of the particles and therefore can be used to obtain thermodynamic (e.g. free energy,
pressure, chemical potential) and structural properties of the system. For a more precise
introduction on the DFT framework, we refer to the existing literature (e.g. Refs. [59, 60]),
while the specific approaches used in this thesis will be explained in detail in the respective
sections. Onsager’s theory [30], that is nowadays called a density functional theory within
the second-virial approximation, is revisited in section 3.2. In chapter 5, Onsager’s theory
is tested against simulations of polyhedral rods and predictions based on another type
of DFT. In chapter 6, we introduce a variation of a second-virial DFT to describe chiral
nematic order. Such a DFT will be applied to different chiral models and in chapter 7 DFT
results will be directly compared with simulation results. Upon increasing the complexity
of the particle shape and symmetry of the thermodynamic phases, it becomes more evident
that very efficient numerical approaches are required for the DFT calculations. Indeed,
we use Monte Carlo methods to solve the multi-dimensional integrals (excluded-volume
coefficients) in the DFT approach. Despite the intrinsic approximations of the DFT
approaches, theoretical predictions are (often) quicker than simulations and can sometimes
even access regimes which are inaccessible or hard to reach in computer simulations due
to finite-size effects. On the other hand, the different approximations need to be tested
against simulation results in order to refine the theoretical framework itself. Therefore, a
frequent comparison between theory and simulation is desirable in order to provide valid
insights and predictions on the phase behaviour of colloidal suspensions.

1.5 Scope of this thesis

In the context of self-assembly, shape is a subtle concept, as exquisitely pointed out in
Ref. [61]. Here, we use the conventional definition that the shape of an object is given
by the geometry of its surface. “This definition is familiar because it is appropriate to
the macroscopic scale of our sense of touch and gives results that are consistent with
the morphological characterization of an object: a nanocube will look like a nanocube in
transmission electron microscopy, atomic force microscopy and optical microscopy” [61].
In this thesis, we mostly study hard particles, for which there is no ambiguity in defining
what shape is, and we show that shape is enough to form several and different structures.
Such a concept has been pioneered by Onsager [30] and many others have employed
hard-particle models to study different thermodynamic phases (for example in Refs. [31,
32, 62–67]). In this respect, this thesis should be seen as a personal journey in the
modification of particle shape to shed new light on some, sometimes novel, entropy-driven
phase transitions. Notice that such a journey is not told in a chronological order but rather
with the spirit to rationalise the change in phase behaviour corresponding to a progressive
loss of particle shape symmetry, as illustrated in Fig. 1.1. We remark that complex-shaped
particles are not a merely abstraction for theorists and simulators anymore. Indeed,
nowadays a variety of shapes can be synthesized in the colloidal domain [12, 68–70] and
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therefore a full understanding of the effect of shape on the phase behaviour is of crucial
importance also for future progress in exploiting anisotropy for materials design [12].

Chap. 2

Chap. 3

Chap. 4

Chap. 5

Chap. 8

...
Chap. 7

Chap. 6

Figure 1.1: Graphical abstract of this thesis. We study the self-assembly of hard-particle
systems, in which shape is the only relevant microscopic feature of the system. The simplest
hard-particle model is a spherical particle that cannot overlap with any other object. The bulk
phase behaviour of the hard-sphere system is briefly described in Sec. 1.2. However, a novel
phase behaviour emerges when the system is spherically confined, as we show in Chap. 2. In
Chap. 3, we introduce anisotropy in the particle shape and study the liquid-crystal behaviour of
hard spherocylinders. Liquid crystals are introduced in Sec. 1.3. Experimentally, colloids with
an “effective” spherocylindrical shape can be synthesised. In Chap. 4, we mix hard spheres
and hard spherocylinders. In Chap. 5, the particles lose their uniaxial symmetry and we study
the effect of biaxiality of polyhedral particles on the liquid-crystal behaviour. In Chap. 6, we
consider chiral helical particles forming chiral nematic phases. Chiral objects, like our hands,
lack of mirror symmetry. In Chap. 7, we study a novel hard chiral particle model system, namely
twisted polyhedra (a macroscopic 3D-printed model is shown in the figure) and we show how
the particle biaxiality and chirality are directly transmitted at a higher level into the nematic
phases. The study is continued in Chap. 8, where we also conclude our journey by highlighting
some open issues in the field of “hard” soft-condensed-matter.
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Entropy-driven formation of
icosahedral clusters of hard spheres

under spherical confinement

Icosahedral symmetry, which is not compatible with truly long-range order, is readily
found in many systems, e.g. liquids, glasses, atomic clusters, quasi-crystals, and virus-
capsids. However, in all cases where more than tens of particles are arranged with a high
degree of icosahedral order, attractions are considered essential. Here, we report that
entropy and spherical confinement suffice to form icosahedral clusters consisting of up
to almost 100000 particles. In particular, we show by computer simulations that tens of
thousands of hard spheres, when compressed under spherical confinement, spontaneously
crystallize into icosahedral clusters, which are thermodynamically favoured over the bulk
equilibrium face-centered-cubic (FCC) crystal structure. Our results corroborate real-
space measurements on evaporating emulsion droplets containing nano- and micron-sized
colloids. Moreover, by elucidating the crystallization mechanism of the icosahedral struc-
tures, we provide new insights into the interplay between confinement and crystallization.
We conclude the chapter by briefly exploring how spherical confinement can change the
phase behaviour of different colloidal systems beyond single-component hard-sphere sys-
tems.
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2.1 Introduction

More than half a century has passed since Sir Charles Frank first proposed that the most
favorable local structures in simple liquids have icosahedral symmetry [71]. Such order-
ing occurs when 12 particles are arranged around a central particle at the vertices of an
icosahedron. This icosahedron tends to maximize the short-ranged (Lennard-Jones-like)
attractions typically present in atomic systems, and has been shown to be entropically
favorable as well [72, 73]. However, its five-fold symmetry is incommensurate with long-
range positional order, thereby acting as an obstacle for the formation of crystals on a
larger scale. So, even though a typical liquid often contains many local icosahedral cen-
ters [71, 74–76], they rarely grow out into a crystal [77]. In the case of hard spheres,
which do not attract and instead interact solely by excluded volume, (distorted) icosa-
hedral order has been observed in the fluid phase [77], in glasses [78] and in growing
crystal nuclei during crystallization [79]. On the other hand, the bulk thermodynamically
stable crystalline phase for hard spheres is the face-centered-cubic (FCC) crystal, which
maximizes the entropy at high densities [27, 80]. This arrangement of spheres has the
densest possible packing (η = 0.74) at infinite pressure, and does not display any five-
fold symmetry [27, 80]. The incompatibility of the locally favorable icosahedral symmetry
with long-range three-dimensional order raises immediately the question over what length
scales icosahedral order can be extended.

A dense non-crystalline packing of spheres featuring global icosahedral order was the-
oretically proposed by Mackay in 1962 [81]. The Mackay structure (that will be described
in more detail later) has been observed and studied theoretically for atomic and molec-
ular clusters [82–85] and clusters of nanoparticles [86–89]. In these cases, the formation
of icosahedral structures is mainly attributed to energetic interactions [86, 90, 91] in
conjunction with kinetic effects [87], hierarchical self-assembly [84], or intricate growth
mechanisms [88, 89]. Additionally, Mackay clusters of Lennard-Jones particles have been
shown to correspond to minima in the free-energy landscape [92]. In contrast, in hard-
sphere systems attractions are not present and finite-size clusters can be obtained by
means of confinement. It is known from theory, simulations, and experiments that con-
finement can change the equilibrium crystal structure of colloidal spheres from that in the
bulk [93, 94]. However, predicting by first principles how dramatic and on what length
scales this change can occur is not trivial.

In this chapter, we show by computer simulations that spherical confinement gives
rise to purely entropy-driven icosahedral symmetry in the equilibrium phase of very large
numbers of hard spheres. Our results are in agreement with experiments on colloidal par-
ticles confined within evaporating emulsion droplets and confirm that attractions in these
systems are not needed to obtain equilibrium icosahedral clusters. In particular, after
obtaining the icosahedral clusters by molecular dynamics simulations, we confirm their
stability by performing Monte Carlo free-energy calculations. Moreover, we study the
crystallization mechanism of the (Mackay and anti-Mackay) icosahedral structures. We
conclude our study by briefly exploring the roles of particle-interface and particle-particle
interactions in single-component and binary systems, speculating on how spherical con-
finement can be used to reliably control the phase behaviour in several colloidal systems.
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2.2 Methods

2.2.1 Molecular dynamics simulations
In this chapter, we first perform event-driven molecular dynamics (EDMD) simulations
of hard spheres with a diameter σ confined in a spherical cavity. The spherical particles
interact only via a purely repulsive (excluded-volume) potential:

βU(rij) =
{
∞ rij < σ
0 rij ≥ σ

(2.1)

where rij is the distance between the centers of the spheres i and j, and β = 1/kBT ,
with kB Boltzmann constant and T the temperature. The particles follow Newton’s law
of motion, and the system is evolved according to an event calendar that keeps track of
the time at which a particular event (e.g. collision between particles) occurs. Therefore,
differently from traditional time-driven MD simulations, where the time is advanced in
fixed steps, in EDMD simulations, which are suitable for discontinuous potentials, the
time jumps from event to event. Clearly, EDMD simulations are not used to describe the
(Brownian) motion of true colloids (for which hydrodynamics interactions could also play
an important role) but rather represent a different way of sampling the phase space, in full
analogy with Monte Carlo methods described in Sec. 1.4.1. For details on the technique
and its implementation see for example Refs. [95, 96].
To mimic the solvent evaporation of the emulsion droplets, the radius of the spherical
cavity is slowly reduced at a constant compression speed v that is expressed in units of
σ/τ , where τ =

√
mσ2/kBT is the EDMD time unit. To keep the temperature of the

system constant during the simulations, an Andersen thermostat has been implemented.
This consists of choosing randomly, at fixed intervals, a given number of particles and
assign them a new random velocity drawn from a Boltzmann distribution of velocities
corresponding to the imposed temperature. In addition, we also perform EDMD simula-
tions at fixed density, in which both the number of particles N and the cavity volume V
are kept fixed, in order to investigate possible kinetic effects due to the compression. To
model the spherical confinement, we use three types of external potentials that act on the
hard spheres: (i) an impenetrable hard spherical wall, (ii) a short-ranged soft repulsive
wall-particle potential, and (iii) an attractive wall-particle potential with an interaction
range of σ. In the first case, we treat the confinement as an impenetrable hard spherical
wall of radius R, described by the following potential

βUp−w(r) =
{
∞ r > R− σ/2
0 r ≤ R− σ/2 (2.2)

with r the center-of-mass distance of the particle with respect to the center of the cavity.
In the second case, we used a soft repulsive wall-particle potential with a functional form
1/|R − r|n, with n ≥ 2 and interaction range rsoft ≤ 2σ. In particular, the continuous
potential is approximated by 30 concentric spherical interfaces, that are evenly spaced at
distance Ri from the center, ranging from the outermost shell at distance R (that still
acts as a hard cavity) to the innermost shell that is at distance R−rsoft, see also Ref. [95]
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for further details. Finally, in Sec. 2.6 we consider a longer-ranged repulsive confinement,
and binary systems of hard spheres or particles interacting via a square-well potential,
that are straightforward extensions of the EDMD simulations described here.

2.2.2 Free-energy calculations
In this chapter, we calculate the absolute free energy associated to the structures that
are observed in simulations and experiments, by means of a 3-step thermodynamic inte-
gration [10], based on the method proposed by Schilling and Schmid [97, 98]. In general,
it is possible to calculate the free-energy difference between the system of interest and a
reference system, for which the free energy Fref is known. To this end, we introduce a
potential energy function U(λ) that depends on a coupling constant λ, which allows us
to connect the system of interest at λ = 0 to the reference system at λ = λmax by an
appropriate thermodynamic path. The free-energy difference is given by

F (λ = λmax)− F (λ = 0) =
∫ λ=λmax

λ=0
dλ

〈
∂U(λ)
∂λ

〉
λ

, (2.3)

where 〈.〉λ indicates an average over several configurations obtained by Monte Carlo simu-
lations at fixed λ. The coupling constant λ is therefore increased in a series of simulations
until the reference system is reached at λ = λmax.

The method proposed by Schilling and Schmid [97] assumes that in the reference
system the particles are ideal (do not interact with each other) and are pinned to their
own wells via a linear potential:

uwell(x, ε) =
{
−ε(x− 1) x < 1
0 x ≥ 1 , (2.4)

where x = |ri − r(0)
i |/rc, with ri the position of particle i, r(0)

i the position of the corre-
sponding well i, and rc the cut-off radius of the well interaction, chosen to be rc = 2σ
(but this is not crucial [97]), with σ the sphere diameter. Therefore, the free energy of
the reference system Fref reads [97–99]:

βFref (ε)
N

= ln
(
NΛ3

V

)
− 1− ln

[
1 + (4/3)πr3

c

V
g(βε)

]
, (2.5)

where N is the number of particles, V the volume, Λ the thermal wavelength, and

g(βε) = 3
(βε)3

(
eβε − 1− (βε)− (βε)2

2 − (βε)3

6

)
. (2.6)

To reach the ideal reference state from our system, we need three separate integration
steps with three different potentials Uwell(rN ; ε), Up−p(rN ; γ), Up−w(rN , R;α), in order (i)
to pin the particles to their own wells based on their position r(0)

i in a typical configuration,
(ii) to switch off the interaction between the particles, (iii) to switch off the interaction
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between the particles and the confining spherical wall of radius R, respectively. rN indi-
cates the positions of the N particles and ε, γ, α are the three coupling constants. The
first potential clearly reads

Uwell(rN ; ε) =
N∑
i=1

uwell(x, ε) . (2.7)

To switch off the hard-core interactions in our system we used the potential proposed in
Ref. [100]. In particular, for two spheres i and j of diameter σ at distance rij we use

up−p(rij; γ) =
 γ

[
1− 0.9

(
rij

σ

)2
]

rij < σ

0 rij ≥ σ
, (2.8)

whereas for a sphere at distance ri from the center of a cavity of radius R we use

up−w(ri, R;α) =
 α

[
1− 0.9

(
R−ri

σ

)2
]

ri > R− σ/2
0 ri ≤ R− σ/2

. (2.9)

Therefore Up−p(rN ; γ) = ∑
i<j up−p(rij ; γ) and Up−w(rN ; α) = ∑

i up−w(ri, R ; α) and
the free energy βF (N, V, T ) obtained by the complete thermodynamic integration reads

βF (N, V, T ) = βFref (εmax)−
∫ εmax

0
dε

〈
∂βUwell
∂ε

〉
ε

+

+
∫ γmax

0
dγ

〈
∂βUp−p
∂γ

〉
γ

+
∫ αmax

0
dα

〈
∂βUp−w
∂α

〉
α

. (2.10)

We remark that the integration associated to the first step is particularly challenging
and it is important to accurately sample the region at moderate ε, that largely contributes
to the absolute free energy, and also correctly capture the decay for large ε. For this rea-
son, we sample more than 300 values of the coupling constant ε and use εmax > 1000.
Furthermore, the results are fitted with an Akima spline before performing the numerical
integration. The other two integration steps are performed using a standard 20-points
Gauss-Legendre integration scheme. In the first integration step we also implement ordi-
nary swap moves consisting in randomly selecting a pair of particles and swapping their
identities (see Ref. [97] for additional moves to speed up equilibration). Finally, to get an
estimate of the error in our free energies, we repeated our calculations on five indepen-
dent initial configurations displaying the desired symmetry. The free-energy difference
between the different symmetries are then calculated to identify the thermodynamically
stable structure.

2.2.3 Identifying crystalline domains
In order to identify the crystalline domains and the cluster symmetry, we use a local bond
orientational order parameter based on spherical harmonics Yl,m to identify the solid-like
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particles, i.e. particles with a solid-like environment, as introduced in [75]. In particular,
for each particle i, we calculate

qlm(i) = 1
N i
b

N i
b∑

j=1
Yl,m(rij),

where N i
b is the number of neighbours of particle i, i.e. all particles j with a center-of-mass

distance |rij| < 1.4σ with respect to particle i, and σ is the particle diameter. We set
l = 6 and use a cluster algorithm [101] to discriminate different crystalline domains. The
correlation between two particles i and j is quantified by:

d6(i, j) =

+6∑
m=−6

q6m(i)q∗6m(j)
 +6∑
m=−6

|q6m(i)|2
1/2 +6∑

m=−6
|q6m(j)|2

1/2 ,

and for each particle the number of connections is evaluated via

ncon(i) =
N i

b∑
j=1
H(d6(i, j)− dc),

where H is the (Heaviside) step function, and where we fix the correlation threshold
dc = 0.6. A particle i is defined as solid-like if ncon(i) ≥ 7.
Different crystal domains are then identified by using an additional constraint to our
criterion, reflecting the fact that the local environment of two neighbouring solid-like
particles should display more similarity if they belong to the same crystalline domain
than if they are part of different ones. According to this criterion we add particle j
(already qualified as a solid-like particle) to the same crystalline domain of particle i if
d6(i, j) ≥ 0.9.
Furthermore, we employ the cone algorithm described in Ref. [83] to discriminate between
particles belonging to different layers (surface, different sublayers and the interior) of the
spherical clusters. This analysis is needed to unveil the crystallization mechanism.

2.3 Crystallization of hard spheres in spherical con-
finement

We perform event-driven molecular dynamics simulations of hard spheres in a slowly
shrinking hard spherical confinement. In the next section, we will see that these sim-
ulations mimic the evaporation process of droplets containing colloidal or nanoparticles
that effectively interact as hard spheres. It is known that hard spheres in bulk exhibit a
freezing transition from a fluid to a crystal phase [23, 24, 27], for which the stable crys-
tal symmetry is the face-centered-cubic (FCC) [80]. The freezing and melting packing
fractions associated to this first-order transition are η ' 0.494 and η ' 0.545, respec-
tively [102]. Here, we first check if hard spheres confined in a shrinking cavity exhibit
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crystalline order. In Fig. 2.1(a), we plot the fraction of crystalline particles as a function
of packing fraction η. Note that the packing fraction increases with time during the sim-
ulations, so an increase in packing fraction can also be considered as moving forward in
time. For a low compression rate v, we clearly observe that a large number of particles
crystallize. Furthermore, we observe that our results do not alter upon changing the com-
pression speed of the spherical confinement, provided the compression is sufficiently slow
(v ≤ 104σ/τ) such that the system remains in quasi-equilibrium during the self-assembly
process. In addition, we study the fraction of crystalline particles as a function of packing
fraction for various system sizes, and present the results in Fig. 2.1(b). We see that the
fraction of crystalline particles depends on the total number of particles contained in the
cavity. In particular, for small number of particles the final crystalline assemblies present
less ordered particles. This is not due to kinetic effects (compression speed v = 104σ/τ)
but it is an effect of the stronger frustration induced by the spherical cavity. Indeed, as
reported in the inset of Fig. 2.1(b), when only N = 500 spheres are spherically confined
a non-monotonic behaviour of the fraction of crystalline particles as a function of η is
observed, even for simulations at fixed density (the radius of the cavity is fixed). As a
consequence of this strong frustration, the final structure obtained at the end of a com-
pression run for N = 500 appears quite disorderd. However, already for N = 1000 there is
no such an effect and therefore the final structure exhibits a large degree of crystallinity.
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Figure 2.1: (a) Fraction of crystalline particles as a function of packing fraction η for different
compression speed v, as indicated in the legend, for N = 4000 hard spheres confined in a
shrinking spherical hard cavity. (b) Fraction of crystalline particles as a function of η for
different N in a spherical hard cavity shrinking at a rate v = 10−4σ/τ . Inset: Fraction of
crystalline particles as a function of η for N = 500 in a hard spherical cavity at fixed volume.

We now focus on the resulting crystalline clusters. We observe that in most of the
clusters, despite the frustration of the hard spherical boundary that prevents a complete
crystallization of the outer layers, most of the particles are arranged in wedge-shaped
domains pointing towards the center of the assemblies. In particular, when the system
size is relatively small, the clusters exhibit icosahedral symmetry, as shown in Fig. 2.2(a)
for N = 2000 hard spheres. Such a structure is reminiscent of the icosahedral packing of
spheres proposed by Mackay [81]. As it will be evident below (see Fig. 2.7), it consists
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Figure 2.2: (a) Final configuration of N = 2000 hard spheres confined in a shrinking hard
spherical cavity (v = 10−5σ/τ) obtained from EDMD simulations. Different colors indicate
different domains. Fluid-like particles are light blue and transparent. The typical five-fold
symmetry of an icosahedral arrangement is readily visible. (b) N = 8000 hard spheres confined
in a hard shrinking spherical cavity (v = 10−5σ/τ). The three outer layers have been removed
such that the icosahedral core is visible. (c) Surface order in a cluster composed of N =
8000 hard spheres. Particles are colored according to the number of neighbouring spheres in a
Delaunay triangulation. Purple particles have 6 nearest neighbours on the surface, yellow have
4, pink 5, dark red 7. The surface resembles rhombicosidodecahedral order. (d) Outside view
of a typical configuration in a system of N = 64000 hard spheres compressed in a hard spherical
cavity (v = 10−4σ/τ). A large crystalline domain (red particles) spans the entire cluster. A cut
through the middle of the cluster is shown in Fig. 2.3.

of twenty deformed FCC ordered tetrahedral domains that share a particle in the center,
such that the (111) adjacent tetrahedral faces form twinning planes. The resulting cluster
is a multiply twinned crystal with five-fold symmetry and has the shape of an icosahedron
with 20 triangular (111) facets at the surface. Also for slightly larger systems, for example
for N = 8000 as shown in Fig. 2.2(b), the icosahedral arrangement is still present in the
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core of the cluster. However, the surface particles display a peculiar order, as can be
observed in Fig. 2.2(c) that shows the number of neighbours for each particle at the surface.
Such an arrangement resembles a rhombicosidodecahedral geometry consisting of twelve
pentagonal faces, twenty triangular faces and thirty rectangular faces (cfr. Fig. 2.7). More
precisely, this type of clusters belongs to the class of surface-reconstructed icosahedral
structures, also known as anti-Mackay icosahedra. Indeed, they have a Mackay icosahedral
core but a different surface termination, as the triangular facets meet yet another set of
twinning planes near the surface [90]. Finally, for even larger cluster sizes, we observe
that the wedge-shaped domains disappear in favour of larger domains that span the entire
clusters, as shown in Fig. 2.2(d) for N = 64000 hard spheres. In this case, almost all the
crystalline particles belong to a single FCC domain, except for some defects (cfr. also
bottom left panel in Fig. 2.3), as expected for systems approaching the bulk limit.

These structural transitions between Mackay to anti-Mackay to FCC ordering clearly
depend on the cluster size. To support this, we show in Fig. 2.3 cuts through the middle of
the resulting clusters for several different system sizes. We observe that the typical wedge
domains and the twinning planes observed in smaller system sizes slowly disappear upon
increasing the system size. Analogously, the outer crystalline layers and the associated
surface terminations are present only for intermediate size range. For very large clusters,
the number of different crystalline domains drastically reduces until almost only one single
FCC domain is present in the cluster.

Furthermore, we observe that adding a short-ranged (≤ 2σ) repulsion between the
spheres and the confining wall, to model possible surface tension effects, gives rise to
more faceted supraparticles, but does not affect the icosahedral symmetry of the core. In
the right panels of Fig. 2.3, we show typical configurations obtained by using a potential of
the form ε/|R− r|n, with r the distance between a particle and the center of the cavity of
radius R, and with n = 2, interaction range rsoft = 1σ, and interaction strength ε = 1kBT .
We indeed note that the clusters obtained in a soft repulsive spherical confinement have
a higher fraction of crystalline particles and a more pronounced icosahedral symmetry
than the clusters confined in a hard cavity as the geometrical confinement is less severe
for the particles close to the surface. Similarly, the anti-Mackay surface termination is
also more evident in the case of a soft confinement. Nevertheless, our simulations show
clearly that icosahedral ordering arises spontaneously for hard spheres in both a hard and
a soft repulsive spherical confinement.

Finally, we perform simulations with a short-ranged (1σ) square-well (maximum depth
∼ 10kBT ) attractive potential between interface and particles. A typical resulting struc-
ture for N = 8000 hard spheres is shown in Fig. 2.4 and still exhibits an icosahedral
core. We can conclude that the type of interface (repulsive or attractive) does not play
a vital role in the stabilization of icosahedral symmetry. As we will show in Fig. 2.8, our
simulations reveal striking agreement with the experimentally observed structures.
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Figure 2.3: Size-dependence of the crystal morphology observed in computer simulations. A
cut through the middle of the cluster is shown for different system sizes (N is the total number
of particles). Different colors indicate different crystalline domains. Light blue particles are
fluid-like particles. Left: A hard spherical confinement. Right: A soft repulsive spherical
confinement. (See text for details on the potential).
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Figure 2.4: Clusters from EDMD simulations with an attractive wall. Snapshots of a cluster of
N = 8000 particles in a system where the wall-particle interaction was modeled by a short-ranged
attractive potential. The image on the left shows the outside of the cluster, while the next three
images show progressively deeper cuts through the cluster, where 5, 10, and 5 tetrahedra are
intersected, respectively. Particles identified as non-crystalline are not shown. Similar results
were observed in smaller clusters (N = 4000).

The evolution of the crystal structure, and thus the nucleation and growth mechanism,
can also be studied directly in the simulations. In Fig. 2.5 we examine the evolution of
a system which forms an anti-Mackay rhombicosidodecahedron. Using the cone algo-
rithm [83], we determine the fraction of crystalline particles in the surface layer near the
confining wall, the first three sublayers from the surface, and the inner part of the cavity
as a function of packing fraction. As already mentioned above, the packing fraction in-
creases as the spherical cavity shrinks over time. We clearly see that the crystallization
starts near the spherical interface, initially forming approximately two or three layers.
When the packing fraction reaches approximately η = 0.52, part of the interior starts to
crystallize, growing on the already present crystalline domains in the surface layers and
proceeding inwards. Additionally, as the interior starts to crystallize, the surface layer
becomes less crystalline (the decrease of the red curve in Fig. 2.5). Between volume frac-
tions η = 0.52 and η = 0.53 the interior completely crystallizes, forming the tetrahedral
domains associated with the Mackay icosahedron. It is worth noting that this process is
very dynamic as the domains can crystallize and melt several times before the system fully
crystallizes into 20 tetrahedral FCC units. Upon further increase of the packing fraction,
the surface layers recrystallize into the anti-Mackay surface termination. This crystal-
lization process is reminiscent of the nucleation of hard spheres near hard spherical seeds
described by Cacciuto et al. [103]. In particular, they observed that crystal nucleation
started on the surface of the seed, which then grew out into the bulk, while the crystal
near the surface melted. In contrast, our simulations of smaller numbers of confined hard
spheres which self-assemble into Mackay icosahedra, did not exhibit this final melting or
recrystallization part. To illustrate that, we show in Fig. 2.6 results for the formation of a
Mackay icosahedral cluster of 2000 hard spheres in a hard spherical confinement. Also in
the case of clusters with a final FCC configuration, the nucleation starts at the wall but
the crystal grows inside the cavity in a smooth way, as expected since the final structure
does not present any wedge-shaped domains.
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Figure 2.5: Crystallization process of 16000 hard spheres in a shrinking spherical confinement
forming an anti-Mackay rhombicosidodecahedral cluster. Top: fraction of crystalline particles
in the surface layer, the first three layers and the interior as a function of the packing fraction.
Note that due to the shrinking confinement, the packing fraction slowly increases over time.
Bottom (A, B, C, D): typical configurations from simulations at different packing fractions
(ηA ≈ 0.511, ηB ≈ 0.527, ηC ≈ 0.531, ηD ≈ 0.572) as indicated on the graph. Crystalline
domains are indicated with different colors. Fluid-like particles are displayed with a smaller
diameter and are coloured light blue.
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Figure 2.6: Crystallization process of 2000 hard spheres in a hard spherical confinement that
slowly shrinks in time forming a Mackay icosahedral cluster. Fraction of crystalline particles in
the surface layer, the first three sub-layers and the interior as a function of the packing fraction
η.
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2.4 Comparison with experiments

The behaviour of colloidal spheres in spherical confinement has also been studied exper-
imentally in our group [104, 105]. Cobalt iron oxide nanoparticles with a core diameter
of 6.0± 0.29 nm (9 nm effective diameter due to interdigitating oleic acid ligands and an
effective polydispersity of 3.2 %) were synthesized [106] and dispersed in a suitable (apo-
lar) solvent. This dispersion was emulsified into an oil-in-water emulsion. Subsequently,
the evaporation of the solvent in the suspended emulsion droplets led to a slow increase
in the packing fraction of the nanoparticles in the droplets, which eventually caused crys-
tallization of the nanoparticles. The same process was used for fluorescently labelled
micron-sized core-shell silica colloids [107], with a diameter of 1.32 ± 0.039 µm (and a
polydispersity of 1.7 %), as well as for core-shell semiconductor nanoparticles with a core
diameter of 12.4 ± 1.0 nm (14.5 nm effective and an effective polydispersity of 6.9 %).
The colloids were dispersed in a water-in-oil emulsion instead of an oil-in-water emulsion.
In all cases, the evaporation times were much longer than the diffusional equilibration
time of the colloidal systems. Examples of the resulting self-assembled clusters, also de-
noted as “supraparticles”, are shown in Fig. 2.7(a)-(b)-(c). Remarkably, we observe three
different types of crystalline packings depending on the cluster size, in analogy with the
simulation results. In particular, Fig. 2.7(a) shows a 105 nm diameter supraparticle that
exhibits Mackay icosahedral symmetry, analogous to the clusters of gold nanoparticles
formed by a similar process in Ref. [86]. For larger supraparticles, the surface resembles
the (anti-Mackay) rhombicosidodecahedral geometry, as shown in Fig. 2.7(b), where a
216 nm supraparticle is depicted. Anti-Mackay icosahedra were also found for instance
in clusters of argon [108] and lead [82] atoms, as well as in clusters of gold nanoparticles
[86]. Finally, for sufficiently large cluster sizes, the supraparticles consist of a single FCC
domain of nanoparticles. Fig. 2.7(c) shows an example of such a non-icosahedral FCC
supraparticle with a diameter of 734 nm. In this case the surface presents the typical step
edges of an FCC crystal confined to a sphere.

To study the size dependence of the cluster symmetry in more detail, 121 supraparticles
containing between approximately 430 and 500000 nanoparticles (with a resulting supra-
particle diameter between 75 nm and 785 nm) were examined. The cluster structure
was determined from the secondary electron scanning transmission electron microscopy
(SE-STEM) images of the particles at the surface. In the estimation of the number of
nanoparticles, it was assumed that the volume fraction within each supraparticle corre-
sponded to that of hard spheres at close packing (η ≈ 0.74). As shown in Fig. 2.7(d), the
transition from a Mackay icosahedron to an anti-Mackay rhombicosidodecahedron was
found to be between 1000 and 3000 nanoparticles per supraparticle, and the transition
to purely FCC ordering occurred between 25000 and 90000 nanoparticles. Clusters with
more than 90000 nanoparticles exhibited solely FCC ordering. The same three structures
were found for micron-sized colloids and the core-shell semiconductor nanoparticles. The
transitions from Mackay to anti-Mackay to FCC ordering found by computer simulations
approximately matched the ones observed in the experimental systems.

Furthermore, in order to confirm that the internal structure of our clusters corre-
sponds to (anti-)Mackay icosahedra, the 3D-coordinates of the individual particles in sev-
eral clusters were obtained. In particular the nanoparticles positions were extracted from
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(d)

Figure 2.7: (a)-(b)-(c) Secondary electron scanning transmission electron microscopy (SE-
STEM) images of typical supraparticles containing cobalt iron oxide nanoparticles. (a) Supra-
particle with a diameter of 105 nm with Mackay icosahedral symmetry as indicated by the
thin lines. (b) 216 nm supraparticle with anti-Mackay rhombicosidodecahedral structure. (c)
734 nm supraparticle consisting of a single face-centered-cubic (FCC) crystal domain. Inset:
a magnified view of the step edges of the FCC supraparticle. All scale bars are 50 nm. (d)
Size dependence of the cluster structure. Structural transition from a Mackay icosahedron (Ico)
to an anti-Mackay rhombicosidodecahedron (Rhomb) to a face-centered-cubic (FCC) cluster as
observed for supraparticles consisting of nanoparticles. The fraction of structures, based on 121
supraparticles, is plotted as a function of the number of nanoparticles per supraparticle. 14
icosahedra, 63 rhombicosidodecahedra and 44 FCC clusters were observed.
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electron tomography images [109], and the colloids positions from confocal microscopy im-
ages [110], using particle tracking software. Figure 2.8 shows the structure of typical clus-
ters displaying icosahedral symmetry formed from both nanoparticles and colloids, with
different colors indicating different crystal domains as identified by a bond-orientational
order parameter [75]. The characteristic five-fold symmetries of Mackay icosahedra are
clearly visible in the interior of all clusters (top row of Fig. 2.8). The larger supraparti-
cles additionally showed anti-Mackay icosahedral surface terminations (bottom row of
Fig. 2.8). Note that the assemblies made from the colloids resulted in only partially or-
dered clusters, where roughly half of the cluster resembled a Mackay or an anti-Mackay
icosahedron, and the other half consisted of disordered colloidal particles. This was ob-
served in all the colloidal clusters examined and it is almost certainly due to gravitational
sedimentation of the colloids within their emulsion droplets, as well as the sedimentation
and deformation of the droplets themselves. Typical configurations obtained from sim-
ulations are also shown for comparison in Fig. 2.8. The clear emergence of icosahedral
symmetry in these fairly different experimental systems and the agreement with computer
simulations of hard spheres strongly indicates that this behaviour is not interaction spe-
cific, and confirm that the formation of icosahedral clusters can be purely entropy-driven.
Finally, we notice that simulations with (slightly) softer boundaries capture better the
order of the experimental cluster surface, consistently with the fact that some degree
of softness in the confining cavity is expected, but this is not crucial for the internal
icosahedral order.
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Figure 2.8: Core (top) and the surface termination (bottom) of large icosahedral supraparti-
cles resulting from the self-assembly of spherically confined colloidal spheres. The first column
depicts models of the corresponding polyhedra and their associated ideal sphere packings. The
other columns contain typical examples of clusters in (from left to right) experimental sys-
tems of nanoparticles (N ≈ 12000), experimental systems of micron-sized colloids (N ≈ 3000),
and simulations of hard spheres (N = 6000). Note that in the top row, particles belonging
to the outer layers are plotted transparent so that the core, that displays Mackay icosahedral
symmetry, is readily visible, and the crystalline domains are indicated by different colors. In
the bottom row, the particles are colored as a guide to the eye to highlight the anti-Mackay
rhombicosidodecahedral symmetry of the clusters.
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2.5 Thermodynamic stability of icosahedral clusters
To examine the thermodynamic stability of the icosahedral clusters, we perform free-
energy calculations [97] on all the structures that were observed in experiments and sim-
ulations, i.e., FCC and Mackay icosahedral clusters. We use a 3-step thermodynamic
integration method proposed by Schilling and Schmid [97] and described in Sec. 2.2.2.
In particular, this method allows us to calculate the free-energy difference between our
system, e.g. spherically confined hard spheres, and a reference system for which the free
energy is known exactly. The reference system we use consists of non-interacting particles
attached, via a linear well potential, to lattice sites. The lattice sites are taken from
representative configurations of the system featuring the desired cluster symmetry, see
Fig. 2.9. To create these configurations, we first compress a system with a fixed number
of particles to the desired volume starting from a configuration that displays the cho-
sen symmetry. In a second stage, simulations at fixed volume were performed to evolve
the system. We notice that also in almost ideal configuration not all particles display
crystalline order, and defects in the structures can affect the final free energy. Therefore
an accurate calculation of the absolute free-energy for icosahedral and FCC clusters is
extremely challenging. To obtain a reliable error on the final value 5 independent but
equivalent configurations were taken into account.

Figure 2.9: Examples of reference configurations for the free-energy calculations. Crystalline
domains are indicated with different colors. Light blue particles represent fluid-like particles.
Configurations were obtained by first placing particles in the desired lattice at a given packing
fraction and then by letting the system evolves through simulations by keeping the volume fixed.

We compare the free energy of the two types of clusters (ico-like and fcc-like) containing
between 1500 and 4000 particles. We find the icosahedral cluster to be more stable than
FCC for packing fractions close to melting with free-energy differences of 0.03± 0.01 kBT
per particle (see Table 2.1). Hence, we conclude that the presence of icosahedral ordering
observed is purely entropy-driven, and is not simply a kinetic, but rather a genuine equi-
librium effect which explains the high reproducibility of the icosahedral clusters in both
simulations and experiments. In addition, we remark that the free-energy differences due
to entropy as reported in Table 2.1 is of the same order as the potential-energy difference
between icosahedral and FCC Lennard-Jones clusters [85]. Our results thus show that
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entropy could play an important role in determining the cluster structure even in cases
where the clusters are stabilized by energetic interactions.

N η ∆F = FFCC − Fico [kBT/N ]
1500 0.551 0.026 ± 0.020
1500 0.571 0.036 ± 0.012
3000 0.554 0.036 ± 0.006
4000 0.537 0.030 ± 0.006
4000 0.558 0.038 ± 0.009
4000 0.572 0.034 ± 0.007

Table 2.1: Free-energy difference between FCC-like and icosahedral-like arrangements of N
hard spheres confined in a hard spherical cavity. Clusters with a global icosahedral symmetry
are thermodynamically more stable than FCC clusters for the cluster sizes and packing fractions
that are reported here.

Furthermore, we note that even for small clusters the FCC structure should become
stable for sufficiently high densities as the maximum packing fraction of icosahedral clus-
ters is η ≈ 0.69, which is significantly lower than that of a close-packed FCC cluster [81].
This has been also confirmed by repeating the free-energy calculations for the two differ-
ent structures at higher packing fraction. Some results are reported in Fig. 2.10, together
with a tentative state diagram of hard spheres under spherical confinement based on the
following observations. Our free-energy calculations reveal a stable region for the icosa-
hedral clusters in the state diagram. We observe both in experiments and simulations
a Mackay to anti-Mackay structural transition upon increasing the number of particles.
In the limit of N → ∞, the system reduces to a bulk system of hard spheres, for which
the phase behaviour is well-known. The maximum packing fraction of hard spheres in a
spherical cavity depends in a non-trivial way on the total number of particles and is al-
ways smaller than the closest-packing in bulk. Based on these (very limited) observations
(that also ruled out the possibility of other stable structures) we "sketch" in Fig. 2.10(b)
a tentative state diagram of hard spheres in spherical confinement.
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Figure 2.10: (a) Stability of FCC (red squares) and icosahedral (black circles) clusters for N
hard spheres at packing fraction η confined within a hard spherical cavity obtained by free-energy
calculations. (b) Tentative state diagram of hard spheres in a spherical confinement.

2.6 Outlook

From short-ranged to longer-ranged confinement

In summary, we have shown that the experimental behaviour of (some) evaporating
droplets is well captured by our simple model, and that the interaction between particles
and interface (modelled either as hard-core interaction or as a short-range interaction)
does not qualitatively change the structures formed. However, we expect that in different
experiments different interactions between particles and interface could lead to a qualita-
tively different structural organization in the supraparticles. To explore this possibility,
we perform EDMD simulations of hard spheres within a shrinking spherical cavity inter-
acting via a longer-ranged potential. We report two examples. In Fig. 2.11(a), we show
the final cluster for N = 4000 hard spheres interacting with the spherical interface via
a truly long-range repulsive potential Up−w(r) ∝ 1/|R − r| that acts until the center of
the cavity (of radius R). In this case, we observe that the nucleation does not start at
the surface, i.e., heterogeneous nucleation, but in the middle of the cavity, i.e., homoge-
neous nucleation as what happens in the bulk. Moreover, the final crystalline structure
does not contain any wedge-shaped domains but striped ones that span the entire cluster.
In Fig. 2.11(b), we show the final cluster for a much smaller system (N = 750) and a
“short-ranged” particle-interface potential Up−w(r) ∝ 1/|r − R|2, as previously, but with
interaction range rsoft = 3σ that almost reach the center of the cavity for this system
size. In this case, the five-fold symmetry is still evident but the overall structure does not
resemble an icosahedron but a pentagonal prism. We thus conclude that the structural
behaviour of hard spheres in spherical confinement can be changed drastically by the
interaction range of the particle-interface potential.
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(a) (b)

Figure 2.11: (a) Final cluster configuration of N = 4000 hard spheres obtained by shrinking a
spherical cavity with a long-ranged repulsive wall-particle interaction potential βUp−w ∝ 1/r and
compression rate v = 10−4σ/τ . Different crystalline domains are depicted with different colors.
Only particles belonging to crystal domains are shown. Stripes of crystalline domains span the
entire cluster. (b) Final cluster configuration of N = 750 hard spheres obtained by shrinking a
spherical cavity with a wall-particle interaction potential Up−w ∝ |r−R|2 and interaction range
rsoft = 3σ, which is of the order of the radius of the final cluster. Different crystalline domains
are denoted by different colors. Only particles belonging to crystal domains are shown. The
structure resembles a pentagonal prism.

From pure hard spheres to binary mixtures of spheres

Binary mixtures of (semiconductor) nanoparticles can form various types of structures,
such as binary superlattice structures [111], core-shell supraparticles and Janus supra-
particles, when confined in a shrinking emulsion droplet [112]. Clearly, the corresponding
parameter space increases drastically, as not only the total number of particles N but also
the composition NL/N (with NL the number of large spheres) and size ratio σS/σL (with
σL the diameter of the large spheres and σS the diameter of the small spheres) play a cru-
cial role. Furthermore, only under particular conditions semiconductor nanoparticles can
be effectively described as hard spheres [111], and (subtle) changes, as different surface
coverages of the ligands on the particles, can introduce attractive interactions. Therefore,
a systematic study of all these effects is barely feasible at present.
Nevertheless, we perform several simulations on binary mixtures of hard spheres start-
ing from a dilute state and slowly shrinking the hard spherical cavity. However, we
never found a large degree of crystallinity in the resulting structures in contrast to the
single-component case, which is perhaps not surprising as the spontaneous formation of
binary crystals is notoriously difficult to observe also in bulk simulations. For instance,
when we confine an equimolar mixture of large and small hard spheres with size ratio
σS/σL = 0.333 and a total number of particles N = 4000 in a spherical cavity, only a very
small part of the surface displays crystalline order, as shown in Fig. 2.12(a). However,
the particles in the core of the cluster do not show any crystalline order. The stable
bulk crystal structure for binary hard-sphere mixtures with a size ratio σS/σL = 0.3 is
either the interstitial solid solution with the pure FCC crystal of large spheres and the
NaCl structure the two limiting cases, or the LS6 crystal structure [113]. It is interesting
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to investigate under which conditions an interstitial solid solution with the large spheres
arranged in an icosahedral cluster can become stable. On the other hand, for binary
hard-sphere systems with a less-asymmetric size ratio, for example σS/σL = 0.75 and a
total number of particles N = 2000, we only observe completely disordered clusters as
shown in Fig. 2.12(b). This also raises the question if the binary crystal structures that
are stable in the bulk are compatible with a (strong) spherical confinement. Indeed, one
effect that the spherical confinement could induce is a radial dependence of the system
composition.
An extreme limit of that would be the formation of a core-shell supraparticle, in which
one of the species is prevalently close to the spherical interface while the other species
resides in the core of the cavity. For highly asymmetric binary hard-sphere mixtures, it is
tempting to speculate on the basis of Fig. 2.12(a) that the small spheres prefer to be close
to the surface, but this does not seem the case for less asymmetric mixtures. We therefore
expect that a core-shell cluster can only be formed due to a demixing transition of the two
species, e.g., in the case of highly asymmetric binary hard-sphere mixtures [114], or due
to enthalpic interactions that favor demixing. In order to examine this, we study a binary
mixture of spheres with a size ratio of σS/σL = 0.75, composition NL/N = 0.2, and a
total number of particles N = 2000 in a spherical cavity with hard-sphere interactions
between the small particles, between small and large spheres, hard-wall interactions with
both particle species, but an attractive square-well interaction between the large hard
spheres with a interaction range 1.4 σL and a well depth of 1kBT . We clearly observe the
formation of a core-shell supraparticle as shown in Fig. 2.12(c), in which the large particles
tend to maximize the number of bonds with the other large spheres in order to minimize
the energy, and hence they reside in the middle of the core-shell supraparticle. Clearly, by
varying the particle-interface interaction it is also possible to modify the structure of the
supraparticle. In Fig. 2.12(d), we show that in the case of a binary hard-sphere mixture
with only a very short-ranged attraction between the large hard spheres and the spherical
interface (square-well potential with a depth of 1kBT and an interaction range of 0.5σL),
the large spheres tend to occupy the surface. However, the outer single layer of large
particles cannot act as a template for the formation of more layers and the thickness of
the shell of large particles is therefore directly determined by the interaction range of the
particle-interface potential.

In conclusion, we show that it is not trivial to find the right conditions for the formation
of a supraparticle with a binary superlattice structure using a binary mixture of spheres in
a spherical confinement. In addition, we find that a demixing transition due to enthalpic
interaction can lead to the formation of core-shell supraparticles in spherical confinement.
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Figure 2.12: (a) Binary mixture of hard spheres with a size ratio σS/σL = 0.333, composition
NL/N = 0.25, and N = 4000, confined in a slowly shrinking hard spherical cavity. An outside
view (a1) and a cut through the middle (a2) of the final cluster are shown. (b) Binary mixture of
hard spheres with a size ratio σS/σL = 0.75, composition NL/N = 0.2, and N = 2000, confined
in a slowly shrinking hard spherical cavity. An outside view (b1) and a cut through the middle
(b2) of the final cluster are shown. (c) Binary mixture of spherical particles (σS/σL = 0.75,
NL/N = 0.2, N = 2000) in which the interaction between the large particles is attractive
(square-well with interaction range 1.4σL and depth 1kBT ) while the other interactions (large-
small, small-small, particle-wall) are hard-core. An outside view (c1) and a cut through the
middle (c2) of the final cluster are shown. (d) Binary mixture of hard spheres with a size ratio
σS/σL = 0.75, composition NL/N = 0.25, and N = 2000, confined in a shrinking cavity that
has a short-range (rsoft = 0.5σL) square-well (depth 1kBT ) attractive interaction with the large
particles (while the potential between the small particles and the wall is hard-core). An outside
view (d1) and a cut through the middle (d2) of the final cluster are shown.



34 Chapter 2

2.7 Conclusions
In conclusion, we have shown that entropy and spherical confinement alone are sufficient
for the formation of stable icosahedral clusters. Our simulations clearly demonstrate
that energetic interactions between the particles are not required for icosahedral order.
Interestingly, this also provides new insights regarding the results reported in Ref. [86]:
while the authors of that study attributed the formation of icosahedral clusters of gold
nanoparticles to energetic interactions, it is now clear that entropic contributions should
not be overlooked. Additionally, as already argued in Ref. [86], we clearly find that the
interaction between the particles and the interface, at least for the experiments described
in Sec. 2.4, does not appear to play a crucial role in this self-assembly process. In fact,
our simulations show similar results regardless of whether the interface-particle interaction
is attractive, hard, or repulsive. Our results also provide an interesting contrast to the
icosahedral order observed in much smaller (N = 13) clusters of particles observed by
Manoharan et al. [115]. In such systems, it was argued that the structure of the clusters
was mainly determined by capillary forces during the final stages of the evaporation
process, resulting in clusters that minimized the second moment of the mass distribution
[116]. Here, we find that the spherical confinement provided by the surface tension of
emulsion droplets is sufficient for the formation of large icosahedral clusters that minimize
the free energy.

The fact that spherical confinement can stabilize structures that are fully incommen-
surate with that of the bulk, suggests new ways of designing small crystals with unusual
symmetries that may be beneficial for optical or other applications. This opens up a new
avenue for the self-assembly of novel structures by combining the vast array of currently
available colloidal building blocks (e.g. rods, platelets, dumbbells), and mixtures thereof.
Furthermore, the resulting supraparticles themselves can in turn self-assemble [117], re-
sulting in hierarchical structures with new functionalities added at different length scales,
e.g. with plasmonic properties at the nanoscale and photonic properties at the micron-
scale.

It remains for future work to carefully analyse to what extent the entropy contributes
in stabilizing clusters of particles with long-ranged attractions, if it is possible to increase
the size range of equilibrium icosahedral supraparticles using particles with long-range
interactions, and how the present study can be extended to binary systems. We already
briefly showed that computer simulations can be used to explore these new directions and
guide experiments, that are currently possible to perform.
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Hard spherocylinders: the
exemplar case of liquid crystals

formed by colloidal rods

This chapter is dedicated to the study of liquid crystal phases formed by anisotropic hard
particles with a spherocylindrical shape. We use this system as an example to introduce
Onsager theory that will be used throughout this thesis. Furthermore, we introduce a
set of global and local order parameters to describe liquid crystalline order that will be
used in this and in the following chapters both on simulation and experimental data.
The ultimate goal of this chapter is to map the experimental behaviour of colloidal silica
rods on that of hard spherocylinders. To achieve this, two important aspects need to be
considered: the determination of the effective dimensions of the experimental particles
and the effect of size polydispersity on the phase behaviour. For the latter, we perform
computer simulations both in bulk and under gravity and see how the equation of state
and the order parameters are affected by different size distributions with a small degree
of polydispersity. After estimating the particle effective dimensions by mapping the jump
of the nematic order parameter at the transition and the equation of state, we compare
our simulation results with experiments. Qualitative agreement is obtained for the overall
phase behaviour and quantitative agreement for packing fractions up to 40%.
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3.1 Introduction
In this section, we focus on a simple model for anisotropic particles, namely hard sphe-
rocylinders, which form liquid crystal phases (see Sec. 1.3). The use of hard particles to
study the liquid crystal behaviour has been quite extensive in theory and simulations [52].
Systems of hard ellipsoids were the first studied in 1984 by computer simulations to show a
purely entropy-driven isotropic-nematic transition [31], as already theoretically predicted
by Onsager in 1949 [30]. However, the drawback of such a model is that a smectic phase
of hard ellipsoids is not stable. Hard spherocylinders have been introduced and studied
by computer simulations in 1988 to overcome this limitation [32]. This study showed that
smectic phases, as the ones that were observed in several colloidal systems [39, 44], can
be stabilized by entropy alone. Since then, hard spherocylinders have been widely used in
computer simulations, not only to study their liquid crystal phase behaviour [118, 119] but
also, for example, to unveil the kinetic pathways and the nucleation process of nematic,
smectic and crystal phases [120, 121], the particle dynamics in smectic phases [122], and
as a model system to study the interfacial and wetting behaviour of liquid crystals at
surfaces [123].

Figure 3.1: Phase diagram of hard spherocylinders (cartoon in the inset) in the packing
fraction η - aspect ratio L/D plane, adapted from Bolhuis and Frenkel [118]. Shown are the
regions where isotropic (I), nematic (N), smectic (Sm), crystal (X) and plastic crystal (P) phases
are stable. Representative snapshots for I, N and Sm obtained from computer simulations are
shown on the right. Solid line at the top denotes the maximum packing fraction η of the rods
(close packing).

The sequence of thermodynamically stable phases in systems of hard spherocylinders
depends on the aspect ratio L/D (see Fig. 3.1 adapted from Ref. [118]). For all L/D
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at small packing fraction η an isotropic phase (I) with no long-range order neither in
particle positions nor in particle orientations, is present. For very large η, a crystal phase
(X) with long-range positional and orientational order is formed. The stacking (ABC
or AAA) of the layers of rods in this phase depends on L/D [118]. At intermediate
densities, so called mesophases can be stabilized. For short rods, plastic crystal phases
(P) with positional order but no orientational order, are formed. For sufficiently long
rods (L/D > 3.1) a smectic-A phase (Sm) occurs and if L/D > 3.7 also a nematic phase
(N) is stabilized between the I and Sm phase. In this chapter, we first introduce Onsager
theory to explain the I-N transition (Sec. 3.2) and describe theoretically how a uniaxial
nematic phase can be elastically deformed (Sec. 3.3). These aspects will be relevant for
the remainder of the thesis. In Sec. 3.4 we introduce a set of order parameters that will
be used to distinguish the different thermodynamic phases. In Sec. 3.5 we calculate these
order parameters for bulk configurations obtained by computer simulations, and we also
study the effect of a small degree of size polydispersity on the liquid-crystal behaviour.
In Sec. 3.6 we describe how sedimentation can be used to probe the phase behaviour and
thermodynamics of a system over a wide range of parameters in just a single simulation
and we present computer simulation results of polydisperse systems. Finally, in Sec. 3.7
we apply the order parameter analysis of an equilibrium sedimentation profile of colloidal
silica rods and we compare the equation of state as obtained from simulations with the
experimental data. We end with some concluding remarks in Sec. 3.8.

3.2 Revisiting Onsager theory: isotropic-nematic tran-
sition

In this section, we revisit Onsager theory [30] within the framework of classical density
functional theory (DFT) [59], in the simple case of anisotropic rod-like colloids of diameter
D and length L (see inset of Fig. 3.1).

The center-of-mass position of a particle with cylindrical symmetry can be described
by a three-dimensional vector r = (x, y, z) ∈ V , with V the volume of the system, whereas
a unit vector û = (sin θ cosφ, sin θ sinφ, cos θ) represents the particle orientation. Here
θ ∈ [0, π) and φ ∈ [0, 2π) are the polar and the azimuthal angle with respect to n̂, the
nematic director, that identifies the direction along which the particles are on averaged
aligned (see inset in Fig. 3.2(a)). The single-particle density ρ(r, û) of a generic phase
depends on the single-particle degrees of freedom and satisfies the normalization condition∫

V
dr
∮
dû ρ(r, û) = N, (3.1)

where N is the total number of particles and the rotation-invariant measure is dû =
dφ d cos θ. The free energy is a functional of the single-particle density and can be written
as a sum of ideal and excess contributions, F [ρ(r, û)] = Fid[ρ] + Fex[ρ]. The ideal term
reads

βFid[ρ] =
∫
V
dr
∮
dû ρ(r, û) [logVρ(r, û)− 1 ], (3.2)

where β = 1/kBT , with kB the Boltzmann constant and T the temperature, and V is an
(irrelevant) constant thermal volume. For the excess part we consider the second-order
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truncation of the virial expansion (second-virial approximation):

βFex[ρ] = −1
2

∫
V
dr dr′

∮
dû dû′f(r− r′, û, û′)ρ(r, û)ρ(r′, û′), (3.3)

where the interactions between particles are contained in the Mayer function

f(r− r′, û, û′) = e−βU(r−r′,û,û′) − 1, (3.4)

where U(r− r′, û, û′) is the pair potential.
In a nematic phase, the positions of the particles are homogeneously distributed

throughout the system and the single-particle density can be rewritten as ρ(r, û) = nψ(û),
where n = N/V is the average number density and ψ(û) is the orientation distribution
function (ODF). Since the nematic director is the symmetry axis for global rotations,
the ODF is independent of the azimuthal angle φ and depends only on the polar angle:
ψ(û) = ψ(θ). Inserting this into F and integrating out the spatial and azimuthal degrees
of freedom we obtain

βF [ψ]
V

= n(logVn− 1) + 2πn
∫ 1

−1
d cos θ ψ(θ) logψ(θ)

+ n2

2

∫
d cos θ d cos θ′E(θ, θ′)ψ(θ)ψ(θ′), (3.5)

where we identify the three terms associated to translational entropy, orientational entropy
and excess contributions related to the excluded volume

E(θ, θ′) = −
∫
dφ dφ′ dr f(r, û, û′). (3.6)

Eq. (3.5) is an exact expression for the bulk free energy of the nematic phase of infinitely
long (aspect ratio L/D → ∞) hard rods, as derived by Onsager [30]. Subsequently,
Parsons and Lee [124, 125] used the same approach to describe nematics of rods with
finite L/D, by mapping the system free energy to that of hard spheres at the same
packing fraction η = nv0, with v0 = π

4LD
2 + π

6D
3 being the single-particle volume. This

correction introduces a density-dependent prefactor

G(η) =
(1− 3

4η)
(1− η)2 (3.7)

in front of Fex. Following the DFT recipe [59], once the free-energy functional is defined,
the next step consists of minimizing F [ψ] with respect to ψ(θ), subject to the normaliza-
tion condition

∫
dûψ(û) = 1. In the case of (Parsons-Lee-)Onsager theory, the resulting

non-linear equation for ψ(θ) reads:

ψ(θ) = 1
Z

exp
(
−nG(η)

∫ 1

−1
d cos θ′ E(θ, θ′)

2π ψ(θ′)
)
, (3.8)

where Z is a normalization constant such that 2π
∫ π

0 dθ sin θψ(θ) = 1. Eq. (3.8) can be
solved self-consistently at fixed n and E(θ, θ′). An example on how to solve it numerically
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by using a discrete grid for the polar angle θ in the case of hard rods, can be found
in Ref. [126]. The resulting (equilibrium) ODF can be used to calculate all relevant
thermodynamic quantities (e.g. free energy, pressure, chemical potential) that can be
used to determine phase boundaries, and to calculate structural properties such as the
nematic order parameter:

S =
∫
dθP2(cos θ)ψ(θ) =

∫
dθ
[3
2 cos2(θ)− 1

2

]
ψ(θ) (3.9)

where P2 is the second-order Legendre polynomial.
In Fig. 3.2(a), we plot the orientation distribution function ψ(θ) obtained by solving

Onsager theory with a Parsons-Lee correction for spherocylinders with L/D = 5 and
at varying packing fractions η ranging from η = 0.40 to η = 0.60 (in steps of 0.01).
We clearly observe that the ODFs become more peaked at higher η. By equating the
chemical potential and the pressure of the isotropic and nematic phase, we find that the
I-N coexistence region is given by η ∈ [0.4−0.42] for L/D = 5. We plot the nematic order
parameter S as a function of η in Fig. 3.2(b) for varying aspect ratios, from L/D = 4.0
to L/D = 7.0. The isotropic-nematic transition, as displayed by the jump in the nematic
order parameter value S, shifts to higher η upon increasing L/D. In chapters 5, 6, 7, 8
we will show that Onsager theory can be extended to different particle models, where the
excluded-volume term can be calculated using Monte Carlo integrations and a suitable
overlap algorithm for the particle shapes.
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Figure 3.2: (a) Orientation distribution functions (ODFs) ψ(θ) obtained by solving numerically
Onsager theory (with Parsons-Lee correction) for hard spherocylinders with L/D = 5 at different
packing fractions ranging from η = 0.4 to η = 0.6. θ is the angle between particle orientation
and the nematic director n, as indicated in the cartoons. Upon increasing the packing fraction
the ODFs become more peaked. (b) Nematic order parameter S (see Eq. 3.9) as a function of
packing fraction η for different particle aspect ratio L/D. The isotropic-nematic transition, as
witnessed by the jump in the nematic order parameter S, shifts towards larger η upon increasing
L/D.
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3.3 Elastic deformations in a uniaxial nematic phase
In a continuum description of a bulk uniaxial nematic phase [127], the ground state is
represented by a uniform nematic director field n̂(r). However, there are three possible
elastic deformations that can occur (because of thermal fluctuations or external fields),
namely bend, twist and splay. A schematic representation of how n̂ changes upon these
deformations is depicted in Fig. 3.3. The free energy cost associated to these deformations
reads [127]:

Fd = 1
2

∫
drK1(∇ · n̂(r))2 +K2(n̂(r) · (∇× n̂(r)))2 +K3(n̂(r)× (∇× n̂(r)))2 (3.10)

where K1 (bend), K2 (twist) and K3 (splay) are called (Frank) elastic constants. These
quantities can be measured in experiments or calculated for a particular particle model by
using a suitable microscopic theory [128–131] or by using computer simulations [132, 133].
Assuming n̂ ‖ ẑ, we can write general expressions for the calculations of the elastic
constants within a DFT framework [128]:

K1 = −n
2

2β

∫
dr dû dû′ c(2)(r, û, û′)ψ̇(θ)ψ̇(θ′)x2uxu

′
x (3.11)

K2 = −n
2

2β

∫
dr dû dû′ c(2)(r, û, û′)ψ̇(θ)ψ̇(θ′)x2uyu

′
y (3.12)

K3 = −n
2

2β

∫
dr dû dû′ c(2)(r, û, û′)ψ̇(θ)ψ̇(θ′)z2uxu

′
x (3.13)

where n is the number density, β = 1/kBT , c(2)(r, û, û′) is the function describing the di-
rect correlation between two particles [134], and ψ̇ is the derivative of the ODF. Depending
on the theoretical approximations, general relations can be obtained. For example within
mean-field theory [135] for rod-like particles, one obtains K3 > K1 > K2. Within the
second-virial approximation, c(2)(r, û, û′) is replaced by the Mayer function f(r, û, û′),
defined in Eq. 3.4. By employing the derivative of the ODF obtained from the procedure
described in the previous section, the elastic constants Ki can be computed numerically
by performing Monte Carlo integration. To this end, we generate typically ≥ 1010 ran-
dom pairs of particles, i.e., random positions and orientations for the two particles, and
we calculate the quantities appearing in the integrands of Eqs. (3.11)-(3.12)-(3.13). In
Fig. 3.3, we show the three elastic constants as a function of packing fraction for hard
spherocylinders with aspect ratio L/D = 5 together with some literature results. We see
that our results are consistent with the literature, in particular the density-dependence is
well captured. Quantitatively, our approach resembles most the one from Poniewierski et
al. [128], that is based on a weighted-density functional and represents an improvement
over the second-virial theory proposed by Lee [130]. Identifying the most suitable DFT
to describe the elasticity of the nematic phase of hard spherocylinders and a quantitative
comparison with more recent computer simulations, are still topics of research [131].

The MC integration approach described here will also be extensively used in the re-
mainder of this thesis, for example when the second-virial DFT presented in the previous
section will be extended to cholesteric phases (Chap. 6). In that case, we consider chiral
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particles for which the nematic ground state is a twisted state and K2 is related to the
cholesteric pitch. In Sec. 8.3 we explore the possibility of a negative twist elastic con-
stant K2, implying that the uniaxial nematic phase is metastable with respect to a twist
deformation.
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Figure 3.3: Elastic constants Ki for a nematic phase of hard spherocylinders with aspect ratio
L/D = 5. K1 (circles) is the elastic constant associated to a bend deformation, K2 (square) to
a twist deformation, and K3 (diamond) to a splay deformation (see cartoons on the side). Black
solid curves (and symbols) represent the results using the method of this section (second-virial
DFT combined with MC integration). Red dashed lines are results from Poniewierski et al. [128]
where a DFT based on a weighted-density approximation was used. Blue dotted lines are earlier
results from Lee [130] within a second-virial DFT (K3 is not shown as the values are beyond
the scale of this figure). Yellow symbols are results from earlier computer simulations (1988) of
small systems (N = 576) of hard spherocylinders by Allen and Frenkel [132].
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3.4 Order parameters for colloidal rods
To distinguish between the isotropic and the various liquid crystalline phases, we em-
ploy global order parameters as well as order parameters that are defined locally. As the
naming suggests, global order parameters quantify the long-range nature of some kind of
order that develops in the system. The order can also be measured without using direct
(real-space) information on the particle positions and orientations, e.g. by performing
scattering experiments. On the other hand, local order parameters quantify the order in
the local environment of a given particle, i.e., it depends on positions and orientations
of the neighbouring particles. A local analysis is also relevant, for example, to identify
defects in a given structure [136] or to study the nucleation of a given phase [137]. In
Sec. 2.2.3 we showed an example of a local order parameter for spherical particles. In
this section, we introduce a set of order parameters for colloidal rods that we will use
throughout this thesis. It is worth to stress that an order parameter analysis can be per-
formed both on simulation and experimental data of colloidal systems, in the case that
the particles can be imaged and the positions and orientations can be tracked.
The well-known global nematic order parameter (the same as defined in Eq. 3.9) is ob-
tained by diagonalizing the nematic order parameter tensor

Qαβ = 1
N

N∑
i=1

[
3
2uiαuiβ −

δαβ
2

]
, (3.14)

where uiα is the α-th component of the unit vector describing the orientation of the
long axis of rod i, N is the number of particles, and δαβ the Kronecker delta. The global
nematic order parameter S is defined as the largest eigenvalue of Q and the corresponding
eigenvector is the nematic director n. S ranges from −0.5 to 1. The error on S that arises
from the diagonalization of Q is on the order of 1/

√
N , yielding inaccurate results when

small systems are considered. In addition, we define as introduced in Ref. [120] the local
nematic order parameter Si of particle i as

Si = 1
ni

ni∑
j=1

[3
2(ui · uj)2 − 1

2

]
, (3.15)

with ni the number of neighbours of particle i, where two particles are considered neigh-
bours if ρij < ρcutij = 1.0D, with ρij the surface-to-surface distance. Si also ranges from
−0.5 (particle transverse to its neighbours) to 1 (perfect alignment). A cluster criterion
based on this order parameter has been successfully developed to study the nucleation in
simulated suspensions of colloidal hard rods [121].
The global smectic order can be probed by calculating the following order parame-
ter [35, 138–140]:

τ = max
l

∣∣∣∣∣∣
N∑
j=1

e2πirj ·n/l

∣∣∣∣∣∣ , (3.16)

where the value of l ∈ R that maximizes the above expression is identified as the layer
spacing d. However, when the number of particles considered is small or when the smectic
layers are highly fluctuating, the error associated to τ can be large. In particular, in case
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of confocal data, where the statistics is limited, we often observed that τ does not capture
well the smectic order in the system.
We therefore introduce a novel order parameter to quantify the local tendency of the
particles to form (single) smectic or crystalline layers and we use it as a local smectic
order parameter. We first calculate the shift hij of the center of mass of particle i with
respect to its neighbouring particles j projected on a common axis (we pick the main
orientation ui of particle i but another direction such as the local nematic director would
give similar results). We then normalize it and define:

∆i = 1− 1
mi

mi∑
j=1

hij
rcut

= 1− 1
mi

mi∑
j=1

rij · ui
rcut

, (3.17)

where rcut = (Li +Di)/2 and mi is the number of neighbours of particle i satisfying rij <
rcut, with rij the center-to-center distance between the rods. ∆i = 1 corresponds to the
orthogonality condition between rij and the common axis (in this case ui). However, such
a condition can be obtained both for perfectly aligned rods and in the case of transverse
order (Fig. 3.4). Notice that transverse rods are anyway expected in the smectic phase
due to thermal fluctuations but we want to consider them as defects in a perfectly layered
structure. In order to discriminate between these two configurations ∆i is then multiplied
by Si. In conclusion, we define

τi ≡ Si∆i (3.18)
to quantify the layer structure locally and we call it the local smectic order parameter.
Using τi we are able to distinguish (locally) between the smectic order (high values of τi)
from the isotropic, nematic, as well as columnar order for which we expect low values of τi.
Note that the neighbour definition in ∆i and τi is different and that the precise threshold
value of the cut-off distance yields some degree of arbitrariness in the use of these order
parameters to define the different phases. Furthermore, other approaches to define a local
smectic order parameter are in principle possible, for example by considering

τi
′ = max

l

∣∣∣∣∣∣
ni∑
j=1

e2πirij ·ui/l

∣∣∣∣∣∣ , (3.19)

with rij the center-to-center distance between particle i and its neighbours j, defined
as particles that have a minimum surface-to-surface distance ρij < 1.0D (as for Si).
However, to avoid misidentification a large number of neighbours ni are needed, otherwise
even particles in the isotropic phase could have a large value of such an order parameter.
When imposing this kind of threshold on the number of neighbours, we found similar
results as using τi ≡ Si∆i.

In order to distinguish the smectic-B and crystal phase from the smectic-A phase,
we have to quantify the local hexagonal order. To this end, we first calculate for each
particle i the local nematic director ni based on the set of neighbouring particles j with
a minimum surface-to-surface distance ρij < ρcutij = 1.0D, and we define the plane Pi
perpendicular to ni. The local hexagonal order is then quantified through the following
order parameter:

ψ6i =
∣∣∣∣∣∣ 1
n2D
i

n2D
i∑
j=1

exp(i6θij)
∣∣∣∣∣∣ , (3.20)
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N Sm

Figure 3.4: Schematic of the smectic local order parameter τi = Si · ∆i. By combining
the projected displacement between the rods center-of-mass hij and the tendency of alignment
(quantified by the local nematic order parameter Si), it is possible to quantify the tendency of
layering and therefore distinguish locally between smectic and nematic order.

with θij the angle between the center-to-center distance rij and the reference axis in the
plane Pi, and n2D

i the number of neighbouring particles with rij < 2.0D. A similar
approach has been used to identify stacking faults in sediments of hard spheres [141]. In
order to identify the hexagonal order in the case of Smectic-B or crystalline phases of
rod-like particles, we also multiply ψ6i by the local nematic order parameter:

hexi ≡ Siψ6i . (3.21)

We wish to remark that all of these criteria based on order parameters to distinguish
the different phases depend on the cut-off distance used for the identifications of the
neighbours. The cut-off distance should be optimized for the specific system (particle
shapes, pair interaction) and phenomenon (nucleation, interfacial behaviour, wetting).
The order parameters for anisotropic particles based on the local environment of a specific
particle can be then refined in many different ways, in analogy with the modifications made
to the bond orientational order parameters that describe the local symmetry of crystals
made of spherical particles [75, 142].
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3.5 Computer simulations
In this section we perform Monte Carlo (MC) simulations on bulk systems of hard sphe-
rocylinders with length L and diameter D, and compare our simulation results with
Onsager theory. In addition, we use these simulations to test our criteria based on local
and global order parameters to distinguish the liquid-crystalline phases. We perform MC
simulations in the NPT ensemble of thousands of spherocylinders and employ standard
periodic boundary conditions. Particles interact only via an excluded-volume potential:

U(rij) =
{
∞ dij(rij,ui,uj) < D
0 dij(rij,ui,uj) ≥ D

(3.22)

where dij(rij,ui,uj) is the shortest distance between particles i and j, calculated accord-
ing to Ref. [53]. We measure the averaged packing fraction η at fixed pressure P , and
present the equation of state for rods with L/D = 4.5 in Fig. 3.5(a) along with results
obtained from Onsager theory with the Parsons-Lee correction (see Sec. 3.2). For this
aspect ratio the isotropic-nematic (I-N) transition is weakly first order (the jump in den-
sity is barely visible), whereas the N-Sm transition (still first order) is more pronounced,
as expected [118, 119]. In general, Onsager-Parsons-Lee theory (that in this formulation
describes only the I-N transition) only slightly underestimates the packing fraction η at
which the transition occurs and a very good agreement is obtained for larger aspect ratios,
as can be observed from Fig. 3.5(b) where the global nematic order parameter S is also
plotted versus η. In addition, we test the local order parameters as introduced in Sec. 3.4
to identify the different liquid-crystal phases for varying particle aspect ratio. To this
end, we calculate the averaged (over all the particles in the system) local nematic 〈Si〉
and smectic 〈τi〉 order parameters for bulk configurations obtained at different packing
fraction η. We plot them together with the traditional global nematic S and smectic τ
order parameters in Fig. 3.5(c)-(d) for rods with L/D = 4.5 and L/D = 3.82, respectively.
We observe that the I-N transition is equally well captured by S and 〈Si〉, despite the
latter has a less abrupt jump. Analogously, the transition to the smectic phase is identi-
fied by a jump in τ and in 〈τi〉, where the latter changes more gradually at the transition.
In particular, for longer rods (L/D = 4.5, Fig. 3.5(c)) pre-smectic fluctuations, i.e., the
appearance and disappearance of small metastable smectic domains, are expected before
the Sm is thermodynamically stable. As a consequence, the local smectic order increases
before long-range order is established in the system, and this causes higher values for 〈τi〉
than τ before the N-Sm transition occurs. In case of L/D = 3.82 the region where the ne-
matic phase is expected to be stable is very narrow [118] and more simulation runs should
be performed at several pressures closer to the transition to observe the I-N and N-Sm
phase transitions separately, instead of a single I-Sm transition as observed in Fig. 3.5(d).
However, this does not affect our comments on the local order parameters.

It is also possible to measure the probability distribution of the local order parameters
by considering the values associated to the particles over several independent configu-
rations. In Fig. 3.6 we report the probability distributions for Si and τi in different
thermodynamic phases of rods with L/D = 4.5. The average values of such distributions
have been plotted before in Fig. 3.5(c) and the jumps in their values correspond to the
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Figure 3.5: (a) Equation of state (pressure P versus packing fraction η) obtained from Onsager
theory with Parsons-Lee (PL) correction (solid black line) and from MC-NPT bulk simulations
of hard spherocylinders with aspect ratio L/D = 4.5. (b) Global nematic order parameter S
versus packing fraction η obtained by theory (Eq. 3.9, solid lines) and simulations (symbols
and dashed lines) for different particle aspect ratio L/D. (c) Global nematic S, averaged local
nematic 〈Si〉, global smectic τ and averaged local smectic 〈τi〉 order parameters as a function
of packing fraction η obtained from MC-NPT simulations of hard spherocylinders with aspect
ratio L/D = 4.5 (d) Same order parameters for shorter rods L/D = 3.82.

different phase transitions. Indeed, also by observing the full distribution upon increasing
pressure/packing fraction we can clearly see the shift towards larger values. The prob-
ability distribution of the local nematic order parameter Si, as shown in Fig. 3.6(a), is
particularly broad close to the I-N transition (red and green curves), and becomes more
peaked when the nematic phase becomes more dense and eventually transforms into a
smectic phase. In the latter (see magenta curve), despite a very high peak at large values,
indicating a strong particle alignment, a left-shoulder is evident (broadening of the dis-
tribution at low values). Moreover, a small peak around τi = −0.5 (barely visible in the
graph) occurs, indicating the presence of rods with transverse orientations with respect
to the local alignment. Such transverse particles (see green particle in the bottom right
snapshot of Fig. 3.6(b)) have already been the focus of previous research [143]. Their
presence reduces the Si of the neighbouring particles and this contributes to the shoul-
der in the distribution of Si together with the less ordered particles that hop between the
smectic layers. The local smectic τi probability distribution (Fig. 3.6(c) and representative
snapshots in (d)) displays the same features but more smoothed out (compare magenta
curve in Fig. 3.6(a) and blue curve in Fig. 3.6(c)). Moreover, it captures well the increase
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in the smectic order since the distribution becomes more peaked and shifts towards higher
values upon increasing system density. We remark that τi could in principle distinguish
between smectic and columnar order, in contrast with Si.

Figure 3.6: (a) Probability distribution of the local nematic order parameter Si for rods
with L/D = 4.5 at different thermodynamic states. The pressure and the stable phase formed
are indicated in the legend. Data are averaged over hundreds of independent configurations
obtained by NPT -MC simulations. (b) Typical snapshots at different pressures as indicated
in the legend, and particles colored according to Si. (c) Probability distribution of the local
smectic order parameter τi obtained from NPT -MC simulations of rods with L/D = 4.5. (d)
Typical snapshots with particles colored according to τi.

We now focus on the effect of small size polydispersity in the system on the equation
of state and order parameters. We perform NPT -MC simulations starting from initial
configurations in which the rods have different lengths Li and diameters Di that are drawn
from a given particle size distribution. The size distribution does not change during the
simulations, or in other words the system composition is fixed. In addition to the standard
Monte Carlo moves (single-particle translations, rotations and changes in the volume of
the simulation box), also swap moves between particles (selecting randomly two particles
and switching their identities) have been implemented. However, for the bulk simulations
presented in this section, these moves are not relevant (they are important for simulations
on systems subjected to a gravitational field as presented in the next section). The degree
of size polydispersity δ (sometimes expressed in percentages) is defined as the relative
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standard deviation of a given distribution:

δx =

√
〈x2〉 − 〈x〉2

〈x〉
(3.23)

where x can be the particle diameter D or particle length L, and 〈.〉 denotes an average.
It is known that polydispersity can influence several phenomena typical of colloidal sys-
tems, such as equilibrium phase behaviour, nucleation, gelation, and glass transition, as
extensively studied in systems of spherical colloids [144–149]. The effects of polydisper-
sity on liquid crystal behaviour have also been studied experimentally, e.g. in Ref. [150],
theoretically, e.g. in Ref. [151] (see also section 3.5.2 in Ref. [52] for a recent review) and
by computer simulations, e.g. for infinitely-thin hard platelets [152] and for infinitely-
long hard rods [153]. Here, we perform simulations on finite-size rods and consider only
distributions with small δL and δD typical of the experimental colloidal systems of silica
rods used for the self-assembly experiments, as will be described in Sec. 3.7.

In Fig. 3.7 we compare results obtained by NPT -MC simulations of systems with
different particle size distributions: either Gaussian or uniform (also known as top-hat
distribution), but with the same averaged diameter 〈D〉, same averaged length 〈L〉 and
same degree of polydispersity δD, δL (when present). For a uniform distribution of xi ∈
[x−∆x/2, x+∆x/2] the average value is given by 〈x〉 = x, whereas δx = ∆x/(

√
12〈x〉). In

particular, we fix 〈L/D〉 = 4.55, δD = 8.8% and δL = 9.3%, that are values similar of the
experimental system studied in Sec. 3.7, and we consider systems of N = 2880 particles
with lengths Li and diameter Di chosen in six different ways: i) Gaussian distributed in
onlyDi ; ii) Gaussian in only Li ; iii) Gaussian in bothDi and Li; iv) uniformly distributed
in only Di ; v) uniformly in only Li ; vi) uniformly distributed in both Di and Li. Five
independent initial configurations for each case were then used to check the consistency
of our results. In Fig. 3.7(a) we plot the equation of state for the different distributions
and we compare the results with the equation of state of the corresponding pure (single-
component) system. We observe that significant differences occur only at sufficiently large
packing fraction η > 0.45, when the system is already approaching the N-Sm transition.
In the case of a uniform size distribution the equation of state is more affected by the
polydispersity than in the case of Gaussian distributions, despite the same degree of
polydispersity. Such a difference is reflected also in the structure as evidenced by the order
parameters shown in Fig. 3.7(b). We observe that the isotropic-nematic transition (both
packing fraction and values of the order parameters) seems to be not significantly affected
by the polydispersity in the system. Also the location of the nematic-smectic transition
does not change in case of the small polydispersity considered here. However, in case of a
uniform size distribution (magenta curve) we find that the global smectic order parameter
τ decreases at high packing fraction η, and becomes noisier. We now take a closer look
at the smectic order by analysing the probability distribution of the local smectic order
parameter τi. In Fig. 3.8 we plot such a distribution for a pure, a uniformly polydisperse
and a Gaussian polydisperse system at reduced pressure βP 〈D〉3 ' 2.075 corresponding
to a stable smectic phase. We observe that for the Gaussian distribution, the probability
distribution deviates only slightly with respect to the pure (single-component) case. On
the contrary, for the uniform case the smectic phase is more disordered since the local τi
distribution (green curve) shifts to lower values, becomes very broad and has a significant
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tail at τi < 0 corresponding to particles transversally oriented with respect to the (local)
nematic director, as also evident from the snapshot in Fig. 3.8(c). The full particle size
distribution is therefore important, especially for the smectic phase, and not only the
degree of polydispersity, as also noticed earlier for example in the study of the glass
transition of hard spheres [149]. To conclude, we have shown that a small degree of
size polydispersity has a marginal effect on the bulk equation of state at low densities,
which becomes more significant only at large packing fractions. In the next section we
investigate the effect of size polydispersity on the sedimentation of colloidal hard rods.
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simulations for N = 2880 spherocylinders with 〈L/D〉 = 4.55 and different size distributions, as
indicated in the legend, with polydispersity δL = 9.3% and δD = 8.8% (if present). (b) Global
nematic S and smectic τ order parameter as a function of η for pure (single-component) and
polydisperse system as indicated.
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Figure 3.8: Probability distribution of the local smectic order parameter τi obtained by bulk
NPT -MC simulations at βP 〈D〉3 ' 2.075 for rods with 〈L/D〉 = 4.55 and different polydisper-
sity. The system with a uniform size distribution of the particles shows a less ordered smectic
structure.
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3.6 Sedimentation-diffusion equilibrium of colloidal
rods

Gravity can often not be neglected in colloidal systems as the gravitational energy becomes
comparable to the thermal energy for micron-sized particles. Hence, the system becomes
spatially inhomogeneous due to the gravitational field, resulting in a density profile ρ(z)
that varies with the height z. However, sedimentation can also be exploited as it enables us
to probe the phase behaviour and thermodynamics over a wide range of system parameters
in a single experiment (as shown in the next section) or simulation.

We consider colloidal particles that are suspended in a structureless solvent and have
a buoyant mass m. Following Archimedes’ principle, m is related to the particle vol-
ume v0 and to the difference in mass density between the colloids and the solvent ∆ρm:
m = ∆ρmv0. At equilibrium, the sedimentation profile of the colloidal suspensions ρ(z)
(assuming z the gravity direction) is a result of the balance between the osmotic pressure
gradient and the gravitational contribution:

dP (z)
dz

= −mgρ(z) , (3.24)

where P is the pressure and g the gravitational acceleration constant. Eq. 3.24 represents
a macroscopic description of the sedimentation equilibrium (dP (z) is the weight per unit
area of all the particles in a layer with thickness dz at z) and it is only valid when the
density profile does not vary too rapidly, i.e., is constant over length scales that are larger
than the typical particle interaction range [29, 154]. If the previous condition holds, it is
then possible to calculate the difference in pressure between two heights z1 and z2 of the
sediment by integrating the density profile:

β[P (z2)− P (z1)] = − 1
lg

∫ z2

z1
ρ(z′)dz′ , (3.25)

where we introduced the particle gravitational length lg = kBT/mg, with kB Boltzmann’s
constant and T the temperature. The pressure P (z) at any height z can be obtained
in experiments or simulations in which the density profile ρ(z) is measured. In case of
oscillating profiles, for example when particle layering occurs, a coarse-grained profile
can be used. Density functional theories can also reproduce the macroscopic description
of sedimentation equilibrium when a local density approximation is used [154]. For a
semi-infinite system, the top of the capillary/simulation box reaches a vanishing density
ρ(z → ∞) = 0 and therefore P (z → ∞) = 0; whereas the pressure at the bottom wall
is given by P (z = 0) = mgN/A, where A is the area of the capillary/simulation box and
N the number of particles. By eliminating the z-dependence in both the pressure and
the density profile, the equation of state P (ρ) can be extracted. Vice versa, knowing the
equation of state, one can calculate the sedimentation profile ρ(z) [154]. Single-component
systems of colloidal rods under gravity have been studied by computer simulations, for
example in Ref. [155] where it has been shown that the bulk behaviour can be recovered
by using the above procedure.
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Simulations
We use MC simulations to study how a small degree of size polydispersity of the rods
affects the equation of state of sedimenting hard rods. Each spherocylinder i is subjected
to the gravitational external potential βU ext(zi) = zi/lgi, where lgi is the gravitational
length and zi is the distance from the bottom wall, that is modelled as a hard planar
and smooth surface, of rod i. No wall is present at the top of the simulation box that
is effectively semi-infinite. We describe the size polydispersity of the rods by Gaussian
distributions for the length and diameter that are correlated as shown in the inset of
Fig. 3.9(b). Defining the Gaussian distribution for the variable x as

G (x ; 〈x〉, σx) = 1√
2πσx

exp
(
−(x− 〈x〉)2

2σx2

)
, (3.26)

where 〈x〉 is the mean value and σx ≡ δx 〈x〉 is the standard deviation, with δx the degree
of polydispersity as defined before; the distribution for the particle sizes is given by

P(Li, Di) ∝ G (L ; 〈L〉, σL) G
(
D ; L

〈L/D〉
, σD

)
. (3.27)

This distribution describes well the experimental system studied in the next section (cfr.
Fig. 3.12(b)) for which the thicker rods are on average longer as well, due to the synthesis
method. The aim of this study is a quantitative comparison with experiments on highly-
screened charged silica rods, which interact as nearly hard particles but with a slightly
larger effective dimensions. Therefore, despite the hard-core interactions are based on
spherocylinder lengths Li and diameters Di, the gravitational lengths lgi are based on the
bare particle volume v0i = πLi(Di− λ)2/4 + π(Di− λ)3/6, with λ the layer to add to the
bare dimensions. On the other hand, the effective particle volume v∗0i = πLiD

2
i + πD3

i /6
is used to calculate the packing fraction of the system η = ∑

i v
∗
0i/V . A more precise

investigation on the effective dimensions of silica rods is reported in the next section.
To speed up the equilibration, particles are initially placed close to the bottom wall and

aligned perpendicularly to the gravity direction. We implement MC moves that attempt
to re-scale the sides of the simulation box in the x and y directions while keeping the
area fixed. This procedure is usually adopted in bulk simulations to allow the simulation
box to be commensurate with the system equilibrium structure. However, since the pres-
sure varies along the sediment, different equilibrium structures are obtained at different
heights in a single simulation, meaning that the system cannot be commensurate at all
heights. Rescaling the simulation box is then probably advantageous only for the denser
structures and should still result in a better equilibration of the system. Furthermore, we
implement swap moves that consist in randomly selecting a pair of particles and swapping
their identities according to the usual Metropolis rule based on overlap checking and the
difference in gravitational energy. Equilibration is reached within a few million MC steps
and a typical snapshot is depicted in Fig. 3.9(a). We measure the density profile ρ(z) in
the simulation and obtain the equation of state from Eq. 3.25 by replacing lg with the
averaged value 〈lg〉.

We report the main result of this section in Fig. 3.9(b), where we plot the equation
of state for a one-component system and for a polydisperse system under gravity with



54 Chapter 3

particle size distribution according to Eq. 3.27 and with a mean aspect ratio 〈L/D〉 = 4.5
and polydispersity δL = 10 % and δD = 5 %. Pressure and number density are rescaled
with the averaged (effective) diameter 〈D〉. We observe that the effect of gravity on a
polydisperse system is quite appreciable, especially if compared with bulk simulations
of a system with the same polydispersity in which the equation of state does not differ
much from the single-component case (cfr. Fig. 3.7(a)). We observe that the two curves
in Fig. 3.9(b) intersect around ρ〈D〉3 ' 0.11, approximately where the isotropic-nematic
transition occurs. At lower density, the sedimenting polydisperse system has a lower
pressure than the pure bulk one. On the other hand, at larger densities the pressure
increases steadily. Finally, the appearance of layering at large densities, that corresponds
to the smectic phase, is evident in the equation of state obtained by integrating the density
profile.
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Figure 3.9: (a) Sediment of N = 4800 hard spherocylinders with a small degree of poly-
dispersity in their particle dimensions obtained by MC simulations (side views). Particles are
colored according to their orientations. (b) Equation of state (reduced pressure βP 〈D〉3, with
〈D〉 the averaged diameter, versus reduced number density) obtained by integrating the density
profile ρ(z) for a polydisperse system (black) and the one obtained for the corresponding one-
component bulk system (red). The particle size distribution, shown in the inset, was generated
according to two coupled Gaussians for D and L (Eq. 3.27) with 〈L/D〉 = 4.5 and polydisper-
sity δL ' 10% and δD ' 5%, and we assumed an additional layer of λ = 60 nm for the particle
effective dimensions and an averaged gravitational length 〈lg〉 = 550 nm (see text for details).
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3.7 Comparison with experiments

Experiments on silica rods have been performed in our research group and full details can
be found in Refs. [156, 157]. The silica rod synthesis is based on the method developed by
Kuijk et al. [49, 158]. At the end of the synthesis procedure, the fluorescent silica rods are
fully coated with additional silica layers such that they obtain a spherocylindrical shape as
shown in Fig. 3.10(a). The colloidal particles are then dispersed in a solvent and they are
let to sediment for long times (several weeks) in order to reach the sedimentation-diffusion
equilibrium. The fluorescent labelling allows real-space and real-time imaging of the ex-
perimental sample by using scanning confocal laser microscopy. An example of a confocal
image of part of a rod sediment is shown in Fig. 3.10(b). For this sample, we estimate
the average bare rod diameter 〈D〉 ' 624 nm (δD ' 8%) and average bare rod length
〈Lend−end〉 ' 3.73 µm (δL ' 9%) from TEM images as shown in Fig. 3.10(a) yielding an
〈Lend−end/D〉 ' 5.97. By applying state-of-the-art particle tracking algorithms [157, 159],
rod lengths, positions and orientations are identified. The experimental sample is then
rendered by using the spherocylinder model and quantitative analysis is performed. Here
we analyse only the top part of the sediment, neglecting the layers close to the bottom
wall. In Fig. 3.10(c), the silica rods are colored according to their orientation, whereas
in (d)-(e)-(f) they are colored according to the local nematic, smectic, hexagonal order
parameter. Such an order parameter analysis at a single-particle level enables us to iden-
tify defects in a dense structure, for example notice the transverse (green) particles in
panel (d) and how these particles influence the local order around them. The different
thermodynamic phases formed by the silica rods can be then distinguished by analysing
how the order parameters vary as a function of the sediment height z. The experimental
data were first divided in equally spaced slabs of 0.5DTEM along the gravity direction.
The analysis was carried out for each slab and averaged over different equilibrium config-
urations. Notice that the analysis of the local order parameters was based on the lengths
of the rods obtained by the particle tracking procedure. Such an analysis is reported in
Fig. 3.11(a). The wall is located well below z = 0 and does not influence the behaviour
of the sample part analysed here. The transition from an isotropic phase to an aligned
phase is evidently captured by the jump in the order parameters. In particular, the global
nematic S and smectic τ order parameters show jumps at different heights, confirming the
expected I-N-Sm sequence, even though the nematic layer is only a few particle diameters
thick (as expected for this range of aspect ratios and the averaged gravitational length of
the silica rods 〈lg〉 = 0.55 µm). However, due to the limited statistics (small number of
layers) and fluctuations in their positions, we obtained not very large values of τ (smaller
than what you would expect after visual inspection of the sample) and a rather noisy
trend of τ as a function of z. Nematic and smectic phases can be identified by using the
local order parameters as well. However, as observed for the simulation data (Fig. 3.5(c)),
the jumps are usually smoother and the local smectic τi tends to jump earlier than when
the smectic phase is thermodynamically stable. Nevertheless, in contrast with the global
τ , the local τi has a constant (large) value in the smectic region, suggesting that it is able
to identify the layering even in the presence of limited and possibly noisy data. Finally,
we observe a high degree of local hexagonal order and future studies could be dedicated
to characterize the positional order within the smectic layers and in the crystal phases of
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silica rods. Same analysis, reported in Fig. 3.11(b), was carried out for a similar sample
of silica rods (that will be used in the next chapter) and analogous conclusions can be
drawn also in this case.

Figure 3.10: (a) TEM images of (fully coated) silica rods with 〈Lend−end〉 ' 3.7µm (δL ' 9%)
and 〈D〉 ' 624 nm (δD ' 8%) (see Fig. 3.12 for full particle size distribution). Scale bar is
3 µm. (b) Confocal image of a part of an equilibrated sediment of silica rods. (c) Computer
reconstruction of the sediment after using particle tracking algorithms that identify particle
lengths, positions and orientations. Particles are colored according to their orientation. The
same configuration is also shown with particles colored according to the (d) local nematic order
parameter Si , (e) local smectic order parameter τi , (f) local hexagonal order parameter hexi.
Black particles do not have neighbours according to the cut-off chosen (ρcutij = 0.5D for the
surface-to-surface distance ρij , whereas for the center-of-mass distance rcutij = (Li +D)/2 for τi,
and rcutij = 1.0D for hexi). See Sec. 3.4 for definition of the order parameters.

We have confirmed the qualitative phase behaviour of silica rods, and probed how
quantitatively the order parameter varies. To further continue our quantitative analy-
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Figure 3.11: (a) Order parameter analysis for the sediment of Fig. 3.10. The values of the
different order parameters (as indicated in the legend) are plotted as a function of height z,
in units of bare averaged particle diameter obtained by TEM (DTEM = 624 nm). (b) Same
analysis for a different sample of silica rods with 〈Lend−end〉 ' 3.6 µm, δL ' 18%, 〈D〉 ' 590 nm,
δD ' 10%, that has been also used in the experiments presented in the next chapter.

sis, i.e., extracting the equation of state, we need more information on the particle size
distribution. Indeed, polydispersity is an inevitable outcome of the colloidal synthesis
procedure, and even if it is reduced by several centrifugation steps, the final sample al-
ways presents rods with (slightly) different lengths and diameters. In Fig. 3.12(a) we plot
the lengths and diameters of 110 particles measured by TEM images. A strong correlation
between particle length and diameter is evident due to the synthesis method. As it can be
observed from Fig. 3.12(b), a simple distribution that well captures the experimental one
is obtained by two Gaussian distributions for the length and diameter that are correlated
(Eq. 3.27), with mean aspect ratio 〈(L/D)TEM〉 = 4.97 and size polydispersity δL ' 10 %
and δD ' 5 %. It is important to note that the separate distributions of diameter, lengths
or aspect ratio (panels (b)-(c)-(d)) contain only partial information that could give mis-
leading indications on the sample polydispersity (e.g. the polydispersity associated to the
aspect ratio is only 5.1 %). Moreover, despite the fact that the polydispersity in particle
dimensions is relatively small, the polydispersity in particle volume (or equivalently mass)
is significant (30%), which could yield size fractionation in the overall sediment.

The second crucial step to map the experimental behaviour onto that of hard sphe-
rocylinders is to identify the contribution of the electrostatic screening, namely identify
the particle effective dimensions Deff = DTEM + λ. Indeed, silica rods are dispersed
in a mixture of DMSO/water with a reflective index that matches that of colloids and
therefore (almost) cancels the van der Waals interactions. However, silica colloids have
a charged surface yielding Coulombic interactions, that can be screened by salt addition
to the solvent. The small but non-negligible Debye screening length is estimated to be
around 10 nm, yielding λDebye ≥ 20 nm, for the experiments considered here [157]. To
identify the additional layer λ, we rely on the nematic order parameter and try to rescale
experimental data such that the isotropic-nematic transition matches the one obtained by
computer simulations of rods with the same effective dimensions. In Fig. 3.13, we compare
both the global S (panel (a)) and the local 〈Si〉 (panel (b)) nematic order parameter as
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Figure 3.12: Particle size distribution of the experimental sample of silica rods studied here.
(a) Particle dimensions in the length-diameter plane. (b) Matching the experimental distribu-
tion with different particle size distributions. Distributions in only (c) diameter, (d) length, (e)
aspect ratio, (f) particle volume of the experimental system shown together with the indication
of the average value 〈.〉, standard deviation σ and polydispersity δ. Gaussian fits are plotted in
red for comparison.

a function of the reduced density, where the brackets denote an average over all particles
in the bulk simulations and over all particles within a slab in the case of sedimentation
experiments and simulations. In principle, 〈Si〉 could suffer from errors associated to
particle tracking, whereas only orientations and not particle dimensions are needed for
S. However, both analyses seem comparable and suggest that λ is in the range between
40 nm to 80 nm, i.e., from 2 to 4 times the estimated Debye screening layer. Finally, in
Fig. 3.14 we compare the equation of state obtained by integrating the density profile (as
described in Sec. 3.6), using the averaged gravitational length 〈lg〉, with the simulation
results. In Fig. 3.14(a) the equation of state is plotted with the pressure rescaled with the
effective particle volume as a function of packing fraction η. The theoretical Carnahan-
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Figure 3.13: Identification of the effective dimensions of the silica rods by mapping (a) the
global nematic order parameter S or (b) the local nematic order parameter 〈Si〉 on the results
obtained by MC computer simulations of hard spherocylinders, either in the bulk pure system
or under gravity for an experimental-like polydisperse system. The density ρ is rescaled with the
averaged effective diameter 〈Deff 〉 = 〈DTEM 〉+λ, with λ the additional layer (values indicated
in the legend). Same colors correspond to the same particle dimensions.
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Starling equation of state for hard spheres is plotted as well for reference. We observe that
the differences between the equation of state of rods with different aspect ratios obtained
by computer simulations either for bulk single-component systems (solid lines) or for sed-
imenting polydisperse systems (dashed lines), are barely visible for this range of L/D.
However, we observe that the choice of λ significantly influences the equation of state for
silica rods. We find that the best match is obtained when λ ' 80 nm, for which we are
able to match the equation of state up to 35% packing fraction, if we consider the effect
of polydispersity and gravity (cfr. Fig. 3.14(b)). Around 40% packing fraction the differ-
ence in pressure is quite significant. It seems unlikely that even with a better tuning of
λ and particle size distribution, the equations of state can quantitatively match. We also
have to remark that both the experimental data analysis and the simulation procedure
contain some sources of uncertainties that could propagate on the final values of pressure
and density. In particular, we integrated the density profile, as obtained from both ex-
periments as well as simulations, assuming an averaged gravitational length for all the
particles. This simplification could have significant effect on the equation of state in the
presence of size segregation throughout the capillary. Swap moves have been employed in
computer simulations to take into account this phenomenon, but yet the overall particle
size distribution is fixed at the beginning of the simulation and finite size effects could be
important. From an experimental point of view, the possibility of missing particles during
the tracking procedure has clear consequences on the measurement of the density profile.
Finally, it is possible that at this already quite large density the experimental sample is
not able to reach the equilibrium structure.

Nevertheless, we can conclude that silica rods, under particular conditions, can behave
quantitatively as (nearly) hard spherocylinders.
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Figure 3.14: Comparison between the experimental equation of state of silica rods and that
of hard spherocylinders obtained by MC simulations. Same colors correspond to same particle
dimensions. (a) Equations of state in which the pressure is rescaled with the averaged particle
effective volume 〈v∗0〉 and as a function of (effective) packing fraction η. (b) Same as panel (a)
with only one set of curves.
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3.8 Discussion and conclusions
In this chapter we have revisited the well-known phase behaviour of hard spherocylin-
ders, being a paramount system to describe microscopically the order of a wide class of
(colloidal) liquid crystals. After reviewing Onsager theory, that is widely used in liter-
ature and will be applied in several places in this thesis, we have focused on mapping
the phase behaviour observed in experiments on silica rods onto that of hard sphero-
cylinders, obtained by computer simulations. This correspondence was already observed
qualitatively [156], and here we performed a quantitative study. Indeed, the possibility
of imaging a 3D sample in real space and tracking particle positions, orientations and
lengths, allows for a comprehensive analysis on the order developed in the system. Such
analysis has been carried out by using a set of global and local order parameters, some
introduced specifically for this study, both on experimental and simulation data. On a
more general point of view, the accessibility of information at a single-particle level for
systems of anisotropic colloids allows for studies that go beyond the phase behaviour and
include for example nucleation, glassy dynamics, defects re-arrangement, that so far have
been investigated mostly in system of spherical particles.

From a simulation point of view, several aspects have been taken into account in this
chapter to meet the experimental conditions as close as possible. Indeed, we examined
how the exact particle size distribution influences the phase behaviour and the effect of
gravity on a system with a small degree of size polydispersity. We have identified the
effective dimensions for which the experimental rods can be indeed considered hard parti-
cles. By rescaling the rod dimensions and by comparing the occurrence of the first phase
transition (isotropic-nematic) with that of a simulated system of hard spherocylinders
with corresponding aspect ratio, we have found that an additional layer of a few times
the Debye screening length must be added to the bare particle diameter. The use of
effective dimensions allows us to match quantitatively the equation of state as obtained
from sedimentation experiments up to almost 40% of packing fraction for the particular
sample studied. In summary, we have shown that silica rods can indeed be the ultimate
experimental realization of (nearly) hard spherocylinders. Furthermore, the overall pro-
cedure described here seems promising for further investigation on the phase behaviour of
anisotropic silica particles and mixtures thereof, as we will describe in the next chapter.
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Binary liquid crystals of hard rods
and hard spheres

In this chapter we study liquid crystal phases formed by binary mixtures of colloidal rods
and spheres, focusing in particular on the binary smectic Sm2 phase. First, we present
a quantitative real-space analysis on an experimental binary mixture of silica rods and
spheres that serves as motivation for our simulation study. By determining the local
order and by extracting the equation of state of the sedimented suspensions, the liquid-
crystal behaviour of the experimental mixture has been mapped out. After determining
the effective dimensions of the particles, we perform isothermal-isobaric Monte Carlo
(NPT -MC) computer simulations of a mixture composed of hard spherocylinders and
hard spheres and we verify that the Sm2 phase observed experimentally can be stabilized
by entropy alone. The fact that the Sm2 phase is accessible by particle shape alone, opens
up the possibility of combining new materials properties at different length scales, without
the need to finely tune inter-particle attractions.
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4.1 Introduction

The self-assembly of multiple different components typically corresponds to an increase
in the number of possible stable structures and in their complexity, that in turn could
expand and strengthen our ability of tuning several structure properties [16]. For example,
colloidal binary systems of spherical particles could be used to obtain a photonic crystal
with a band gap in the visible region [14], or three-dimensional superlattices with tunable
optical and magnetic properties [17]. Moreover, shape-anisotropic particles may self-
assemble in intermediate thermodynamic phases, such as liquid-crystalline phases that
display various degrees of positional and orientational order [160].

Colloidal binary liquid crystals have hardly been investigated experimentally [161–
163], despite the existence of a significantly larger number of theoretical and simulation
studies [164–180]. Rod and sphere mixtures with a highly asymmetric size ratio between
the particles were studied before, in the limit where the smaller particles induced so-called
depletion interactions between the bigger components (see e.g. Ref. [181]). Here, we focus
on the phase behaviour of anisotropic and spherical colloids that are comparable in size
and form a binary smectic phase Sm2 (see Fig. 4.1(c)) featuring long-range orientational
order and long-range one-dimensional positional order. Indeed, the Sm2 phase consists
of alternating layers of rods and layers of spheres. The first experimental Sm2 phase was
observed by Adams et al. [161] in a mixture of fd-viruses (of aspect ratio L/D ∼ 100)
and polymer spheres, and was named lamellar phase in analogy with biological systems.
However, since the smectic organisation arises in a two-component system, differently
from the common lamellar order that occurs in single-component systems, we prefer to
use the notation Sm2. This phase has been predicted theoretically for binary mixtures
of hard spherocylinders with equal diameter when (i) at least one of the two species has
an aspect ratio large enough to form a smectic phase, (ii) the asymmetry in the aspect
ratio is sufficiently large to promote micro-phase separation, i.e., the two species prefer to
be in different layers (Sm2) rather than sharing the same layers (Sm) [167], (iii) the size
asymmetry is not large enough to induce global phase separation, e.g. two phases rich in
only one of the two species (e.g. isotropic-nematic, nematic-nematic demixing [170]). The
stabilization mechanism of the Sm2 phase in a mixture of fd-viruses and polymer spheres
was already explained in terms of excluded volume interactions [161]. However, despite
the fact that under particular conditions fd-viruses can effectively be considered hard
particles [182], chirality and flexibility play an important role in their phase behaviour.
For example, the existence of a columnar phase between the smectic and the crystal
phase in single-component suspensions of fd-viruses [182] cannot be mapped on the phase
behaviour of achiral rigid rods since the columnar phase is unstable in a system of hard
spherocylinders [118]. Furthermore, the origin of a phase consisting of columns of spheres
perpendicular to the smectic-like layers of rods observed in mixtures of fd-viruses and
spheres [161] remains still puzzling. Here, we consider mixtures of achiral rigid silica
rods and silica spheres, that can be imaged in real-space by using confocal microscopy. In
contrast with fd-virus systems, it is possible to track all particle positions and orientations
and to perform a quantitative analysis that is compared with simulations of hard particles.
Real-space imaging, but not a quantitative 3D analysis, has been also recently performed
on self-assembled systems of semiconductor nanorods and nanospheres [183]. The rods
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considered were too short (L/D < 3) to form liquid-crystalline phases based on entropic
interactions alone, as concluded from computer simulations of attractive particles [183].

Silica rods with bare end-to-end length LTEM = 3.6 µm (polydispersity δL ' 18%)
and bare diameter DTEM = 0.59 µm (δD ' 10%) were synthesized [49, 158] in our group
(see Fig. 4.1(a)), as well as silica spheres with an average diameter of σTEM = 385 nm
(polydispersity δσ ' 9%) [184] (see Fig. 4.1(b)). The colloidal rods and spheres were
mixed and dispersed in a refractive-index matched glycerol-water solvent mixture and left
to sediment. In order to provide charge screening around the particles LiCl was added to
the medium, yielding a Debye screening length of κ−1 = 10 nm. Hence, the particles act as
nearly hard particles with slightly larger effective dimensions. The samples were analysed
using quantitative confocal microscopy and particle fitting algorithms were used [159].
For single-particle fitting, the dispersion was left to sediment for at least four weeks.

The silica rods and spheres are not density-matched with the solvent mixture. Hence,
the sedimentation-diffusion equilibrium profile is not homogeneous, and most of the rods
(lg = 0.64 µm) reside at the bottom of the sediment and most of the spheres (lg =
17.65 µm) at the top (Fig. 4.1(d)) due to a difference in gravitational length (lg) be-
tween the particles. However, at intermediate heights, both species were present and for
appropriate pressure and composition (as we will see below) the Sm2 phase was formed
(Fig. 4.1(c)). In most of the samples, the Sm2-phase was not present as one single large
domain and an ac-electric field was applied to align the sample and to form a large Sm2
phase. At the same time, this proves the ability of the system to respond to the electric
field that is usually important for applications. After switching off the electric field, the
binary smectic order persisted in the system suggesting that it is indeed the equilibrium
structure. To characterize the quality of order in the aligned Sm2-phase, Fast Fourier
Transform (FFT) images were made and confirmed the long-range nature of the binary
assemblies. Furthermore, the system can be imaged by using confocal microscopy and af-
ter deconvolution of the confocal images, single-particle identification were used to obtain
all particle positions and orientations [159]. This information can then be used to quan-
titatively characterize the system as a function of the sample height z (see Fig. 4.1(e)),
in analogy with the procedure presented in Chap. 3. In particular, we divided the system
in equally spaced slabs of 0.5DTEM (with DTEM the averaged bare diameter obtained by
TEM images) along the gravity axis and determined the number density profile ρrod(z)
and ρsph(z) of the rods and spheres, respectively, and the system composition xsph(z), with
xsph = Ns/N . Using not only the positions but also the orientations of the rods allows
us to determine the average local nematic 〈Si〉(z) and smectic 〈τi〉(z) order parameter
profiles as a function of z, where the brackets denote an average over all particles in the
slab at z. In Fig. 4.1(e), we plot both the composition xsph as well as the order parameters
as a function of z. For comparison, the deconvolved confocal xyz-stack is presented in
Fig. 4.1(d). We clearly observe a smectic phase with high nematic order 〈Si〉 > 0.9 and
a high smectic order 〈τi〉 > 0.6, which is rich in rods, i.e., xsph ' 0.4, at the bottom of
the sample, whereas an isotropic sphere-rich phase with xsph ∼ 1 and low nematic and
smectic order is observed at the top. The transition between the isotropic and Sm2 phase
occured at a height ∼ 14 µm. In order to distinguish the different phases, we did not use
the positions of the spheres in the order parameter analysis, as the order of the spheres
is dictated by that of the rods and is less pronounced. Next, during imaging it has been



68 Chapter 4

observed that the spheres could diffuse freely within the sheets of spheres in the Sm2
phase.
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Figure 4.1: Experimental system: binary mixture of silica rods and spheres. (a-b) TEM
images of (a) silica spheres with diameter σTEM = 385 nm (polydispersity δσ ' 9%) and (b)
silica rods with end-to-end length LTEM = 3.6 µm (δL ' 18%) and diameter DTEM = 0.59 µm
(δD ' 10%), scale bars 2.5 µm. (c) 3D reconstruction of part of confocal data stack showing
a Sm2 phase. (d) Deconvolved confocal microscopy images of a sediment of rods and spheres.
Images are shown parallel (left) and perpendicular (right) to the gravity direction. Dashed lines
and letters indicate the height at which the images perpendicular to the gravity direction (panels
on the right) are acquired. All scale bars are 5 µm. The height of the total sediment was 120 µm,
of which only the bottom 62.5 µm are shown. (e) Quantitative analysis of the local structure
of the sediment in (d). Composition xsph = Nsph/N , averaged local nematic order parameter
< Si > and averaged local smectic order parameter < τi > are shown as a function of the sample
height z. See Sec. 3.4 for the definition of the order parameters. Thin dashed lines represent the
raw data and the thick solid lines are data smoothed by convolution using a top-hat function of
5DTEM width.
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4.2 Estimating the experimental phase diagram

As pointed out in Sec. 3.7, the crucial step towards the interpretation of the experimental
phase behaviour in terms of purely entropy-driven phase transitions, is to identify the
effective dimensions for which the colloidal particles act as hard particles. The effective
diameter of the silica spheres σeff = σTEM + λs was obtained by mapping the equation
of state as obtained from integrating the density profile of the top part of an equilibrated
sample, corresponding to a fluid phase of only spheres, to the Carnahan-Starling equation
of state. We obtained λs = 80 nm. The procedure to identify the effective dimensions of
the rods, namely Deff = DTEM + λr, is the same as in Sec. 3.7 (see also Fig. 3.13). In
Fig. 4.2(a) we map the I-N transition as identified by the jump in the global nematic order
parameter S in an equilibrated sample of only silica rods, to the transition as obtained
from NPT -MC simulations of thousands of hard spherocylinders. We observe that the
best agreement is obtained for λr = 120 nm. Notice that λs 6= λr since the rods and
spheres have different charges. Additionally, we observe that the equation of state (EOS),
shown in Fig. 4.2(b), does not agree with the corresponding EOS of a one-component
system of hard spherocylinders when λr = 120 nm. Rather, it would be tempting to
match as much as possible the low density branch and assume λr = 80 nm. However,
as discussed in Chap. 3, we ascribed the difference in EOS to the polydispersity in the
system, that in this sample is also (slightly) larger than in the one considered in Chap. 3.
Once again, we prefer to rely on the use of the jump of S that is less sensitive to small
polydispersity. In general, it is worth to stress that to find the particle effective dimensions
(both for spheres and for rods) discrepancies can also arise from particles missed in the
tracking and segregation effects.

In order to map out the experimental phase diagram in the pressure P - composition
xsph representation, many samples with different initial volume fractions and compositions
were prepared and analysed using the same procedure described above. The pressure P
at height z was also obtained by integrating the density profiles of both species to obtain
the weight of all particles above it. The pressure changes as a function of height z in
the sediment and depends solely on the local densities of the spheres ρsph(z) and rods
ρrods(z), yielding the equation of state. In Fig. 4.3(a), we project the sedimentation path
onto a two-dimensional P − xsph plane. From the top of the sediment down, each path
shows an initial increase in pressure at large xsph, followed by a nearly horizontal portion
in the P (xsph) curve suggestive of a broad coexistence between a low density phase and
a Sm2 phase. Finally, in the Sm2 phase the pressure rises, while xsph decreases only
slowly. Each path presented the expected sequence isotropic I - (nematic N) - binary
smectic Sm2 that was identified by employing the average nematic and smectic local
order parameters. In particular, we used the following threshold values to determine
the different phases: isotropic if 〈Si〉 < 0.5 and 〈τi〉 < 0.35, nematic if 〈Si〉 > 0.5 and
〈τi〉 < 0.35, Sm2 if 〈Si〉 > 0.5 and 〈τi〉 > 0.35. Whereas the choice of the threshold values
of the order parameters at which we define the transitions can influence the identification
of the different phases (cfr. Fig. 4.3(b)), we chose values corresponding to the inflection
points observed in the trend of the local order parameters, as shown in Fig. 4.3(c)-(d).
We thus find a stable Sm2 phase in our experimental phase diagram for sufficiently high
pressures βPD3

eff > 3 and compositions 0 < xsph ≤ 0.8 in binary silica rod-sphere
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mixtures. In order to explore the possibility that the Sm2-phase coexists with a low-
density phase and to investigate if the Sm2-phase can be stabilized by entropy alone, we
perform Monte Carlo simulation that are described in the next section.
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Figure 4.2: Determining the effective dimensions of silica rods. (a) Global nematic order
parameter S as a function of the reduced density ρD3

eff , where Deff = DTEM + λ, for different
values of the additional layer λ. Experimental data (solid lines) are compared with simulations
of one-component systems of hard spherocylinders with same aspect ratio. We observe that the
best agreement is obtained for λ = 120 nm. (b) Same comparison for the equation of state:
reduced pressure βPD3

eff versus reduced density ρD3
eff . As detailed in the text, the equation

of state with λ = 120 nm does not match properly (only close to ρD3
eff ∼ 0.12 where the I-N

transition occurs) because of polydispersity in the system. See also Figs. 3.9 and 3.14.
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Figure 4.3: Experimental state diagram and order parameters for a binary mixture of silica rods
and spheres. (a) Experimental state diagram for the mixture studied here. (b) Different choice
of the threshold for the local smectic order parameter τi. (c) Local nematic order parameter
Si as a function of reduced pressure βPD3

eff for different sediments. (d) Local smectic order
parameter τi for different sediments.
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4.3 Mapping out the bulk phase diagram of binary
rod-sphere mixtures using computer simulations

We simulate N = Nsph +Nrods = 3125 hard spheres of diameter σ and hard spherocylin-
ders (length L = 6.46σ and diameter D = 1.52σ, L/D ' 4.25), based on the effective
dimensions determined for the colloidal silica particles (see Sec. 4.2). Particles interact
via a purely excluded-volume potential: U = ∞ if two particles overlap, U = 0 other-
wise. We perform NPT simulations at many different state points and analyse the phase
behaviour by employing local and global nematic and smectic order parameters. Each
simulation consists of several millions of MC steps, where one step is defined as N moves
randomly chosen between sphere translation, rod translation, rod rotation, plus one (ei-
ther isotropic or anisotropic) attempt of changing the simulation box volume. Initial
configurations at a given composition x are obtained from an equilibrated configuration
at lower x by replacing an appropriate number of rods with spheres.

According to theoretical predictions based on a second-virial density functional theory
applied to a rod-sphere mixture with similar sizes (L/σ = 7, D = σ), we expect stable
isotropic (I), nematic (N) and binary-smectic (Sm2) liquid crystal phases [167]. In our
study, we do not take into account the possible crystalline (hexagonal) order, neither
within a single layer nor between different layers, and therefore we do not distinguish
between (binary) Smectic-A and (binary) Smectic-B and (binary) crystal phases, even
though we (often) observe hexagonal arrangements of rods, both in experiments and
in simulations (see Fig. 4.4). Notice that in case of binary crystals also the spheres
should have (hexagonal) long-range order. Such phase is not observed in experiments,
mainly because of relatively high polydispersity (δσ ∼ 9 %) that is known to prevent
crystallization [146].

Since for the short rods considered here both the I-N and the N-Sm transitions are
weakly first order [118, 119], and a particularly broad I-Sm2 coexistence region is expected
when such rods are mixed with hard spheres [167], an accurate identification of the phase
boundaries is clearly challenging. Nevertheless, we use both global and local order param-
eters to discriminate between the different liquid crystalline structures for a large number
of state points (for which xsph and P are imposed) and to map out the state diagram of
the rod-sphere mixture for which experiments have been performed (see Fig. 4.5(a)). In
particular, in the isotropic phase (see Fig. 4.5(b)) all the order parameters are vanishing.
The nematic phase (see Fig. 4.5(c)) is characterized by a large value of the nematic order
parameter (both the global S and the local Si) but not of the smectic ones, since neither
the rods nor the spheres form layers. We observe that the I-N shifts towards higher pres-
sure upon increasing composition xsph until a (triple) point (around xsph ' 0.6) beyond
which the nematic phase is no more stable. In the Sm2 phase (see Fig. 4.5(d)) the rods
locally form layers resulting in a large value of the local smectic order parameter τi. The
structure is clearly long-range and this is confirmed by the (ordinary) global smectic order
parameter τ . The binary character of the smectic phase is confirmed by the fact that also
the spheres are arranged in layers, as clearly evident from the snapshot in Fig. 4.5(d).
The layering can also be quantified by a global smectic order parameter for the spheres,
calculated along the nematic director of the rods n (that coincides with the layer normal),



Binary liquid crystals of hard rods and hard spheres 73

Figure 4.4: (a) Local hexagonal order parameter hexi as a function of reduced pressure (βPD3)
for several compositions as indicated in the legend. Representative snapshots with particles
colored according to hexi are shown in (b) for xsph = 0.1 and βPD3 = 2.81; (c) xsph = 0.1 and
βPD3 = 2.98 (d); xsph = 0.5 and βPD3 = 6.32; (e) xsph = 0.9 and βPD3 = 7.37.

in full analogy with the one for the rods (see Sec. 3.4):

τsph = max
l

∣∣∣∣∣∣
N∑
j=1

e2πirj ·n/l

∣∣∣∣∣∣ , (4.1)

where rj is the position of sphere j and l is a real number. The value of l that max-
imizes the above expression coincides with the layer spacing. Both the smectic order
parameter values of τsph and the corresponding spacing between layers of spheres are con-
sistent with the values of τ (for only rods) and the spacing between the smectic layers
of rods, as expected for the Sm2 phase. However, for small xsph and high pressures P
(see Fig. 4.5(e)-(f)), the spheres do not form layers but are expelled from the layers of
rods and organised in linear aggregates. This structure is not a novel thermodynamically
stable phase but should be considered as an indication of the underlying phase separation
in a sphere-rich isotropic phase and rod-rich (binary) smectic phase (or a crystal phase of
rods at sufficiently high pressures, as evident from Fig. 4.5(e)). Indeed, since the system
cannot really demix because of the finite size nature of the simulations, the spheres have
to act as a substitute of rods to minimize the overall system free volume. It is important



74 Chapter 4

to remark that this columnar arrangement of spheres is not related with the columnar
phase observed in a mixture of colloidal spheres and fd-viruses [161], since in that case
the columns of spheres were perpendicular to the direction of the layers of rods. The pos-
sibility of forming that structure with only hard-core interactions and its thermodynamic
stability are still open questions.
The transition from a stable Sm2 phase to this kinetically trapped structure, that is an
evidence of I-Sm2 demixing, is often associated to a drop in τsph as reported in Fig. 4.6(f).
As can be seen from Fig. 4.5(f), the formation of columns of spheres occurs also when
most of the spheres are still arranged in layers, therefore yielding to a somehow arbitrary
definition of the upper bound of the Sm2 stability region. Different simulation techniques
should be employed to accurately determine this boundary.
For larger values of xsph, the I-Sm2 demixing is more evident as can be appreciated from
Fig. 4.5(g)-(h) in which a number of smectic layers (depending on xsph) is in coexistence
with an isotropic phase richer in spheres. This behaviour is also captured by the prob-
ability distribution of rods having a certain value of the local smectic order parameter
τi (some examples are reported in Fig. 4.6(a)). Indeed, for state points inside the I-Sm2
regions two populations of particles (one with |τi| ∼ 0 and one with τi bigger than a given
threshold) are often evident. However, extracting the equilibrium composition of the two
coexisting phases based on the amount of particles in the two populations seemed to be
not an easy task due to the limited system size of our simulations and the sensibility on
the choice of the threshold value. By examining the state diagram obtained, we notice
that compositions around xsph = 0.6 show a peculiar re-entrant sequence upon increasing
the pressure, going from an isotropic to I-Sm2 region to a pure Sm2 to a demixed region
again. Representative snapshots at this composition, along with a quantitative analysis,
are reported in Fig. 4.6. Finally, we notice that the topology of the phase diagram here re-
ported is consistent with theoretical predictions [167], including the re-entrant behaviour
of the Sm2 region.

We have to remark that the use of NPT ensemble is not always suitable to study
demixing in binary mixtures since the composition (xsph) is fixed and large system sizes are
needed to observe phase coexistence between different thermodynamic states (this analysis
would not be reliable for smaller systems than studied here). Indeed, a standard procedure
to trace the phase diagram of a mixture would require simulations in the grand-canonical
ensemble that are, however, not feasible for short rods (only the insertion/removal of the
small spheres would be possible). Recently, the use of hard walls in computer simulations
of rod-sphere systems composed of similar numbers of particles as used here and similar
particle dimensions, have been employed as an alternative to determine slightly more
accurately the variation in composition of the isotropic-nematic transition but limiting
the study to a small region in the xsph−P plane [166]. However, at the densities where the
binary smectic phase is observed, the effect of walls would be still quite pronounced for
ordinary system sizes. Ultimately, an accurate study of the equilibrium phase behaviour
should be based on (computationally expensive) free-energy calculations.
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Figure 4.5: (a) State diagram from bulk MC-NPT simulations. Representative snapshots
for (b) isotropic phase (I) with xsph = 0.6 and βPD3 = 1.93, rods are colored according their
orientations (axis colors indicated in the snapshot); (c) nematic phase (N) xsph = 0.3 and
βPD3 = 2.28 with rods colored according to the local nematic order parameter Si; (d) binary
smectic phase (Sm2) xsph = 0.5 and βPD3 = 3.86 with rods colored according to the local
smectic order parameter τi; (e) Formation of columnar aggregates of hard spheres as indication
of demixing between a smectic (or crystal) phase rich in rods and an isotropic phase rich in
spheres. xsph = 0.1 and βPD3 = 7.73; (f) Columns of spheres start to appear in a Sm2 phase
(most of the spheres are still arranged in layers) xsph = 0.2 and βPD3 = 5.97 ; (g) Coexistence
between I and Sm2 phase, xsph = 0.7 and βPD3 = 3.86, rods colored according to τi ; (h) Single
layer of rods in coexistence with a sphere-rich isotropic phase, xsph = 0.9 and βPD3 = 6.32,
rods are colored according to τi.



76 Chapter 4

Figure 4.6: Identifying coexistence between isotropic and binary smectic phase.(a) Fraction
of rods nrods with a given value of the local smectic order parameter τi for state points with
xsph = 0.6 and reduced pressures βPD3 as indicated in the legend. βPD3 = 1.93 corresponds
to an isotropic state (representative snapshot in Fig. 4.5(b)). βPD3 = 3.34 corresponds to an
I-Sm2 state (typical snapshot in panel (b)), a small peak at τi ∼ 0 is evident. βPD3 = 4.92
corresponds to a Sm2 state (snapshot in panel (c)). βPD3 = 7.73 corresponds to a I-Sm2 state
(snapshot in panel (d)). In this case the probability distribution of τi is not useful to identify the
state point but the low value of τsph (see panel (f)) indicates that the spheres are not arranged
in layers. In all the snapshots the rods are colored from green (low) to red (high) according to
the value of τi. Rods that are colored black do not have nearby neighbours and therefore have
τi = 0. Peaks around zero (panel (a)) are evidences of demixing between I and Sm2. Tracking
the number of rods with small values of τi could help in identifying the state point. In panel (e)
the fraction of rods nrods with a small τi (arbitrarily chosen such that |τi| < 0.25) are plotted
as a function of the reduced pressure βPD3 for different composition xsph. For xsph = 0.6
the non-monotonic behaviour of nrods could be used to identify the re-entrant behaviour of
the Sm2 region, even if it is admittedly somehow arbitrary. In panel (f) the smectic order
parameter associated to layers of spheres τsph (see text for the definition) is plotted against the
pressure for different composition. The different arrangement of spheres, either in layers or in
columns/random aggregates (these are indications of I-Sm2 demixing) is associated to a large
or small value of τsph, respectively.
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4.4 Comparison with experiments and conclusions
In Fig. 4.7 the experimental sedimentation paths are superimposed on the state diagram
obtained using computer simulations of hard spherocylinders and hard spheres in bulk
without a gravitational field using the effective dimensions of the experimental particles,
as described in the previous section. The topology of the phase diagram is consistent
with previous theoretical studies [167] and shows a large isotropic-binary smectic (I-Sm2)
coexistence region. Sedimentation paths going through such demixing regions look mostly
flat (pressure is constant) for a good part, even though a clear identification of the coex-
istence points remains a clear challenge. Nevertheless, an overall qualitative agreement is
obtained. Hence, the phase behaviour of silica rods and spheres is predominantly entropy-
driven, so mostly dominated by the particle shape. This was expected because the van
der Waals interactions were reduced by refractive index-matching solvent and colloids,
and because the length of the charge repulsion was also reduced by the addition of salt
to the medium. In summary, the liquid crystal behaviour of the experimental system
is in agreement with simulations and it can be well described by using a second-virial
theory [167].
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Figure 4.7: Mapping of experimental data (symbols) on bulk state diagram from Monte
Carlo simulations. The regions where the phases are expected to be thermodynamically stable
were roughly identified by MC bulk simulations of mixtures of hard rods and hard spheres.
Experimental equations of state (pressure βPD3 versus composition x = Ns/N) obtained from
different sediments of rods and spheres (symbols). We used the following thresholds to determine
in the experimental system the different phases; isotropic (I) if 〈Si〉 < 0.5 and 〈τi〉 < 0.35 (black
spheres), nematic (N) if 〈Si〉 > 0.5 and 〈τi〉 < 0.35 (green diamonds), Sm2 if 〈Si〉 > 0.5 and
〈τi〉 > 0.35 (red squares).
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Due to the relatively high polydispersity (in rod length δL ' 18% and diameter δD '
10%, and in sphere diameter δσ '9%), no long-range positional order was found in the
sample, i.e., no binary crystal phases was obtained. By decreasing the polydispersity in the
sample (δL and δD < 5% is currently achievable), we expect to find crystalline structure
at higher pressures, possibly the same binary crystal phase observed for nanorods and
nanospheres [183]. However, the fact that computer simulations at high pressure show a
strong tendency to phase separation between a crystal phase with almost only rods poses
some doubts on the possibility of forming a binary crystal at intermediate compositions
for this particular diameter ratio (D/σ = 1.52). The influence of large and small spheres
on the stability of layered phases have been investigated theoretically [169] and partially
experimentally [161]. Futures studies combining experiments using silica colloids and
simulations could address the stability of binary crystal phases in a systematic way.

In conclusion, we demonstrated that Sm2 phases of rods and spheres can be formed
by shape alone. This allows the possibility of realizing these intriguing phases with a
broad class of systems over several lengths scales and profit from the combined benefits of
both binary systems and the tunability of liquid crystal phases. For instance, realizing an
aligned Sm2 phase of gold nanorods and spherical semiconductor particles using a small
electric field is of great interest. Spherical semiconductor particles would self-assemble
at the gold nanorod tips. At these positions there will be very strong plasmon enhanced
electromagnetic fields, that will enhance the luminescence of semiconductor particles.
However, the use of different materials could clearly change the interparticle potential
that in turn could change the equilibrium structure. For example, it has been shown that
in two-dimensional assemblies of semiconductor nanorods and gold nanospheres when the
rod-sphere attractions are dominant the favored structure consists in a certain number
of spheres aligned linearly (in parallel) between two neighbouring rods [163]. Finally,
mixtures of colloidal rods and spheres are a valuable model system to study the particle
dynamics and the nucleation of binary systems in real-time and in real-space. Quantitative
analysis based on order parameters such as the ones used in this chapter will be useful
for this purpose.
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5

Moving away from spherocylinders:
polyhedral hard rods and biaxial

nematic phases

In this chapter we study the liquid-crystal behaviour of biaxial hard rod-like particles
with a polyhedral shape. We perform computer simulations of hard equilateral triangular
prisms and we find isotropic, uniaxial nematic and smectic phases. Theoretical predic-
tions based on fundamental measure theory are in agreement with the simulation results.
Furthermore, we observe that triangular prisms exhibit liquid-crystal phases at slightly
lower densities and slightly lower particle aspect ratios with respect to spherocylinders,
a feature that can be attributed to the presence of flat faces. By changing the angle of
the (isosceles) triangular base of the prisms, we also observe the formation of oblate and
biaxial nematic phases by computer simulations. Our state diagram indicates that the
general liquid-crystal behaviour can be predicted on the basis of a shape parameter that
depends on the difference between the ratios of the particle axes, as already pointed out in
the literature. In particular, biaxial nematic phases of triangular prisms are found when
such a shape parameter is close to zero, i.e., the “dual” shape. This shape parameter cri-
terium is further confirmed by computer simulations of hard cuboidal particles. However,
biaxial nematic phases are only observed when the particles are sufficiently elongated,
which is equivalent to sufficiently thin for dual-shaped particles, in order to stabilize both
prolate and oblate order. This additional criterium depends sensitively on the exact par-
ticle shape, i.e., the threshold value on the particle length becomes more extreme going
from spheroplatelets to triangular prisms to cuboids.
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5.1 Introduction
Recent advances in colloidal synthesis techniques allow the preparation of colloids and
nanoparticles with a large number of distinct polyhedral shapes and sizes ranging from the
nanometer to the micrometer [68–70]. The sheer number of available polyhedral colloids
with distinct shapes and the prospect of even more shapes synthesized in the near future
demands efficient theories or computer simulations to guide future synthesis efforts. In
particular, it is of clear interest to understand what is the effect of the particle facets on the
liquid crystal phase behaviour of such rod-like nano-polyhedra and what shape parameters
can be used to rationalize the observed phase behaviour. In the first part of this chapter,
we assess the accuracy of density functional theory (DFT), in particular fundamental
measure theory (FMT), in describing the liquid-crystal behaviour of polyhedral rods. To
this end, we perform computer simulations of hard equilateral triangular prisms forming
liquid crystal phases. We compare our results with FMT predictions and we highlight the
difference with respect to the (uniaxial) spherocylindrical model.

In the second part, we investigate the formation of biaxial nematic phases in systems
of hard elongated polyhedral particles by using computer simulations. Biaxial nematic
phases have three distinct optical axes in contrast with the (simpler) uniaxial nematic
phase, which has a single preferred axis. Biaxial nematic phases have been the focus of
several theoretical works [62, 151, 185, 186], they have been long searched and debated
in experimental thermotropic liquid crystals [187–190] and investigated by computer sim-
ulations based on attractive particle models (see for example Refs. [191, 192]). Biaxial
nematics have also been observed in colloidal systems [193] and hard-particle models have
been employed in simulations to shed new light into the biaxial nematic phases stabilized
by entropy alone [194, 195]. As theoretically predicted [62, 185], biaxial nematics can ap-
pear in systems composed of particles that have a particular ratio of their molecular axes,
quantified by a shape parameter ν. The first evidence of an entropy-driven transition to
a biaxial nematic phase was provided by simulations on biaxial ellipsoids [194], which do
not exhibit a smectic phase that can destabilize the biaxial nematic phase. More recently,
computer simulations of hard spheroplatelets [195, 196] showed that it is still possible to
obtain a biaxial phase before the formation of a smectic phase in a very narrow shape
parameter regime where ν ∼ 0, providing that also the ratio between the long and the
short particle axis is greater than a given threshold (which is 9 for this specific particle
model). Here, we consider two different models: hard elongated triangular prisms with
an isosceles triangular base and hard cuboidal (brick-like) particles. In both cases we find
regions in which biaxial nematic phases are stable, for particles with ν ∼ 0. However,
consistently with the literature, we observe that additional, strongly shape-dependent,
conditions need to be satisfied as well.
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5.2 Models and methods

(a) (b) (c)

Figure 5.1: Triangular prism (TP) with an (a) equilateral or (b) isosceles base. The height of
the particle is h, whereas the width is ω and is defined such that the base perimeter is πω. The
isosceles base (panel (b)) is defined by the angle γ. The particle orientation can be described by
the unit vector û, v̂ and ŵ. (c) Cuboidal (brick-like) particle of height h, width ω, such that
the base perimeter is πω. The orientation of the long, medium and short axis is described by
û, v̂ and ŵ, respectively. The particle dimensions are in all cases defined by the length of the
vectors |û|, |v̂|, and |ŵ|.

The first particle model we consider is a hard triangular prism (TP) of height h with an
equilateral base, as shown in Fig. 5.1(a). The width ω of the particle is defined such that
the base perimeter is πω. According to this definition, when the number of the sides of
the base tends to infinity, so in the limit that the particle becomes a cylinder, ω coincides
with the particle diameter. Therefore h/ω is the particle aspect ratio. This particle model
is clearly biaxial and the shape can be further tuned by varying the triangular base. In
particular, we consider TPs with an isosceles triangular base defined by the angle γ, as
shown in Fig. 5.1(b). Clearly, the equilateral case is obtained when γ = π/3 ' 1.04719.
The particle orientation is described by three unit vectors û, v̂ and ŵ associated to the
main particle axes, as shown in Fig. 5.1(b). By introducing the vectors u, v, and w, we
are also able to define the particle dimensions of the TP by using their length |u|, |v|, and
|w|. For the TPs studied here, |u| always represents the long axis, which coincides with
the height h, whereas |v| and |w| are the medium and short axis, that depend on the angle
γ. For γ . 1.10715, the length of the short axis is |w| = (π sin γ)/(2 + 2 cos γ) and the
length of the medium axis is |v| = (π cos γ)/(1+cos γ). On the contrary, for γ & 1.10715,
|w| > |v|, and in particular |w| = (π cos γ)/(1 + cos γ) and |v| = (π sin γ)/(2 + 2 cos γ).

The shape parameter ν is defined as the difference between the ratio of the long and
medium axis and the ratio of the medium and the short axis. For γ . 1.10715, it yields

ν = |u|
|v|
− |v|
|w|

= h(1 + cos γ)
π cos γ − 2

tan γ , (5.1)

and a similar expression can be obtained when γ & 1.10715.
At the end of this chapter we also study the liquid crystal behaviour of hard cuboidal

(brick-like) particles. Similar definitions also hold for this particle model, which is shown



84 Chapter 5

in Fig. 5.1(c). The particle height is h = |u| and the particle width is ω such that the base
perimeter is πω = 2|v|+2|w|. We assume, without loss of generality, that |u| ≥ |v| ≥ |w|,
such that the shape parameter ν = |u|/|v| − |v|/|w|.

Computer simulations and order parameters
To study the phase behaviour of polyhedral hard rods we employ standard Monte Carlo
(MC) simulations either in the NPT or NV T ensemble [10]. System sizes range from
N ' 1000 to N ' 3000 particles and several millions of MC steps are performed for typical
runs. For NV T -MC simulations, each MC step consists on average of N/2 attempts of
translating a random particle and N/2 attempts of rotating a random particle. For
NPT -MC simulations, an additional attempt to either scale isotropically the volume or
to change only one edge of the cuboidal simulation box is tried at each MC step. The
particles interact via an hard-core potential only. To detect overlaps between particles,
we use an algorithm, based on the RAPID library [57], that consists in detecting the
intersections between the (triangular or rectangular) faces of the polyhedral particles.

To quantify the orientational and positional order in the system we use several order
parameters. First, we extend the nematic order parameter used for uniaxial particles (cfr.
Sec. 3.4) to the biaxial particle models considered here. In particular, we construct the
following tensors

Qâ
αβ = 1

N

N∑
i=1

[
3
2 âiαâiβ −

δαβ
2

]
, (5.2)

where α, β = x, y, z component and â = û, v̂, ŵ denotes the three symmetry axes of the
particle. N is the number of particles and δαβ the Kronecker delta. By diagonalizing
each of these tensors we obtain three eigenvalues λ+

a ≥ λ0
a ≥ λ−a . We identify the (scalar)

order parameter associated to the nematic order of the axis â as the maximum of these
eigenvalues: Sâ ≡ λ+

a . The corresponding eigenvector is the nematic director n̂â. In
Secs. 5.4 and 5.5 we use these order parameters to distinguish between oblate, prolate
and biaxial nematic phases.

It is also possible to quantify the degree of (macroscopic) biaxial alignment of a nematic
phase by defining an additional order parameter, that we call B. Different notations are
used to identify such a parameter [197] and slightly different approaches are employed to
calculate it in computer simulations [192, 194, 196]. We follow the procedure in Refs. [194,
198] that consists in first identifying an appropriate orthonormal basis for the laboratory
reference frame that is aligned with the two main directions of the biaxial phase. For
each configuration, we identify the largest Sâ and we define the z-axis of the laboratory
reference frame as Ẑ ≡ n̂â, with â the principle main axis of the particle. Then, we
identify the second largest nematic order parameter Sb̂ and we define the second axis
of the laboratory reference frame as Ŷ ≡ n̂b̂ − (n̂b̂ · Ẑ)Ẑ ' n̂b̂. Analogously, we define
the third axis of the laboratory frame by orthogonalizing the third nematic director:
X̂ ≡ n̂ĉ − (n̂ĉ · Ẑ)Ẑ− (n̂ĉ · Ŷ)Ŷ, with ĉ the third symmetry axis of the particle. Finally,
we compute

B = 1
3
(
Ŷ · Qb̂ · Ŷ + X̂ · Qĉ · X̂− Ŷ · Qĉ · Ŷ − X̂ · Qb̂ · X̂

)
. (5.3)
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B is normalized such that it ranges from 0 to 1. Low values of B correspond to an isotropic
phase or to a uniaxial phase and high values to a biaxial phase.

To identify the phase transition to a smectic phase, more precisely to a prolate smectic-
A phase, we use the same order parameter as introduced for spherocylinders (cfr. Sec. 3.4):

τ = max
l∈R

∣∣∣∣∣∣
N∑
j=1

exp
(2π
l
irj · n̂â

)∣∣∣∣∣∣ , (5.4)

where rj denotes the position of particle j.

Density functional theories
For the equilateral TPs, we compare our simulation results with the theoretical predic-
tions based on different types of density functional theory (DFT). First, to describe the
isotropic-nematic transition we use the second-virial Onsager theory with Parsons-Lee
(PL) correction, already described in Sec. 3.2. We do not explicitly consider the biaxial
nature of the particle shape in the description of the nematic order. In particular, we
assume that the orientation distribution function ψ depends only on the polar angle θ
between û, that is the orientation of the long axis of the particle (see Fig. 5.1) and the
nematic director n̂û. In other words, we assume ψ(R) = ψ(θ), where R is the 3 × 3
rotation matrix describing the particle orientation. In analogy with Eq. 3.6, the excluded
volume between two particles is given by :

E(θ, θ′) = −
∫
dφ dφ′ dχ dχ′dr f(r,R,R′) , (5.5)

with f(r,R,R′) the Mayer function (see Eq. 3.4), φ the azimuthal angle with respect
to n̂û, and χ the particle internal angle. In practice, the excluded volume is computed
by performing MC integration over many randomly generated pairs of particles. This
procedure has been already outlined in Sec. 3.2 and is described extensively in Sec. 6.2.4
for chiral nematic phases (the uniaxial achiral nematic state is recovered by assuming
no twist). In summary, the excluded volume used as input for Onsager-PL theory is an
average over the particle internal angle.

Calculations based on a more sophisticated DFT, namely fundamental measure theory
(FMT) [199–203], performed by M. Marechal (Universität Erlangen-Nürnberg), are also
reported in this chapter and compared with our simulation results. Contrary to Onsager-
PL theory (in the version used here), FMT is based on the full single-particle distribution
ρ(r,R), i.e., it takes into account explicitly all the orientational degrees of freedom and the
positional degrees of freedom. In this way, it is possible to distinguish between isotropic,
nematic and smectic phases and to investigate also the biaxial order and the smectic
layer structure. FMT was recently applied to polyhedral particles [204]. Results from
two different flavours of FMT are reported, and are denoted as 0D-FMT and TR-FMT.
0D-FMT was derived by considering a quasi-zero dimensional system, i.e., a cavity that
contains at most one particle [205, 206]. 0D-FMT should work well for strongly layered
systems and long particles. TR-FMT was obtained by Tarazona and Rosenfeld [205] from
0D-FMT for spheres by an expansion and subsequent rescaling to get the correct third
virial coefficient for the bulk fluid of hard spheres. The rescaling should improve the
results for the isotropic phase of shorter particles.
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5.3 Liquid crystals of equilateral triangular prisms

The liquid crystal behaviour of hard equilateral TPs (model shown in Fig. 5.1(a)) is
studied by performing MC simulations of N = 2000 particles with different aspect ratios
h/ω ∈ [3.0, 6.0]. The equation of state is obtained after long equilibration runs in theNPT
ensemble, typically expanding from close-packed configurations, and averaging the density
over equilibrated configurations generated in the last ∼ 106 MC steps. In Fig. 5.2(a),
we plot the reduced pressure βPω3, with β = 1/kBT , T the temperature and kB the
Boltzmann constant, as a function of the packing fraction η for some of the systems
studied. We find an isotropic (I) phase at low densities and a crystal (X) phase at high
densities for all the aspect ratios h/ω studied. For h/ω = 3, we observe a clear jump in
the density that corresponds to a first-order transition from I to a smectic (Sm) phase. In
case of longer particles, a nematic (N) phase is also observed, and the jumps in densities
associated to the I-N and N-Sm transitions are barely visible.
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Figure 5.2: (a) Equations of state (reduced pressure βPω3 versus packing fraction η) obtained
by MC-NPT simulations for TPs with different aspect ratio h/ω along with representative
snapshots of (b) an isotropic (I) phase, (c) a nematic (N) phase and (d) a smectic (Sm) phase.
Particles are colored according to the orientation of their long axis u. At high densities the TPs
form a crystal phase (X).
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Both in the nematic phase and in the smectic phase, only the long particle axis û
exhibits long-range orientational order, as evident from visual inspection of typical config-
urations, shown in Fig. 5.2(c)-(d), and further confirmed by the order parameter analysis.
The liquid crystal behaviour is therefore qualitatively similar to that of spherocylinders
(uniaxial rod-like particles) with comparable aspect ratio. This is expected since equi-
lateral TPs in this aspect ratio range have a shape parameter ν significantly larger than
zero, for which a prolate (or calamitic) nematic phase is predicted. The phase transitions
can be determined by identifying the jumps of the nematic order parameters S ≡ Sû

and the smectic order parameter τ as a function of the packing fraction η, as shown in
Fig. 5.3. For h/ω = 3, we can clearly identify an I-Sm transition since both S and τ si-
multaneously jump in correspondence of the large density jump. A direct transition from
I to Sm can be also observed for h/ω = 4, despite the smectic order parameter τ displays
a less abrupt jump. Beyond this aspect ratio, a N phase appears in between the I and
the Sm phase. A weakly first order N-Sm transition is observed for TPs with h/ω = 4.1
and h/ω = 4.3, since τ displays a jump at larger η than S, and this is further confirmed
by visual inspection of the configurations. Longer TPs exhibit more pronounced jumps
of the order parameters. We can conclude that TPs with h/ω & 4 self-assemble into a
N phase. For larger h/ω, the I-N transition clearly shifts towards smaller η whereas the
location of the N-Sm is less sensitive to h/ω.
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Figure 5.3: Reduced pressure βPω3, nematic order parameter S and smectic order parameter
τ versus packing fraction η for TPs with (a) h/ω = 3, (b) h/ω = 4, (c) h/ω = 4.1, and (d)
h/ω = 4.3. Vertical lines are guides-to-the-eye to locate the jumps in the order parameters and
therefore estimate the phase transitions.
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The order parameter analysis is repeated in the NV T ensemble and the previous
observations are confirmed. In Fig. 5.4, we compare the dependence of the nematic order
parameter S on the packing fraction η as obtained by computer simulations, by Onsager-
PL theory and by FMT, for TPs with different h/ω. We observe that Onsager-PL theory
largely overestimates the packing fraction at which the I-N transition occurs, confirming
the known drawback of such a theory. On the other hand, FMT predictions for the jump
of S match well the simulation results for TPs with h/ω = 3, for which only the I-Sm
transition occurs. On the other hand, as soon as the N phase becomes stable, e.g. for
h/ω = 4.3, the FMT underestimates the packing fraction associated to the jump of S.
However, upon increasing aspect ratio h/ω, the discrepancy diminishes and already for
h/ω = 6 a good agreement for the I-N transition is obtained.
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Figure 5.4: Nematic order parameter S versus packing fraction η as obtained by MC-NV T
simulations, by Onsager theory with Parsons-Lee (PL) correction, and by FMT, for TPs with
(a) h/ω = 3, (b) h/ω = 4.3, (c) h/ω = 5, and (d) h/ω = 6.

In Fig. 5.5 we plot the equation of state of TPs with h/ω = 3 and h/ω = 6 obtained
by computer simulations with that calculated by using two versions of FMT. We observe
a very good agreement between the simulation results and the 0D-FMT predictions in
the case of short particles, especially for the isotropic branch of the equation of state.
On the other hand, the TR-FMT seems to capture better the equation of state of longer
particles. This is in line with the expectations and the assumptions based on the different
versions of the FMT. Finally, we superimpose the simulation results in Fig. 5.6 together
with the phase diagram obtained by the FMT in the aspect ratio h/ω - packing fraction
η representation. For the simulation results, we estimate the phase boundaries based on
the order parameters and by considering the upper and lower packing fraction at which a
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given phase is observed. We estimate the degree of uncertainty in the identification of the
phase boundaries, and plot the coexisting densities in η with the estimated error bar of
0.01 in Fig. 5.6. We confirm once more that the overall qualitative liquid-crystal behaviour
of TPs is well captured by FMT, that also predicts a stable nematic phase for TPs with
h/ω > 4.0. No biaxial order was observed in simulations or predicted by FMT, neither
for the nematic nor the smectic phase. As expected, the liquid-crystal phase behaviour of
hard TPs closely resembles that of hard spherocylinders (SCs) (cfr. Fig. 3.1). Despite the
two particle models have different shapes we can try to compare their phase behaviour
assuming that TPs with h/ω = h∗ behave similar to SCs with (L + D)/D = h∗, with
L the cylinder length and D the particle diameter (which coincides with the diameter of
the two hemispherical caps). If this analogy holds, we observe that a nematic phase is
stabilized for TPs with h∗ & 4 and for SCs with h∗ > 4.7. Furthermore, in this range
of h∗ the smectic phase can be stabilized at lower packing fraction η in the case of TPs
(η . 0.4) than for SCs (η & 0.45). We thus conclude that the flat facets of TPs promote
order at lower aspect ratios and lower packing fraction with respect to the rounded shape
of SCs.
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Figure 5.5: Equation of state (reduced pressure βPv0, with v0 the particle volume, versus
packing fraction η) for TPs with (a) h/ω = 3 and (b) h/ω = 6 obtained by MC simulations
and by two versions of FMT.
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Figure 5.6: Phase diagram obtained by FMT (solid lines) compared with simulation results
(symbols) in the aspect ratio h/ω - packing fraction η representation. Isotropic (I) stability
region is colored grey, nematic (N) red, smectic (Sm) blue, and coexistence regions white. The
boundaries for the crystal phase (X) are not calculated explicitly.
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5.4 Biaxial order in nematic phases of isosceles tri-
angular prisms

In this section, by changing the base angle γ in the TP particle model, we study if TPs can
stabilize a biaxial nematic phase and if their liquid-crystal behaviour can be rationalized
in terms of the shape parameter ν defined in Eq. 5.1. We consider TPs with a fixed
h/ω = 5 and by varying the base angle γ we change the shape parameter ν. Notice that a
biaxial nematic phase can be predicted when ν = 0, a condition that is obtained for two
values of γ, namely γ∗ ' 0.527458 < π/3 and γ∗∗ ' 1.43462 > π/3.

In Figs. 5.7 and 5.8, we report the equation of state and the order parameters obtained
by MC-NPT simulations of 2400 TPs with γ = 0.5 (ν ' −0.258) starting from a dilute
configuration. We first study the orientational order developed in the system by evaluating
the eigenvalues λ+,0,−

a of the nematic order tensors Qâ, with â = û, v̂, ŵ, as defined in
Eq. 5.2, which are shown in Fig. 5.7(a) as a function of the packing fraction η. We observe
that at low η in the isotropic phase λ+

a,b,c ' λ0
a,b,c ' λ−a,b,c ' 0 for all the three axes. Upon

increasing η, we observe that all the three maximum eigenvalues λ+
a,b,c display a jump, that

is larger in the case of the eigenvalue associated to the short axis ŵ. This is a signature
of the formation of a (uniaxial) nematic phase, that we denote with N−, in which the
short axis features long-range orientational order. A representative snapshot of the N−
phase is shown in Fig. 5.7(b)-(c) in which the particles are either colored according to
the orientation of the particle long axes û or the particle short axes ŵ. It is evident that
the particle short axes ŵ are aligned along a common direction (panel (c)) whereas the
particle long axes û are not. The N− phase is specular to the nematic phase observed
for the equilateral TPs (cfr. Fig. 5.2(b)), that we now denote with N+. In general for
a uniaxial nematic phase (of biaxial particles), it holds that λ+

a > λ0
a ' λ−a whereas

λ+
b,c ' λ0

b,c > λ−b,c. Based on the largest eigenvalues, we distinguish between prolate
(or calamitic) N+ and oblate (or discotic) N− nematic phase. Upon further increasing
η, we observe that λ+

u,v,w > λ0
u,v,w ' λ−u,v,w for all the three particle axes, suggesting

the formation of a biaxial nematic phase Nb. Furthermore, we also observe a cross-
over between λ+

u and λ+
w . To better characterize the Nb phase we use the biaxial order

parameter B defined in Eq. 5.3. We show B together with the nematic order parameters
Sû and Sŵ, and the smectic order parameter τ , as a function of the reduced pressure
βPω3, in Fig. 5.8. We observe that B exhibits a clear jump at βPω3 ' 1.5 towards
significantly large values and therefore confirms the formation of a Nb phase. We can
further distinguish between a Nb− and a Nb+ phase, that are both nematic phases with the
same macroscopic biaxial symmetry but with the short or the long axis featuring a larger
degree of orientational order. These phases have been already identified in simulations of
hard spheroplatelets [195, 196]. Finally, we observe that at larger pressures the smectic
order parameter τ displays a jump indicating the formation of a (prolate) smectic phase
(Sm).

By performing extensive computer simulations in the NPT -ensemble of TPs with dif-
ferent base angle γ, we are able to roughly map out the liquid-crystal behaviour of TPs
with h/ω = 5 using the order parameter analysis as described above. We present our
results in Fig. 5.9. Since a “very sluggish behaviour” [194] is observed when ν ∼ 0, con-
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Figure 5.7: (a) Reduced pressure βPω3 and eigenvalues λ+,0,−
u,v,w of the nematic order tensors

Qû, Qv̂, Qŵ (see Eq. 5.2) associated to the orientation of the long û, medium v̂, and short ŵ
axis of TPs with h/ω = 5 and γ = 0.5 (yielding a shape parameter ν ' −0.258) as a function of
packing fraction η. Data are obtained by MC-NPT simulations compressing from an isotropic
phase. (b)-(c) Representative snapshot of an oblate nematic phase (N−) of TPs with h/ω = 5
and γ = 0.5 at βPω3 = 1.4. In (b) particles are colored according to the orientation of the
long axis û and in (c) according to the orientation of the short axis ŵ. (d)-(e) Representative
snapshot of a biaxial nematic phase (Nb) of TPs with h/ω = 5 and γ = 0.5 at βPω3 = 2.1. In
(d) particles are colored according to û and in (e) according to ŵ.

clusions should be carefully drawn from this state diagram. Nevertheless, from Fig. 5.9(a),
where we plot the state points in the base angle γ - packing fraction η representation, we
observe that close to the two values of γ∗ and γ∗∗ for which ν = 0, as denoted by the
vertical dashed lines, the Nb phase can be formed. From Fig. 5.9(b), where we plot the
state points in the shape parameter ν - packing fraction η representation for TPs with
γ < π/3, we observe that the region for which Nb is observed is asymmetric with respect
to ν = 0, since it extends more towards negative ν. This is in agreement with previous
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studies [185, 194]. Furthermore, TPs with a small but positive value of ν, for which a
prolate order is expected, surprisingly form an oblate nematic phase. In Fig. 5.9(c), to-
gether with the just discussed state points for TPs with γ < π/3 (filled symbols), we also
plot the state points for TPs with γ > π/3 (empty symbols) in the ν-η representation.
We notice that for similar values of ν the phase behaviour is not the same for the two
sets of TPs. In particular, we notice that for γ < π/3 the Nb phase can be stabilized over
a larger region of ν than in the case of TPs with γ > π/3. This asymmetry in the phase
behaviour arises from the triangular shape of the prisms. Finally, we want to remark
that we consider TPs with fixed h/ω = 5 and different base angles γ that correspond to
particles with different long-to-short axis ratio, which is |u|/|w| for TPs with γ < π/3 and
|u|/|v| for TPs with γ > π/3. In Fig. 5.9(d), we plot the same results in the long-to-short
axis ratio - packing fraction η representation. We observe that in this representation it is
evident that the I-N transition shifts towards lower η whereas the N-Sm transition is less
sensitive to the particle length, as already shown for equilateral TPs in Fig. 5.6. However,
by just knowing the long-to-short axis ratio of the particle, it is not possible to predict
the symmetry of the N phase. We conclude that in order to rationalize the behaviour of
TPs, the knowledge of two independent parameters based on the particle dimensions is
needed, as expected for biaxial particles, in addition with the value of the base angle γ,
that is a requirement that directly comes from the intrinsic asymmetry of the triangular
base.
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Figure 5.8: Nematic order parameters Sû and Sŵ, biaxial order parameter B and smectic
order parameter τ as a function of reduced pressure βPω3 for TPs with h/ω = 5 and γ = 0.5
(ν = −0.258) obtained by MC-NPT simulations compressing from an isotropic phase. Dotted
lines are guides-to-the-eye for the I-N−-Nb(Nb−-Nb+)-Sm sequence.
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Figure 5.9: State diagram for TPs with h/ω = 5. Each state point has been labelled according
to the order parameter analysis described in the text. Legend of panel (a) is the same for each
panel. (a) Base angle γ - packing fraction η representation. (b) Shape parameter ν - packing
fraction η representation for TPs with γ > π/3. (c) Shape parameter ν - packing fraction η
representation for all the TPs studied. (d) Long-short axis ratio (|u|/|w| or |u|/|v| depending
on γ) - packing fraction η representation for all TPs studied. In (c) and (d) filled symbols
indicate TPs with γ < π/3 and empty symbols TPs with γ > π/3.
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5.5 Biaxial nematic phases of brick-like colloids
The study presented in the previous section can be repeated for cuboidal (brick-like)
colloids (see Fig. 5.1(c)). This particle model was recently studied in Ref. [207] by com-
puter simulations of particles with |v| = |w|, for which a biaxial nematic phase cannot
be formed. The liquid-crystal behaviour of a similar board-like particle model, namely
spheroplatelets, has been extensively studied by computer simulations in Refs. [195, 196].
Theoretical predictions expect the formation of a biaxial nematic phase when the particle
shape parameter ν ' 0 [62, 185]. One of the main results of the computer simulation
study of Refs. [195, 196] was that biaxial nematic phases can be indeed obtained when
the shape parameter ν ' 0 but with the additional condition that the ratio between
the long axis and the short axis should be at least 9 (compared to our model this reads
|u|/|w| ≥ 9). For shorter particles, the biaxial nematic phase is not observed and there is
a direct transition between a uniaxial nematic phase and a smectic phase. Here, we high-
light how the difference in shape between our cuboidal particles, that have sharp edges,
sharp corners and flat faces, and the spheroplatelets, that have rounded edges, rounded
corners and fewer flat faces, is reflected in the stabilization of a biaxial nematic phase Nb.
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Figure 5.10: (a) Packing fraction η, nematic order parameters Sû and Sŵ, biaxial order
parameter B and smectic order parameter τ as a function of reduced pressure βPω3 for hard
brick-like colloids with h/ω = 8 and |v| = 1.34475 (ν ' 0) obtained by MC-NPT simulations of
N = 1200 particles compressing from a dilute configuration. Dotted lines are guides to the eye
for the I-N−-Nb-Sm sequence. (b)-(c) Representative snapshot of a biaxial nematic phase (Nb)
obtained at βPω3 = 1.0 with particles colored according to the orientation of the long axis û in
(b) and according to the orientation of the short axis ŵ in (c).

We first study extremely long particles with an aspect ratio h/ω = 8 and |v| = 1.34475
such that ν ' 0 (notice that this corresponds to |u|/|w| ' 35). We show in Fig. 5.10(a) the
packing fraction η, the nematic order parameters Sû and Sŵ, the biaxial order parameter B
and the smectic order parameter τ , as a function of the reduced pressure βPω3, as obtained
by MC-NPT simulations of N = 1200 particles starting from a dilute configuration. We
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clearly observe a I-N−-Nb phase sequence, and the Nb is also evident by visual inspection
of typical configurations, as shown in Fig. 5.10(b)-(c). However, by reducing the aspect
ratio to h/ω = 6 we do not observe the Nb phase, as reported in the state diagram of
Fig. 5.11(a), with the exception of a single state point for particles with h/ω = 6 and
|v| = 1.29 (ν ' 0.057 and |u|/|w| ' 21). However we are not able to clearly identify
this state point as Nb since the value of the biaxial order parameter B is very small and
prone to large fluctuations. A simulation run expanding from a smectic phase shows a
strong hysterisis around that pressure and indicates that the identification of the Nb is
particularly difficult when its stability region is very narrow, since the transition between
an oblate N− to a prolate Sm implies a re-arrangement of both particle axes. Analogously
with the case of TPs, we observe an asymmetry with respect to ν = 0 and it seems that the
cross-over between particles forming N− phases and particles forming N+ phases occurs
for a positive value of ν. Notice that in the regions close to the N−-N+ transition, we
observe that B assumes small and highly fluctuating values. All these observations need
to be confirmed with additional studies, perhaps based also on the density functional
theories described above. Upon further decreasing the particle aspect ratio to h/ω = 5,
for which the state diagram is reported in Fig. 5.11(b), the doubts on the absence of a Nb

phase vanishes. Indeed, we do not observe any evidence of a Nb phase even in the case
of brick-like colloids with h/ω = 5 and |v| = 1.26, yielding ν ' −0.086 and |u|/|w| ' 16.
For completeness, in Fig. 5.11(c)-(d) we report the state diagrams for brick-like colloids
in the long-to-short axis ratio |u|/|w| - packing fraction η representation. In summary,
despite we are not able at this stage to pinpoint exactly when the Nb becomes unstable in
systems of sharp brick-like colloids, we can conclude that Nb does not form when h/ω ≤ 5,
or alternatively when |u|/|w| . 16.

5.6 Conclusions

In conclusion, we have found a biaxial nematic phases for TPs with h/ω = 5 and γ =
0.5, corresponding to ν ' −0.258 and |u|/|w| ' 12.5, but not for brick-like colloids
with |u|/|w| . 16. Furthermore, Refs. [195, 196] reported Nb phases for spheroplatelets
with |u|/|w| ≥ 9. It is therefore evident that the roundness of the particle shape and
the number of flat facets play an important role in the stabilization of the Nb phase.
Furthermore, we have shown that by a fine tuning of the particle shape it is possible to
obtain uniaxial and biaxial nematic phases, as well as smectic phases, and to change the
phase sequence between them. This is consistent with previous studies and indicates that
the liquid-crystal phase behaviour can be generally predicted on the basis of the ratios
between the main particle axes. However, we have also highlighted that the exact shape
matters. For example, to rationalize the liquid-crystal behaviour of TPs, the knowledge
of ν, the long-to-short axis ratio and the angle γ are needed. The former two parameters
are enough for cuboidal particles. Future studies could use these particle models and rely
on the state diagrams provided here to thoroughly investigate how the different nematic
phases and the transitions between them are influenced by (other) polyhedral particles.
Finally, these particle-based simulations can be used to further refine the theoretical
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descriptions of the phase behaviour of complex-shaped particles, as we showed in the first
part of this chapter where we compared our simulation results against FMT predictions.
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Figure 5.11: State diagram for hard brick-like colloids with (a, c) h/ω = 6 and (b, d) h/ω = 5.
(a, b) Shape parameter ν - packing fraction η representation. (c, d) Long-to-short axis ratio
|u|/|w| - packing fraction η representation. Each state point has been labelled according to the
order parameter analysis described in the text.
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Cholesterics of colloidal helices:
predicting the macroscopic pitch

from the particle shape and
thermodynamic state

Building a general theoretical framework to describe the microscopic origin of macroscopic
chirality in (colloidal) liquid crystals is a long-standing challenge. Here, we combine clas-
sical density functional theory with Monte Carlo calculations of virial-type coefficients, to
obtain the equilibrium cholesteric pitch as a function of thermodynamic state and micro-
scopic details. Applying the theory to hard helices, we observe both right- and left-handed
cholesteric phases that depend on a subtle combination of particle geometry and system
density. In particular, we find that entropy alone can even lead to a (double) inversion
in the cholesteric sense of twist upon changing the packing fraction. We show how the
competition between single-particle properties (shape) and thermodynamics (local align-
ment) dictates the macroscopic chiral behaviour. Moreover, by expanding our free-energy
functional we are able to assess, quantitatively, Straley’s theory of weak chirality, used in
several earlier studies. Furthermore, by extending our theory to different lyotropic and
thermotropic liquid-crystal models, we analyse the effect of an additional soft interaction
on the chiral behaviour of the helices. Our results provide new insights on the role of
entropy in the microscopic origin of this state of matter.
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6.1 Introduction

“What is the origin of chirality in the cholesteric phase of virus suspensions?” [208]. With
such an intriguing question, which is to date unanswered, Eric Grelet and Seth Fraden
titled their paper about a decade ago. The link between micro- and macro-chirality
remains elusive not only in virus suspensions but in many systems exhibiting liquid crystal
phases [35]. These thermodynamic states in between the disordered liquid phase and the
(fully) ordered crystal phase, consist of anisotropic particles or molecules featuring long-
range orientational order but no (or only partial) positional order. In this study, we
focus on nematic phases, where the particles are preferentially aligned along a common
direction, identified by a unit vector called nematic director n̂, while keeping their centers
of mass homogeneously distributed in space. Whereas the nematic director of an ordinary
(achiral and uniaxial) nematic phase is homogeneously distributed throughout the system
(Fig. 6.1(a) and see Chap. 3), the cholesteric phase, often called chiral nematic, displays an
helical arrangement of the director field (Fig. 6.1(b)). The typical length scale associated
to this macroscopic chirality, that determines the periodicity of such an imaginary helix,
is named cholesteric pitch P . Depending on the twist sense of the director field around
the chiral director χ̂, the liquid crystal phase is denoted right- or left-handed.

Cholesterics are readily observed in both thermotropic molecular compounds and ly-
otropic colloidal suspensions [35]. The former class of liquid crystals, in which phase
transitions are mainly governed by temperature, has found wide technological application
in the opto-electronic industry due to the unique combination of rheological, electrical
and optical properties conferred by the chiral structure [209–211]. Derivatives of choles-
terol [212–214], the first liquid-crystal-forming systems experimentally observed [215, 216],
belong to this class.

Several lyotropic systems, where the phase behaviour is density-driven [217], such as
suspensions of colloidal particles or polymers, exhibit chiral order as well. Examples range
from biological materials, such as DNA [43, 218, 219], filamentous viruses [42, 208, 220–
223], cellulose and derivatives [224, 225], chiral micelles [226], to synthetic polymers, such
as polyisocyanates [227, 228] and polysilanes [229]. Suspensions of filamentous viruses
are among the most studied [42] colloidal systems in which chirality plays a major role
in self-assembly processes at different levels, leading to fascinating phenomena [230, 231].
At the microscopic level, charged (protein) subunits self-assemble into supramolecular
helical structures. However, whereas suspensions of fd virus particles exhibit chirality
also at macroscopic scale, thereby stabilizing a cholesteric phase [42, 208, 220, 221], other
virus particles, such as tobacco mosaic virus [232] and Pf1 virus [220] particles, with
similar helical charge distributions, form only a uniaxial nematic phase, challenging the
idea that molecular chirality is a guarantee for macroscopic chirality. Even though in
the latter case the cholesteric pitch is expected to be too large to be directly observed in
experiments, very subtle differences at the single-particle level can drastically change the
macroscopic self-organization [221, 222]. Surprisingly, fd virus particles that are sterically
stabilized with a polymer coat so thick that the electrostatic chiral interactions are proved
to be fully masked, still exhibit a cholesteric phase [208]. These observations, together
with a recent study aimed to map the fd-virus phase diagram onto that of hard rods [182],
suggest that entropy alone could govern the phase behaviour of (some) virus suspensions,
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Figure 6.1: Microscopic particle model (left), macroscopic liquid crystalline phase (cartoon in
the middle), and schematic of the nematic director field (right). (a) Achiral colloids are often
modeled as spherocylinders of length L and diameter D, whose orientation is described by a unit
vector ω̂. These rod-like particles give rise to a uniaxial and achiral nematic phase with a uniform
nematic director n̂. Notice that both for the particle orientation and for the nematic director
the up-down symmetry holds: ω̂ = −ω̂ and n̂ = −n̂. (b) The hard helix model consists of Ns

hard spheres of diameter σ, rigidly fused together to form an helix with molecular pitch p and
radius r. Particle orientation is described by a unit vector ω̂ and an internal angle α. Colloidal
helices self-assemble into a cholesteric configuration. The nematic director field n̂ exhibits an
helical arrangement along the chiral director χ̂, with periodicity given by the cholesteric pitch
P .

including the stabilization of a cholesteric phase. However, whereas the phase diagram of
the coated fd virus and the nematic order parameter were independent of ionic strength,
the cholesteric pitch varied surprisingly strongly with ionic strength [208].

The underlying competition between steric and electrostatic interactions appears even
more evident in the case of another charged filamentous virus suspension (M13), where a
left-handed cholesteric phase was obtained by right-handed particles [223]. The observed
sense of the macroscopic twist could not be correctly predicted by modeling the parti-
cles as hard bodies without taking into account a soft electrostatic contribution [223].
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Cholesterics with opposite handedness with respect to that of the constituent particles
were also observed in solutions of ultrashort DNA [219, 233]. Surprisingly, a peculiar
type of DNA oligomers showed an inversion in the helical sense of the cholesteric phase
upon changing system concentration, suggesting that packing arguments could explain in
which sense these systems should twist. However, the cholesteric pitch seemed to be in-
fluenced by other factors as well, such as particle length and oligomer sequences, but not,
for example, by particle flexibility. As a result, no simple rules could exhaustively explain
the chiral behaviour [219]. Inversion in the cholesteric handedness has been reported in
other studies as well, often concerning temperature-driven systems [213, 234]. The list
of systems indicating that the connection between micro- and macro-chirality is far from
trivial, is quite long [235], and difficult to rationalize due to the different interactions in
place.

On the other hand, a recent study seemed to have succeeded in identifying a chiral
system ruled by entropic effects only [236]. Indeed, interactions in suspensions of helical
flagella extracted from bacteria can be finely tuned by modifying solvent properties. In
particular conditions, these colloidal particles can be ultimately considered as hard helices,
whose exact shape can be also precisely regulated [236, 237]. As expected, when helical
flagella self-assemble, the chirality is transmitted to the liquid crystalline state. However,
the formed chiral nematic phase has a different symmetry from the cholesteric phase and
was identified as a conical phase [236, 238, 239]. Why such a phase should be thermo-
dynamically more stable than the cholesteric is another question thickening the mystery
of colloidal chirality. An even more complicated mechanism of chirality propagation from
molecular to macroscopic scale has been observed in thermotropic bent-core liquid crys-
tals [240]. In peculiar cases the intricate coupling between twisting and bending defor-
mations stabilize another chiral nematic phase, named twist-bend nematics [241, 242]. In
this instance the local nematic director n̂ is tilted with respect to the chiral director χ̂,
resembling therefore the conical order.

In view of such a complex and sometimes controversial experimental scenario, it is
not surprising that a unifying microscopic theory is still lacking. The attempt of in-
corporating all the interactions present in experiments in a suitable model for chiral
particles, is often beyond the limits of current theoretical tools and computational re-
sources. For this reason, despite very few exceptions [233], focus was separately given to
the chiral behaviour arising from either purely hard-core repulsions [63, 243–245] or from
soft electrostatic potentials only [245–248]. Even with this simplification, the complexity
of a chiral interparticle potential is such that most of these studies resorted to coarse-
grained potentials [245–250], in which the microscopic chiral features are masked into a
single pseudo-scalar parameter [251]. By contrast, we decided to build our study in small
steps [252], first improving our understanding of entropy-driven systems, and only at a
later stage introducing further elements into the particle model.

Beside the particle model, an appropriate theoretical approach is crucial. Computer
simulation methods are limited by the large number of particles required to accommodate
a full rotation of the nematic director. Despite ad-hoc techniques that have been developed
to try to overcome such an issue [253, 254], only few simulation studies, mainly using
coarse-grained potentials tailored to decrease the cholesteric pitch lengths, have been
dedicated to the investigation of cholesteric phases [246, 249, 250, 255–258]. Therefore,
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to shed new light on the microscopic origin of the macroscopic chirality, we appeal to a
suitable microscopic theory. A successful example of a microscopic theory, often used in
soft matter, is due to Onsager, who was the first in 1949 to explain the role of entropy
on the liquid-crystalline behaviour of anisotropic particles [30]. However, it took until
1976 to describe the cholesteric ordering, when Straley proposed his approach, based
on Frank’s theory of elastic deformations [63]. The seminal work of Straley has been
extensively used in modern studies to predict the cholesteric pitch of several colloidal
systems [233, 245, 247, 248, 259–262]. Only few exceptions presented alternative methods,
limited, however, by severe analytical assumptions [243, 244]. Despite the undoubted
relevance of Straley’s pioneering work, his approach is based on two main assumptions.
First, the theory is rigorously valid only in the limit of weak macroscopic chirality, a
limit that is anyway usually not far from the experimental conditions. Second, the theory
cannot be solved fully self-consistently, in the sense that the orientation distribution of
the cholesteric phase equals that of the underlying uniaxial achiral nematic phase, thereby
neglecting the differences in the local order between the latter and a cholesteric phase. Of
course this second assumption is consistent with the perturbative treatment of chirality in
Straley’s theory. Additionally, Straley’s approach has been used only for the description
of cholesterics, and only very recently density functional theories have been developed to
consider chiral nematics with different symmetries [36, 37].
We have recently introduced a novel approach to address these issues [252]. Our aim is
twofold: by refreshing the theoretical description of chiral nematics within the density
functional framework, we propose an additional tool to advance our understanding of this
complex state of matter. At the same time, by applying our theory to hard helices, we
provide new insights into the role of entropy in colloidal cholesterics. Indeed, such an
apparently simple model exhibits a fairly rich and complex chiral behaviour [252, 260],
that goes beyond simplified scenarios suggested in earlier studies [63, 263, 264]. Moreover,
despite a thorough simulation study aimed to map out the entire phase diagram [37, 265,
266], leading to a newly observed chiral nematic (screw-like) phase, a question mark is
still pending on the cholesteric phase and a definitive evidence from simulations is yet to
come.
This chapter is organized as follows: we dedicate Sec. 6.2 to readers interested in technical
details, where we describe extensively the theoretical framework used and its numerical
implementation. In Sec. 6.3, we study the cholesteric order in systems of hard helices.
In Sec. 6.4, we analyse the effect of an additional soft, short-range interaction on the
macroscopic chiral behaviour, thereby providing an explicit example of how the theory
can be applied to different particle models. We briefly analyse the extension of our theory
to mixtures in Sec. 6.5. We conclude the chapter with some final remarks in Sec. 6.6, and
present the first evidence from simulation for a cholesteric of hard helices in Sec. 6.7.
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6.2 Theory

6.2.1 Density functional theory for chiral nematics
It is known that a chiral particle cannot be uniaxial [263, 264]. Biaxiality introduces an
additional degree of freedom: the orientation of a generic rigid body is described by three
scalar parameters, (θ, φ, α) ∈ [0, π)× [0, 2π)× [0, 2π), known as Euler angles, or alterna-
tively by a 3× 3 rotation matrix R. The rotation matrix R can be parametrized in terms
of the unit vector ω̂, representing the orientation of the main long axis, and the internal
azimuthal angle α (cf. Fig. 6.1(b)). The single-particle density has to be modified for the
extra degree of freedom and is now subjected to the following normalization condition∫

V
dr
∮
dR ρ(r,R) = N, (6.1)

with dR = dα dφ d cos θ. Since the achiral nematic phase is a homogeneous phase with
orientational order only, the corresponding single-particle density depends on the orien-
tation variable only: ρ(r,R) = nψ(R), with

∫
dRψ(R) = 1 and n the number density. In

the most general case ψ(R) describes a biaxial phase.
Let us now consider a chiral nematic phase of pitch P with the chiral director χ̂ aligned

along the y axis (cf. Fig 6.1(b)). The cholesteric pitch P is related to the chiral wave
vector q through P = 2π/q. The chiral structure implies that the orientation distribution
function (ODF) at arbitrary y can be deduced from that at y = 0 by rotating by an angle
2πy/P = qy around the y-axis. Such a condition reads

ρ(r,R) = nψ( Tq(r)R ), (6.2)

where
Tq(r) ≡ Rχ̂(q χ̂ · r) = Rŷ(qy) (6.3)

is a rotation around the chiral director χ̂ (that coincides with the y-axis) by an angle qy.
From Eq. (6.2) we can immediately verify that chiral nematic phases are characterized by
the inequality ρ(r,R) 6= ρ(−r,R). By explicitly imposing the parity symmetry ρ(r,R) =
ρ(−r,−R), based on the assumption that the physics does not change by passing from a
right-handed to a left-handed reference frame and vice versa, we can rewrite the previous
as ρ(r,R) 6= ρ(r,−R). A necessary (not sufficient) condition for a system of particles
to manifest chiral nematic ordering is that an inversion transformation, i.e., R → −R,
does not transform a particle into itself, as previously noticed [63, 263, 264]. It is also
interesting to ask what kind of two-body interaction U(r,R,R′) generates chiral nematic
ordering. Again, a necessary condition for chirality is U(−r,R,R′) 6= U(r,R,R′) or,
alternatively, U(r,−R,−R′) 6= U(r,R,R′).

Eq. (6.2) describes the functional dependence of the single-particle density of a chiral
nematic phase. The corresponding density functional theory, already briefly outlined in
our previous work [252], is based on three steps that will be described in detail here. First
of all, we will insert the functional dependence of the chiral phase ρ(r,R) = ρ(Tq(r)R)
into F [ρ(r,R)]. Secondly, we will rewrite F [ρ(Tq(r)R)] in such a way that the dependence
on q and ρ(R) are disentangled. In other words, we will construct a functional Fq such
that Fq[ρ(R)] = F [ρ(Tq(r)R)]. Finally, we will minimize the density functional with
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respect to ψ(R) and q. Let ρ∗(R) be the solution at given q and given number density
n, such that Fq(n) = Fq[ρ∗(R)]. The equilibrium value of q (and hence the equilibrium
cholesteric pitch P ) at number density n corresponds to the minimum in q of the free
energy Fq(n).

As a lemma, let us first see that the ideal part of the free-energy functional

βFid[ρ(Tq(r)R)] =
∫
V
dr
∮
dR ρ(Tq(r)R) [logVρ(Tq(r)R))− 1 ] (6.4)

does not contribute to the chiral ordering. By changing the orientation integration variable
from R to Q = Tq(r)R (with unit Jacobian), we obtain

βFid[ρ(Tq(r)R)] =
∫
V
dr
∮
dQ ρ(Q) [logVρ(Q)− 1 ] = V

∮
dR ρ(R) [logVρ(R)− 1 ] .

(6.5)
We can therefore conclude that the ideal term is independent from q.

We now consider the excess free-energy term Fex[ρ] and we describe an approach to
minimize it exactly without recurring to the second-order q-expansion. The second-virial
excess free-energy functional, with Parsons-Lee correction, for a chiral nematic phase
reads

βFex[ρ] = −G(η)
2

∫
V
dr dr′

∮
dR dR′f(r− r′,R,R′) ρ(Tq(r)R) ρ(Tq(r′)R′). (6.6)

By transforming the particle position variables and performing a volume integration, we
can rewrite the previous equation as

βFex[ρ]
V

= −G(η)
2

∫
V
dr
∮
dR dR′f(r,R,R′) ρ(Tq(r)R) ρ(R′). (6.7)

To extract the q-dependence from the density distribution, we expand ρ in rotational
invariants. For an achiral nematic phase the expansion is

ρ(R) =
∞∑
l=0

l∑
m,n=−l

ρlmnDlmn(R) , (6.8)

where Dlmn(R) are Wigner matrices [267] and the expansion amplitudes read

ρlmn = 2l + 1
8π2

∮
dRρ(R)Dlmn(R) . (6.9)

Similarly, for a chiral nematic phase we have

ρ(Tq(r)R) =
∞∑
l=0

l∑
m,n=−l

ρlmnDlmn(Tq(r)R) . (6.10)

By inserting Eq. (6.10) into Fex of Eq. (6.7) we have

βFex[ρ]
V

= G(η)
2

∑
l,m,n

∑
l′,m′,n′

Ell′

mm′nn′(q)ρlmnρl
′

m′n′ (6.11)
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where we introduced the rotational-invariant q-dependent excluded-volume coefficients

Ell′

mm′nn′(q) = −
∫
dr
∮
dR dR′f(r,R,R′)Dlmn(Tq(r)R)Dl′m′n′(R′). (6.12)

Using Eq. (6.5) and Eq. (6.11), we have thus shown that the free-energy functional of
a chiral nematic phase can in general be written as

βFq[ρ(R)]
V

=
∮
dR ρ(R)[log ρ(R)V − 1] + G(η)

2
∑
l,m,n

∑
l′,m′,n′

Ell′

mm′nn′(q)ρlmnρl
′

m′n′ . (6.13)

As a result, the q-dependence has been shifted from the ODF to the excluded volume
coefficients. Minimizing with respect to ρlmn and q would allow to obtain the equilibrium
properties of a general chiral nematic phase.

6.2.2 Local uniaxiality
Let us now consider the simplest case of a chiral nematic phase: a phase which at r = 0
is locally uniaxial along the z direction and is invariant to rotations around the main
particle axis. In this case

ρlmn =
√

2l + 1
2 ρlδm0δn0 , (6.14)

where the l-dependent factor is introduced for later convenience. The excess free energy
of Eq. (6.7) can therefore be expressed as

βFex[ρ]
V

= G(η)
2

∞∑
l,l′=0

ρlρl′Ell′(q) , (6.15)

where Ell′(q) =
√

2l+1
2

√
2l′+1

2 Ell′
0000(q), which from Eq. (6.12) reads

Ell′(q) = −
√

2l + 1
2

√
2l′ + 1

2

∫
dr
∮
dR dR′f(r,R,R′)Dl00(Tq(r)R)Dl′00(R′). (6.16)

We can rewrite the rotational invariants in terms of the (standard) normalized Legendre
polynomial Pl(x) (with l the degree of the polynomial):

Pl(n̂ · ω̂) =
√

2l + 1
2 Dl00(R). (6.17)

It follows that
ρl =

∫ 1

−1
d(n̂ · ω̂) ρ(n̂ · ω̂)Pl(n̂ · ω̂), (6.18)

which allows us to write, for a chiral nematic phase,

Pl(n̂q(y) · ω̂) =
√

2l + 1
2 Dl00(Tq(r)R). (6.19)
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In the case of a cholesteric phase, in which the chiral director χ̂ ⊥ n̂ (and χ̂ ‖ ŷ in our
reference frame), we have

n̂q(y) = x̂ sin qy + ẑ cos qy. (6.20)
Therefore, we obtain

Ell′(q) = −
∫
dr
∮
dR dR′f(r,R,R′)Pl(n̂q(y) · ω̂)Pl′(n̂0 · ω̂′) (6.21)

where n̂0 = n̂q(0). The excluded volume coefficients of Eq. (6.21) can be directly calcu-
lated using numerical techniques, as we explain in Sec. 6.2.4.

In conclusion, starting from Eq. (6.13), valid for a generic chiral nematic phase, we
have assumed local uniaxiality and independence of the distribution on rotations around
the main particle axis, to obtain an explicit functional for the cholesteric phase, that we
can rewrite as
βFq[ψ]
V

= n(logVn−1)+4π2n
∫ 1

−1
d cos θ ψ(θ) logψ(θ) +n2G(η)

2

∞∑
l,l′=0

ψlψl′Ell′(q), (6.22)

where, in analogy with the uniaxial case (cf. Eq. (3.5)), we kept only the dependence on
the polar angle θ by defining the ODF ψ(θ) = ρ(R)/n and its expansion coefficients

ψl =
∫ 1

−1
d cos θ ψ(cos θ)Pl(cos θ) . (6.23)

Once the excluded volume coefficients Ell′(q) defined by Eq. (6.21) are known, the equi-
librium ODF is obtained, in complete analogy with Sec. 3.2, by solving the following
equation

ψ(cos θ) = 1
Z

exp
−nG(η)

∞∑
l,l′=0

Ell′(q)
4π2

1
2 [Pl(cos θ)ψl′ + Pl′(cos θ)ψl]

 , (6.24)

with Z the normalization constant. Notice that the local uniaxiality approximation yields
Ell′(q) = El′l(q) and the previous equation reduces to

ψ(cos θ) = 1
Z

exp
−nG(η)

∞∑
l,l′=0

Ell′(q)
4π2 Pl(cos θ)ψl′

 . (6.25)

The minimization procedure is performed by using a very fine grid for the angles θ to
obtain the solution ψ(θ), at fixed number density n and fixed chiral wave vector q. For
each density, the value of q that corresponds to the minimum value of the free energy
is the equilibrium one and the corresponding equilibrium pitch of the cholesteric phase
reads P = 2π/q.

6.2.3 Limit of weak chirality: Straley’s theory
The expression obtained by Straley for the cholesteric pitch of weakly-chiral infinitely-long
hard helices [63], can be easily assessed within our theoretical framework. Let us expand
a general functional F [ρ(Tq(y)R)] to second-order in q:

F [ρ(Tq(y)R)]
V

= F [ρ(R)]
V

+KT [ρ(R)]q + 1
2K2[ρ(R)]q2 +O(q3), (6.26)
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where we introduced the constants

KT [ρ(R)] = 1
V

dFex[ρ(Tq(y)R)]
dq

∣∣∣∣∣
q=0

, (6.27)

and
K2[ρ(R)] = 1

V

d2Fex[ρ(Tq(y)R)]
dq2

∣∣∣∣∣
q=0

. (6.28)

KT is usually called the chiral strength since it must differ from zero to have macroscopic
chiral order. K2 is the twist elastic constant [35, 63] (see also Sec. 3.3). According to
Straley’s theory, the phase is homogeneous with respect to the internal angle, implying
that the non-cylindrically-symmetric character of the particle is averaged out. The equi-
librium cholesteric pitch is P = 2π/q = −2πK2/KT . Since in general K2 > 0 (in Sec. 8.3
we will explore the possibility of having negative K2), the handedness of the cholesteric
phase depends on the sign of KT . The explicit expression for KT depends on the theo-
retical framework adopted, see for example Refs. [247, 260], and within the second-virial
approximation it reads

KT = −n
2

2

∫
dr
∮
dω̂ dω̂′f(r, ω̂, ω̂′) y ωx ψ(n̂0 · ω̂) ψ̇(n̂0 · ω̂′), (6.29)

where ωx = ω̂·x̂ and ψ̇(x) = ∂ψ(x)/∂x indicates the derivative with respect to the function
argument. By using Eqs. (6.27) and (6.28), we will assess quantitatively Straley’s approach
for hard-helix systems. Moreover, we will compare our results with those presented in
Ref. [260], where a sophisticated implementation of Straley’s approach has been used.

6.2.4 Numerical procedure
As input for our theory, we need to evaluate the excluded-volume coefficients defined in
Eq. (6.21). To perform these calculations, we use a Monte Carlo (MC) integration scheme
that has several advantages. First of all, it is a very general approach suitable for several
particle models [268–273]. Moreover, MC integration is a robust method for functions
with discontinuities and for integration regions with complicated boundaries [274], as
in this study where we integrate the Mayer function of complex shaped particles. In
general, it is also computationally more efficient than standard quadrature methods for the
evaluation of high-dimensional integrals and it is intrinsically parallelizable since it consists
of uncorrelated calculations. Furthermore, by determining the associated statistical errors
(that decay as ∼ 1/√nMC , with nMC the number of MC steps), it is easy to control the
accuracy of the calculations, as we will show below in Fig. 6.2(b). Finally, we point
out that we use the simplest brute-force method for now; the implementation of more
sophisticated schemes could be beneficial [275–278] but this is left for future studies.

Assuming the first particle in the origin, the procedure consists of repeating nMC

times the following steps: (i) generate uniformly the random variables r = (x, y, z) ∈ V ,
θ, θ′ ∈ [0, π) and φ, φ′, α, α′ ∈ [0, 2π) to obtain a random two-particle configuration; (ii)
compute the Mayer function f(r,R,R′), that in case of hard bodies consists of checking
for particle overlaps; (iii) for each l, l′ and q under consideration, compute the Legendre
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Figure 6.2: Example of typical output of the theory, applied to a system of hard helices
with molecular pitch p = 8σ, outer radius r = 0.4σ, contour length Lc = 10σ, and number of
beads (of diameter σ) Ns = 15 (see Fig. 6.1(b)). (a) Free-energy difference F (η, q) − F (η, 0)
between a cholesteric and an achiral nematic phase as a function of cholesteric wave vector
q and packing fraction η. The white dashed line indicates the free-energy minimum, thereby
identifying the equilibrium q for each η. (b) Density-dependence of the cholesteric wave vector
q and associated statistical errors computed over 8 independent runs of nMC = 1 × 109 (black
solid line), nMC = 1 × 1010 (red dotted) and nMC = 5 × 1010 (green dashed) MC steps. As
expected, error bars are smaller for increasing number of integration steps nMC .

polynomials Pl(n̂q(y) · ω̂), Pl′(cos θ′) and combine them with f(r,R,R′) according to
Eq. (6.21). The coefficients Ell′(q) are therefore calculated as

Ell′(q) = −Vs〈f(r,R,R′)Pl(n̂q(y) · ω̂)Pl′(cos θ′) sin θ sin θ′〉MC (6.30)

where for hard bodies the MC average 〈.〉MC reduces to an average over overlapping con-
figurations, and Vs is the sampling volume. For example, if positions are generated within
a sphere of maximum radial distance rmax, we have Vs = (4/3)πr3

max(16π6). Coefficients
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up to lmax = 20 are sufficient to ensure convergence, as also reported for spherocylin-
ders [168]. Calculations are sped up by using recursive formulas for Pl and the number of
coefficients Ell′ can be reduced in case of additional symmetries. For example, up-down
symmetric particles have only even coefficients E2l2l′ 6= 0. After evaluating Ell′(q), we can
iteratively solve Eq. (6.25), at fixed number density n and chiral wave vector q, by using a
discrete grid for the polar angles θ (cf. Ref. [126]). The resulting ODFs are used to obtain
a full free-energy landscape in the (q, η) plane like the one shown in Fig. 6.2(a). Locating
the free-energy minimum among the q-values studied at every packing fraction η, allows
us to calculate the density-dependence of the equilibrium cholesteric pitch P . Pressure
and chemical potential are derived from the free energy, and coexistence between isotropic
and nematic phases is located by imposing equal pressure and equal chemical potential
conditions. The most significant source of numerical errors in this procedure is caused
by the limited accuracy due to a low number of nMC steps in evaluating the excluded-
volume coefficients. However, by considering independent runs (that can subsequently
be averaged to increase the accuracy) it is possible to carefully estimate the associated
statistical errors. Fig. 6.2(b), for instance, shows the equilibrium cholesteric wave vector
q as a function of packing fraction η for a system of hard helices, determined after the nu-
merical calculation of the excluded volume coefficients with different number of MC steps
nMC . As a general trend, upon increasing the packing fraction η, errors become bigger
since excluded-volume coefficients are coupled with density (see Eq. (3.5) and Eq. (6.25)),
with higher-l coefficients (with poorer statistics) becoming increasingly important for the
stronger peaked distributions at higher η. However, nMC can be increased in order to
reach the desired accuracy. In the remainder of this chapter, we will show the error bars
only in a few cases, when we need to quantify our statistical accuracy before drawing
conclusions on the physics of the system. The main drawback of the procedure is that a
fine grid in q-values is computationally expensive and it is advisable to perform a shorter
run in advance to define the optimal q-mesh.

6.3 Results

6.3.1 Cholesterics of hard helices: handedness, (double) sense
inversion, and length dependence

We study the cholesteric order arising in systems of colloidal hard helices. A hard helix
is modeled as Ns hard spheres of diameter σ, rigidly fused together to form an helix of
contour length Lc, microscopic pitch p and radius r (see Fig. 6.1(b) and Refs. [252, 265]).
In Fig. 6.3(a)-(c), we report the density dependence of the cholesteric pitch P for right-
handed helices with Lc = 10σ and Ns = 15. We focus on the range of packing fractions for
which the nematic phase is stable with respect to the isotropic phase, and we choose an
upper limit of η = 0.5 since at higher densities smectic phases are expected [37, 118, 265,
266]. Depending on the microscopic parameters r and p, we observe three different cases.
In Fig. 6.3(a), we report the pitch P of helices manifesting cholesteric phases with the
same handedness of the constituent particles (positive pitch corresponds to right-handed
twist). The magnitude of P varies from hundreds to thousands of sphere diameters σ,



Cholesterics of colloidal helices: predicting the macroscopic pitch
from the particle shape and thermodynamic state 111

0.38 0.4 0.42 0.44 0.46 0.48 0.5
η

0

500

1000

1500

P/
σ

p/σ r/σ
1.5 0.3
2 0.35
2 0.4
2.25 0.4

(a)

0.3 0.35 0.4 0.45 0.5
η

-6000

-4000

-2000

0

2000

4000

6000

P/
σ

p/σ r/σ
2 0.2
2.5 0.2
2.75 0.2
3 0.3
3 0.4

(c)

0.25 0.3 0.35 0.4 0.45 0.5
η

-500

-400

-300

-200

-100

0

P/
σ

p/σ r/σ
4 0.2
4 0.4
6 0.2
6 0.4
8 0.4
20 0.4

(b)

(d)

p/
σ

r/σ

1

2

3

4

5

6

0.1 0.2 0.3 0.4 0.5

opposite

mixed

same

Figure 6.3: Cholesteric pitch P as a function of packing fraction η for right-handed helices
consisting of Ns = 15 fused hard spheres with diameter σ, contour length Lc = 10σ and varying
microscopic pitch p and radius r as labelled, stabilizing cholesteric phases with same (a), opposite
(b) or both (c) handedness. (d) State diagram for helices with Lc = 10σ and Ns = 15 in the
p− r representation. Open symbols indicate parameters for which statistics is not sufficient for
an accurate classification. Boundary lines are guides-to-the-eye.

depending on particle shape and system density, and it is monotonically decreasing upon
increasing η. The step-like feature is an artifact due to the use of a discrete mesh for the
q-values (see Sec. 6.2.4) and a smooth curve would be obtained by decreasing mesh-size
and increasing statistics. Fig. 6.3(b) shows helices developing cholesterics with opposite
handedness. The density dependence of P appears to be more complex in this case but
it is still possible to observe a few common trends. For instance, |P | seems to exhibit
a minimum for some η, and at fixed p, helices with a larger radius r lead to a shorter
cholesteric pitch P . It is worth noting that for some shapes, |P | < 100σ, suggesting that
these particle models would be good candidates for (direct) simulations of cholesteric
phases (under twisted boundary conditions). In Fig. 6.3(c), we report cases in which
the handedness of the cholesteric phases depends on the thermodynamic state of the
system. For these peculiar helical shapes, a left-handed twist is preferred at the isotropic-
cholesteric transition. However, upon increasing packing fraction, the cholesteric pitch
P becomes longer and longer, and passing via an achiral state (infinite P ), eventually
changes sense of twist. The packing fraction at which inversion occurs depends on the
particle shape, and in general the inversion occurs at higher density for larger p and r.
Comparing these results with a recent study [245] that reported pitch inversion for long
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Figure 6.4: Density dependence of the cholesteric wave vector q for helices of fixed radius
r = 0.4σ and different contour lengths Lc (Ns = 3

2Lc/σ) with particle pitches (a) p = 2σ (b)
p = 3σ (c) p = 4σ. (d) Radius r - pitch p state diagram for helices with contour length Lc =
20σ and Ns = 30, with regions indicating the same, mixed, and opposite handedness regimes.
Boundaries are shifted (upwards) with respect to the state diagram presented in Fig. 6.3(d).
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Figure 6.5: Cholesteric wave vector q as a function of packing fraction η for helices with fixed
geometry (p = 2σ, r = 0.3σ) and different contour length Lc (Ns = 3

2Lc/σ), which show a
double twist inversion at intermediate values of Lc. Despite the large statistical error bars for
large η, we will see in Fig. 6.7(c) that this trend is in principle possible.

and soft (Yukawa) helices using Straley’s approach, we observe that the nematic order
parameter S at which the inversion occurs can be much lower for the particles in the
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present study. Indeed, soft long helices [245] exhibit sense inversion only for a high degree
of alignment (S > 0.9), whereas for our short hard helices inversion can occur very close
to the isotropic-cholesteric transition (S ∼ 0.65). If the corresponding packing fraction at
which the inversion takes place becomes too high it is possible that another phase (e.g.
smectic) becomes stable, thereby preventing such an inversion. To summarize our results,
we report in Fig. 6.3(d) a state diagram using the molecular pitch p and radius r as axes
of our representation. Depending on the functional behaviour of P vs η, we identify three
regions that will be referred as same, opposite and mixed. Open symbols represent cases
for which our statistical accuracy is not enough for a precise classification. Uncertain
points are also found for helices with very small p and r (e.g. p = 2σ, r = 0.1σ). For
these parameters, the particle shape resembles a rod with protrusions rather than a proper
helix, making the computation of the excluded volume more demanding and suggesting
that very small changes in the shape give rise to complicated inter-locking effects.

In Fig. 6.4 we study the dependence of the (inverse) pitch on particle contour length Lc
for selected particle shapes belonging to the three different classes (same, mixed, opposite).
In Fig. 6.4(a), we report the cholesteric wave vector q = 2π/P for helices of fixed geometry
(p = 2σ and r = 0.4σ) and different length. We observe that an increase in Lc corresponds
to a decrease in q, therefore to a longer cholesteric pitch P and a weaker cholesteric
character. Upon increasing particle length, weaker cholesteric phases are also observed
for helices undergoing handedness inversion (mixed case), as reported in Fig. 6.4(b).
The same effect is also observed in helices stabilizing cholesteric phases with opposite
handedness (see Fig. 6.4(c)). We notice that Lc does not only influence the magnitude
of the cholesteric pitch but eventually also the sign and therefore the qualitative chiral
behaviour, even if the particle geometry is fixed (cf. also discussion on inclination angle
in Ref. [260]). We summarize our results for helices of Lc = 20σ in the state diagram of
Fig. 6.4(d), where we indeed observe an overall upward shift to higher values of p of the
boundaries delimiting the three different regimes with respect to Fig. 6.3(d). Also in this
case, the undulatory nature of the boundaries and the presence of unclear cases for small
p and r reflect the sensitivity of the macroscopic chiral behaviour on subtle changes in
particle shape. We notice that neither the theoretical results obtained for long helices [261,
263], predicting that P ∼ L2, nor experimental observations on coated fd viruses [208],
for which P ∼ L−0.25, are consistent with our study. Indeed, the richer scenario of short
helices does not allow to deduce a clear scaling relation between cholesteric pitch P and
particle length L (notice that L ∝ Lc for fixed p, r, see Eq. (6.32)).

To further emphasize that the chiral behaviour of a system depends sensitively on the
precise details of the single-particle properties, we conclude this section by speculating on
a possible non-trivial cholesteric behaviour as a function of particle length. In Fig. 6.5,
we show the cholesteric wave vector q as a function of packing fraction η, for helices
with p = 2σ, r = 0.3σ and various particle lengths. For Lc = 10σ we observe the (single)
handedness inversion as described above. Surprisingly, upon increasing the particle length
by a few σ, a second twist inversion seems to occur at higher packing fraction. However,
we notice that large statistical errors are present at large η. Upon further increasing
the particle length (Lc = 16σ), the first inversion disappears. Therefore, in contrast
with the previous case, the chirality inversion involves a transition from same to opposite
handedness, upon increasing packing fraction. Finally, for helices with Lc = 18σ no



114 Chapter 6

inversion is present and only cholesterics with the same handedness are stable in the
range of η studied. Even though the large statistical uncertainty seems to undermine
the conclusiveness of our observations, we will see in the next section that this behaviour
is consistent with our interpretation of the chiral order in terms of minimization of the
excluded volume. However, it is not possible to exclude that another phase (e.g. smectic)
would be more stable than the cholesteric at large η, preventing in particular the second
inversion to occur.

6.3.2 Competition between shape and particle-particle correla-
tions

In this section we try to interpret our results on the collective chiral behaviour in terms
of a microscopic parameter. Harris, Kamien and Lubensky (HKL) proposed [263, 264] a
pseudoscalar ψHKL to measure the internal chiral strength of a molecule, and showed that
ψHKL is proportional to the macroscopic chiral strength KT , defined in Eq. (6.27). The
sign of ψHKL determines the handedness of the cholesteric phases. Ref. [263] (see table
I therein) reports an explicit expression of ψHKL for an helix of uniform density, in the
limit that the particle length is much larger than the particle radius. In our notation, it
reads

ψHKL ∝ −
3r4L(
2πL

p

)3

1− 24(
πL
p

)2

 , (6.31)

where L is the Euclidean length, which is a function of the contour length Lc, the micro-
scopic pitch p and the radius r given by

L = pLc

2π
√
r2 +

(
p

2π

)2
. (6.32)

In Fig. 6.6, we report the state diagram for helices at fixed Lc = 10σ and Lc = 20σ, based
on the analysis of the sign of ψHKL(r, p), in analogy with Figs. 6.3(d) and 6.4(d). Clearly,
the mixed region where sense inversion occurs cannot be explained by the pseudoscalar
ψHKL, as it is density independent. Nevertheless, a qualitative trend can be captured with
this purely geometric interpretation. We clearly find that the sign of ψHKL overestimates
significantly the value of the microscopic pitch p for the boundary from same to opposite
handedness, but describes correctly that this boundary shifts to higher p upon increasing
L. Moreover, the pseudoscalar approach predicts that the cholesteric pitch scales as
P ∝ L2, which we have already shown not to be always the case for short helices. We can
therefore conclude that single-particle properties are not sufficient to completely describe
the observed non-trivial macroscopic chiral behaviour and, as already noticed [263, 264],
particle correlations must be taken into account as well.

As shown in our previous study [252], in order to explain the stability of chiral ordering
we analyse the excluded volume associated to right/left-handed pairs of particles and the
handedness of the resulting cholesteric phase. A pair of helices is in a right-handed
configuration if (r − r′) · (ω̂ × ω̂′) > 0. Vice versa, if the latter is negative it is in a
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Figure 6.6: State diagrams based on the sign of the pseudo-scalar ψHKL [263, 264]. (a) Hard
helices with fixed contour length Lc = 10σ (cf. Fig. 6.3(d)). (b) Lc = 20σ (cf. Fig. 6.4(d)).
Notice the different scales of the vertical axes.

left-handed configuration. Therefore, we can define a right/left-handed excluded volume
as

ER
L

(ω̂ · ω̂′) = −
∫
d(∆r)

∫ 2π

0

dα

2π
dα′

2π f(∆r,R,R′) Θ(±∆r · (ω̂ × ω̂′)), (6.33)

with Θ(x) the Heaviside step function and α the internal angle (cf. Sec. 6.2.1). If ∆E ≡
ER − EL > 0 a left-handed configuration is preferred, and if ∆E < 0 a right-handed
one. It is worth noting that ∆E is a microscopic property of a pair of helices, while
ψHKL is a single-particle property. For convenience, we define a normalized ∆E∗ =
(ER − EL)/(ER + EL). In Fig. 6.7(a)-(c), we report ∆E∗ for several helical shapes (all
right-handed), as a function of the angle formed by the main axis of the two helices
γ = arccos(ω̂ · ω̂′). In the case that ∆E∗ has the same sign for all values of the angle
γ, we can predict undoubtedly the handedness of the cholesteric phase. For example, in
Fig. 6.7(a) we report helices with fixed radius r = 0.3σ and length Lc = 10σ and different
p (moving on a vertical line in the state diagram of Fig. 6.3(d)). For large p, ∆E∗ > 0
∀γ, consistently with the stabilization of a left-handed cholesteric (opposite case). The
magnitude of the cholesteric pitch P is also qualitatively related to the magnitude of
|∆E∗|. On the other hand, for helices with smaller p we observe that ∆E∗ < 0 for
small angles γ. In this case the handedness of the liquid-crystalline phase cannot be
predicted a priori. In fact, for this range of parameters we have shown (cf. Fig. 6.3(d))
that the cholesteric handedness depends on packing fraction, i.e. it depends on the local
alignment (mixed case). The pitch inversion can be qualitatively interpreted as follows.
At low packing fraction, the average angle γ between helices is relatively large and since
the corresponding ∆E∗ > 0 an opposite-handed phase is stabilized. Increasing the packing
fraction, the average γ becomes smaller and eventually ∆E∗ < 0, giving rise to a same-
handed phase. The subtle balance between excluded volume and local alignment can also
be appreciated in Fig. 6.7(b), where we show results for helices with fixed internal pitch
p = 2σ but different r (horizontal line in Fig. 6.3(d)). Analysing the state diagram, we find
upon increasing r: an (uncertain) opposite case (r = 0.1σ), mixed cases (r/σ = 0.2, 0.3),
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Figure 6.7: Difference in excluded volume between right- and left-handed pair configurations
∆E∗ = (ER−EL)/(ER+EL) as a function of the angle between the two helices γ = arccos(ω̂·ω̂′).
(a) Right-handed helices of length Lc = 10σ, Ns = 15, fixed radius r = 0.3σ and different
microscopic pitch p. (b) Right-handed helices of length Lc = 10σ, fixed pitch p = 2σ and
different radius r. (c) Right-handed helices with fixed geometry p = 2σ, r = 0.3σ and different
length Lc. Error bars are calculated over 5 independent runs of 2 × 1010 MC steps. (d)
Thermodynamic average of the excluded volume difference ∆Fχ as a function of η for helices of
length Lc = 10σ (Ns = 15), r = 0.4σ and different p. The trends of ∆Fχ match qualitatively
with the density dependence of the cholesteric wave vector q (cf. Fig. 6.4).

and same-handedness cases (r/σ = 0.4, 0.5). Observing that ∆E∗ > 0 ∀γ for helices
with r/σ = 0.1, we can confirm the opposite handedness in the state diagram. Such a
behaviour seems an anomaly in the state diagram but, as already mentioned, the helical
shape in this region (small p and small r) has complex features that can give rise to a
non-ordinary behaviour. We notice that also in the analysis of the maximum packing
fraction performed in Ref. [37] (cf. Fig. 3 therein), no clear trend can be observed for
helices with small p and small r (e.g. helices with p = 1σ r = 0.2σ represent a local
minimum in the maximum η). The angular dependence of ∆E∗ for r = 0.2σ is already
described above and explains the mixed case. A double inversion seems also possible in
the case of r = 0.3σ and it will be described in detail in Fig. 6.7(c). For helices with
r/σ = 0.4, 0.5, we also observe two regions for ∆E∗ but in these cases the range of angles
γ with ∆E∗ < 0 is larger than the (mixed) case of r/σ = 0.2, and ∆E∗ > 0 is only for
γ values that are so large that they are not expected to contribute to the nematic order.
Moreover, ∆E∗ takes also values more negative. As a consequence, the stabilized phase
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has the same (right-handed) handedness of the constituent helices. The dependence of
∆E∗(γ) on particle length for p = 2σ and r = 0.3σ, reported in Fig. 6.7(c), is consistent
with the observations made for the chiral behaviour shown in Fig. 6.5. In all cases we
observe for increasing γ the sequence positive-negative-positive for ∆E∗ suggesting the
possibility of a double inversion for all particle lengths. However, the depth of the region in
which ∆E∗ < 0 is larger for longer helices, and is caused by the different chiral behaviour
for particles with different lengths, as already seen before. These observations manifest
the intricate link between microscopic and macroscopic chirality. This indicates that
although the calculation of ∆E∗ is a powerful tool, and computationally faster than the
full minimization, it cannot always be considered as an exhaustive analysis, which is to be
expected as this type of analysis is based on geometrical two-body properties only, which
do not take into account the thermodynamic state point. In order to do so, we introduce
the ODF ψ(θ) to explicitly account for the local alignment in the system. We therefore
thermodynamically average the difference in the excluded volume, introducing a quantity
that mimicks the functional form of the excess second-virial free energy [252]:

β∆Fχ
V

= −n
2

2

∮
dω̂

∮
dω̂′ ψ0(n̂0 · ω̂)ψ0(n̂0 · ω̂′)∆E(ω̂ · ω̂′), (6.34)

with ψ0(n̂0 · ω̂′) the ODF in the achiral limit. In Fig. 6.7(d) we report ∆Fχ for three
representative cases of helices with Lc = 10σ, r = 0.4σ and p = 2σ (same), p = 3σ (mixed)
and p = 4σ (opposite). By comparing with the density dependence of q in Fig. 6.4 (black
lines in panels (a)-(c) respectively), we observe that all the three regimes are captured
by ∆Fχ, including a good agreement on the packing fraction at which the sign inversion is
obtained. We can therefore conclude that a solely geometric interpretation is not sufficient
to describe our results and that the degree of local alignment must be taken into account
by weighting the excluded volume difference ∆E∗ with the ODF.

6.3.3 Chiral order vs uniaxial order: weak chirality limit and
comparison with Straley’s approach

We have shown in Sec. 6.2.3 that we can recover the theory proposed by Straley [63] by
expanding the full free-energy functional for small q. An interesting difference between
Straley’s small-q expansion with coefficients evaluated in the achiral limit (q = 0) and the
present study involves the effect of q on the ODF which is taken into account here and
ignored in Straley’s approach. In Fig. 6.8, we show an example of the difference between
the ODF corresponding to the achiral limit (q = 0) and that at q 6= 0 for which the free
energy has actually a minimum (helices with p = 8σ, r = 0.4σ, Lc = 15σ, Ns = 15). We
observe a more peaked ODF associated to the chiral order (N∗) than the achiral one (N).
In the inset, we see that this difference becomes more pronounced upon increasing the
packing fraction since the liquid crystal phase becomes more chiral (smaller P) for this
kind of helices. Even though the difference can be small, it is yet reflected in the free
energy (cf. Fig. 6.2(a)) and in the nematic order parameter S that can differ by a few
percent.

In Straley’s method [63] the uniaxial ODF is then used to compute the chiral strength
KT and the twist elastic constant K2. Subsequently, the equilibrium cholesteric wave
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Figure 6.8: Orientation distribution function ψ(θ) for uniaxial nematic phase (N) and
cholesteric (N∗) for helices with p = 8σ, r = 0.4σ, Lc = 10σ, Ns = 15 at the isotropic-nematic
transition (η ' 0.29). Inset: difference ∆ψ(θ) = ψN∗(θ)− ψN (θ) for different packing fraction.

helix ηN∗ SIN∗ 104 KT K2 P
here here Ref. [260] here Ref. [260] here Ref. [260] here Ref. [260]

r = 0.2 p = 2 0.300 0.699 0.64 4.27 4.83 0.199 0.154 -2990 -2008
r = 0.2 p = 4 0.274 0.677 0.66 47.3 41.36 0.194 0.177 -260 -268
r = 0.2 p = 8 0.258 0.690 0.68 42.3 -29.03 0.203 0.184 -310 -399
r = 0.4 p = 2 0.403 0.612 0.60 -10.7 -3.83 0.160 0.153 965 2509
r = 0.4 p = 4 0.340 0.622 0.61 110 98.35 0.150 0.152 -93 -97
r = 0.4 p = 8 0.282 0.619 0.61 115 110.13 0.136 0.159 -90 -90

Table 6.1: Comparison between the method described here and Straley’s approach as imple-
mented in Ref. [260]. Our results are obtained by averaging 16 runs of 1010 MC steps for the
excluded volume integration (only significant digits are reported). KT and K2 are calculated
using Eqs. (6.27) and (6.28), and the cholesteric pitch P by minimizing the full functional. All
the quantities are in reduced units with kBT = 1 and σ = 1.

vector in the second-order expansion approximation is obtained via qII = −KT/K2. In
our case, from the calculated free energy landscape, by using Eqs. (6.27) and (6.28), we
are able to obtain the density dependence of these two constants. In Fig. 6.9 we assess
quantitatively Straley’s method by plotting qII obtained from second-order expansion and
q obtained by the minimization of the full functional, for selected helical shapes (the ones
studied in Ref. [260]). We observe that for the helices in Fig. 6.9(a) the difference is
very small. Since the macroscopic chiral behaviour for these particles is very weak (cf.
Sec. 6.3.1) we expected that a second-order approximation would not be too off. However,
in case of cholesterics with shorter pitch we find an appreciable difference, as can be
observed from Fig. 6.9(b) in which we report the case for helices with p = 8σ, r = 0.4σ.
Since the higher-order terms can be positive or negative (without any clear correlation
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Figure 6.9: (a) Difference in the cholesteric wave vector qII − q as a function of η obtained by
expansion of the free-energy functional qII (see Eqs. (6.27) and (6.28)) and by minimization of
the full functional q, for selected helices of length Lc = 10σ and varying microscopic pitch p and
radius r. (b) The cholesteric wave vector q as a function of η for helices with p = 8σ, r = 0.4σ,
Lc = 10σ.

with the chiral behaviour), we cannot conclude that Straley’s method under/overestimate
the results systematically. In Tab. 6.1, we compare our results with Ref. [260], in which
a sophisticated implementation of Straley’s method was used. We can thus confirm that
the overall scenario seems to be well captured by Straley’s approach, even we can not
exclude that subtleties in the numerical implementation of both approaches could lead to
quantitative discrepancy for the value of the cholesteric pitch P in some particular cases.

We conclude our analysis, by noting that in the limit of weakly chiral long helices, sev-
eral studies predicted various scaling relations for the main quantities regulating the chiral
liquid-crystalline behaviour. Despite the relatively small η-regime of interest here, much
smaller than a decade, which limits the meaning of exponents, we briefly discuss these
scalings anyway for comparison with our results. For example, in his original work [63]
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Straley proposed that K2 ∼ η2, resulting in a cholesteric pitch P ∝ 1/S2. However, ex-
periments often show a different density dependence of the elastic constant (for example
in the thermotropic PBLG, [212] K2 ∼ η0.36). Subsequently, Odijk [262] suggested that
P ∼ η−1 for rigid hard helices, and P ∼ η−5/3 for flexible hard helices. Scaling relations
are also measured in experiments, for example some fd viruses [208] show P ∼ η−1.45,
while P ∼ η−1.8 is observed for PBLG [212]. In contrast, we find that none of these rela-
tions apply uniquely to the short hard helices studied here. Indeed, in Fig. 6.10(a), where
we plot K2 as a function of η for several helical shapes, we observe that the functional
form of the twist elastic constant K2 computed from Eq. (6.28), depends on the different
helical shape considered and cannot be described by a simple power law relation, at least
not for the present parameter set. Analogously, in Fig. 6.10(b), we plot P vs η for very
weakly chiral helices (p = 20σ) along with the best fits of the expected power laws in
these regimes. Due to the poor mutual agreement of the exponents, we tend to conclude
that also the density dependence of the cholesteric pitch P of short helices does not obey
any general power law.

6.4 Towards softer colloids
In this section, we modify the particle model to study the effect of an additional soft
interaction on the macroscopic chiral behaviour. The helical shape is still described by
the parameters Ns, Lc, p and r (see Sec. 6.3.1), but spheres of different helices now attract
or repel each other via the following short-range potential (cf. cartoon in Fig. 6.11(a)):

βU(r1i2j) =


∞ r1i2j < σ
βε σ ≤ r1i2j < rsoft
0 r1i2j ≥ rsoft

(6.35)

where r1i2j is the distance between sphere i of helix 1 and sphere j of helix 2, and rsoft
determines the range of the potential. For βε > 0 (< 0) we obtain a repulsive square
shoulder (attractive square well) potential, whereas for βε = 0 we recover the hard-core
potential studied above. Even though the computation of the excluded volume coefficients
becomes more expensive, we are still able to obtain reliable results (cf. error bars in
Fig. 6.11) using the simple procedure described in Sec. 6.2.4.

In Fig. 6.11(a), we report the density dependence of q for helices with p = 8σ, r = 0.2σ,
which interact via a very short-ranged potential (rsoft = 1.5σ) that can be either attractive
or repulsive. We observe that the effect of an additional attraction (repulsion) enhances
(reduces) the macroscopic chiral behaviour with respect to the purely hard helices. In fact,
upon increasing the attractive well from βε = 0 (hard case) to |βε| = 0.07, the cholesteric
pitch can be decreased by hundreds of σ, depending on η as well. The opposite effect is
obtained when the soft interaction is repulsive, as can als be observed in Fig. 6.11(b).
In this case (p = 8σ, r = 0.4σ), the soft repulsion with a range of rsoft = 1.5σ masks
partially the molecular chiral features producing an effective shape that resembles more
achiral rods. In Fig. 6.11(c), we study at fixed interaction strength βε = 0.03 the effect of
the interaction range of the repulsion rsoft for the same helices. Analogously, increasing
the interaction range produces a longer cholesteric pitch, whose equilibrium value depends
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Figure 6.10: (a) Density dependence of the twist elastic constant K2, calculated by using
Eq. (6.28), for selected helices of length Lc = 10σ. (b) Log-Lin plot of absolute value of the
cholesteric pitch P for helices of length Lc = 10σ and very long internal pitch p = 20σ. Lines
are best fits of the power laws indicated in the legend.

less sensitively on the density. Such an effect is also observed for helices manifesting both
right- and left-handed phases (mixed case), as reported in Fig. 6.11(d). In this particular
case (p = 3σ, r = 0.4σ), the transition between the two types of cholesterics becomes less
abrupt for increasing interaction range, eventually making it hard to identify within our
statistical accuracy.
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Figure 6.11: Density dependence of the cholesteric wave vector q for selected cases of short-
ranged soft helices of length Lc = 10σ. (a) Effect of attraction (βε < 0, dashed lines) and
repulsion (βε > 0, dotted lines) with respect to the hard case (full line) of helices with a
microscopic pitch p = 8σ, radius r = 0.2σ and interaction range rsoft = 1.5σ. Inset: cartoon of
the particle model. (b) Effect of interaction strength βε for short-range (rsoft = 1.5σ) repulsive
helices. (c) Effect of interaction range rsoft for helices with p = 8σ, r = 0.4σ and interaction
strength βε = 0.03 stabilizing an opposite-handed cholesteric. (d) Effect of interaction range
rsoft on helices (p = 3σ, r = 0.4σ, βε = 0.03) exhibiting handedness inversion.
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6.5 Cholesteric order in binary mixtures
A straightforward application of the theory presented here is the study of (binary) mix-
tures of chiral particles. In particular it is possible to study the chiral behaviour of a mix-
ture of right- and left-handed particles and the doping of an achiral system. In Fig. 6.12
we report some exemplary phase diagrams to illustrate some of the possible combinations.
The fact that hard helices stabilize cholesteric phases with different handedness and their
non-trivial dependence on the density enriches tremendously the possibility of tuning the
sense and the magnitude of the cholesteric pitch. The phase diagrams are obtained by
minimizing the free-energy functional for a binary mixture with species i = 1, 2, that has
the additional mixing entropy term (compared with Eq. 6.22), the orientationl free energy
for both species and an excluded volume term extended to a binary mixture:

βFq[ψ1, ψ2]
V

= n(logVn− 1) + n
2∑
i=1

xi log xi +

+ 4π2n
2∑
i=1

xi

∫ 1

−1
d cos θ ψi(θ) logψi(θ) +

+ n2G(η)
2

2∑
i=1

2∑
j=1

xi xj
∞∑

l,l′=0
ψil ψjl′ E

ij
ll′(q) , (6.36)

with xi composition of species i, Eij
ll′(q) excluded-volume coefficients between species i

and j depending as before on the imposed cholesteric wave vector q, and ψil expansion
coefficients of the orientation distribution ψi(θ). Subsequently, by computing the Gibbs
free energy (per particle) g(x, P ) = G/N = F/N + PV/N , with F the (minimum) free-
energy, P the pressure and V the volume, one can straightforwardly determine the phase
coexistence by equating the chemical potential of both species and the pressure in the two
coexisting phases. All results are based on a discrete grid for q, as in the single-component
case.
From Fig. 6.12(a)-(b)-(c), we observe that racemic mixtures, i.e., mixtures with equal
amount of enantiomers (right- and left-handed particles) form an achiral state (uniaxial
nematic), as predicted earlier [35]. This also implies that chirality alone cannot drive phase
separation in hard-particle systems, and (large) size asymmetry is also required [170],
similarly to what was predicted for softer chiral systems in Ref. [247]. Such an asymmetry
in the shape/potential can also be enhanced by the addition of depletants, as observed
for mixtures of fd-viruses with different lengths, which stabilize cholesteric phases with
different handedness [231]. However, in the case that the single component system exhibits
a sense inversion of the cholesteric arrangement, mixtures of these left- and right-handed
particles will stabilize both handedness for composition different from x = 0.5 as shown in
Fig. 6.12(c). Also in this case, the dependence on the system density/pressure is crucial.
In general, the macroscopic chiral behaviour can be finely tuned by changing radius and
pitch of the helices (e.g. in Fig. 6.12(d)) or keeping them fixed and changing particle
lengths to tune the composition at which the achiral nematic phase is formed (e.g. in
Fig. 6.12(f)). Also the doping of an achiral phase, composed for example of linear rigid
hard chains, can be predicted and presents counter-intuitive aspects. For example, when
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only right-handed dopants that form right-handed cholesterics in the single-component
case are added in a small quantity to the achiral phase, a left-handed (opposite sense
of the dopants) can be stabilized (e.g. in Fig. 6.12(e)). Once more, these results are
evidences of a non-trivial dependence between micro- and macro-chirality that is difficult
to predict a priori by just looking at the particle shape.



Cholesterics of colloidal helices: predicting the macroscopic pitch
from the particle shape and thermodynamic state 125

P
re
ss
u
re

Composition

same same

same

same
mixed mixed mixed

opposite

opposite

oppositeopposite

achiral

L L

L

LL

L

R R

RRR
R

R
R

I I

I

I

I

I

L

(a) (b)

(c) (d)

(e) (f)

Figure 6.12: DFT predictions for cholesteric ordering in binary mixtures of hard (chiral) rods.
The phase diagrams are presented in the pressure βPσ3 - composition x plane. Cartoons on
the x-axis represent the particles forming the binary mixture and they are drawn on the side of
the diagram where they are in a single-component system. The arrow on top of the cartoons
represents the handedness of the particle (blue=left-handed, red=right-handed). Labels below
the particle cartoons and colors of the cartoons represent the behaviour in the single-component
limit: blue particles have a shape that stabilizes cholesterics with same handedness; purple
particles belong to the mixed region; red to the opposite-handedness region; the orange linear
chain is an achiral particle. Regions in the phase diagrams are colored and labelled corresponding
to the handedness of the cholesteric phase: red and letter R for a right-handed phase, blue and
letter L for left-handed phase; white regions (I) correspond to the isotropic phase. Solid lines
in the phase diagrams indicate where a uniaxial achiral nematic phase is expected. Dotted lines
indicate where the isotropic-nematic/cholesteric transition occurs. All results are based on a
numerical method based on a finite grid, therefore approximate. Binary mixtures studied are
(a) left/right-handed helices with p = 2σ, r = 0.4σ, Lc = 10σ; (b) left/right-handed helices with
p = 8σ, r = 0.4σ, Lc = 10σ; (c) left/right-handed helices with p = 3σ, r = 0.4σ, Lc = 10σ; (d)
right-handed helices with p = 3σ or p = 2σ, and r = 0.4σ, Lc = 10σ; (e) achiral linear chain
with Lc = 10σ and right-handed helices with p = 2σ, r = 0.4σ, Lc = 10σ; (f) left/right-handed
helices with p = 8σ, r = 0.4σ and Lc = 10σ or Lc = 20σ.
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6.6 Concluding remarks
We have developed a second-virial density functional theory for the chiral order in ne-
matic phases. We set up a theoretical framework to obtain the equilibrium cholesteric
pitch, eliminating (some) of the assumptions of Straley’s approach [63]. The use of MC
integration as numerical method for the calculation of the effective excluded volume ren-
ders the theory fast, easy to implement and suitable for a wide range of particle models.
We apply our theory to study the cholesterics of short hard helices, an apparently simple
colloidal model that displays a richer chiral behaviour than expected when considering
long weakly chiral helices. In particular, we focus on the handedness of the cholesteric
phase and we find a non-trivial dependence on particle shape and length, leading to a
possible double sense inversion in some cases. We interpret our results as a competi-
tion between the geometric properties and the tendency of local alignment, resulting in
a thermodynamic average of the difference in the excluded volume associated to right-
and left-handed pairs. We also provide a quantitative comparison with Straley’s theory,
confirming that the most important features of the macroscopic chiral behaviour can be
captured with that method as well. Our results provide new insights on the role of en-
tropy in the link between micro- and macro-chirality, suggesting that entropy should not
be overlooked in experiments on colloidal liquid crystals since most of the unexpected
chiral phenomena could be ascribed to entropic effects only. However, the limited aspect
ratio of our particles and the lack of other important features, for example flexibility, have
to be considered to fully analyse the phase behaviour of some fd viruses [273, 279–282].
By incorporating short-range soft interactions into the hard helix model, we have shown
that it is possible to assess the macroscopic chiral behaviour also beyond non purely hard-
core colloids. However, it is likely that in order to deal with more complex inter-particle
potentials, a more sophisticated implementation of MC integration should be considered.

The theoretical description of the chiral phase can also be improved. Since the bi-
axial order is expected to be strongly coupled to the chiral order [263, 264, 283, 284],
future studies based on an orientation distribution function that explicitly accounts for
the local biaxial arrangement, would provide new insights into the problem. Additionally,
introducing local biaxiality would allow us to better understand the competition in sys-
tems of hard helices between the cholesteric phase and the recently discovered screw-like
phase [37, 266]. Furthermore, our theory can easily be extended to mixtures, addressing
other fundamental questions such as the doping of achiral nematic phases and the chiral
behaviour of racemic mixtures. Finally, the recent progresses in chemical synthesis and in
controlling the colloidal self-assembly processes, resulting in chiral superstructures, sug-
gest that the number and variety of chiral building blocks will be soon enlarged [285–292].
Our approach will be useful to describe the macroscopic chiral behaviour of these new
colloids.
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6.7 Appendix: Computer simulations of a cholesteric
phase formed by hard helices

An extensive computer simulation study on the phase behaviour of hard helices was
performed by Kolli et al. [37, 265, 266, 293] and revealed interesting effects related to the
chiral (and in some cases more specifically to the helical) shape on the macroscopic self-
organisation. However, they did not explicitly obtain the isotropic-cholesteric transition
in computer simulations but relied on the theoretical predictions (based on Straley’s
theory that are consistent with our results) to associate the uniaxial nematic phase that
they obtained in their simulations with the cholesteric phase [293]. Furthermore, they
showed that other phases, e.g. so-called screw-like nematic and different smectic phases,
are stabilized and can compete with the cholesteric phase, and in some cases pre-empt
the region of stability of the cholesteric phase. Clearly, the region of nematic/cholesteric
stability is dependent on the particle aspect ratio, as already evidenced in the study of
hard spherocylinders [118]. Therefore, longer helices would have a larger regime for which
the cholesteric phase is stable (and phenomena like sense inversion could occur), at the
price that longer helices implies longer cholesteric pitches (see Fig. 6.4), that eventually
are not accessible with computer simulations of ordinary system sizes. Nevertheless, here
we show that already in the case of hard helices with Lc = 10σ (Ns = 15), p = 8σ, r =
0.4σ, for which we predict a quite short pitch close to the isotropic-cholesteric transition
(|P| ' 90σ), a cholesteric phase can be obtained by performing Monte Carlo simulations
of 2100 particles between two hard smooth walls in the NV T ensemble. In Refs. [37,
265, 266, 293], 900 up to 2000 particles and standard periodic boundary conditions were
employed since the focus was not on the cholesteric phase. Furthermore, we observe
that a long run (> 6 ∗ 106 MC steps) was needed to reach an equilibrated configuration.
Because of the strong coupling between rotation and translation in the dynamics of helical
particles (as noted also in the study of Refs. [37, 266]), as well as the existence of a
screw-like nematic phase makes it particularly challenging to simulate this system. In
Fig. 6.13(a) we show a time series of snapshots taken from a simulation run with an
aligned achiral state used as initial configuration. Particles are colored according to
the orientation of their main axis and the corresponding nematic director profile along
the direction perpendicular to the two walls is depicted by the orientations of the rod-
like segments. After long equilibration a spontaneous left-handed twist is propagated
throughout the system. Interestingly, when a right-handed twisted configuration was used
as initial configuration the system spontaneously twisted back (Fig. 6.13(b)) whereas when
started from a left-handed, the sense remains the same (but changes in magnitude when
the system is fully relaxed, see Fig. 6.13(c)), proving that hard helices with Lc = 10σ,
p = 8σ, r = 0.4σ stabilize indeed a cholesteric phase with opposite handedness (see
Fig. 6.3(d)). The final cholesteric pitch seems also to be in agreement with the theoretical
predictions (|P| ∼ 70σ) but in this thesis we did not investigate further the hard-helix
system. On the other hand, in the next chapter, we will introduce a novel hard chiral
particle model that we used to obtain by computer simulations (chronologically) the first
evidence of a cholesteric phase purely stabilized by entropic interactions and we will
discuss several aspects on how to study the cholesteric order in computer simulations.
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Figure 6.13: Simulation snapshots of cholesterics of hard helices with p = 8σ, r = 0.4σ,
Lc = 10σ, obtained by NV T -Monte Carlo simulations of 2100 particles at a packing fraction
η ' 0.319 and confined between two smooth hard walls. Particles are colored according to the
orientation of their main axes and the corresponding nematic director profile along the direction
perpendicular to the two walls is depicted by the orientation of the rod-like segments. (a) Time-
series of configurations starting from an achiral state taken at time zero, after 4 ∗ 106 MC steps
and after 9 ∗ 106 MC steps. The system spontaneously twists in a left-handed cholesteric. (b)
Starting from a right-handed configuration, snapshots taken at time zero, after 3∗106 MC steps
and after 6 ∗ 106 MC steps. The system twists back. (c) Starting from a left-handed initial
configuration, snapshots taken at time zero, after 3 ∗ 106 MC steps and after 6 ∗ 106 MC steps.
The left-handed twist is preserved but the magnitude of the cholesteric pitch changes upon
system relaxation.
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Twisted polyhedra: entropy-driven
formation of prolate and oblate
cholesteric phases by computer

simulations

Predicting the macroscopic chiral behaviour of cholesteric liquid crystals from the mi-
croscopic chirality of the particles is highly non-trivial, even when the chiral interactions
are purely entropic in nature. Here we introduce a novel chiral hard-particle model,
namely particles with a twisted polyhedral shape and obtain, for the first time, a stable
fully-entropy-driven cholesteric phase by computer simulations. By slightly modifying
the triangular base of the particle, we are able to switch from a left-handed prolate to a
right-handed oblate cholesteric using the same right-handed twisted particle model. Fur-
thermore, we find qualitative agreement with an Onsager-like theory, suggesting that the
latter can be used as a quick tool to scan the huge parameter space associated to the
microscopic chirality. Our results unveil how the competition between particle biaxiality
and chirality is reflected into the nematic self-organization and new theoretical challenges
on the self-assembly of chiral particles can be undertaken.
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7.1 Introduction
Since Onsager’s prediction of a purely entropy-driven phase transition from an isotropic
fluid of infinitely long hard Brownian rods to an orientationally ordered nematic phase [30],
hard particles have served as paramount models in condensed matter studies. The seminal
work on crystallization of hard spheres revealed the crucial role of computer simulations
in proving that order can be induced by entropy alone [23, 24]. The macroscopic structure
obtained by self-assembly of colloidal particles is often directly linked to the shape of the
constituent building blocks [64, 294]. As soon as we move away from spherical particles
a bewildering variety of thermodynamically stable structures with increasing complexity
arises [64, 65]. As a result, a concurrent increase of simulation studies on hard particles
show that entropy can be the sole driving force in the formation of crystals featuring
different symmetries, plastic crystals, liquid crystals, and even quasi-crystals [31, 32, 64–
67, 195, 266, 295, 296].

Shape anisotropy is the essential ingredient to form liquid crystals (LC), phases fea-
turing long-range orientational order but no or only partial positional order [35]. Hard
bodies have been extensively employed also in the field of LCs [52]. Thirty-five years after
Onsager’s prediction, the first entropy-stabilized nematic phase was observed in computer
simulations of hard ellipsoids [31]. In the nematic liquid-crystalline phase, the particles
are on average aligned along a preferred direction, identified by the nematic director n̂,
but the positions are homogeneously distributed in the system. Additionally, hard sphe-
rocylinders were employed in simulations to demonstrate the thermodynamic stability of
an entropy-driven smectic phase [32], in which the particles are orientationally ordered
and arranged in smectic layers. This system has become a popular hard-particle model
system to study LC phase behaviour [118, 120]. By introducing biaxiality in the hard-
particle shape, the long-searched biaxial nematic phase has also been simulated [194, 195].
Furthermore, many other LC phases have been observed in simulations, which are entropy-
driven, including a cubic gyroid phase [38] and a twist-bend nematic phase [36].

Surprisingly, from this long list of entropic LC and non-LC phases, a simulation evi-
dence of a cholesteric phase made of hard particles is still missing, despite the facts that
it was the first LC phase experimentally discovered [215] and that an entropic cholesteric
phase was already theoretically predicted forty years ago [63]. A cholesteric phase dis-
plays an helical chiral arrangement of the director field, n̂(z) =

{
cos

(
2π
P z
)
, sin

(
2π
P z
)
, 0
}
,

with z the axis of the macroscopic twist (chiral director) and P the cholesteric pitch
that determines the typical length scale associated to the helical periodicity (see also
Fig. 6.1). Several theoretical studies have been dedicated to better understand the link
between microscopic and macroscopic chirality. A unified picture has still yet to be
achieved since it is clear that the cholesteric pitch P depends in a non-trivial way on
both the single-particle properties and the thermodynamic state of the system (for exam-
ple see [63, 223, 247, 252, 263, 264]). The microscopic origin of chirality has also been
the focus of experimental studies on colloidal systems [208, 219, 223], and of computer
simulation studies based on strongly chiral attractive interactions [246, 250, 297].

The main reason that a cholesteric phase of hard bodies has never been observed
in simulations is due to the fact that the cholesteric pitch length is on the order of
hundreds or thousands times the particle length, and that huge system sizes, beyond
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our computational limits, are needed to accomodate the cholesteric pitch. Recently, hard
helices have been introduced as a simple particle model, but the formation of a cholesteric
phase has never been addressed in simulations as the focus of these studies was more on the
intriguing chiral phases that occur at high densities [266, 293] (see also Sec. 6.7). Hence it
is still unsettled if and how a twist in the particle shape gives rise to the cholesteric order
and several questions, that have been addressed by computer simulations for the achiral
nematic phase, like nucleation, wetting etc... [120, 123], remained so far unexplored for
the cholesteric phase.

7.2 A novel chiral hard particle model

Here, we show the first fully-entropy-driven cholesteric phase obtained by computer sim-
ulations of hard twisted polyhedral shaped particles. As we explain below, this particle
model presents several shape features that can be easily tuned, e.g. aspect ratio, con-
vexity, biaxiality, handedness, degree of twist (or molecular pitch), number of polyhedral
faces. A systematic study of how these properties, some of which are intuitively asso-
ciated to microscopic chirality and liquid-crystalline behaviour, affect the self-assembly
of many of such particles, can be efficiently carried out by perfoming computer simula-
tions. In particular, here we study the nematic phase behaviour of the simplest shape
of this class, i.e., twisted triangular prisms (TTP). Our particle is obtained by twisting
one base of an elongated triangular prism of height h, which is the distance between the
two triangular bases, by an angle α relative to the other base and by adding additional
edges to ensure flat faces (see Fig. 7.1). Remarkably, depending on the choice of which
vertices are connected by these additional edges, it is possible to build both concave and
convex chiral particles. The triangular base has fixed perimeter πω, such that in the
limit of infinite number of sides (circle) the width ω coincides with particle diameter.
In this study we consider concave TTPs with either equilateral or isosceles triangular
bases defined by the base angle γ. When the top triangular base is rotated clockwise
the twist angle α is positive and it is tempting to call the TTP right-handed. We return
to this definition of particle handedness when we discuss our results for the oblate (dis-
cotic) cholesteric phases. We note that α should be less than or equal to the smallest
angle of the base to avoid self-intersection of the particle shape. For convenience, we
also introduce the vectors u, v, and w describing the TTP as shown in Fig. 1, which
allow us to define the long, medium, and short dimensions of the TTP by their length
|u|, |v|, and |w|, whereas the particle frame is described by the long, medium, and short
particle axis denoted by the unit vectors û, v̂, and ŵ. Note that the height h coincides
with |u|. To detect overlaps between particles, i.e., the key ingredient in Monte Carlo
(MC) simulations aimed to study the self-assembly of hard particles, we use an algorithm
based on triangle-triangle intersection detection [57], which is also suitable for concave
shapes. Analogously to spherocylinders (and other hard-rod models), the nematic phase
can be stabilized at sufficiently high aspect ratio (h/ω) [118], whereas the particle chi-
rality can be tuned by changing the twist angle α that also changes the molecular pitch
p ' 2πh/α. Additionally, by further modifying the particle shape (changing the base) we
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study how the competition between biaxiality and chirality propagates from microscopic
(single-particle) to macroscopic (self-assembled structure) level.

Nematic phases formed by biaxial particles can be distinguished in prolate (calamitic)
N+, oblate (discotic) N− and biaxial Nb phases, depending on which particle axes feature
long-range orientational order. By introducing a shape parameter based on the dimen-
sions of the particle ν = |u|/|v| − |v|/|w|, the type of nematic phase can roughly be
predicted [62, 195] (cfr. Chap. 5): For ν > 0, a prolate N+ phase is expected, in which
the long axes û of the particles are aligned in the nematic phase along a common director,
whereas for ν < 0 an oblate N− phase is predicted, where the short particle axes ŵ display
long-range orientational order. When ν ∼ 0 a biaxial phase is predicted to be stable, in
which both the short and long particle axes show long-range orientational order, provided
that other conditions that are strongly shape-dependent are also satisfied (for example
for rounded board-like particles considered in Ref. [195] there is an additional condition
of |u|/|w| ≥ 9).

Top
view

Side
view

Twist

Convex TTP

Concave TTP

Triangular Prisms

h

Figure 7.1: A twisted triangular prism (TTP) is constructed from an elongated prism of height
h with (isosceles) triangular bases, determined by the angle γ, and perimeter πω. The width
ω is used as the unit of length. To introduce chirality, one triangular base is twisted by an
angle α relative to the other one and additional edges are constructed to obtain flat faces. The
orientations of the main axes are described by the unit vectors û (long), v̂ (medium) and ŵ
(short).

7.3 Methods
For TTP with γ . 1.10715, |v| = π cos γ/(1 + cos γ) and |w| = π sin γ/(2 + 2 cos γ),
such that the shape parameter ν = h(1 + cos γ)/π cos γ − 2/ tan γ, where h = |u| is the
height of the particle (cfr. Sec. 5.2). The volume of the particle is calculated by using
standard formulas for orientable polyhedra that requires the knowledge of face normals
and vertices positions. Overlaps between particles are detected by checking intersections
between triangular faces using the RAPID library [57].
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Thousands of particles are simulated using standard MC simulation methods in either
the NV T or NPT ensemble. In the former, MC moves consist in either single-particle
translation or rotation whereas in the latter also volume-change moves (both isotropic and
anisotropic scaling) are employed. Several millions of MC steps are performed both in the
equilibration and production runs, where one MC step is defined as N moves, with N the
number of particles. Different boundary conditions and initial configurations are used, as
specified in the text. In the case of hard walls (located at z = 0 and z = Lz), the overlap
detection between particles and walls is performed by checking if any vertices of the
polyhedra have coordinates z < 0 or z > Lz. For the implementation of twisted boundary
conditions we refer to [253]. To obtain the equilibrium equation of state we combined
results obtained by starting from an isotropic configuration, from a dilute lattice and from
a dense aligned lattice (constructed by first obtaining the closest packing of a few particles
in an orthogonal cuboidal box). States equilibrated at close pressures are also used as
initial configurations to avoid kinetic traps. To determine the transitions between different
thermodynamic phases, we have calculated several order parameters in both the NPT
and NV T ensembles. Using equilibrated configurations we also set up long (more than
6× 106 MC steps) NV T simulations to accurately measure the cholesteric pitch P . After
dividing the system in slabs, by diagonalizing the tensor Qû

αβ = (∑i 3ûiαûiβ − δαβ)/2n,
where α, β = x, y, z and i = 1, ..., n with n the number of particles in the slab, we
compute the nematic director n̂û and the associated nematic order parameter Sû. The
same procedure is repeated for the medium particle axis v̂ and the short axis ŵ. We
obtain Sv̂ and Sŵ, which are the largest eigenvalues of Qv̂

αβ = (∑i 3v̂iαv̂iβ − δαβ)/2n and
Qŵ
αβ = (∑i 3ŵiαŵiβ−δαβ)/2n. Again, the nematic directors n̂v̂ and n̂ŵ are the associated

eigenvectors. Note that we neglect here the polar nature of the particle along the axis n̂ŵ
as we assume up-down symmetry n̂ŵ = −n̂ŵ. However, we checked that it did not affect
our results. Averaging the profiles S(z), the bulk values are obtained for each state point.

For each configuration we calculate cos(θ(z)) ≡ n̂û(z) · n̂û(z = 0) and we bypass the
up-down symmetry by taking the absolute value | cos(θ(z))|. After averaging hundreds of
such profiles, we perform a one-parameter fit using | cos (2πz/P) | to extract the cholesteric
pitch P . In addition, orientational pair-correlation functions, as introduced in Ref. [250],
are calculated along the chiral director (parallel to the z-axis).

S û
220(z) = 〈3/2(ûi · ûj)2 − 1/2〉 (7.1)

describes the nematic order between two particles i and j separated by distance z = zij,
with 〈.〉 indicating an average over all the particles and different configurations. The
distance between the maximum and the minimum of S û

220(z) corresponds to half the
cholesteric pitch length.

S û
221(z) = 〈[(ûi × ûj) · ẑij](ûi · ûj)〉 (7.2)

describes the chiral organization between the two particles i and j along the z-axis. Anal-
ogously, the functions Sŵ

220(z) and Sŵ
221(z) refer to the short axis ŵ.

The simulation results are compared with those obtained using a second-virial classical
density functional theory that is extensively described in Chap. 6 and in Refs. [252, 298].
The input of such a theory is the pitch-dependent Legendre-expanded excluded-volume
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between two particles with orientation R,R′ separated by a distance r:

Ell′(q) = −
∫
dr
∮
dR dR′f(r,R,R′)Pl(n̂q(z) · û)Pl′(n̂q(0) · û′) (7.3)

with Pl the normalized Legendre polynomial of grade l=0, 2,...,20 (only even coefficients
are considered), q = 2π/P the chiral wave vector, n̂q(z) = x̂ sin qz+ ŷ cos qz the nematic
director profile and f the Mayer function that assumes a value −1 if particles overlap
and 0 otherwise. The coefficients Ell′(q) are calculated using a MC integration scheme.
Once these coefficients are calculated, the orientation distribution function ψ(θ), with
θ the polar angle with respect to the local nematic director, is obtained by minimizing
a Parsons-Lee-Onsager-like free-energy functional [30, 124, 125] yielding the following
equation:

ψ(cos θ) = 1
Z

exp
−nG(η)

∞∑
l,l′=0

Ell′(q)
4π2

1
2 [Pl(cos θ)ψl′ + Pl′(cos θ)ψl]

 , (7.4)

with n the number density, G(η) the Parsons-Lee correction, ψl the expansion coefficients
of ψ(cos θ) and Z the normalization factor. Finally, the equilibrium pitch P is obtained
by inserting back ψ(θ) into the functional and identifying the minimum of the free energy.
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7.4 Formation of the cholesteric phase
To investigate whether or not the twist in the particle shape is transmitted at a macro-
scopic level, we perform MC simulations of thousands of TTPs using different initial
configurations and boundary conditions, finding consistent results. In this section we
present results from MC simulations using standard periodic boundary conditions (PBC)
in the NPT ensemble, i.e., at fixed number of particles N , pressure P , and temperature
T , and we investigate the kinetic pathways for the formation of a prolate cholesteric phase.

Left-handed cholesteric phase
We first consider 2000 TTPs with a strong particle twist α = 0.7, and with an aspect
ratio h/ω = 5 with an almost equilateral base (γ = 1.0), yielding ν ' 3.25 > 0. We start
from an isotropic phase (I) and perform a compression by fixing the pressure βPω3 = 1.5
with β = 1/(kBT ) and kB Boltzmann’s constant. Fig. 7.2(a) clearly demonstrates the
formation of a prolate nematic phase (N∗+) with a spontaneous macroscopic left-handed
twist upon increasing the density. The resulting structure has been characterized using
appropriate order parameters as shown in Fig. 7.3 and described in detail in the following
section. We notice here that the opposite handedness of the cholesteric phase with respect
to the particle twist is consistent with theoretical predictions [63, 252, 263, 298] for chiral
particles with a large molecular pitch p, in this case p/ω ' 44.8. The phase transformation
from I to N∗+ is driven first by nematic fluctuations due to the anisotropy of the overall
particle shape, and subsequently, the nematic phase becomes twisted as a result of the
finer details of the chiral particle shape. Additionally, we confirm the stability of the N∗+
phase by starting from a uniaxial nematic state. We observe that the achiral order is
clearly unstable since a twist starts to propagate slowly throughout the whole system.
Our simulations show that a stable prolate cholesteric phase is found for a large range of
twist angles, i.e., 0 . α . γ, and base angles 0.55 . γ . π/3.

Kinetic pathways
We now investigate in more detail the kinetic pathways leading to N∗+ in case of short
chiral rods. To this end, we focus on large systems of TTPs with aspect ratio h/ω = 5,
an isosceles base with angle γ = 0.75 and a particle twist angle α = 0.7, yielding a
shape parameter ν ' 1.62 > 0. First, we determine the pressure βPω3 and nematic
order parameters S associated to the three main axes u,v,w as a function of packing
fraction η as shown in Fig. 7.3(b). From the equation of state, we find that the IN∗+
transition occurs at a pressure βPω3 ' 1.25, and the transition from a cholesteric phase
to a higher ordered one, that we generically denote as chiral smectic (Sm∗), takes place
at a pressure βPω3 ' 2.6 (see Fig. 7.4 for more details). A closer look to the formation
of the cholesteric phase reveals that for sufficiently high supersaturation of the isotropic
phase (βPω3 = 1.9), the transformation proceeds via spinodal decomposition, in analogy
with achiral short spherocylinders [120], see Fig. 7.2(b). We clearly observe that the
system is unstable as immediately many small nematic clusters with different orientations
are formed throughout the system, which subsequently start to twist. Interestingly, the
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Figure 7.2: Kinetic pathways for the formation of a prolate cholesteric phase from MC
simulations in the NPT ensemble under standard periodic boundary conditions. The particles
are colored according to the orientation of their main axis û. (a) Snapshot time series of
2000 TTP with aspect ratio h/ω = 5, base angle γ = 1.0, and particle twist angle α = 0.7,
starting from an isotropic state (a1) and imposing a pressure βPω3 = 1.5. Evolution in time
corresponds to an increase of the system packing fraction. The resulting phase (a4) is a left-
handed cholesteric. (b) Snapshot time series of 3200 TTP with h/ω = 5, γ = 0.75, and
α = 0.7, starting from an isotropic state (b1) and imposing βPω3 = 1.9. In this case a spinodal
instability is observed: chiral nematic domains are first formed, resembling a blue phase (b3),
and slowly merge into a cholesteric defect-free phase. (c) Dense aligned state of 2304 TTP
with h/ω = 5, γ = 0.75, and α = 0.7 used as initial configuration for expansion runs. (d)
At pressure βPω3 = 2.1 the twist slowly propagates from the center of the system (d1) to the
entire system (d2) and also in this case a cholesteric phase is formed. (e) At higher pressure
(βPω3 = 2.9) an instability with respect to nematic orientational fluctuations as well as smectic
layering fluctuations is observed, resulting into a metastable state of chiral domains composed
of highly aligned particles, which bears close resemblance to a blue phase. See also panel (f)
where the particle size is reduced.

intermediate phase looks remarkably similar to a blue phase [35, 297], but after a long
equilibration time the twisted nematic domains start to merge and the system relaxes
to a cholesteric phase. Finally, we also study the phase transformation starting from a
dense aligned phase. We perform NPT -MC simulations both at a pressure βPω3 = 2.1
corresponding to a stable N∗+ phase, and at βPω3 = 2.9, where the Sm∗ phase is expected
to be stable. For βPω3 = 2.1, we indeed find that the director field immediately starts
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to twist in the aligned phase of TTPs, resulting into a cholesteric phase as shown in
Fig. 7.2(c)-(d). On the other hand, at βPω3 = 2.9, the system is unstable with respect to
both nematic orientational fluctuations as well as smectic layering fluctuations as seen in
Fig. 7.2(e), and again the final structure bears close resemblance to a blue phase, which
probably corresponds to a metastable (kinetically arrested) state as the Sm∗ phase is
expected to be the stable state. However, this suggests an intriguing competition between
packing and chirality at high pressures that will be further investigated in future studies.
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Figure 7.3: (a) Typical configuration as obtained from simulations of a prolate cholesteric
phase of TTPs with aspect ratio h/ω = 5, twist angle α = 0.7, and base angle γ = 0.75 using
PBC. Particles are colored according to the orientation of their main axis û. (b) Equation of
state and nematic order parameters S associated to the particle main axis u,v,w, as a function
of the packing fraction η. (c) Nematic director profile n̂û depicted by using rods color-coded
according to their orientation. (d) The twist is quantified by averaging hundreds of such profiles
after measuring | cos(θ(z))|, with θ the twist angle along the z-direction that identifies the chiral
director. The fit used to extract the cholesteric pitch P is indicated with a red line. (e)
Orientational pair-correlation functions (see Sec. 7.3) calculated along the chiral director (z-
direction), confirming the helical cholesteric structure and the left-handed sense of twist.
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Figure 7.4: (a) The pressure βPω3 (left y-axis) and nematic order parameters S (right y-axis)
as a function of packing fraction η as obtained by MC simulations in the NPT ensemble with
PBC for TTPs with aspect ratio h/ω = 5, base angle γ = 0.75, and particle twist angle α = 0.7.
Snapshots in (b)-(c)-(d) are taken from a typical configuration at βPω3 = 2.9. At this pressure
the helical structure is still mantained (side view in panel (b)) but in the direction perpendicular
to the chiral director the particles form smectic layers (panels (c) and (d) show cuts through
the sample), corresponding to a chiral smectic phase generically denoted as Sm∗. Due to the
small number of layers and particles in each slabs of the system the use of ordinary translational
smectic order parameter does not locate accurately the transition from the cholesteric to Sm∗,
that is therefore estimated by visual inspection of the configurations. The exact identification
of the phase, that is more likely a twisted grain boundary chiral smectic A, and its stability, are
beyond the scope of this chapter.
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7.5 Equilibrium cholesteric pitch
We now turn our attention to the helical structure of the cholesteric phase. We want to
determine the equilibrium cholesteric pitch P and study how boundary conditions and
finite-size effects influence this quantity, that ultimately is the parameter quantifying the
macroscopic chirality. To this end, we analyse the spatial dependence of the nematic
director by dividing the system in slabs [246, 297] along the axis of the macroscopic
twist, also called chiral director, which is oriented along the z-axis. We then compute
the nematic director n̂û(z) corresponding to the long particle axis û, an example of such
a profile is depicted in Fig. 7.3(c), and the associated nematic order parameter Sû as
displayed in Fig. 7.3(b). The same procedure is repeated for the medium particle axis v̂
and the short axis ŵ to obtain Sv̂, Sŵ (see Fig. 7.3(b)), and n̂v̂, n̂ŵ (not shown).

The equilibrium pitch P is calculated by performing a one-parameter fit on | cos(θ(z))|
that quantifies the twist in the system (see Sec. 7.3 for details). Although our procedure
removes the (small) intrinsic drift of the system occurring over different configurations,
the statistical error on P is still on the order of several ω. The cholesteric helical structure
and the sense of twist are further confirmed by orientational pair-correlation functions,
shown in Fig. 7.3(e).

It is important to note that in the case of PBC the nematic director should be the
same at the edges of the simulation box, i.e., cos(θ(z = Lz)) = 1 in Fig. 7.3(d) with
Lz the box length in the z-direction. As a consequence, the cholesteric pitch P must be
commensurate with Lz, i.e., Lz should be at least ∼ P/2 to observe a twist in the nematic
phase [250]. By allowing the box shape to relax, either by performing NPT simulations or
NV T simulations using a variable box shape, we expect the accuracy of the equilibrium
pitch measurement to improve, but by repeating our simulations for different system sizes,
we still observed a dependence on the initial box size (see Fig. 7.5(a)).

In order to circumvent the commensurability problems with pitch and box size, we
embed the system between two planar hard walls in such a way that the nematic director
can freely choose its orientation at both walls, and we perform simulations in the NV T
ensemble. As can be observed from Fig. 7.6(a)-(b), the nematic director profile is indeed
not commensurate anymore with Lz thereby allowing for a full relaxation of the macro-
scopic chiral twist. Since we simulate sufficiently large system sizes at state points that
are well inside the stable region of the cholesteric phase, we expect that surface effects,
such as pronounced layering or increased biaxiality [123, 299], should be negligible. We
indeed observe that the walls only affect the structure at distances smaller than ∼ one
particle diameter from the wall (see Fig. 7.7). In order to support this, we determine
the equilibrium pitch P using different system sizes (different number of particles and
different box dimensions), but at fixed packing fraction η. Panels (b) and (c) of Fig. 7.6
show indeed consistent results for the nematic director profile as well as for the value of
P . We thus regard this method to be the most convenient and reliable way for calculating
the equilibrium pitch P , in analogy with the conclusions of Ref. [246].

Finally, we perform simulations using twisted boundary conditions (TBC) [253]. We
find good equilibration of our cholesteric phases of TTPs, as evidenced in Fig. 7.5(b) by
the much smaller errror bars on the nematic director profile and the difference of π/2 in
the θ angle at the edges of the box as imposed by the TBC. However, the use of TBC
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Figure 7.5: (a) Cholesteric pitch P as a function of number of particles N as obtained from
MC simulations in an NV T ensemble, but allowing the simulation box to change side dimensions
while keeping the volume fixed (packing fraction η ' 0.18). TTP with aspect ratio h/w = 5,
twist angle α = 0.7, and base angle γ = 1.0. Standard periodic boundary conditions (PBC) are
employed, which results in a strong dependence on the initial box size. System sizes correspond
to 2,4,8 times the smallest size considered. (b) Simulations of the same TTPs, but using twisted
boundary conditions. The snapshot shows the boundaries of the simulation box in red and the
first periodic images. The macroscopic twist | cos(θ(z))|, with θ the twist angle along the z-
direction corresponding to the chiral director. The fit used to extract the cholesteric pitch P is
indicated with a red line (see main text for more details). Note the difference of π/2 in the θ
angle at the edges of the simulation box as imposed by the twisted boundary conditions [253].

may result into an over- or undertwisted cholesteric phase, and only by measuring the
pressure tensor, which is unfortunately not straightforward for hard particles, it would be
possible to extract the equilibrium value of P [254]. This procedure is based on a quadratic
approximation around the free-energy minimum [254] and TTPs will be a suitable system
to test this approach.
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Figure 7.6: (a) Typical left-handed cholesteric along with cartoons of n̂û as obtained from
NV T -MC simulations on systems of TTPs with aspect ratio h/ω = 5, twist angle α = 0.7, and
base angle γ = 0.75 confined between two planar hard walls (in the z-direction). The particles
are colored according to the orientation of their main axis û. (b) Local director profiles θ(z)
obtained by simulations using varying number of particles N and varying box sizes but at fixed
packing fraction η ' 0.16. (c) Cholesteric pitch P versus packing fraction η as obtained from
simulations (using hard walls) and a second-virial density functional theory [252, 298].
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Figure 7.7: (a) Packing fraction η(z) and nematic order parameter profiles S(z) for TTPs
with h/ω = 5, α = 0.7 γ = 0.75 between two hard walls (situated in the z-direction) obtained
by simulations in NV T ensemble (N = 2160, η ' 0.16). (b) Orientational pair-correlation
functions for the same system (cfr. Fig. 7.3(e)). The helical structure is maintained but it does
not need to be commensurate with the box size.

7.6 Comparison with second-virial theory

The availability of cholesteric phases obtained from particle-based simulations provides
a new testing ground for the theoretical framework describing the chiral organization in
liquid crystals. We apply our recently developed second-virial density functional theory
(DFT) [252, 298] (cfr. Chap. 6) to systems of TTPs and calculate the density dependence
of P . Our DFT is an extension of Onsager’s theory [30] corrected with a Parsons-Lee
(PL) prefactor to deal with the finite size of the particles [124, 125]. It represents an
advancement over Straley’s approach [63] as it does not consider the chirality in a per-
turbative way and it is combined with a MC integration to make it suitable for a wide
range of particle models [298]. A detailed description can be found in Refs. [252, 298].
In Fig. 7.6(c) we present our results as obtained from simulations along with the DFT
predictions. We plot P as a function of η in the range where the cholesteric phase is sta-
ble. We observe that the theory correctly captures the twist handedness, the magnitude
and the trend of P as a function of η. In addition, we study the effect of particle shape
on the cholesteric pitch P . In Fig. 7.8(a), we present simulation results for the pitch P
as a function of η for varying twist angle α and base angle γ. Comparing the results
for α = 0.6 (red curve) with α = 0.7 (green) at fixed γ = 0.75, or α = 0.7 (blue) with
α = 0.8 (yellow) at γ = 1.0, reveals that |P| decreases upon increasing α, i.e., increas-
ing the microscopic chirality of the particle, as expected. Analogously, by decreasing the
base angle γ, the surface associated with the longer side of the base gets larger, which
effectively increases the particle chirality, thereby yielding a smaller pitch |P|. This trend
can be appreciated by comparing the results for γ = 1.0 (blue) with γ = 0.75 (green)
at fixed α = 0.7 or γ = 0.9 (red) with γ = 0.75 (black) at fixed α = 0.6. Despite an
overall little underestimation of the macroscopic twist, Fig. 7.8(b) shows that all these
trends are well-captured by our DFT calculations: increasing the particle chirality, by
either twisting the particle more (increasing α) or increasing the particle biaxiality (by
decreasing γ), results indeed in a smaller cholesteric pitch |P|. However, we notice that
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the effect of decreasing γ on particle chirality is overestimated by the DFT with respect to
the results obtained from simulation of the many-particle system. Nevertheless, the DFT
can be used as a reliable and quick tool for predicting the macroscopic chiral behaviour
from the microscopic chiral particle properties. We therefore use our theory to study the
effect of TTPs with multiple twists on the cholesteric pitch P . Our DFT calculations as
shown in Fig. 7.9(b) reveal that upon decreasing the microscopic pitch length p/ω, the
sense of the macroscopic twist changes from opposite to same handedness with in between
a regime where a twist inversion occurs with packing fraction, which is analogous to pre-
vious results on hard helices [252, 298] (cfr. Chap. 6). In the conclusions we will discuss
possible improvements for the theoretical framework.
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Figure 7.8: (a) Cholesteric pitch P versus packing fraction η as obtained by MC simulations
(using hard walls) for TTPs with varying twist angles α and base angles γ as labelled. Lines
are polynomial fits used as guides to the eye. (b) Theoretical predictions for the same particle
models obtained by second-virial DFT [252, 298]. An increase in the twist angle α while keeping
fixed the base angle γ corresponds to a shorter cholesteric pitch |P|. Analogously, keeping fixed
α and decreasing γ enhance the particle chirality and a corresponding shorter |P|. However, this
effect seems to be overestimated by theory resulting in a slightly different chiral ranking for the
models considered here. In Fig. 7.9(a) the same results are shown by using the nematic order
parameter instead of the packing fraction and similar conclusions are drawn.
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Figure 7.9: (a) Comparison between simulations (symbols and solid lines used as guides to
the eye) and theoretical results (dashed lines) for the cholesteric pitch P as a function of the
nematic order parameter Sû associated to the particle long axis for the same particle models
considered in Fig. 7.8. (b) Theoretical predictions for the cholesteric pitch P as a function of
packing fraction η for TTPs with multiple twists (triple hard helices) with aspect ratio h/ω = 6,
and an equilateral triangular base (γ = π/3) and varying α and number of twists nt such that
the molecular chiral pitch p/ω ' 2πh/(ntαω) varies as indicated in the legend. Depending on p,
the cholesteric pitch P can be positive (right-handed), negative (left-handed) or changing sign
upon varying the packing fraction η (sense inversion), analogous to previous findings for hard
helices [252, 298].
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7.7 Right-handed oblate cholesteric phase
Finally, we further modify the particle shape by decreasing the base angle γ while keeping
the aspect ratio h/ω = 5 fixed. In this way, we construct TTPs with shape parameter
ν < 0, which should stabilize an oblate nematic phase. Indeed, our simulations reveal the
formation of an oblate nematic phase (N∗−) with a helical chiral arrangement of the local
nematic director field corresponding to the short particle axis ŵ as exemplarily shown in
Fig. 7.10 for TTPs with h/ω = 5, γ = 0.4, α = 0.4, yielding ν ' −1.41. We observe that
the orientation of the long particle axis û is isotropic whereas the nematic director n̂ŵ
associated to the short axis ŵ displays the expected helical structure. Surprisingly, the
macroscopic twist is now right-handed in contrast with the left-handed twist as observed
for the prolate cholesteric phase of the same particle model but with a different α and γ
(Fig. 7.3), which seems to be counter-intuitive. However, this can be explained as follows.
Despite the fact that the twist angle α > 0, meaning that the particle is twisted in a
right-handed fashion along the long particle axis û, it also corresponds to a left-handed
twist in the short particle axis ŵ. As only the short particle axes show orientational order
in an oblate nematic phase, and the particles are weakly chiral, we expect a macroscopic
twist that is opposite to that of the short axis, i.e., a right-handed macroscopic twist,
as indeed observed in our simulations. The equation of state and order parameters in
Fig. 7.10(c) shows that the I-N∗− phase transformation is specular to that of the prolate
cholesteric phase. The cholesteric structure and the sense of twist are further confirmed
by the orientational pair-correlation functions (see Fig. 7.10(d)).

7.8 Conclusions
In conclusion, we have shown by computer simulations of twisted triangular prisms that
entropy alone can stabilize both oblate and prolate chiral nematic phases. Our results
showcase once more that attributing uniquely a value to the microscopic chirality is not
trivial. In this simple model we need to combine the value of the twist angle α, shape
parameter ν and the microscopic pitch p to predict the sense of the twist. A more
complicated competition between biaxiality and chirality is expected when ν ∼ 0 and a
biaxial nematic phase should occur. Since a double twist cannot be space-spanning, it is
interesting to investigate if the macroscopic chirality disappears or another stabilization
mechanism comes into play. Twisted polyhedra are useful models to address this and other
fundamental questions. For example, simulations on mixtures of particles with different
handedness (see Fig. 7.11) show that racemic mixtures form achiral nematic phases, as
expected from theory [35] (see also Sec. 6.5), indicating that chirality alone is not enough
to drive phase separation in systems of hard particles and size asymmetry is required. By
considering also depletant particles it will be possible to gain novel insights in experiments
where entropy, chirality and depletion are the dominant forces [231, 300].

In addition, our simulations show qualitative agreement with theoretical predictions
from an Onsager-like DFT, thereby providing confidence that the theory yields reliable
results and can thus serve as a guide for future studies. For example, to study nucleation
and growth of cholesteric phases, addressing questions like how the chirality changes the
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Figure 7.10: (a) Oblate cholesteric phase of TTPs with h/ω = 5, α = 0.4, γ = 0.4 as obtained
from NPT -MC simulations (βPω3 = 1.0) using PBC. Particles are colored according to the
orientation of their short axes ŵ. (b) Cartoon of the nematic director n̂ŵ exhibiting a right-
handed twist. (c) Equation of state and nematic order parameters Sû, Sv̂, Sŵ as a function of
packing fraction η, confirming that the transition is specular to the isotropic-prolate cholesteric
phase transition (cfr. Fig. 7.3(b)). (d) Orientational pair-correlation functions calculated along
the z-direction, confirming the helical cholesteric structure associated to the short axis ŵ and
the right-handed sense of twist (opposite trend of the functions S221(z) with respect to the one
shown in Fig. 7.3(e)).
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Figure 7.11: Typical configurations of mixtures of N = 3200 right-handed and left-handed
TTPs with aspect ratio h/ω = 5, base angle γ = 0.75, and twist angle α = ±0.7 as obtained from
MC simulations in the NPT ensemble (βPω3 = 1.5) using PBC. (a) Racemic (50:50) mixture
with particles colored according to the orientation of the long particle axis u. Note that racemic
mixtures form uniaxial achiral nematic phases as expected from theory [35]. (b) Same racemic
mixture with particles colored according to their handedness (red=right-handed, green=left-
handed). Chirality alone is not enough to drive a demixing transition in a system of hard chiral
particles. (c) In the case of a small fraction of right-handed enantiomers (x = Nright/N = 0.1)
the expected right-handed macroscopic twist is observed. (d) Note that the right-handed TTP
(red particles) are homogeneously distributed in the system.

shape of the nematic nucleus, longer particles are needed [120] for which P is expected
to be larger and therefore a careful choice of the shape is essential. However, it is also
evident that the Parsons-Lee (PL) correction does not rescale the packing fraction of
twisted polyhedra accurately enough and overestimates the IN* transition. This may
be remedied by a better rescaling factor than the PL correction, or by a more accurate
microscopic theory such as fundamental measure theory (cfr. Chap. 5). The DFT also
overestimates P compared to simulations, i.e., it underestimates the macroscopic chiral
twist of a N* phase. A similar conclusion was also drawn in previous work on attractive
chiral spherocylinders [246].

Finally, recent advancements in chemical synthesis of nanocrystals with polyhedral
shape [70] and the use of polarized light to introduce chirality in the shape [301], brings
optimism on the possibility of achieving control over more and more particle features,
including chirality, at the microscopic level. It is worth mentioning that the twisted prisms
resemble the twisted nanoribbons as synthesized in Refs.[301, 302]. We hope that our
study motivates further theoretical efforts in the directions of chiral particles. Computer
simulations of hard particles will be helpful in the shape design of future building blocks.
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8

Towards design rules for colloidal
liquid crystals?

How far are we from a complete understanding of the effect of shape on the colloidal liquid
crystal behaviour? Do we already have all the necessary theoretical tools to discriminate
between the different (nematic) phases? What novel nematic behaviour can we look for?
In this chapter we address these issues by focusing on a couple of open questions and by
reporting state-of-the-art computer simulations on chiral nematic phases of hard particles.
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8.1 Introduction
We have seen that nematic phases with different symmetries are formed when the con-
stituent particles do not have uniaxial symmetry. In a uniaxial nematic phase, the elastic
deformations, namely splay, twist and bend (cfr. Sec. 3.3), cost free energy. However,
chiral particles can give rise to cholesteric phases, in which the stable order features a
certain degree of twist. It is then possible to imagine the existence of other modulated
nematic phases, in which the thermodynamically stable state features a combination of
the elastic modes. In particular, twist-bend nematic phases have been recently discov-
ered [241, 242]. In the first part of this chapter, we try to understand what ingredients are
needed to extend our second-virial theory to twist-bend nematic phases. Subsequently, we
investigate the possibility of spontaneous chiral symmetry breaking in systems consisting
of simple particle models. Finally, we present an extended computer simulation study to
show how the competition between particle biaxiality and particle chirality is transmitted
into the nematic phase behaviour.

8.2 Towards a theory for twist-bend nematics: heli-
conical order

Cholesteric order is the simplest chiral arrangement for a nematic phase, in which the
twist axis is perpendicular to the local nematic director. In general, the local nematic
director can be inclined by an angle δ with respect to the chiral director (see Fig. 8.1(a)),
leading to the following functional dependence of the director field:

n̂q(y) = x̂ sin δ sin qy + ŷ cos δ + ẑ sin δ cos qy (8.1)

In analogy with Chap. 6, in Eq. (8.1) we keep on assuming the y-axis to be the chiral
director. When 0 < δ < π/2, the nematic director exhibits an heliconical arrangement
that was initially attributed to be the microscopic order of a recently discovered nematic
phase that was termed twist-bend [241, 242]. This phase could even display additional
hexatic order [239] that will not be taken into account here. The case of the simpler
cholesteric is recovered for δ = π/2, whereas for δ = 0 we have an achiral uniaxial nematic.
By inserting Eq. (8.1) (instead of Eq. (6.20)) into the expression for the excluded volume
coefficients (Eq. (6.21)), our theory can be used to discriminate between cholesteric and
heliconical phases. By implementing a 2D grid for the chiral wave vector q and the angle
δ, we compute the excluded volume coefficients and calculate the free-energy landscape,
that now depends on an additional parameter, the angle δ (cf. Fig. 8.1(b)). In analogy
with the cholesteric case, we are able to locate the free-energy minima in the η − q − δ
space and obtain the equilibrium chiral properties characterizing the nematic phase. We
apply our theory to the hard-helix particle model described in Chap. 6. In Fig. 8.1(c),
we report the results for helices of contour length Lc = 10σ, r = 0.4σ and p/σ = 2, 3, 4.
We recover the three regimes for the cholesteric handedness (same, mixed, opposite) and
we find that the angle δ = π/2 ∀η, indicating that for these helical shapes the cholesteric
order is stable with respect to the heliconical one. We have to remark that evidences of
a conical phase, as originally termed, were reported in experiments on colloidal helical
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flagella [221]. Moreover, a screw-like nematic phase has been observed in simulations of
hard helices [37] that differs from the heliconical phase proposed here since the chiral
arrangement refers to the short axis of the particles. Such a screw-like nematic phase
seems to be consistent with the experimental observations and to be stable for appropriate
pressures/densities with respect to the cholesteric phase formed by hard helices [37, 293].
Finally, a recent work of Greco and Ferrarini [36] shows that by taking into account both
the biaxiality and the polarity of both the nematic phase and the constituent particles, it
is possible to formulate an Onsager-like DFT that successfully describes the twist-bend
nematic order. Such a theory was applied to hard crescent-shaped particles and, with the
additional support of computer simulations, clearly shows that the formation of a twist-
bend nematic phase can be entropy-driven [36]. Nevertheless, the study of the twist-bend
order in nematic phases and the intricate mechanisms governing liquid crystals formed by
bent-core particles are still active topics of research, that have also been extended to the
colloidal domain [303–307].
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Figure 8.1: (a) Schematic of a twist-bend nematic phase. The local nematic director n̂ twists
around the chiral director χ̂ with a fixed bending angle δ. (b) Free-energy landscape in δ − q
plane, at fixed packing fraction η = 0.35 for helices with p = 4σ, r = 0.4σ and Lc = 10σ.
The green circle indicates the free-energy minimum. (c) Minima of free energy in η − q − δ
space for helices of length Lc = 10σ, r = 0.4σ and p = 2σ (red circles), p = 3σ (green crosses),
p = 4σ (blue squares). All the lines belong to the plane δ = π/2, indicating that bending is not
favourable.

8.3 Searching for a spontaneous chiral symmetry break-
ing in cholesteric phases

In his famous book on liquid crystals [35], de Gennes explained the difference between
cholesteric and achiral nematic phases in terms of minima in the free energy F associated
to the twist q in the system by using the analogy with magnetic systems (see Fig. 8.2).
He suggested that in addition to systems forming achiral nematic phases and the ones
forming cholesteric phases, a third class of systems could exist. Indeed, he suggested
that ‘steric interactions of dumbbell-like molecules (as in Fig. 8.2) would tend to give rise
to two symmetrical minima in F (q) and he also remarked that “at the present stage no
helices of this kind have been found in liquid crystals”. It is interesting to remark that
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a spontaneous chiral symmetry breaking also occurs in twist-bend nematic phases, since
indeed achiral particles can form both right- and left-handed domains [36]. However, as
mentioned in the previous section, polarity and biaxiality are key elements to be taken
into account to describe twist-bend nematics. On the other hand, the particles proposed
by de Gennes are clearly apolar and uniaxial, and if spontaneous chiral symmetry breaking
occurs, it should give rise to both right- and left-handed cholesteric phases. The theory
introduced in Chap. 6 allows us to compute numerically the free energy F as a function
of the wavenumber q of the chiral twist, for a given thermodynamic state of the system
(e.g. at given density). We can therefore distinguish between a stable achiral nematic
phase, for which the minimum of F (q) is at q = 0, a stable cholesteric phase, for which the
minimum of F (q) = q∗ 6= 0, and a spontaneous breaking of the chiral symmetry, for which
two symmetrical minima are found. Analogously, finding K2 ∝ d2F (q)

dq2 < 0 would also be
an indication that the system exhibits a spontaneous chiral symmetry breaking. Such a
theory is applied in the next sections to the purely-steric particle model proposed by de
Gennes and to hard spherocylinders with a uniaxial charge distribution, which, following
the same reasoning, could also exhibit spontaneous chiral symmetry breaking.

(b)(a)

Figure 8.2: Adapted from Ref. [35]. The original caption reads: Variation of the free energy
with twist for various physical systems. (a) Systems that do not distinguish right and left. The
curve labelled N,F applies to a nematic or a ferromagnet (minimum of energy at zero twist).
The curve labelled HM applies to a helimagnet, or to the dumbbells of the inset. (b) Systems
distinguishing right from left such as actual cholesterics.

8.3.1 Elongated hard dumbbells
We study the nematic behaviour of hard elongated dumbbells defined by the cylinder
length L, the cylinder diameter D, and the sphere diameter σs, as shown in Fig. 8.3(a).
We use reduced units L∗ = L/D and σ∗s = σs/D and we apply our DFT (see Chap. 6)
to a large number of systems: L∗ = 5, 6, 7 and σ∗s = 1.1, 1.2, 1.25, 1.3, 1.4, 1.5, 2.0, 3.0;
L∗ = 10 and σ∗s = 2, 3, 4, 5, 6; L∗ = 20 and σ∗s = 2, 3, 4, 5, 6, 7, 8, 9, 10; L∗ = 40 and
σ∗s = 4, 6, 8, 10, 12, 14, 16. In Fig. 8.3(a), we report the nematic order parameter S as
a function of the packing fraction η = ρv0, with ρ the number density and v0/D

3 '
2π6σ

∗
s

3 + π
4 (L∗ − σ∗s) the (approximate) particle volume, for some of the systems studied.



Towards design rules for colloidal liquid crystals? 155

We observe that particles with the same “effective” aspect ratio L/σs roughly display the
jump of S, which indicates the occurrence of the isotropic-nematic phase transition, at
similar packing fractions η. Notice that in some cases such a packing fraction is quite
high and more ordered phases, that are not taken into account in the theory, could be
more stable than the nematic phase. In Fig. 8.3(b), we plot the difference in free energy
between the achiral nematic F (q = 0) and a cholesteric phase F (q) as a function of the
chiral wave number q, for dumbbells with L∗ = 20 and σ∗s = 4 and different packing
fractions η. The isotropic-nematic transition occurs around η = 0.40. We always observe
that the minimum of the free energy corresponds to q = 0, which is the achiral nematic
phase. Notice that the apparent maxima at |q| ' 0.12 for η = 0.41 correspond to the
maximum twist for which we can obtain a nematic phase by minimizing our free-energy
functional. Beyond |q| ' 0.12 we obtain only isotropic orientation distribution functions
that have anyway a higher free energy than the achiral nematic phase. In all the systems
studied, we do not find any evidence of a spontaneous chiral symmetry breaking within
the numerical accuracy of our second-virial theory. This raises the question if such as
an effect can be observed when higher-order particle-particle correlations are considered.
Computer simulations will address this question and hopefully will shed new light on the
spontaneous chiral symmetry breaking in systems of (de Gennes) hard dumbbells.
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Figure 8.3: (a) Cartoon of the particle model and nematic order parameter S as a function
of packing fraction η. The elongated hard dumbbells are defined by the cylinder length L, the
cylinder diameter D and the spheres diameter σs (in the cartoon L∗ = L/D = 10, σ∗s = σs/D =
3). (b) Free-energy difference ∆F (q) = F (q)−F (q = 0) as a function of chiral wave number qD
for different packing fractions η, and for hard elongated dumbbells with L∗ = 20 and σ∗s = 4.
We use reduced units with β = 1/kBT , with kB the Boltzmann constant and T the temperature,
and V is the system volume. The error bars are calculated by averaging over 10 independent
runs of 1010 MC steps. Notice that different q-grids have been investigated as well.

8.3.2 Hard rods with uniaxial charge distribution
For charged rod-like colloids in the Onsager limit (infinite aspect ratio), it is possible
to find parameter regimes with a coexistence between two nematic phases, besides the
expected isotropic-nematic transition [308]. The existence of a second, more aligned,
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nematic phase can be explained in terms of the twisting effect. The Frank elastic con-
stants (cfr. Sec. 3.3) have been computed in the limit of infinitely long rods, to see if the
twist elastic constant K2 can become negative, which would indicate the possibility of a
spontaneously forming cholesteric phase. Although the twisting effect reduces K2, it al-
ways remains positive [308]. In this section we investigate if spontaneous chiral symmetry
breaking can occur when considering finite rods.

For this purpose, we apply our DFT to a simple model of colloidal uniaxially-charged
rods. In analogy with Ref. [309], the colloids are modelled as hard spherocylinders (HSC)
of diameter D and length L. The total charge on the rods Z is fixed by embedding Ns

spheres interacting via a hard-core Yukawa potential (HY). The Ns spheres (with Ns odd)
are evenly distributed along the backbone of the rod: they are separated by a distance
δ = L

Ns−1 such that two spheres are always at the extremities of the spherocylinder. The
total pair potential between two charged rods is given by

U12(r, ω̂, ω̂′) = UHSC(r, ω̂, ω̂′) +
Ns∑
i=1

Ns∑
j=1

UHY (rij) , (8.2)

where UHSC is the hard-core potential between spherocylinders

UHSC(r, ω̂, ω̂′) =
{
∞ dmin(r, ω̂, ω̂′) ≤ D
0 dmin(r, ω̂, ω̂′) > D

, (8.3)

with dmin(r, ω̂, ω̂′) the minimum distance between two HSCs with center-of-mass sepa-
ration r and orientations ω̂, ω̂′; whereas the sphere-sphere interaction is described by a
(truncated) hard-core Yukawa potential:

βUHY (rij) =


∞ rij < D

βε exp[−κD(rij/D−1)]
rij/D

D ≤ rij < rcut
0 rij ≥ rcut

(8.4)

where i, j indicates spheres belonging to rods 1, 2 respectively. The parameters βε and
Ns are related by βε =

(
Z
Ns

)2
, so Ns is simply a parameter that can be varied until

convergence is reached. As previously shown [309], this model with Ns ≥ 13 is in excellent
agreement with analytic results for the excluded volume of finite aspect-ratio rods with
an effective linear charge distribution. Accordingly, we choose Ns = 15, which should
guarantee a good agreement between the discrete-sphere and the linear-charge model. In
the numerical integration we use a cut-off rcut ∼ 1 − 2 L. The hard aspect ratio L/D,
the total charge on the rod Z and the inverse of the Debye screening length κD are the
physical independent parameters. We investigate a few combinations of aspect ratio L/D
and total charge Z on the rods, as reported in Fig. 8.4. In Fig. 8.4(a), we show the
free-energy difference ∆F (q) = F (q)−F (q = 0) as a function of the chiral wavenumber q,
for L/D = 10, Z = 1.0, and two different packing fractions η = 0.28, 0.32. In some cases,
we employ different q-grids to check that our results are consistent. However, within our
numerical accuracy no evidence of a double minimum at q = ±q∗ 6= 0 has been observed
for the entire set of parameters studied. From the second-derivative of ∆F (q) it is possible
to calculate K2 as a function of packing fraction η, as shown in Fig. 8.4(b) for L/D = 10
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and two values of total charge Z = 0.05 and Z = 1.0. We see that K2 increases with
packing fraction and that the numerical uncertainty increases as well. In Fig. 8.4(c), we
show the twist elastic constant as a function of η for aspect ratio L/D = 40, 20, 10, 5 and
different values of total charge Z on the rods. Due to the large numerical uncertainties (not
shown) at large packing fraction, quantitative conclusions about the actual dependence
of K2 on charge should be drawn carefully. However, as mentioned before, there are no
indications that K2 becomes negative. In addition, we show results for charged rods in
the Onsager limit [308]. We see that the general trend of K2 is similar to that of the
largest aspect ratio L/D = 40, but, as expected, Onsager theory become less accurate
as the aspect ratio becomes smaller. In conclusion, just as in the case of infinite rods,
we do not find any evidence that a linear charge distribution can induce a spontaneous
chiral symmetry breaking in uniaxially-charged colloidal rods of finite length. Therefore,
a uniaxial charge distribution alone seems not enough to break chiral symmetry, at least
not within a second-virial type of theory. Again, it is interesting to investigate whether
or not a third-virial term (which includes three-body correlations) is able to predict a
spontaneous chiral symmetry breaking of uniaxial rods, which may stabilize a cholesteric
phase.
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Figure 8.4: (a) Free-energy difference ∆F (q) = F (q) − F (q = 0) as a function of chiral
wavenumber qD for two different packing fractions η, and for rods with aspect ratio L/D = 10,
total charge on rods Z = 1.0 divided over Ns = 15 spheres, screening parameter κD = 0.2,
and cut-off rcut/D = 20. The error bars are calculated by averaging over 10 independent runs
of 1010 MC steps. (b) Twist elastic constant βK2D calculated from the second derivative of
F (q) as a function of packing fraction η for Z = 0.05 and Z = 1.0 (for the same Ns, rcut,
and κD as in (a)). (c) Twist elastic constant βK2D as a function of packing fraction η for
fixed screening parameter κD = 0.2, with different aspect ratios L/D, and with different total
charges Z. The solid lines are results from the MC method for finite rods and the dashed lines
are results from theory in the Onsager limit for Z = 0 and Z = 1.2, which are shown for aspect
ratios L/D = 40, 20, 10 (L/D = 5 is outside of the plotted range).
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8.4 Towards design rules for hard chiral particles from
computer simulations

In this section, we extend our simulation study on systems of triangular twisted prisms
(TTPs), introduced in Chap. 7, in order to explore the possibility of rationalising the
nematic behaviour of chiral particles. Here, we consider TTPs with height h/ω = 5, and
study the nematic phase behaviour for different values of the base angle γ and twist angle
α. In Fig. 8.5(a) we show our results in the γ-α plane. As reference, we also report results
for α = 0, corresponding to achiral triangular prisms. Some of them are also presented in
Chap. 5, where however we mainly focused on the regions where ν ' 0, with ν the shape
parameter (see Chaps. 5, 7).

We observe that by tuning the shape chirality, i.e., changing α, and the shape biaxi-
ality, i.e., changing γ, several phases can be formed upon compression from an isotropic
phase (under standard periodic boundary conditions). In particular, a prolate (calamitic)
chiral nematic N ∗+ phase is observed when ν > 0 (light-blue region), as already shown in
Chap. 7. However, the nematic state can also change upon increasing the packing frac-
tion. For instance, TTPs with a relatively high twist α (and ν > 0) undergo a transition
from a N ∗+ phase to a phase that is reminiscent of the blue phase (BP), as shown in
Fig. 8.5(d). Indeed, the BP exhibits no long-range orientational order as evidenced by a
vanishing nematic order parameter, but the particles are strongly aligned with respect to
their neighbouring particles, which poses the question whether this BP may actually be
a twisted grain boundaries phase with very small smectic-like domains. Interestingly, for
TTPs with the strongest twist α (dark-blue region) the BP is observed directly from the
isotropic phase without an intervening nematic phase. The BP seems to be surprisingly
stable as even upon increasing the pressure further this phase remains. On the other
hand, for ν < 0 an oblate (discotic) N ∗− chiral nematic phase is formed, in which the
short particle axes display long-range orientational order (orange and yellow regions). It
is worth noting that there are two regions where the N ∗− phase is stable, i.e., for suffi-
ciently small or sufficiently large base angle γ. However, in the case that the triangular
base is extremely flat (when γ is very small, and thus also ν) an additional splay defor-
mation is formed in the nematic director field n̂ŵ corresponding to the short particle axis
ŵ, therefore forming a twist-splay nematic N st

− (yellow region) when compressing from
an isotropic phase, as shown in Fig. 8.5(g). Such a deformation is not generic for chiral
particles but seems to be specific to triangular prisms, which is corroborated by the fact
that for the achiral particle with same γ, an achiral nematic phase is observed with also
a splay deformation, i.e., a N s

− phase, as shown in Fig. 8.5(f). Further studies on the
stability of this deformation are required but could be interpreted as another modulated
nematic phase.

Finally, we focus on the region where ν ' 0 (red region). Interestingly, we clearly
observe the formation of biaxial nematic phases for both achiral and chiral triangular
prisms in which both the short ŵ and long û particle axes show long-range orientational
order. We find that in the case of twisted triangular prisms, only one of the nematic
directors show a chiral helical arrangement. To be more specific, we find at low densities
that a biaxial nematic phase is formed in which only the nematic director corresponding
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to the short particle axis show a helical arrangement, resulting in a N ∗b− phase as shown in
Fig. 8.5(b). Upon increasing the density, this biaxial chiral nematic N ∗b− phase transforms
into a (biaxial) chiral nematic N ∗(b)+ phase with a helical arrangement of the nematic
director associated to the long particle axes. As the orientational order of the short
particle axes is very weak, we could not identify if the chiral nematic phase is uniaxial N ∗+
or biaxial N ∗b+. A transition from Nb− to Nb+ is consistent with the simulations on hard
board-like particles [195] and our results presented in Chap. 5, where the achiral biaxial
phases were characterized by the particle axis with the highest orientational order. It
is tempting to speculate that indeed only the nematic director of the particle axis that
shows the strongest alignment becomes chiral in a biaxial nematic phase, as it seems
unlikely that both director fields twist simultaneously and remain space-filling. However,
it is impossible to rule out such a scenario of double twist as the cholesteric pitch of one
or both director fields can easily exceed the system sizes that are at present accessible in
simulations.

In conclusion, we have mapped out the nematic phase behaviour in the shape biaxiality-
shape chirality parameter space and we have shown how the observed nematic phases can
be rationalized: (i) The shape parameter ν can be used to predict which of the two parti-
cle axes exhibits long-range orientational order, resulting in a discotic N− nematic phase
for ν < 0 or a calamitic N+ nematic phase when ν > 0. For ν ∼ 0, a biaxial phase
may be present, provided that other conditions that depend on the exact particle shape
are satisfied. This was already demonstrated in a simulation study on hard board-like
particles [195] and shown in Chap. 5 for achiral hard prisms, where the particle aspect
ratio needs to be larger than a threshold value to observe a biaxial nematic phase. (ii)
Furthermore, we find that in the case that the triangular base is extremely flat, the ne-
matic phase displays a splay deformation for both chiral as well as achiral particles upon
compressing from an isotropic phase. (iii) In addition, we find that for highly twisted
particles or at high pressures “blue phases” can be stabilized. (iv) Our results also re-
veal that the coupling between particle biaxiality and chirality is highly non-trivial as
the prolate nematic phases are left-handed, whereas the oblate nematic phases are right-
handed using the same right-handed particle model. We have to remark that to assess the
thermodynamic stability and the corresponding phase boundaries of all of these phases,
accurate free-energy techniques to apply in computer simulations and an extended density
functional theory that takes in account all of these effects at the same time, are needed
but not yet developed.
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Figure 8.5: (a) Nematic phase behaviour for twisted triangular prisms of height h/ω = 5
in the twist angle α - base angle γ representation. Regions are colored according to the type
of nematic phase that is found stable (white corresponds to unphysical parameters), see text
for a detailed description. (b) Left (red) box: N ∗b− phase with nematic director profile n̂ŵ, a
configuration with particles colored according to ŵ and according to û. Right (cyan) box: N ∗(b)+
phase with configuration of nematic phase at higher pressure, and particles colored according
to û. (c) (purple) box: BP phase, particles colored according to û. (d) N ∗+ and BP (at higher
pressure) with particles colored according to û. (e) N ∗− with particles colored according to ŵ.
(f) N s

− with particles colored according to ŵ and corresponding nematic director profile of n̂ŵ.
(g) Snapshot of N st

− with particles colored according to ŵ and corresponding profile of n̂ŵ.



162 Chapter 8

8.5 Outlook and conclusions
In conclusion, there is a clear need for a density functional theory that is able to describe
splay, twist, and bend deformations together with phase polarity and biaxiality, and
therefore able to identify which kind of order amongst all possible combinations exhibits
the thermodynamic stable phase. Several recent theoretical advancements suggest that
such a framework will be available in the near future, at least within the second-virial
approximation, at least for nematic phases. It will therefore just a matter of computational
resources to scan different particle shapes and to identify the key features responsible for
the various thermodynamic nematic phase. Extending such a framework to smectic phases
is in principle also possible. More quantitative reliable theories should probably rely on
more sophisticated approaches, such as fundamental measure theory, for which we have
seen in Chap. 5 that a good agreement with simulation results is obtained in case of
already quite complex shaped particles. The straightforward test for such theories will
be the comparison against computer simulations. As shown in the previous section, it
is already possible to directly observe very complex nematic order. However, free-energy
calculation techniques for such phases are not well developed yet, especially if compared
with the well established methods to determine the equilibrium crystal structures or
the gas-liquid coexistence [10]. Progress in this direction will be then also important.
Nevertheless, many entropy-driven phase transitions, several of them already discussed in
this thesis, have been studied and clear indications on how the shape of the particles alone
stabilizes the different thermodynamic phases have been identified. Yet, some puzzling
issues remain, e.g. the question of whether or not a system of hard elongated dumbbells
can exhibit a spontaneous chiral symmetry breaking is still open, see Sec. 8.3. In this
case, a second-virial density functional theory gives a negative answer, but it is not clear
what the outcome will be if higher-order virial contributions are included in the theory
or perhaps we will find that in this case shape, at least the one proposed by de Gennes,
is not enough to stabilize a chiral nematic phase? This question needs to be addressed.
Finally, our results, together with the exhaustive literature on hard particles, also pose
the intriguing question if any thermodynamic phase featuring long-range order can be
stabilized by entropy alone. Several shape features have been identified as responsible for
the stabilization of different thermodynamic phases and therefore design rules for novel
building blocks start to take shape.
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Summary

In this thesis, we study entropy-driven phase transitions in suspensions of colloidal par-
ticles. Colloids are small particles, with typical sizes varying from the nanometer to the
micron range, dispersed in a medium that is composed of much smaller particles (atoms or
molecules). Because of this size difference, colloids experience Brownian motion that al-
lows them to (slowly) move around the medium, exploring the microscopic configurations
available, and possibly arrange themselves in ordered structures. This process is called
self-assembly and the different structures that can be formed are analogous to those of
atomic and molecular systems. For example, colloids can self-assemble into fluids (dis-
ordered arrangements of particles), liquid-crystals (partially ordered), and crystals (fully
ordered). The stability of and the transitions between these phases, i.e., the phase be-
haviour, depend both on the interactions between the colloids and the properties of the
whole system, which are thermodynamic parameters like temperature or density. Here,
we focus on systems composed of hard colloidal particles: particles that do not have any
interactions except for the fact that cannot overlap with each other. By using computer
simulations and classical density functional theory, we show that the particle shape is
enough for the formation of several thermodynamic phases. In other words, it is possible
to obtain order in complete absence of any attraction in the system, just by increasing
the density of the system. These transitions are (fully) entropy-driven since no change
in energy is associated to the phase transition but only a change in entropy, that is a
quantity related to the number of possible microscopic particle arrangements. Forming a
more ordered structure corresponds to increasing the number of ways that the particles
can arrange themselves, therefore increasing the entropy of the system.

Hard spheres, that have served as an indispensable model system in condensed-matter
studies for more than half a century, are the first system studied in this thesis. It is well
established that, under equilibrium conditions, hard spheres in bulk crystallize into a face-
centered-cubic (FCC) crystal. However, in chapter 2 we show that a novel phase behaviour
emerges when the system is spherically confined. Indeed, when a large number (tens of
thousands) of hard spheres are compressed, while confined in a spherical cavity, they do
not self-assemble into an FCC crystal but rather they form icosahedral clusters. Icosa-
hedral symmetry, which is not compatible with truly long-range order, is found in many
other systems, such as liquids, glasses, atomic clusters, quasicrystals and virus-capsids.
Our computer simulations confirm that in spherical confinement the icosahedral order is
thermodynamically favoured over the FCC one and corroborate real-space measurements
on evaporating emulsion droplets containing colloids, that have been performed by exper-
imentalists in our group. Moreover, by elucidating the crystallization mechanism of the
icosahedral structures, we provide new insights into the interplay between confinement
and crystallization.

In chapter 3, we study a system of elongated hard colloids with a spherocylindrical
shape, that is a cylinder with two hemispherical caps. Shape anisotropy is the essen-
tial ingredient to form liquid-crystal phases. Hard spherocylinders have been extensively
used to study uniaxial nematic and smectic (liquid-crystal) phases. In a nematic phase,
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particles are on average aligned along a common direction, whereas their positions are
homogeneously distributed in space. In a smectic phase, particles are aligned and form
layers. The transition between an isotropic (completely disordered phase) and a nematic
phase is well described by a second-virial classical density functional theory (Onsager the-
ory). Such theory is applied in chapter 3 to spherocylinders and it is adapted to different
particle models and to chiral nematic phases in the following chapters. Furthermore, we
introduce a set of global and local order parameters to describe liquid crystalline order
that are used in chapter 3 and in the following chapters both on simulation and experi-
mental data. Experimentally, silica colloids with an effective spherocylindrical shape have
been synthesised and studied in our group. The experimental phase behaviour of silica
rods in sedimentation-diffusion equilibrium is compared against computer simulations by
taking into account the effective dimensions of the experimental particles and the effect
of size polydispersity on the phase behaviour. Qualitative agreement is obtained for the
overall phase behaviour and quantitative agreement for packing fractions up to 40%. In
chapter 4, we study liquid crystal phases formed by binary mixtures of colloidal rods and
spheres, focusing in particular on the binary smectic phase, which consists of alternating
layers of rods and spheres. A phase diagram of a binary mixture of silica rods and spheres,
obtained by experimentalists in our group by using a quantitative real-space analysis that
also relies on the order parameters introduced in this thesis, is compared with computer
simulation results. We verify that the binary smectic phase observed experimentally can
be stabilized by entropy alone and this opens up the possibility of combining new ma-
terials properties at different length scales, without the need to finely tune inter-particle
attractions.

In chapter 5, we consider hard rod-like particles with a polyhedral shape. These col-
loids do not have uniaxial symmetry, like the spherocylinders, but rather are biaxial.
We first simulate systems of elongated equilateral triangular prisms forming isotropic,
uniaxial nematic and smectic phases and compare the phase behaviour with theoreti-
cal predictions based on fundamental measure theory, carried out by another research
group, finding good agreement. We also highlight the fact that triangular prisms exhibit
liquid-crystal phases at lower densities and lower particle aspect ratios with respect to
spherocylinders due to the presence of flat faces in the particle shape. Next, we investigate
what the necessary conditions are to form prolate, oblate and biaxial nematic phases. In
fact, for biaxial particles, nematic phases can be divided into (uniaxial) prolate, (uniax-
ial) oblate and biaxial phases, depending on whether the long, the short, or both particle
axes are aligned. We show that the general liquid-crystal behaviour can be predicted on
the basis of a shape parameter that is determined by the difference between the ratios of
the particle axes, as already pointed out in the literature. In particular, biaxial nematic
phases are found when such a shape parameter is close to zero, i.e., the “dual” shape.
However, we highlight the fact that biaxial nematic phases are only observed when the
particles are sufficiently elongated. This additional criterium depends on the exact par-
ticle shape, i.e., the threshold value on the particle length becomes more extreme going
from spheroplatelets to triangular prisms to cuboids.

In chapters 6, 7 and 8, we consider colloidal particles with a chiral shape. Chiral
objects, like our hands, lack mirror symmetry. In the case of chiral particles, the nematic
organisation is chiral as well, which implies that the direction along which the particles
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are oriented twists in an helical fashion. This type of liquid-crystalline phase is termed
cholesteric and features a typical length scale, called cholesteric pitch, over which the
structure repeats itself. Cholesteric phases that are responsive to an external electric field
and have a cholesteric pitch of the same order as the wavelength of visible light are often
employed in opto-electronic applications like liquid-crystal displays (LCDs). Building a
general theoretical framework to describe the microscopic origin of macroscopic chirality
in (colloidal) liquid crystals is a long-standing challenge and it is the aim of chapter 6. By
combining classical density functional theory with Monte Carlo calculations of virial-type
coefficients, we are able to obtain the equilibrium cholesteric pitch as a function of thermo-
dynamic state and microscopic details. Applying the theory to hard helices, we observe
both right- and left-handed cholesteric phases that depend on a subtle combination of
particle geometry and system density. We also predict that for particular helical shapes
an inversion in the cholesteric sense of twist can occur upon increasing system density. In
chapter 7, we introduce a novel chiral hard-particle model, namely particles with a twisted
polyhedral shape and obtain, for the first time, a stable fully-entropy-driven cholesteric
phase by computer simulations. By slightly modifying the triangular base of the particle,
we are able to switch from a left-handed prolate to a right-handed oblate cholesteric using
the same right-handed twisted particle model. Furthermore, we find qualitative agree-
ment with the theoretical prediction based on the theory described in chapter 6. Our
results unveil how the competition between particle biaxiality and chirality is directly
transmitted at a higher level into the nematic phases. New theoretical challenges on the
self-assembly of chiral particles can be now undertaken and some of them are already
addressed in chapter 8. In particular, we speculate on the possible formation of novel
chiral nematic phases made of hard particles and highlight some open issues in this field.

The self-assembly of colloidal particles holds a great promise of structuring matter with
novel properties, in three dimensions, at different length-scales, in a bottom-up, affordable
and sustainable fashion. This cannot be achieved without fundamentally understanding
the key features responsible for the stabilization of the different structures, starting from
the role of particle shape on the colloidal phase behaviour. Especially now that complex-
shaped colloidal particles can be synthesized, design rules are needed for the building
blocks of the future materials. The work presented in this thesis will, hopefully, contribute
to the scientific progress along these directions.





Samenvatting

In dit proefschrift bestuderen we entropie-gedreven overgangen in suspensies van colloïdale
deeltjes. Colloïden zijn kleine deeltjes, typisch een nanometer tot een micrometer groot,
gedispergeerd in een medium bestaande uit veel kleinere deeltjes (atomen of moleculen).
Ten gevolge van dit verschil in grootte ondergaan de colloïden Brownse beweging en be-
wegen ze zich (langzaam) in het medium, waarbij ze de toegankelijke microscopische con-
figuraties verkennen en zich mogelijk verzamelen in geordende structuren. Dit proces heet
zelforganisatie, waarbij de gevormde structuren analoog kunnen zijn aan de structuren die
in moleculaire en atomaire systemen voorkomen. Colloïden kunnen zich bijvoorbeeld or-
ganiseren als een vloeistof (ongeordend systeem), een vloeibaar kristal (deels geordend) en
als kristal (volledig geordend). De stabiliteit van en de overgang tussen deze verschillende
fases, het fasegedrag, hangen af van de interacties tussen de colloïden en de thermody-
namische eigenschappen van het gehele systeem, zoals temperatuur en druk. In dit proef-
schrift richten we ons op harde colloïden. Dit zijn deeltjes die geen interactie met elkaar
hebben afgezien van het feit dat ze elkaar niet mogen overlappen. Door gebruik te maken
van computersimulaties en klassieke dichtheidsfunctionaal theorie laten we zien dat de
vorm van een deeltje voldoende is voor het ontstaan van verschillende thermodynamische
fases. Met andere woorden, het is mogelijk om orde te verkrijgen in een systeem zonder dat
er enige attracties aanwezig zijn, simpelweg door de dichtheid van het systeem te verhogen.
Dit soort overgangen zijn (volledig) entropie-gedreven, omdat er alleen een verandering is
in entropie en niet in energie tijdens de faseovergang. Entropie is een maat voor het aan-
tal mogelijke microscopische configuraties waarin de deeltjes zich kunnen bevinden. Door
het vormen van een geordendere structuur neemt het aantal mogelijke configuraties toe,
waardoor ook de entropie van het systeem toeneemt. We beginnen met het bestuderen
van een systeem dat bestaat uit harde bollen, dit is een model systeem dat van cruciaal
belang is in de gecondenseerde materie. Het is algemeen bekend dat harde bollen onder
evenwichtsomstandigheden kristalliseren in een vlak-gecentreerd-kristal (FCC). Echter, in
hoofdstuk 2 laten we zien dat een nieuw soort fasegedrag verschijnt wanneer de deeltjes
opgesloten worden in een bolvormige omgeving. Wanneer een groot aantal (tienduizenden)
harde bollen worden samengedrukt in een bolvormige ruimte organiseren ze zich niet in een
FCC-kristal, maar in icosaedrische clusters. Een icosaedrische symmetrie kan niet bestaan
over lange afstanden en komt vooral voor in systemen zoals vloeistoffen, gassen, atomaire
clusters, quasikristallen en viruscapsiden. Onze computersimulaties laten zien dat in een
bolvormige ruimte de icosaedrische ordening thermodynamisch gunstiger is dan een FCC
ordening en sluiten daarmee aan bij de experimentele metingen die in onze groep gedaan
zijn op verdampende emulsiedruppels waarin colloïden "opgesloten" zaten. Daarnaast leidt
het ophelderen van het kristallisatiemechanisme van icosaedrische structuren tot nieuw
inzicht in de rol van de omgeving op het kristallisatieproces. In hoofdstuk 3, bestuderen
we een systeem bestaande uit harde colloïden met een sferocilinder vorm (een cilinder
met aan beide uiteinden een halve bol). De anisotrope vorm is een cruciale voorwaarde
voor het vormen van een vloeibaar kristallijne fase. Harde sferocilinders worden veelal ge-
bruikt om eenassige nematische en smectische (vloeibaar kristallijne) fases te bestuderen.
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In de nematische fase zijn de deeltjes geordend langs één gemeenschappelijke richting,
terwijl hun posities homogeen verdeeld zijn in de ruimte. In een smectische fase wijzen
de deeltjes ook in één richting, maar zijn ze eveneens geordend in lagen. De overgang van
een isotropische (ongeordende fase) naar een nematische fase kan goed beschreven wor-
den met een tweede-viraal klassieke dichtheidsfunctionaal theorie (Onsager theorie). Dit
type theorie wordt in hoofdstuk 3 toegepast op sferocilinders en aangepast naar verschil-
lende deeltjesmodellen en de chirale nematische fase in de daaropvolgende hoofdstukken.
Verder introduceren we een serie van globale en lokale ordeparameters om de vloeibare
kristallijne orde te beschrijven, welke we zullen gebruiken om zowel de orde in de experi-
mentele als de simulatie resultaten te beschrijven. Experimenteel heeft men in onze groep
silica colloïden met een effectieve sferocilinder vorm gemaakt en bestudeerd. Het experi-
mentele fasegedrag van silica staven in een gravitationeel-diffusie evenwicht is vergeleken
met computersimulaties, waarbij de effectieve dimensies van de experimentele deeltjes en
het effect van de polydispersiteit in deeltjesgrootte op het fasegedrag zijn meegenomen.
We vinden een kwalitatieve overeenstemming voor het globale fasegedrag en een kwanti-
tatieve overeenstemming voor volumefracties tot 40%. In hoofdstuk 4 bestuderen we de
vloeibaar kristallijne fase die gevormd wordt in binaire mengsels bestaande uit bollen en
staven, waarbij we ons specifiek richten op de binaire smectische fase bestaande uit al-
ternerende lagen van staven en bollen. We hebben een experimenteel fasediagram van een
binair mengsel van staven en bollen, welke is verkregen met kwantitatieve real-space anal-
yse die berust op dezelfde ordeparameters als in deze thesis, vergeleken met de resultaten
van de computer simulaties. We tonen aan dat het mogelijk is de experimentele binaire
smectische fase enkel door entropie te stabiliseren. Dit maakt het mogelijk om nieuwe ma-
terialen en hun bijbehorende eigenschappen te combineren op verschillende lengteschalen,
zonder dat de interacties tussen de deeltjes precies ingesteld hoeven te worden.

In hoofdstuk 5 bestuderen we harde staafachtige deeltjes in de vorm van een poly-
hedron. Deze colloïden hebben niet alleen een eenassige symmetrie, zoals sferocilinders,
maar zijn tweeassig. We simuleren eerst systemen bestaande uit uitgerekete gelijkzijdige
driehoekige prisma’s die een isotropische, eenassige nematische en smectische fase vromen,
en vinden dat het fasegedrage in overeenkomst is met het fasegedrag dat voorspeld is door
de theoretische berekeningen van een andere groep. We laten zien dat de driehoekige
prisma’s al vloeibaar kristallijn gedrag vertonen bij lagere dichtheden en kortere aspect
ratio’s dan sferocilinders, ten gevolge van hun platte vlakkige vorm. Daarnaast bestud-
eren we welke condities vereist zijn voor het vormen van een prolate, oblate en tweeassige
nematische fase. In het algemeen kan men de nematische fase voor tweeassige deeltjes
onderverdelen in (eenassige) prolate, (eenassige) oblate en tweeassige fases, waarbij re-
spectievelijk de lange, korte of beide assen van de deeltjes dezelfde richting op wijzen. We
laten zien dat vloeibaar kristallijn gedrag kan worden voorspeld op basis van een vorm
parameter, welke afhangt van het verschil in de aspect ratioâĂŹs tussen de deeltjesassen,
zoals dat al eerder was beschreven in de literatuur. We benadrukken echter dat tweeassige
nematisch fases alleen gevormd kunnen worden wanneer de deeltjes voldoende uitgerekt
zijn. Deze voorwaarde hangt sterk af de deeltjesvorm, waarbij de minimale deeltjeslengte
steeds verder toeneemt van sferoplaatjes naar drieassige prisma’s naar kubusachtigen.

In hoofdstuk 6, 7 en 8, bestuderen we colloïdale deeltjes met een chirale vorm. Chirale
objecten, zoals onze handen, zijn niet-spiegelsymmetrisch. Wanneer chirale deeltjes een
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nematische fase vormen, is de richting waarlangs de deeltjes zich oplijnen gedraaid in de
vorm van een helix. Dit type van vloeibaar kristallijne fasen wordt cholesterisch genoemd,
waarbij de typische lengteschaal waarna een structuur zich herhaald de cholesterische
lengte wordt genoemd. Cholesterische fases die gevoelig zijn voor elektrische velden en
een cholesterische lengte hebben die vergelijkbaar is met de golflengte van zichtbaar licht,
worden veelal gebruikt in opto-elektronische toepassingen, zoals LCD-schermen. Het doel
van hoofdstuk 6 is om een algemene theorie te maken die de microscopische oorsprong
van macroscopische chiraliteit in (colloïdale) vloeibare kristallen kan beschrijven. Met
een combinatie van klassieke dichtheidsfunctionaal theorie en Monte Carlo berekeningen
van viraalachtige coefficiënten verkrijgen we de evenwichts-cholesterische-lengte als functie
van de thermodynamische parameters en microscopische details. Wanneer we de theorie
toepassen op harde helixen, observeren we zowel rechts- als linkshandige cholesterische
fases, afhankelijk van de precieze combinatie tussen de deeltjesgeometrie en de dichtheid
van het systeem. Ook voorspellen we dat voor bepaalde helische vormen een inversie
in de cholesterische draairichting op kan treden wanneer de dichtheid van het systeem
verhoogd wordt. In hoofdstuk 7 introduceren we een nieuw chiraal harde-deeltjes-model,
namelijk deeltjes met een gedraaide polyhedrische vorm en verkrijgen we gebruikmakend
van computer simulaties, voor het eerst, een stabiele, volledig entropie gedreven cholester-
ische fase. Door de driehoekige onderzijde van het deeltje iets te modificeren kunnen we
van een linkshandige prolate fase naar een rechtshandige oblate cholesterische fase over-
schakelen, gebruikmakend van een rechtshandig gedraaid deeltje. Daarnaast vinden we
een kwalitatieve overeenkomst met de theoretische voorspelling van hoofdstuk 6. Onze
resultaten laten zien hoe de competitie tussen de tweeassigheid en de chiraliteit van een
deeltje zich kan uiten op een grotere lengteschaal in de nematische fase. Deze bevindingen
openen de weg om nieuwe theoretische uitdagingen omtrent de zelforganisatie van chirale
deeltjes aan te gaan, waarvan enkele al besproken zullen worden in hoofdstuk 8. Hierbij
speculeren we over de mogelijkheid tot het vormen van nieuwe chirale nematische fasen
uit harde deeltjes en bespreken we een aantal openstaande vragen uit het veld.

De zelforganisatie van colloïdale deeltjes is cruciaal bij het maken van materialen met
nieuwe eigenschappen in drie dimensies, op verschillende lengteschalen, in een bottom-up,
betaalbare en duurzame manier. Dit kan echter niet bereikt worden zonder fundamenteel
inzicht in datgene wat de verschillende structuren stabiliseerd, beginnend met de rol
van de deeltjesvorm op de uiteindelijke colloïdale fasegedrag. Gezien het feit dat men
tegenwoordig colloïden in vele complexe vormen kan synthetiseren, zijn algemene regels
voor de bouwstenen van nieuwe materialen noodzakelijk. Het werk dat beschreven staat
in dit proefschrift draagt daar hopelijk aan bij. ∗

∗Translated with the help of Jessi van der Hoeven
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